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Abstract

For a set of 1D vectors, standard singular value de-
composition (SVD) is frequently applied. For a set of
2D objects such as images or weather maps, we form
2DSVD, which computes principal eigenvectors of row-
row and column-column covariance matrices, exactly as
in the standard SVD. We study optimality properties
of 2DSVD as low-rank approximation and show that it
provides a framework unifying two recent approaches.
Experiments on images and weather maps illustrate the
usefulness of 2DSVD.

1 Introduction

Singular value decomposition (SVD)[5, 7] plays the cen-
tral role in reducing high dimensional data into lower
dimensional data which is also called principal compo-
nent analysis (PCA)[8] in statistics. It often occurs that
in the reduced space, coherent patterns can be detected
more clearly. Such unsupervised dimension reduction is
used in very broad areas such as meteorology[11], image
processing[9, 13], and information retrieval[1].

The problem of low rank approximations of ma-
trices has recently received broad attention in areas
such as computer vision, information retrieval, and ma-
chine learning [1, 2, 3, 12]. It becomes an important
tool for extracting correlations and removing noise from
data. However, applications of this technique to high-
dimensional data, such as images and videos, quickly
run up against practical computational limits, mainly
due to the high time and space complexities of the SVD
computation for large matrices.

In recent years, increasingly more data items come
naturally as 2D objects, such the 2D images, 2D weather
maps. Currently widely used method for dimension
reduction of these 2D data objects is based on SVD.
First, 2D objects are converted into 1D vectors and
are packed together as a large matrix. For example,
each of the 2D maps of Ai, Ai ∈ R

r×c, i = 1, · · · , n is
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converted to a vector ai of length rc. The standard
SVD is then applied to the matrix containing all the
vectors: A = (a1, · · · ,an). In image processing, this is
called Eigenfaces[9]. In weather research, this is called
Empirical Orthogonal Functions (EOF) [11]. Although
the conventional approach is widely used, it does not
preserve the 2D nature of these 2D data objects.

Two recent studies made first proposals to cap-
ture the 2D nature explicitly in low rank approximation.
Yang et al. [13] propose to use the principal components
of (column-column) covariance matrix for image repre-
sentation. Ye et al. [14, 15] propose to use a LMiR

T

type decomposition for low rank approximation.

In this paper, we propose to construct 2-
dimensional singular value decomposition (2DSVD)
based on the row-row and column-column covariance
matrices. We study various optimality properties of
2DSVD as low-rank approximation. We show that the
approach of Yang et al. [13] can be casted as a one-sided
low-rank approximation with its optimal solution given
by 2DSVD. 2DSVD also gives a near-optimal solution
for the low rank approximation using LMiR

T decompo-
sition by Ye [14]. Thus 2DSVD serves as a framework
unifying the work of Yang et al. [13] and Ye [14].

Together, this new approach captures explicitly the
2D nature and has 3 advantages over conventional SVD-
based approach: (1) It deals with much smaller matrices,
typically r × c matrices, instead of n × (rc) matrix
in conventional approach. (2) At the same or better
accuracy of reconstruction, the new approach requires
substantially smaller memory storage. (3) Some of the
operations on these rectangular objects can be done
much more efficiently, due to the preservation of the 2D
structure.

We note there exists other type of decompositions
of high order objects. The recently studied orthogonal
tensor decomposition [16, 10], seeks an f -factor trilinear
form for decomposition of X into A, B, C: xijk =∑f

α=1 aiαbjαckα where columns of A, B, C mutually
orthogonal within each matrices.

Our approach differs in that we keep explicit the 2D
nature of these 2D maps and images. For weather map,
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the i, j dimensions are longitude and latitude which are
of same nature. For 2D images, the i, j dimensions are
vertical and horizontal dimensions, which are of the same
nature. The k dimension refers to different data objects.
(In contrast, in the multi-factor trilinear orthogonal
decomposition, the i, j, k dimensions are of different
nature, say “temperature”, “intensity”, “thickness”.)

These inherently 2D datasets are very similar to
1D vector datasets, X = (x1, · · · ,xn), for which the
singular value decomposition (SVD) is often applied to
obtain the optimal low-rank approximation:

(1.1) X ≈ X̃, X̃ = UkΣkV T

k , Σk = UT

kXVk,

where Uk contains k principal eigenvectors of the covari-
ance matrix1 XXT and V contains k principal eigenvec-
tors of the inner-product matrix XTX .

We define 2-dimensional SVD for a set of 2D maps
in the same way as SVD is computed for a set of
1D vectors. Define the averaged row-row and column-
column covariance matrices,

F =

n∑

i=1

(Ai − Ā)(Ai − Ā)T ,

G =
n∑

i=1

(Ai − Ā)T (Ai − Ā).(1.2)

where Ā =
∑

i Ai/n.1 The normalization factor 1/n in
F, G are ignored since they do not affect the results. F
corresponds to XXT and G corresponds to XTX . Let Uk

contains k principal eigenvectors of F and Vs contains s
principal eigenvectors of G:

F =
r∑

ℓ=1

λℓuℓu
T

ℓ , Uk ≡ (u1, · · · ,uk);(1.3)

G =

c∑

ℓ=1

ζℓvℓv
T

ℓ , Vs ≡ (v1, · · · ,vs).(1.4)

Following Eq.(1.1), we define

(1.5) Ãi = UkMiV
T

s , Mi = UT

k AiVs, i = 1, · · · , n,

as the extension of SVD to 2D maps. We say
(Uk, Vs, {Mi}

n
i=1) form the 2DSVD of {Ai}

n
i=1. In stan-

dard SVD of Eq.(1.1), Uk provides the common subspace
basis for 1D vectors to project to. In 2DSVD, Uk, Vs

provide the two common subspace bases for 2D maps to
(right and left) project to (this will become more clear
in §3, §4 §5). Note that Mi ∈ R

k×s is not required to be
diagonal, whereas in standard SVD, Σk is diagonal.

