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Some historical notes
• Fiedler, 1973, 1975, graph Laplacian matrix
• Donath & Hoffman, 1973, bounds
• Pothen, Simon, Liou, 1990, Spectral graph 

partitioning (many related papers there after)
• Hagen & Kahng, 1992, Ratio-cut
• Chan, Schlag & Zien, multi-way Ratio-cut
• Chung, 1997, Spectral graph theory book
• Shi & Malik, 2000, Normalized Cut



2

Tutorial on Spectral Clustering, ICML 2004, Chris Ding © University of California 3

Spectral Gold-Rush of 2001
9 papers on spectral clustering

• Meila & Shi, AI-Stat 2001. Random Walk interpreation of       
Normalized Cut

• Ding, He & Zha, KDD 2001. Perturbation analysis of Laplacian 
matrix on sparsely connected graphs

• Ng, Jordan & Weiss, NIPS 2001, K-means algorithm on the 
embeded eigen-space 

• Belkin & Niyogi, NIPS 2001. Spectral Embedding
• Dhillon, KDD 2001, Bipartite graph clustering
• Zha et al, CIKM 2001, Bipartite graph clustering
• Zha et al, NIPS 2001. Spectral Relaxation of K-means
• Ding et al, ICDM 2001. MinMaxCut, Uniqueness of relaxation.
• Gu et al, K-way Relaxation of NormCut and MinMaxCut
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Part I: Basic Theory, 1973 – 2001
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Spectral Graph Partitioning

MinCut: min cutsize 

cutsize = # of cut edges
Constraint on sizes: |A| = |B|
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2-way Spectral Graph Partitioning
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Partition  membership indicator:

Relax indicators qi from discrete values to continuous values, 
the solution for min J(q) is given by the eigenvectors of

(Fiedler, 1973, 1975)

(Pothen, Simon, Liou, 1990)
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Properties of Graph Laplacian

WDL −=Laplacian matrix of the Graph:

• L is semi-positive definite xT Lx ≥ 0 for any x.

• First eigenvector is q1=(1,…,1)T = eT with λ1=0.

• Second eigenvector q2 is the desired solution.

• The smaller λ2, the better quality of the 
partitioning. Perturbation analysis gives

||||2 B
cutsize

A
cutsize +=λ

• Higher eigenvectors are also useful
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Recovering Partitions

}0)(|{},0)(|{ 22 ≥=<= iqiBiqiA

From the definition of cluster indicators: 
Partitions A, B are determined by:

Thus, we sort q2 to increasing order, and cut in the 
middle point.
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However, the objective function J(q) is 
insensitive to additive constant c :
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Multi-way Graph Partitioning

• Recursively applying the 2-way partitioning
• Recursive 2-way partitioning
• Using Kernigan-Lin to do local refinements

• Using higher eigenvectors
• Using q3 to further partitioning those obtained 
via q2.

• Popular graph partitioning packages
• Metis, Univ of Minnesota
• Chaco, Sandia Nat’l Lab
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2-way Spectral Clustering

• Undirected graphs (pairwise similarities)
• Bipartite graphs (contingency tables)
• Directed graphs (web graphs)
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Spectral Clustering

min cutsize , without explicit size constraints

Need to balance sizes

But where to cut ?
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Clustering Objective Functions

• Ratio Cut

• Normalized Cut

• Min-Max-Cut
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Ratio Cut (Hagen & Kahng, 1992)

Min similarity between A , B: ∑∑
∈ ∈

=
Ai Bj

ijw(A,B)   s

Size Balance

Cluster  membership indicator:

qWDq(q)J T
Rcut )( −= Substitute q leads to

Solution given by eigenvectorNow relax q, the solution is 2nd eigenvector of L
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s(A,B)

|A|
s(A,B)(A,B)J Rcut += (Wei & Cheng, 1989)

Normalization: 0,1 == eqqq TT
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Normalized Cut (Shi & Malik, 1997)

Min similarity between A & B: ∑

∈
∑

∈
=

Ai Bj
ijws(A,B)   

Balance weights
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MinMaxCut (Ding et al 2001)

Min similarity between A & B: ∑∑
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A simple example
2 dense clusters, with sparse connections 
between them.

Eigenvector q2Adjacency matrix
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Comparison of  Clustering Objectives

• If clusters are well separated, all three give 
very similar and accurate results.

• When clusters are marginally separated, 
NormCut and MinMaxCut give better results

• When clusters overlap significantly, 
MinMaxCut tend to give more compact and 
balanced clusters.
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2-way Clustering of Newsgroups

83.6 ± 2.557.5 ± 0.953.6 ± 3.1Politics.mideast
Politics.misc

79.5 ± 11.074.4 ± 20.454.9 ± 2.5Baseball
Hockey

97.2 ± 1.197.2 ± 0.863.2 ± 16.2Atheism
Comp.graphics

MinMaxCutNormCutRatioCutNewsgroups
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Cluster Balance Analysis I: 
Random Graph Model

• Random graph: edges are randomly assigned 
with probability p: 0 ≤ p ≤ 1.

