Part 2. Spectral Clustering from Matrix Perspective

A brief tutorial emphasizing recent developments
(More detailed tutorial is given in ICML'04)

From PCA to spectral clustering using generalized eigenvectors

Consider the kernel matrix: $\quad W_{i j}=\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle$

In Kernel PCA we compute eigenvector: $W v=\lambda v$

Generalized Eigenvector: $\quad W q=\lambda D q$

$$
D=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right) \quad d_{i}=\sum_{j} w_{i j}
$$

This leads to Spectral Clustering !

I ndicator Matrix Quadratic Clustering Framework

Unsigned Cluster indicator Matrix $H=\left(h_{1}, \cdots, h_{\mathrm{K}}\right)$
Kernel K-means clustering:

$$
\max _{H} \operatorname{Tr}\left(H^{T} W H\right), \quad \text { s.t. } H^{T} H=I, H \geq 0
$$

K-means: $\quad W=X^{T} X ; \quad$ Kernel K-means $W=\left(\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle\right)$
Spectral clustering (normalized cut)

$$
\max _{H} \operatorname{Tr}\left(H^{T} W H\right) \text {, s.t. } H^{T} D H=I, H \geq 0
$$

Brief Introduction to Spectral Clustering (Laplacian matrix based clustering)

Some historical notes

- Fiedler, 1973, 1975, graph Laplacian matrix
- Donath \& Hoffman, 1973, bounds
- Hall, 1970, Quadratic Placement (embedding)
- Pothen, Simon, Liou, 1990, Spectral graph partitioning (many related papers there after)
- Hagen \& Kahng, 1992, Ratio-cut
- Chan, Schlag \& Zien, multi-way Ratio-cut
- Chung, 1997, Spectral graph theory book
- Shi \& Malik, 2000, Normalized Cut

Spectral Gold-Rush of 2001

9 papers on spectral clustering

- Meila \& Shi, AI-Stat 2001. Random Walk interpreation of Normalized Cut
- Ding, He \& Zha, KDD 2001. Perturbation analysis of Laplacian matrix on sparsely connected graphs
- Ng, Jordan \& Weiss, NIPS 2001, K-means algorithm on the embeded eigen-space
- Belkin \& Niyogi, NIPS 2001. Spectral Embedding
- Dhillon, KDD 2001, Bipartite graph clustering
- Zha et al, CIKM 2001, Bipartite graph clustering
- Zha et al, NIPS 2001. Spectral Relaxation of K-means
- Ding et al, ICDM 2001. MinMaxCut, Uniqueness of relaxation.
- Gu et al, K-way Relaxation of NormCut and MinMaxCut

Spectral Clustering

min cutsize , without explicit size constraints

But where to cut?

Need to balance sizes

Graph Clustering

min between-cluster similarities (weights)

max within-cluster similarities (weights)
PCA \& Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

Clustering Objective Functions

- Ratio Cut

$$
s(A, B)=\sum_{i \in A} \sum_{j \in B} w_{i j}
$$

$$
J_{\text {Rcut }}(A, B)=\frac{s(A, B)}{|A|}+\frac{s(A, B)}{|B|}
$$

- Normalized Cut

$$
\begin{aligned}
J_{\text {Ncut }}(A, B) & =\frac{s(A, B)}{d_{A}}+\frac{s(A, B)}{d_{B}} \\
& =\frac{s(A, B)}{s(A, A)+s(A, B)}+\frac{s(A, B)}{s(B, B)+s(A, B)}
\end{aligned}
$$

- Min-Max-Cut

$$
J_{M M C}(A, B)=\frac{s(A, B)}{s(A, A)}+\frac{s(A, B)}{s(B, B)}
$$

Normalized Cut (Shi \& Malik, 2000)

Min similarity between A \& B: $s(A, B)=\sum_{i \in A} \sum_{j \in B} w_{i j}$
Balance weights

$$
J_{\text {Ncut }}(A, B)=\frac{s(A, B)}{d_{A}}+\frac{s(A, B)}{d_{B}} \quad d_{A}=\sum_{i \in A} d_{i}
$$