1In general, SVD is applied to any rectangular matrix, while
PCA applies SVD on centered data: X = (x1 − x̄, · · · ,xn − x̄),
x̄ =

P

i xi/n. In the rest of this paper, we assume Ā = 0
to simplify the equations. For un-centered data, corresponding
equations can be recovered by Ai → Ai − Ā.

For standard SVD, the eigenvalues of XXT and
XTX are identical, λℓ = ζℓ = σ2

ℓ . The Eckart-Young
Theorem[5] states that the residual error

(1.6)

∥∥∥∥∥X −

k∑

ℓ=1

uℓσℓv
T

ℓ

∥∥∥∥∥
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=

r∑

ℓ=k+1

σ2
ℓ .

We will see that 2DSVD has very similar properties.

Obviously, 2DSVD provides a low rank approxima-
tion of the original 2D maps {Ai}. In the following we
provide detailed analysis and show that 2DSVD provides
(near) optimal solutions to a number of different types
of approximations of {Ai}.

2 Optimality properties of 2DSVD

Definition. Given a 2D map set {Ai}
n
i=1, Ai ∈ R

r×c,
we define the low rank approximation

Ai ≈ Ãi, Ãi = LMiR
T,

L ∈ R
r×k, R ∈ R

c×s, Mi ∈ R
k×s.(2.7)

Here k, s are input parameters for specifying the rank of
the approximation. We require L, R have orthonormal
columns LTL = Ik, RTR = Is. A less strict requirement
is: columns of L be linearly independent and columns
of R be linearly independent. However, given a fixed
L, R with these constraints, we can do QR factorization
to obtain L = QLL̃ and R = QRR̃ where QL, QR are
orthogonal. We can write LMiR

T = QLL̃MiR̃QT

R =
QLM̃iQ

T

R. This is identical to the form of LMiR
T.

The 2DSVD of Eq.(1.5) is clearly one such approx-
imation. What’s the significance of 2DSVD?

(S1) The optimal solution for the low-rank approx-
imation using the 1-sided decomposition

(2.8) min
Mi∈Rr×k,R∈Rc×k

J1({Mi}, R) =

n∑

i=1

||Ai−MiR
T||2

is given by the 2DSVD: R = Vk, Mi = AiVk. This case
is equivalent to the situation studied by Yang et al.[13].

(S2) The optimal solution for the 1-sided low-rank
approximation

(2.9) min
L∈Rr×k,Mi∈Rc×k

J2(L, {Mi}) =

n∑

i=1

||Ai − LMT

i ||2

is given by the 2DSVD: L = Uk, Mi = AT

i Uk.

(S3) The 2DSVD gives a near-optimal solution for
the low-rank approximation using the 2-sided decompo-
sition [14]
(2.10)

min
L∈Rr×k,R∈Rc×s,Mi∈Rk×s

J3(L, {Mi}, R) =
n∑

i=1

||Ai−LMiR
T||2.



When k = r, min J3 reduces to min J1. When s = c,
min J3 reduces to min J2.

(S4) When Ai = AT
i , ∀i, the 2DSVD gives a near-

optimal solution for the symmetric approximation
(2.11)

min
L∈Rr×k,Mi∈Rk×k

J4(L, {Mi}) =

n∑

i=1

||Ai − LMiL
T||2.

2DSVD provides a unified framework for rectangu-
lar data matrices. Our 2DSVD generalizes the work of
Yang et al. [13] which is equivalent to (S1), but their
feature extraction approach is different from our decom-
position approach with the optimization of an objective
function. On other hand, the 2DSVD provides a near-
optimal solution of the 2D low rank approximation of
Ye [14], the symmetric decomposition of J3 which we
believe is key to the low rank approximation of these
rectangular data matrices.

We discuss these decompositions in §3, §4, §5.

3 Ai = MiR
T Decomposition

Theorem 1. The global optimal solution for Ai =
MiR

T approximation of J1 in Eq.(2.8) is given by

R = Vk, Mi = AiVk,(3.12)

Jopt
1 =

∑

i

||Ai − AiVkV T
k ||2 =

c∑

j=k+1

ζj .

Remark. Theorem 1 is very similar to Eckart-Young
Theorem of Eq.(1.6) in that the solution is given by the
principal eigenvectors of the covariance matrix and the
residual is the sum of the eigenvalues of the retained
subspace.