• RatioCut & NormCut show no size dependence

• MinMaxCut favors balanced clusters: |A|=|B|
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2-way Clustering of Newsgroups

Eigenvector

JNcut(i)

JMMC(i)

Cluster Balance
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Cluster Balance Analysis II: 
Large Overlap Case
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Thus MinMaxCut is much less prone to skewed cuts
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Spectral Clustering of Bipartite Graphs

Simultaneous clustering of rows and columns
of a contingency table (adjacency matrix B )

Examples of bipartite graphs

• Information Retrieval: word-by-document matrix

• Market basket data: transaction-by-item matrix 

• DNA Gene expression profiles

• Protein vs protein-complex
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Spectral Clustering of Bipartite Graphs
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cut

min between-cluster sum of    
xyz weights: s(R1,C2), s(R2,C1)

max within-cluster sum of xyz 
xyz weights: s(R1,C1), s(R2,C2)

(Ding, AI-STAT 2003)
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Bipartite Graph Clustering
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Clustering indicators for rows and columns:
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Clustering of Bipartite Graphs
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We obtain

Solution is SVD:

(Zha et al, 2001, Dhillon, 2001)
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Clustering of Bipartite Graphs

},)(|,{},)(|,{ 2221 riri zifrRzifrR ≥=<=

Recovering row clusters:

zr=zc=0 are dividing points. Relaxation is 
invariant up to a constant shift. 

Algorithm: search for optimal points icut, jcut, let 
zr=f2(icut), zc= g2(jcut), such that

is minimized. (Zha et al, 2001)

Recovering column clusters:

},)(|,{},)(|,{ 2221 cici zigcCzigcC ≥=<=

),;,( 2121 RRCCJ MMC
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Clustering of Directed Graphs

• Equivalent to deal with
• All spectral methods apply to 
• For example, web graphs clustered in such 

way

TWWW +=~

Min directed edge weights between A & B:
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W~

(He, Ding, Zha, Simon, ICDM 2001)
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K-way Spectral Clustering
K ≥ 2
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K-way Clustering Objectives

• Ratio Cut

• Normalized Cut

• Min-Max-Cut
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K-way Spectral Relaxation

• Prove that the solution lie in the subspace 
spanned by the first k eigenvectors

• Ratio Cut
• Normalized Cut
• Min-Max-Cut
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K-way Spectral Relaxation
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K-way Ratio Cut Spectral Relaxation

Unsigned cluster indicators:
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By K. Fan’s theorem, optimal solution is 
eigenvectors: X=(v1,v2, …, vk), (D-W)vk=λkvk
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(Chan, Schlag, Zien, 1994)
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K-way Normalized Cut Spectral Relaxation

Unsigned cluster indicators:
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By K. Fan’s theorem, optimal solution is 
eigenvectors: Y=(v1,v2, …, vk),
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K-way Min-Max Cut Spectral Relaxation

Unsigned cluster indicators:
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Theorem. Optimal solution is by eigenvectors: 
Y=(v1,v2, …, vk),
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K-way Spectral Clustering

• Embedding (similar to PCA subspace approach)
– Embed data points in the subspace of the K eigenvectors
– Clustering embedded points using another algorithm, such as K-

means (Shi & Malik, Ng et al, Zha, et al)
• Recursive 2-way clustering (standard graph partitioning)

– If desired K is not power of 2, how optimcally to choose the next 
sub-cluster to split? (Ding, et al 2002)

• Both above approach do not use K-way clustering 
objective functions. 

• Refine the obtained clusters using the K-way clustering 
objective function typically improve the results (Ding et al 
2002).
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DNA Gene expression 

Effects of feature selection: 
Select 900 genes out of 

4025 genes

G
enes

G
enes

Tissue sampleTissue sample

Lymphoma Cancer
(Alizadeh et al, 2000)
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Lymphoma Cancer
Tissue samples

B cell lymphoma go thru 
different stages

–3 cancer stages

–3 normal stages

Key question: can we detect 
them automatically ?

PCA 2D Display
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Brief summary of Part I

• Spectral graph partitioning as origin
• Clustering objective functions and solutions
• Extensions to bipartite and directed graphs
• Characteristics

– Principled approach
– Well-motivated objective functions
– Clear, un-ambiguous
– A framework of rich structures and contents
– Everything is proved rigorously (within the relaxation 

framework, i.e., using continuous approximation of the discrete 
variables)

• Above results mostly done by 2001. 
• More to come in Part II