Cluster indicator: $\quad q(i)=\left\{\begin{array}{ll}\sqrt{d_{B} / d_{A} d} & \text { if } i \in A \\ -\sqrt{d_{A} / d_{B} d} & \text { if } i \in B\end{array} \quad d=\sum_{i \in G} d_{i}\right.$
Normalization: $\quad q^{T} D q=1, q^{T} D e=0$
Substitute q leads to $J_{\text {Ncut }}(q)=q^{T}(D-W) q$
$\min _{\mathrm{q}} q^{T}(D-W) q+\lambda\left(q^{T} D q-1\right)$
Solution is eigenvector of $(D-W) q=\lambda D q$
PCA \& Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

A simple example

2 dense clusters, with sparse connections between them.

Adjacency matrix

Eigenvector q_{2}

PCA \& Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

K-way Spectral Clustering $K \geq 2$

K-way Clustering Objectives

- Ratio Cut

$$
J_{\text {Rcut }}\left(C_{1}, \cdots, C_{K}\right)=\sum_{<k, l>}\left(\frac{s\left(C_{k}, C_{l}\right)}{\left|C_{k}\right|}+\frac{s\left(C_{k}, C_{l}\right)}{\left|C_{l}\right|}\right)=\sum_{k} \frac{s\left(C_{k}, G-C_{k}\right)}{\left|C_{k}\right|}
$$

- Normalized Cut

$$
J_{\text {Ncut }}\left(C_{1}, \cdots, C_{K}\right)=\sum_{<k, l>}\left(\frac{s\left(C_{k}, C_{l}\right)}{d_{k}}+\frac{s\left(C_{k}, C_{l}\right)}{d_{l}}\right)=\sum_{k} \frac{s\left(C_{k}, G-C_{k}\right)}{d_{k}}
$$

- Min-Max-Cut

$$
J_{\mathrm{MMC}}\left(C_{1}, \cdots, C_{K}\right)=\sum_{<k, l>}\left(\frac{s\left(C_{k}, C_{l}\right)}{s\left(C_{k}, C_{k}\right)}+\frac{s\left(C_{k}, C_{l}\right)}{s\left(C_{l}, C_{l}\right)}\right)=\sum_{k} \frac{s\left(C_{k}, G-C_{k}\right)}{s\left(C_{k}, C_{k}\right)}
$$

K-way Spectral Relaxation

Unsigned cluster indicators:

$$
\begin{aligned}
& h_{1}=(1 \cdots 1,0 \cdots 0,0 \cdots 0)^{T} \\
& h_{2}=(0 \cdots 0,1 \cdots 1,0 \cdots 0)^{T}
\end{aligned}
$$

Re-write:

$$
h_{k}=(0 \cdots 0,0 \cdots 0,1 \cdots 1)^{T}
$$

$$
\begin{aligned}
& J_{\text {Rcut }}\left(h_{1}, \cdots, h_{k}\right)=\frac{h_{1}^{T}(D-W) h_{1}}{h_{1}^{T} h_{1}}+\cdots+\frac{h_{k}^{T}(D-W) h_{k}}{h_{k}^{T} h_{k}} \\
& J_{\text {Ncut }}\left(h_{1}, \cdots, h_{k}\right)=\frac{h_{1}^{T}(D-W) h_{1}}{h_{1}^{T} D h_{1}}+\cdots+\frac{h_{k}^{T}(D-W) h_{k}}{h_{k}^{T} D h_{k}} \\
& J_{\text {MMC }}\left(h_{1}, \cdots, h_{k}\right)=\frac{h_{1}^{T}(D-W) h_{1}}{h_{1}^{T} W h_{1}}+\cdots+\frac{h_{k}^{T}(D-W) h_{k}}{h_{k}^{T} W h_{k}}
\end{aligned}
$$

K-way Normalized Cut Spectral Relaxation

Unsigned cluster indicators:

$$
y_{k}=D^{1 / 2}(0 \cdots 0, \overbrace{1 \cdots 1,0 \cdots 0)^{T} /\left\|D^{1 / 2} h_{k}\right\| . . n_{k}}^{n_{k}}
$$