Note that this solution is unique2 up to an arbitrary
k-by-k orthogonal matrix Γ: for any given solution
(L, {Mi}), (LΓ, {MiΓ}) is also a solution with the same
objective value. When k = c, R becomes a full rank
orthogonal matrix, i.e., RRT = Ic. In this case, we set
R = Ic and Mi = Ai.

Proof. Using ||A||2 = Tr(AT A), and Tr(AB) =
Tr(BA), we have

J1 =

n∑

i=1

Tr(Ai − MiR
T)T(Ai − MiR

T)

= Tr
n∑

i=1

[AT

i Ai − 2AT

i MiR
T + MiM

T

i ]

This is a quadratic function w.r.t. Mi. The minimum
occur at where the gradient is zero: 0 = ∂J1/∂Mi =

2If eigenvalue ζj , j ≤ k is degenerate, the corresponding
columns of Vk could be any orthogonal basis of the subspace,
therefore not unique.

−2AiR + 2Mi. Thus Mi = AiR. With this, we have

J1 =

n∑

i=1

||Ai||
2 − Tr[RT(

n∑

i=1

AT

i Ai)R]

Now minR J1 becomes

max
R|RT R=Ik

J1a = Tr(RTGR)

By a well-known result in algebra, the optimal solution
for R is given by R = (v1, · · · ,vk)Γ, Γ is an arbitrary
k-by-k orthogonal matrix noted earlier. The optimal
value is the sum of the large k eigenvalues of G: Jopt

1a =∑k

j=1 ζj . Note that

(3.13)

c∑

j=1

ζj = Tr(V T

c GVc) = Tr(G) =
∑

i

||Ai||
2.

Here we have used the fact that VcV
T

c = I because
Vc is a full rank orthonormal matrix. Thus Jopt

1 =∑n

i=1 ||Ai||
2 −

∑k

j=1 ζj =
∑c

j=k+1 ζj .

To see why this is the global optimal solution, we
first note that for any solution M̃i, R̃, the zero gradient
condition holds, i.e, M̃i = AT

i R̃. With this, we have J1 =∑n

i=1 ||Ai||
2−TrR̃TGR̃. Due to the positive definiteness

of G, the solution for the quadratic function must be
unique, up to an arbitrary rotation: R̃ = RΓ. �

4 Ai = LMT

i Decomposition

Theorem 2. The global optimal solution for Ai = LMT

i

approximation of J2 in Eq.(2.9) is given by

L = Uk, Mi = AT

i Uk,(4.14)

Jopt
1 =

∑

i

||Ai − UkUT
k Ai||

2 =

r∑

j=k+1

λj .

The proof is identical to Theorem 1, using the
relation

(4.15)

r∑

j=1

λj = Tr(UT

r FUr) = Tr(F ) =
∑

i

||Ai||
2.

For this decomposition, when k = r, we have L = Ir

and Mi = AT

i .

5 Ai = LMiR
T Decomposition

Theorem 3 The optimal solution for Ai = LMiR
T

approximation of J3 in Eq.(2.10) is given by

L = Ũk = (ũ1, · · · , ũk),(5.16)

R = Ṽs = (ṽ1, · · · , ṽs), Mi = ŨT

kAiṼs,

where ũk, ṽk are simultaneous solutions of the eigenvec-
tor problems

(5.17) F̃ ũk = λ̃kũk, G̃ṽk = ζ̃kṽk,
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of the re-weighted covariance matrices F̃ and G̃ (see
Eq.(1.2) ) :

F̃ =
∑

i

AiRRTAT

i =
∑

i

AiṼsṼ
T

s AT

i ,

G̃ =
∑

i

AT

i LLTAi =
∑

i

AT

i ŨkŨT

kAi.(5.18)

The optimal objective function value is given by

Jopt
3 (k, s) =

∑

i

||Ai − ŨkŨT
k AiṼsṼ

T
s ||2

=
∑

i

||Ai||
2 −

k∑

j=1

λ̃j(5.19)

≥

r∑

j=k+1

λ̃j +

c∑

j=s+1

ζj ,(5.20)

(5.21)

Jopt
3 (k, s) =

∑

i

||Ai||
2 −

s∑

j=1

ζ̃j ≥

r∑

j=k+1

λj +

c∑

j=s+1

ζ̃j .

In the following special cases, the problem of max-
imization of J3 is greatly simplified:
(A) When k = r, L becomes a full rank orthogonal ma-
trix. In this case, LLT = Ic, and we can set L = Ir. G̃
becomes identical to G. The problem of maximization
of J3 is reduced to the maximization of J2.
(B) When s = c, R becomes a full rank orthogonal ma-
trix. and can be set as R = Ic. F̃ becomes identical to
F . Maximization of J3 is reduced to the maximization
of J1.
(C) When k = r and s = c, the optimization problem
becomes trivial one: L = Ir, R = Ic, Mi = Ai.

Proof. We write J3 =
∑n

i=1 Tr[AT

i Ai − 2LMiR
TAT

i +
MT

i Mi]. Taking ∂J3/∂Mi = 0, we obtain Mi = LTAiR,
and J3 =

∑n

i=1 ||Ai||
2 −

∑n

i=1 ||L
TAiR||2. Thus min J3

becomes

(5.22) max
L,R

J3a(L, R) =
n∑

i=1

||LTAiR||2.