Re-write:

$$
\begin{aligned}
& J_{\text {Ncut }}\left(y_{1}, \cdots, y_{k}\right)=y_{1}^{T}(I-\tilde{W}) y_{1}+\cdots+y_{k}^{T}(I-\tilde{W}) y_{k} \\
& =\mathbf{T r}\left(Y^{T}(I-\tilde{W}) Y\right) \quad \tilde{W}=D^{-1 / 2} W D^{-1 / 2}
\end{aligned}
$$

Optimize : $\min _{Y} \operatorname{Tr}\left(Y^{T}(I-\tilde{W}) Y\right)$, subject to $Y^{T} Y=I$
By K. Fan's theorem, optimal solution is eigenvectors: $Y=\left(v_{1}, v_{2}, \ldots, v_{\mathrm{k}}\right), \quad(I-\tilde{W}) v_{k}=\lambda_{k} v_{k}$

$$
\begin{aligned}
& (D-W) u_{k}=\lambda_{k} D u_{k}, \quad u_{k}=D^{-1 / 2} v_{k} \\
& \lambda_{1}+\cdots+\lambda_{k} \leq \min J_{\text {Ncut }}\left(y_{1}, \cdots, y_{k}\right)
\end{aligned}
$$

(Gu, et al, 2001)

K-way Spectral Clustering is difficult

- Spectral clustering is best applied to 2-way clustering
- positive entries for one cluster
- negative entries for another cluster
- For K-way ($\mathrm{K}>2$) clustering
- Positive and negative signs make cluster assignment difficult
- Recursive 2-way clustering
- Low-dimension embedding. Project the data to eigenvector subspace; use another clustering method such as K-means to cluster the data (Ng et al; Zha et al; Back \& J ordan, etc)
- Linearized cluster assignment using spectral ordering and cluster crossing

Scaled PCA: a Unified Framework for clustering and ordering

- Scaled PCA has two optimality properties
- Distance sensitive ordering
- Min-max principle Clustering
- SPCA on contingency table \Rightarrow Correspondence Analysis
- Simultaneous ordering of rows and columns
- Simultaneous clustering of rows and columns

Scaled PCA

similarity matrix $S=\left(s_{\mathrm{ij}}\right) \quad$ (generated from $X X^{\mathrm{T}}$)

$$
D=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right) \quad d_{i}=s_{i}
$$

Nonlinear re-scaling: $\tilde{S}=D^{-\frac{1}{2}} S D^{-\frac{1}{2}}, \tilde{S}_{i j}=s_{i j} /\left(s_{i} s_{j} .\right)^{1 / 2}$
Apply SVD on $\tilde{S} \Rightarrow$

$$
S=D^{\frac{1}{2}} \tilde{S} D^{\frac{1}{2}}=D^{\frac{1}{2}} \sum_{k} z_{k} \lambda_{k} z_{k}^{T} D^{\frac{1}{2}}=D\left[\sum_{k} q_{k} \lambda_{k} q_{k}^{T}\right] D
$$

$$
q_{\mathrm{k}}=D^{-1 / 2} \mathrm{z}_{\mathrm{k}} \text { is the scaled principal component }
$$

Subtract trivial component $\quad \lambda_{0}=1, z_{0}=d^{1 / 2} / s . ., q_{0}=1$

$$
\Rightarrow \quad S-d d^{T} / s . .=D \sum_{k=1} q_{k} \lambda_{k} q_{k}^{T} D \quad \text { (Ding, et al, 2002) }
$$

PCA \& Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

Scaled PCA on a Rectangle Matrix \Rightarrow Correspondence Analysis

Nonlinear re-scaling: $\widetilde{P}=D_{r}^{-\frac{1}{2}} P D_{c}^{-\frac{1}{2}}, \tilde{p}_{i j}=p_{i j} /\left(p_{i .} p_{j} .\right)^{1 / 2}$
Apply SVD on \widetilde{P}

$$
\begin{array}{cc}
P-r c^{T} / p . .=D_{r} \sum_{k=1} f_{k} \lambda_{k} g_{k}^{T} D_{c} & r=\left(p_{1 .}, \cdots, p_{n .}\right)^{T} \\
f_{k}=D_{r}^{-\frac{1}{2}} u_{k}, g_{k}=D_{c}^{-\frac{1}{2}} v_{k} & c=\left(p_{.1}, \cdots, p_{. n}\right)^{T}
\end{array}
$$

are the scaled row and column principal
component (standard coordinates in CA)
PCA \& Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