The objective can be written as

J3a(L, R) = TrLT(

n∑

i=1

AiRRTAT

i )L = TrLTF̃L

= TrRT(

n∑

i=1

AT

i LLTAi)R = TrRTG̃R(5.23)

As solutions for these traces of quadratic forms, L, R are
given by the eigenvectors of F̃ , G̃, and the optimal value
are given by the equalities in Eqs.(5.20, 5.21).

To prove the inequality in Eq.(5.20), we note

r∑

j=1

λ̃j = TrŨT
r (

∑

i

AiṼsṼ
T

s AT

i )Ũr(5.24)

= Tr
∑

i

AiṼsṼ
T

s AT

i(5.25)

= TrṼ T

s (
∑

i

AT

i Ai)Ṽs(5.26)

≤ TrV T

s (
∑

i

AT

i Ai)Vs =

s∑

j=1

ζj(5.27)

Re-writing the RHS of above inequality using Eq.(3.13)
and splitting the LHS into two terms, we obtain

k∑

j=1

λ̃j +

r∑

j=k+1

λ̃j ≤
∑

i

||Ai||
2 −

c∑

j=s+1

ζj .

This gives the inequality in Eq.(5.20). The inequality in
Eq.(5.21) can be proved in the same fashion. �

In practice, simultaneous solutions of the Ũ , Ṽ
eigenvectors are achieved via an iterative process:
Iterative Updating Algorithm. Given initial r-by-
k matrix L(0), we form G̃ and solve for the k largest
eigenvectors (ṽ1, · · · , ṽs) which gives R(0). Based on

R(0), we form F̃ and solve for the k largest eigenvectors
(ũ1, · · · , ũk) which gives L(1). This way, we obtain
L(0), R(0), L(1), R(1), · · · .

Proposition 6. J3a(L, R) is step-wise non-decreasing,
i.e.,

J3a(L(0), R(0)) ≤ J3a(L(1), R(0)) ≤ J3a(L(1), R(1)) ≤ · · · .

Proof. Suppose we have currently L(t), R(t). Using L(t)

we form G̃, solve for k largest eigenvectors and obtain
a new R(t+1). By definition, R(t+1) is the one that
maximizes

TrRT(
∑

i

AT

i L
(t)L(t)T

Ai)R =
∑

i

||L(t)T AiR||2.

Thus
∑

i ||L
T AiR||2 must be non-decreasing. Similarly,

using R(t) we can form F̃ , solve for k largest eigenvectors
and obtain a new L(t+1).

∑
i ||L

T AiR||2 must be also
non-decreasing. �

Proposition 7. An upper-bound exists for
max

∑
i ||L

T AiR||2:

max
L∈Rr×k,R∈Rc×s

∑

i

||LT AiR||2 < min(

k∑

j=1

λj ,

s∑

j=1

ζj).

Proof. Assume k < r. For any r-by-k matrix L, with
orthonormal columns, we can always find additional r−k



orthonormal columns L̃ such that (L, L̃) span the space.
Thus LLT + L̃L̃T = Ir. Noting that

∑
i AT

i (L̃L̃T)Ai is
positive definite, we have

maxR TrRT(
∑

i

AT

i LLTAi)R

< max
R

TrRT(
∑

i

AT

i (LLT + L̃L̃T)Ai)R

= max
R

TrRT(
∑

i

AT

i Ai)R.

From Eqs.(1.2,1.4), the solution to the right-hand-side is
given by the 2DSVD: R = Vs. We can similarly show the
upper-bound involving Uk. The eigenvalues arise from
Eqs.(1.2,1.4). �

From Proposition 6, we obtain a simple lower
bound,

(5.28) Jopt
3 (k, s) ≤

∑

i

||Ai||
2 − min(

s∑

j=1

λj ,

s∑

j=1

ζj)

With the non-decreasing property (Proposition 6)
and the upper-bound (proposition 7), we conclude that
the iterative update algorithm converges to a local
maximum.

Is the local maximum also a global maximum?
We have several arguments and some strong numerical
evidence to support
Observation 8. When Ai = LMiR

T decomposition
provides a good approximation to the 2D data, the
iterative update algorithm (IUA) converges to the global
maximum.
Discussion. (A) For n = 1, 2DSVD reduces to usual
SVD and the global maximum is well-known. Fixing
L, J3a is a quadratic function of R and the only local
maximum is the global one, achieved in IUA. Similarly,
fixing R, IUA achieves the global maximum. (B) We
may let L(0) = Uk as in 2DSVD, any random matrices,
or a matrix of zeroes except one element being 1. For
any of these starting point, IUA always converges to
the same final solution (L∗, R∗) in 3 iterations. (C) We
initialize L as L(0) ⊥ L∗, i.e, as L(0) has zero overlap
with the solution L∗. We run IUA again. Typically in
3 iterations, the IUA converges to the same (L∗, R∗).3

These three experiments indicate it is unlikely IUA can
be trapped in a local maximum, if it exists.

5.1 Comparison with Ai = LMi, Ai = MiR
T

We compare Ai = LMiR
T with Ai = MiR

T and

3Due to existence of Γ as discussed in Theorem 1, we measure
the angle between the two subspaces. For 1-D subspaces, it is
the angle between the two lines. This is generalized to multi-
dimensional subspaces [7].

Ai = LMT

i . The computer storage for the three
approximations are

SLMR = rk + nks + sc = 204, 000,(5.29)

SMR = nrk + kc = 1, 002, 000,(5.30)

SLM = rk + nkc = 1, 002, 000,(5.31)

where the last number assumes r = c = 100, n = 500
and k = s = 20. The reconstruction errors, i.e., the
objective function values, have the relationship:

(5.32) Jopt
1 (s) < Jopt

3 (k, s), k < r; Jopt
1 (s) = Jopt

3 (r, s).

(5.33)
Jopt

2 (k) < Jopt
3 (k, s), s < c; Jopt

2 (k) = Jopt
3 (k, c).

This comes from Proposition 7 and noting Jopt
1 =∑c

j=s+1 ζj and Jopt
2 =

∑r

j=k+1 λj from Theorems 1 and
2.

From the expressions for Jopt
1 , Jopt

2 , and Jopt
3 in

Eqs.(3.12, 4.14), and Theorem 5, we see that Ai is either
left projected to the subspace UkUT

k , right projected to
the subspace VkV T

k or left and right projected simulta-
neously.

2DSVD as near-optimal solution for J3

6 Bounding J3 by 2DSVD

In this section, we give upper bounds on J3 and show
2DSVD is the solution for minimizing these upper
bounds.

Upper bound J3L

Consider a two-step approximate scheme to solve
min J3.
(L1) We set Ai ≈ LMiR

T = L(MiR
T ) ≡ LRT

i , where
Ri ∈ R

c×k (not restricted to the special form of MiR
T ),

and solve for L, Ri:

(6.34) min
L, Ri

n∑

i=1

||Ai − LRT

i ||
2.

This is identical to minJ2 of Eq.(2.8), and the optimal
solution is given by Theorem 2: L = Uk, Ri = AT

i Uk.
(L2) We fix L, Ri and find the best approximation of
LRT

i by LMiR
T , i.e.,

(6.35)

min
R, Mi

L, Ri fixed

∑

i

||LRT
i −LMiR

T||2 = min
R, Mi

Ri fixed

∑

i

||Ri−RMT

i ||2.

L drops out since it has orthonormal columns. This is
again identical to minJ2 and solution can be obtained.
Clearly, the total error is the sum of the two which gives
a upper bound for J3:

J3 ≤ J3L ≡
n∑

i=1

||Ai − LRT

i ||
2 +

n∑

i=1

||LRT

i − LMiR
T||2

5



The first term is identical to min J2, and the optimal
solution is given by Theorem 2,

L = Uk, Ri = AT

i Uk, J
(1)
3L =

r∑

j=k+1

λj .(6.36)

The second term of J3L is equivalent to minJ2, and by
Theorem 2 again, optimal solution are given by
(6.37)

R = V̂s ≡ (v̂1, · · · , v̂s), Mi = UT

k AiR, J
(2)
3L =

c∑

j=k+1

ζ̂j ,

where v̂k, ζ̂k are eigenvectors and eigenvalues of the
weighted covariance matrix Ĝ:

(6.38) Ĝv̂k = ζ̂kv̂k, Ĝ =
∑

i

AT

i UkUT

k Ai.

Combining these results, we have
Theorem 5. Minimizing the upper bound J3L leads to
the following near-optimal solution for J3:

L = Uk, R = V̂s, Mi = UT

k AiV̂s,(6.39)

Jopt
3 ≤

r∑

j=k+1

λj +

c∑

j=s+1

ζ̂j .(6.40)

To implement Theorem 5, we (1) compute Uk; (2) con-

struct the re-weighted row-row covariance Ĝ of Eq.(6.38)

and compute its s eigenvectors which gives Ṽs; (3) com-

pute Mi = UT

k AiV̂s. This U → V → Mi procedure is a
variant of 2DSVD, instead of computing Uk and Vs inde-
pendent of each other (see Eqs.(1.3, 1.4)). The variant
has the same computational cost. We call this LRMi.
Note that, in the iterative update algorithm of J3, if we
set L(0) = Uk, then R(0) = Ṽk. This 2DSVD variant can
be considered as the initialization of the iterative update
algorithm.

Upper bound J3R

Alternatively, we set Ai ≈ LMiR
T = (LMi)R

T ≡
LiR

T , where Li ∈ R
c×k (not restricted to the special

form of LMi). Once R, Li are computed, we compute
the best approximation of LiR

T by (LMi)R
T . This is

equivalent to

min
Li, R

n∑

i=1

||Ai − LiR
T||2 + min

L, Mi

Li, R fixed

∑

i

||LiR
T − LMiR

T ||2

Obviously, this gives a upper bound:

J3 ≤ J3R ≡

n∑

i=1

||Ai − LiR
T||2 +

n∑

i=1

||LiR
T − LMiR

T||2

R has orthonormal columns and drops out of the second
term. The optimization of J3R can be written as

Following the same analysis leading to Theorem 5,
we obtain
Theorem 6. Minimizing the upper bound J3R leads to
the following near-optimal solution for J3:

L = Ûk ≡ (û1, · · · , ûk), R = Vs,(6.41)

Mi = ÛT

k AiVs,(6.42)

Jopt
3 ≤

r∑

j=k+1

λ̂j +
c∑

j=s+1

ζj ,(6.43)

where p̃k are eigenvectors of the weighted covariance
matrix F̂

(6.44) F̂ ûk = ζ̂kûk, F̂ =
∑

i

AiVsV
T

s AT

i .