Correspondence Analysis (CA)

- Mainly used in graphical display of data
- Popular in France (Benzécri, 1969)
- Long history
- Simultaneous row and column regression (Hirschfeld, 1935)
- Reciprocal averaging (Richardson \& Kuder, 1933; Horst, 1935; Fisher, 1940; Hill, 1974)
- Canonical correlations, dual scaling, etc.
- Formulation is a bit complicated ("convoluted" J olliffe, 2002, p.342)
- "A neglected method", (Hill, 1974)

Clustering of Bipartite Graphs (rectangle matrix)

Simultaneous clustering of rows and columns of a contingency table (adjacency matrix B)

Examples of bipartite graphs

- Information Retrieval: word-by-document matrix
- Market basket data: transaction-by-item matrix
- DNA Gene expression profiles
- Protein vs protein-complex

Bipartite Graph Clustering

Clustering indicators for rows and columns:

$$
\begin{aligned}
& f(i)=\left\{\begin{array}{cc}
1 & \text { if } r_{i} \in R_{1} \\
-1 & \text { if } r_{i} \in R_{2}
\end{array} \quad g(i)=\left\{\begin{array}{cc}
1 & \text { if } \\
-1 & c_{i} \in C_{1} \\
-1 & \text { if } \\
c_{i} \in C_{2}
\end{array}\right.\right. \\
& B=\left(\begin{array}{ll}
B_{R_{1}, C_{1}} & B_{R_{1}, C_{2}} \\
B_{R_{2}} C_{1} & B_{R_{2}, C_{2}}
\end{array}\right) \quad W=\left(\begin{array}{cc}
0 & B \\
B^{T} & 0
\end{array}\right) \quad \mathbf{q}=\binom{\mathbf{f}}{\mathbf{g}}
\end{aligned}
$$

Substitute and obtain
f, g are determined by

$$
J_{\text {MMC }}\left(C_{1}, C_{2} ; R_{1}, R_{2}\right)=\frac{s\left(W_{12}\right)}{s\left(W_{11}\right)}+\frac{s\left(W_{12}\right)}{s\left(W_{22}\right)}
$$

$$
\left[\left(\begin{array}{ll}
D_{r} & \\
& D_{c}
\end{array}\right)-\left(\begin{array}{cc}
0 & B \\
B^{T} & 0
\end{array}\right)\right]\binom{f}{g}=\lambda\left(\begin{array}{ll}
D_{r} & \\
& D_{c}
\end{array}\right)\binom{f}{g}
$$

Spectral Clustering of Bipartite Graphs

Simultaneous clustering of rows and columns

 (adjacency matrix B)

$$
s\left(B_{R_{1}, C_{2}}\right)=\sum_{r_{i} \in R_{1} c_{j} \in C_{2}} \sum_{i j}
$$

min between-cluster sum of weights: $\mathrm{s}\left(R_{1}, C_{2}\right), \mathrm{s}\left(R_{2}, C_{1}\right)$
max within-cluster sum of weights: $\mathrm{s}\left(R_{1}, C_{1}\right), \mathrm{s}\left(R_{2}, C_{2}\right)$

$$
J_{M M C}\left(C_{1}, C_{2} ; R_{1}, R_{2}\right)=\frac{s\left(B_{R_{1}, C_{2}}\right)+s\left(B_{R_{2}, C_{1}}\right)}{2 s\left(B_{R_{1}, C_{1}}\right)}+\frac{s\left(B_{R_{1}, C_{2}}\right)+s\left(B_{R_{2}, C_{1}}\right)}{2 s\left(B_{R_{2}, C_{2}}\right)}
$$

(Ding, AI-STAT 2003)