The implementations are: (1) compute Vs; (2) construct

the re-weighted row-row covariance F̂ . of Eq.(6.44) and

compute its k eigenvectors which gives Ũk; (3) compute
Mi. This is another variant of 2DSVD, which we call
RLMi.

7 Error Analysis of J3 and 2DSVD

For Ai = LMiR
T decomposition, from Theorems 5 and

6, and Eqs.(5.20 , 5.21), we obtain the following lower
and upper bounds for J3:

(7.45) lb(k, s) ≤ Jopt
3 (k, s) ≤ ub(k, s),

(7.46)

lb(k, s) = max(

r∑

j=k+1

λ̃j +

c∑

j=s+1

ζj ,

r∑

j=k+1

λj +

c∑

j=s+1

ζ̃j),

(7.47)

ub(k, s) = min(

r∑

j=k+1

λ̂j +

c∑

j=s+1

ζj ,

r∑

j=k+1

λj +

c∑

j=s+1

ζ̂j).

We have seen how 2DSVD arises in minimizing
the upper bounds J3L and J3R. Now we analyze it
in subspace approximation point of view. Let Ūk be
the subspace complement of Ũk, i.e., (Ũk, Ūk) spans the

entire space. Thus (Ũk, Ūk)(Ũk, Ūk)T = I. We say that
the dominant structures of a 2D map dataset are well
captured by the subspace ŨkŨT

k if

∑

i

AT

i ŨkŨT

k Ai ≃
∑

i

AT

i (ŨkŨT

k + ŪkŪT

k )Ai =
∑

i

AT

i Ai.

which will happen if the largest k eigenvalues dominate
the spectrum:

k∑

j=1

λ̃j

/ r∑

j=1

λ̃j ≃ 1, and

s∑

j=1

ζ̃j

/ r∑

j=1

ζ̃j ≃ 1.

This is because the importance of these subspaces is
approximately measured by their eigenvalues. This



situation is similar to the standard SVD, where the first
k singular pairs provide a good approximation to the
data when

k∑

j=1

σ2
j

/ r∑

j=1

σ2
j ≃ 1

This situation occurs when the eigenvalues λj approach
zero rapidly with increasing j. The space is dominated
by a few eigenstate.

In this case, the 2D maps can be well approximated
by the 2DSVD, i.e., 2DSVD provides a near-optimal
solution to J3(·). In this case, the differences between

λ̂j , λ̃j , λj tend to be small, and we set approximately

r∑

j=k+1

λ̂j ≃

r∑

j=k+1

λ̃j ≃

r∑

j=k+1

λj .

Similar results also hold for ζ̂j , ζ̃j , ζj . we obtain error
estimation,

Jopt
3 (k, s) ≃

r∑

j=k+1

λj +

c∑

j=s+1

ζj(7.48)

≤
∑

i

||Ai − UkUT
k AiVsV

T
s ||2,(7.49)

similar to the Eckart-Young Theorem. The two accumu-
lative sums of eigenvalues correspond to the simultane-
ous left and right projections.

8 Ai = LMiL
T for symmetric Ai

Consider the case when Ai’s are symmetric: AT

i =
Ai, for all i. We seek the symmetric decomposition
Ai = LMiL

T of J4 in Eq.(2.11). Expand J4 and take
∂J4/∂Mi = 0, we obtain Mi = LTAiL, and J4 =∑n

i=1 ||Ai||
2 −

∑n

i=1 ||L
TAT

i L||2. Thus min J4 becomes
(8.50)

max
L

J4a(L) =

n∑

i=1

||LTAiL||
2 = TrLT(

n∑

i=1

AiLLTAi)L

Similar to the Ai = LMiR
T decomposition, 2DSVD

gives an near-optimal solution

(8.51) L = Uk, Mi = UT
k AiUk.

Starting with this, the exact optimal solution, can be
computed according to the iterative update algorithm
in §6. We write
(8.52)

max
L(t+1)

J4a(L(t+1)) = TrL(t+1)T(

n∑

i=1

AiL
(t)L(t)TAi)L

(t+1).

From a current L(t), we form F̃ =
∑

i AiL
(t)L(t)TAi

and compute the first k-eigenvectors, which gives L(t+1).

From the same analysis of Propositions 6 and 7, we have

J4a(L(0)) ≤ J4a(L(1)) ≤ J4a(L(2)) ≤ · · ·

≤ max
L

TrLT(
n∑

i=1

AiAi)L =
n∑

i=1

||UkAi||
2.(8.53)

Thus the iterative algorithm converges to the optimal
solution, L(t) → Ũ = (ũ1, · · · , ũk), where

(8.54) F̃ ũj = λ̃j ũ, F̃ =

n∑

i=1

AiŨkŨT

k Ai.

The optimal objective value has the lower and upper
bounds:

(8.55)

r∑

j=k+1

(λj + λ̃j) ≤ Jopt
4 ≤

r∑

j=k+1

(λj + λ̂j)

where λ̂j are the eigenvalues of F̂ :

(8.56) F̂ ûj = λ̂j û, F̂ =

n∑

i=1

AiUkUT

k Ai.

If eigenvalues λ̃j fall rapidly as j increases, the

principal subspace Ũk captures most of the structure,
and 2DSVD provides a good approximation of the data.
i.e., 2DSVD is the near-optimal solution in the sense of
J4(·). Thus we have

(8.57) Jopt
4 ≃ 2

r∑

j=k+1

λj .

9 Application to images reconstruction and

classification

Dataset A. ORL 4 is a well-known dataset for face
recognition. It contains the face images of 40 persons,
for a total of 400 images of sizes 92 × 112. The major
challenge on this dataset is the variation of the face pose.
Dataset B. AR 5 is a large face image dataset. The in-
stance of each face may contain large areas of occlusion,
due to sun glasses and scarves. The existence of occlu-
sion dramatically increases the within-class variances of
AR face image data. We use a subset of AR which con-
tains 65 face images of 5 persons. The original image size
is 768 × 576. We crop face part of the image reducing
size to 101 × 88.

9.1 Image Reconstruction Figure 1 shows 8 recon-
structed images from the ORL dataset, with a rather
small k = s = 5. Images in the first row are recon-
structed by the Ai = LMi decomposition using row-row

4http://www.uk.research.att.com/facedatabase.html
5http://rvl1.ecn.purdue.edu/∼aleix/aleix face DB.html
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Table 1: Test datasets and related storage for k = s = 15.
Dataset n Dimensions # of classes 2DSVD Storage SVD storage
ORL 400 92 × 112 40 93060 160560
AR 65 88 × 101 5 16920 143295

Figure 1: Reconstructed images by 2dLRi (first row), 2dLiR (second row), 2DSVD (third row), and LMR (fourth
row) on ORL dataset at k = s = 5.
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Figure 2: Reconstruction error for ORL dataset (left) and AR dataset (right). Compression methods, from left to
right, are indicated in the insert panel.



Table 2: Convergence of LMR

t 2DSVD Random Rank-1 Orthogonal
0 0.15889029408304 0.58632462287908 0.99175445002735 0.96285808073065
1 0.15872269104567 0.15872372559621 0.15875108000211 0.15878339838255
2 0.15872268890982 0.15872268893458 0.15872268927498 0.15872268953111
3 0.15872268890976 0.15872268890977 0.15872268890981 0.15872268890981
4 0.15872268890976 0.15872268890976 0.15872268890976 0.15872268890976

angle 0 4.623e-10 3.644e-10 2.797e-10

correlation matrix F . We can see clearly the blurring
along horizontal direction. Images in the second row
are reconstructed by the Ai = MiR decomposition us-
ing column-column correlation matrix G. We can see
clearly the blurring along vertical direction. Images in
the 3rd row are reconstructed by the 2DSVD; Images in
the 4th row are reconstructed by the LMiR

T decomposi-
tion; The symmetric decomposition of LMR and 2DSVD
give better quality reconstruction. Figure 3 shows the
same 8 reconstructed images from the ORL dataset, at
k = s = 15 for 2DSVD and traditional SVD. One can
see that 2DSVD gives better quality reconstruction.

Figure 2 shows the reconstruction errors for LMR
of §6, 2DSVD, MiR

T decomposition of §3, LMT
i de-

composition of §4, LRMi of §6, and RLMi of §7. These
experiments are done on AR and ORL datasets, with
k = s ranging between 10 and 20. We have the follow-
ing observations: (a) LRi and LiR achieve the lowest
residue errors; (b) LMR, 2DSVD, LRMi and RLMi lead
to similar residue errors, with LMR the best; (c) SVD
has the largest residue errors in all cases.

9.2 Convergence of Ai = LMiR
T decomposition

We examine the sensitivity of LMR on the initial choice.
In Table 2, we show J3 values for several initial choices
of L(0) as explained in Discussion of Observation 8:
2DSVD, random matrices, Rank-1 start (L(0) is a matrix

of zeros except L
(0)
1,1 = 1), and orthogonal start (L(0) is

orthogonal to the solution L∗).

We have the following observations. First, starting
with all 4 initial L(0)’s, the algorithm converges to the
same final solution. In the last line, the angle between
the different solutions and the one with 2DSVD start are
given. They are all around 10−10, practically zero within
the accuracy of the computer precision. Considering the
rank-1 start and the orthogonal start, this indicates the
algorithm does not encounter other local minimums.

Second, 2DSVD is a good approximate solu-
tion. It achieves 3 effective decimal digit accuracy:
(J3(2DSVD) − Jopt

3 )/Jopt
3 = 0.1%. Starting from the

2DSVD, it converges to the final optimal solution in 3
iterations; it gets 6 digits accuracy in 1 iteration and
gets 12 digit accuracy in 2 iterations.

Third, the convergence rate is quite good. In 1
iteration, the algorithm converges to 4 digits accuracy
for all 4 initial starts. With 4 iterations, the algorithm
converges to 14 digits, the computer precision with 64-
bits, irrespective of any odd starting points.