Internet Newsgroups

Simultaneous clustering of documents and words

PCA \& Matrix Factorizations for Learning, ICML 200b 1 utoriaı, Lnrıs ving

Embedding in Principal Subspace

Cluster Self-Aggregation (proved in perturbation analysis)

(Hall, 1970, "quadratic placement" (embedding) a graph)

Spectral Embedding: Self-aggregation

- Compute K eigenvectors of the Laplacian.
- Embed objects in the K-dim eigenspace
(A) Input Spacs

(B) Entoedding Space

Spectral embedding is not topology preserving

700 3-D data points form 2 interlock rings

In eigenspace, they shrink and separate

Spectral Embedding

Simplex Embedding Theorem.
Objects self-aggregate to K centroids
Centroids locate on K corners of a simplex

- Simplex consists K basis vectors + coordinate origin
- Simplex is rotated by an orthogonal transformation T
- T are determined by perturbation analysis

Perturbation Analysis

$$
W q=\lambda D q \quad \hat{W} z=\left(D^{-1 / 2} W D^{-1 / 2}\right) z=\lambda z \quad q=D^{-1 / 2} z
$$

Assume data has 3 dense clusters sparsely connected.

Off-diagonal blocks are between-cluster connections, assumed small and are treated as a perturbation

Spectral Perturbation Theorem

Orthogonal Transform Matrix

$$
T=\left(\mathbf{t}_{1}, \cdots, \mathbf{t}_{K}\right)
$$

Spectral Perturbation Matrix $\quad \Gamma=\Omega^{-\frac{1}{2}} \bar{\Gamma} \Omega^{-\frac{1}{2}}$

$$
\bar{\Gamma}=\left[\begin{array}{cccc}
h_{11} & -s_{12} & \cdots & -s_{1 K} \\
-s_{21} & h_{22} & \cdots & -s_{2 K} \\
\vdots & \vdots & \cdots & \vdots \\
-s_{K 1} & -s_{K 2} & \cdots & h_{K K}
\end{array}\right] \quad \begin{gathered}
s_{p q}=s\left(C_{p}, C_{q}\right) \\
h_{k k}=\sum_{p \mid p \neq k} s_{k p} \\
\Omega=\operatorname{diag}\left[\rho\left(C_{1}\right), \cdots, \rho\left(C_{k}\right)\right]
\end{gathered}
$$

Connectivity Network

$$
C_{i j}=\left\{\begin{array}{cc}
1 & \text { if } i, j \text { belong to same cluster } \\
0 & \text { otherwise }
\end{array}\right.
$$

Scaled PCA provides

Green's function :

$$
\begin{aligned}
& C \cong D \sum_{k=1}^{K} q_{k} \lambda_{k} q_{k}^{T} D \\
& C \approx G=\sum_{k=2}^{K} q_{k} \frac{1}{1-\lambda_{k}} q_{k}^{T} \\
& C \approx P \equiv \sum_{k=1}^{K} q_{k} q_{k}^{T}
\end{aligned}
$$

Projection matrix:
(Ding et al, 2002)

$1^{\text {st }}$ order Perturbation: Example 1

Between-cluster connections suppressed
Within-cluster connections enhanced
Effects. of self-aggregation

Optimality Properties of Scaled PCA

Scaled principal components have optimality properties:
Ordering

- Adjacent objects along the order are similar
- Far-away objects along the order are dissimilar
- Optimal solution for the permutation index are given by scaled PCA.

Clustering

- Maximize within-cluster similarity
- Minimize between-cluster similarity
- Optimal solution for cluster membership indicators given by scaled PCA.

Spectral Graph Ordering

(Barnard, Pothen, Simon, 1993), envelop reduction of sparse matrix: find ordering such that the envelop is minimized

$$
\min \sum_{i} \max _{j}|i-j| w_{i j} \Rightarrow \min \sum_{i j}\left(x_{i}-x_{j}\right)^{2} w_{i j}
$$

(Hall, 1970), "quadratic placement of a graph":
Find coordinate x to minimize

$$
J=\sum_{i j}\left(x_{i}-x_{j}\right)^{2} w_{i j}=x^{T}(D-W) x
$$

Solution are eigenvectors of Laplacian

Distance Sensitive Ordering

Given a graph. Find an optimal Ordering of the nodes.

$$
J_{d}(\pi)=\sum_{i=1}^{n-d} W_{\pi_{i}, \pi_{i+d}}^{\pi(1, \cdots, n)=\left(\pi_{1}, \cdots, \pi_{n}\right)}
$$

The larger distance, the larger weights, panelity.