To further understand the rapid convergence, we
set k = s = 1 and run two experiments, one with
L(0) = e1 and the other with L(0) = e2, where ei is
a vector of zeroes except that the i-th element is 1.
The angle between the solutions at successive iterations,

L
(t)
1 and L

(t)
2 , are given in Table 3. One can see that

even though the solution subspaces are orthogonal (π/2)
at beginning, they run towards each other rapidly and
become identical in 4 iterations. This indicates the
solution subspace converges rapidly.

9.3 Bounds on Jopt

3 In Figure 4, we show the
bounds of Jopt

3 provided by 2DSVD, Eq.(5.28) and
Eq.(7.49). These values are trivially computed once
2DSVD are obtained. Also shown are the exact solutions
at k = s = 10, 15, 20. We can see the 2DSVD provides
a tight upper bound, because it provides a very close
optimal solution. This bounds are useful in practice.
Suppose one computes 2DSVD and wishes to decide the
parameter k and s. Given a tolerance on reconstruction
error, one can easily choose the parameters from these
bound curves.

9.4 Classification One of the most commonly per-
formed tasks in image processing is the image retrieval.
Here we test the classification problem: given a query
image, determine its class. We use the K-Nearest-
Neighbors (KNN) method based on the Euclidean dis-
tance for classification [4, 6]. We have tested k = 1, 2, 3
in KNN. k = 1 always leads to the best classification
results. Thus we fix k = 1. We use 10-fold cross-

validation for estimating the classification accuracy. In
10-fold cross-validation, the data are randomly divided
into ten subsets of (approximately) equal size. We do
the training and testing ten times, each time leaving
out one of the subsets for training, and using only the
omitted subset for testing. The classification accuracy
reported is the average from the ten different random

9



Figure 3: Reconstructed images by 2DSVD (first row), and SVD (second row) on ORL dataset at k = s = 15.

Table 3: Convergence of LMR: k = s = 1 case

t 0 1 2 3 4
angle 1.571=π/2 1.486e-03 4.406e-05 1.325e-06 3.985e-08
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Figure 4: Lower and upper bounds of Jopt
3 provided by

2DSVD. Also shown are the exact solutions at k = s =
10, 15, 20.

splits. The distance between two images are computed
using the compressed data:

||Ai − Aj || ≈ ||LMiR
T − LMjR

T || = ||Mi − Mj ||

for LMR, MR, and LM. For SVD, let (ai, · · · , an) =
UΣ(v1, · · · ,vn). The pairwise distance is ||Σ(vi −vj)||.
The results are shown in Fig.5. We see that LMR and
2DSVD consistently leads to small classification error
rates, outperforming LiR, LRI and SVD, expect for AR
dataset at large value of k (such as k ≥ 16) where SVD
is competitive.

9.5 Convergence for symmetric 2D dataset We
tested the algorithm for the symmetric 2D dataset by

generating the synthetic datasets Bi = AT
i Ai, i =

1, · · · , n for the ORL image dataset. Setting k = 15,
the reconstruction error J4 is shown in Table 4. The
iteration starts with 2DSVD solution, which is already
accurate to 5 digits. After 1 iteration, the algorithm
converges to the machine precision.

Table 4: Convergence for symmetric case

t J4

0 0.01245341543106
1 0.01245337811927
2 0.01245337811927

10 Surface temperature maps

The datasets are 12 maps, each of size 32 (latitude) x
64 (longitude). Each shows the distribution of average
surface temperature of the month of January (100 years).

Table 5 shows the reconstruction of the temperature
maps. One see that 2DSVD provides about the same or
better reconstruction at much less storage. This shows
2DSVD provides a more effective function approxima-
tion of these 2D maps. The temperature maps are shown
in Figure 6.

11 Summary

In this paper, we propose an extension of standard
SVD for a set of vectors to 2DSVD for a set of 2D
objects {Ai}

n
i=1. The resulting 2DSVD has a number

of optimality properties which make it suitable for low-
rank approximation. We systematically analyze the
four decompositions, Ai = MiR

T , Ai = LMT
i , Ai =
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Figure 5: Classification (cross validation) error rate for ORL (left) and for AR (right)

Table 5: Reconstruction of the temperature maps

Method k,s storage error
2DSVD k = 4, s = 8 1024 0.0030
2DSVD k = 8, s = 16 2816 0.0022
SVD k = 4 8244 0.0040
SVD k = 8 16488 0.0022

LMiR
T , and Ai = LMiL

T for symmetric Ai. Their
relationship with 2DSVD are shown. This provides a
framework unifying two recent approaches by Yang et

al.[13] and by Ye [14] for low-rank approximations which
captures explicitly the 2D nature of the 2D objects,
and further extend the analysis results. We carry out
extensive experiment on 2 image datasets and compare
to standard SVD. We also apply 2DSVD to weather
maps. These experiments demonstrate the usefulness
of 2DSVD.
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Figure 6: Global surface temperature. Top left: original data (January temperature for a randomly picked year. One
can see that the central area of Australia is hottest spot on Earth). Top right: matching continental topography for
location specification. Middle left: 2DSVD with k = 4, s = 8. The reduction ratio are kept same for both columns
and rows: 8=32/4=64/8. Middle right: 2D-SVd with k = 8, s = 16. Bottom left: conventional SVD with k = 4.
Bottom right: conventional SVD with k = 8.