Distance Sensitive Ordering

$$
\begin{aligned}
J(\pi) & =\sum_{i j}(i-j)^{2} w_{\pi_{i}, \pi_{j}}=\sum_{\pi_{i}, \pi_{j}}(i-j)^{2} w_{\pi_{i}, \pi_{j}} \\
& =\sum_{i j}\left(\pi_{i}^{-1}-\pi_{j}^{-1}\right)^{2} w_{i, j} \\
& =\frac{n^{2}}{8} \sum_{i j}\left(\frac{\pi_{i}^{-1}-(n+1) / 2}{n / 2}-\frac{\pi_{j}^{-1}-(n+1) / 2}{n / 2}\right)^{2} w_{i, j}
\end{aligned}
$$

Define: shifted and rescaled inverse permutation indexes

$$
\begin{aligned}
& q_{i}=\frac{\pi_{i}^{-1}-(n+1) / 2}{n / 2}=\left\{\frac{1-n}{n}, \frac{3-n}{n}, \cdots, \frac{n-1}{n}\right\} \\
& J(\pi)=\frac{n^{2}}{8} \sum_{i j}\left(q_{i}-q_{j}\right)^{2} w_{i j}=\frac{n^{2}}{4} q^{T}(D-W) q
\end{aligned}
$$

PCA \& Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

Distance Sensitive Ordering

Once q_{2} is computed, since

$$
\begin{gathered}
q_{2}(i)<q_{2}(j) \Rightarrow \pi_{i}^{-1}<\pi_{j}^{-1} \\
\pi_{i}^{-1} \text { can be uniquely recovered from } q_{2}
\end{gathered}
$$

I mplementation: sort \boldsymbol{q}_{2} induces π

Re-ordering of Genes and Tissues

(B)

$$
\begin{gathered}
r=\frac{J(\pi)}{J(\text { random })} \\
r=0.18
\end{gathered}
$$

$$
r_{d=1}=\frac{J_{d=1}(\pi)}{J_{d=1}(\text { random })}
$$

$$
r_{d=1}=3.39
$$

PCA \& Matrix Factorizations for Learning, ICML 2005 Tutorial, Chris Ding

Spectral clustering vs Spectral ordering

- Continuous approximation of both integer programming problems are given by the same eigenvector
- Different problems could have the same continuous approximate solution.
- Quality of the approximation:

Ordering: better quality: the solution relax from a set of evenly spaced discrete values

Clustering: less better quality: solution relax from 2 discrete values

Linearized Cluster Assignment

Turn spectral clustering to 1D clustering problem

- Spectral ordering on connectivity network
- Cluster crossing
- Sum of similarities along anti-diagonal
- Gives 1-D curve with valleys and peaks
- Divide valleys and peaks into clusters

Cluster overlap and crossing

Given similarity W, and clusters A,B.

- Cluster overlap

$$
s(A, B)=\sum_{i \in A} \sum_{j \in B} w_{i j}
$$

- Cluster crossing compute a smaller fraction of cluster overlap.
- Cluster crossing depends on an ordering o. It sums weights cross the site i along the order

$$
\rho(i)=\sum_{j=1}^{m} w_{o(i-j), o(i+j)}
$$

- This is a sum along anti-diagonals of W .

K-way Clustering Experiments

Accuracy of clustering results:

Method	Linearized Assignment	Recursive 2-way clustering	Embedding + K-means
Data A	89.0%	82.8%	75.1%
Data B	75.7%	67.2%	56.4%

Some Additional

Advanced/related Topics

- Random talks and normalized cut
- Semi-definite programming
- Sub-sampling in spectral clustering
- Extending to semi-supervised classification
- Green's function approach
- Out-of-sample embeding

