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Abstract. We first extend Hopfield networks to cluster-
ing bipartite graphs (words-to-document association) and
show that the solution is the principal component analy-
sis. We then generalize this via the min-max clustering
principle into a self-aggregation networks which are com-
posed of scaled PCA components via Hebb rule. Cluster-
ing amounts to an updating process where connections
between different clusters are automatically suppressed
while connections within same clusters are enhanced. This
framework combines dimension reduction with clustering
via neural networks and PCA. Self-aggregation networks
can also improve information retrieval performance. Ap-
plications are presented.

1 Introduction

Clustering documents[11] is a challenging problem because
of the very high dimensionality; in vector space model,
the dimensionality i1s the size of vocabulary. In recent
years, dimension reduction techniques such as principal
component analysis (PCA) (which is also called Latent
semantic indexing (LSI)[2]) are popularly used to project

the documents into the low-dimensional space.

Feedforward networks[1] via backpropagation has been
widely used for classification tasks such as text categoriza-

tion [20]. Although Hopfield associative-memory networks[10]

is not suitable for classification, it has the flexibility to
be adopted for solving combinatorial problems[9] such as
traveling saleman problem, graph partitioning, etc.

In this paper, we explore the relationship between data
clustering and dimension reduction via the neural net-
works connection. We show that using Hopfield networks
to cluster the bipartite graph (word-document association
matrix), PCA is the solution. This provides justification
for clustering using PCA (see §2).

By appropriately modifying the clustering objective
function according to a min-max clustering principle, we
obtain a min-max cut clustering algorithm whose equa-
tions are essentially rescaling of those for PCA (see §3).

Using scaled PCA components we can construct self-
aggregation networks which have the unique property of
cluster self-aggregation: connections between different clus-
ters are automatically suppressed while connections within
same clusters are enhanced. An indepth analysis of self-
aggregation (SA) networks are provided (see §4).

We use SA networks for document retrieval and ob-
tained improved retrieval precision. We also use SA net-
works for clustering documents and words simultaneously,
and obtain substantially better results than the K-means

method (see §5).

2 Hopfield networks for clustering
documents

In the rectangular m x n term-document association ma-
trix B = (b;;), each row represents a word and is denoted
by an r-node in a weighted bipartite graph shown in Fig.1.
Each column represents a document and 1s denoted by a
c-node. Element b;; in the matrix represents the counts of
co-occurrence of row object r; and column object ¢;, and
is represented by a weighted edge between r; and ¢;.
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Figure 1: A bipartite graph with r-nodes and c-nodes. The
dashed line indicates a possible partitioning.

Hopfield networks can be used to partition an stan-
dard undirected graph [9]. In this section, we extend Hop-
field networks for partition bipartite graph, and show that
the relaxed version of the Hopfield networks for bipartite
graphs is precisely the Latent Semantic Indexing.



We wish to partition the r-type nodes of R into two
parts Ry, Ry and simultaneously partition the e-type nodes
of C' into two parts C7, (s, based on the clustering prin-
ciple of minimizing between-cluster association and max-
imizing within-cluster association (see Fig.1). We use in-
dicator vector f to determine how to split R into Rj, Ra:

[ 1 if meR
f(l)—{—1 if € Ry (1)

and use g to determine how to split C' into Cy, Cs:

g(i) = { _11

(For presentation purpose, we index the nodes such that

if ¢ eCy
if ¢, €Cy (2)

nodes within same cluster are indexed contiguously. The
clustering algorithms presented are independent to this
assumption. Bold face lower case letters are vectors. Ma-
trices are denoted by upper case letters.) Thus we may

£0+) o)
t= (f(—))’ 8= (g<—>) (3)

With this indexing, the association matrix is

Bgr,,c, Br,c
B — 1, 1 1,~2 4
(BRQ,cl BRQ,CQ) @)

write

It is convenient to convert the bipartite graph into an undi-
rected graph. We follow standard procedure and combine
the two types nodes to one by setting

-(o-(a 8 o

This induces an undirected graph G, whose adjacency ma-
trix is the symmetric weight matrix W.

Consider the following objective function,

1
Jeut(C1, Ca; R1, Ry) = §qTWq (6)

= 5(331,01) + 5(332,02) - 5(331702) - 5(332701)

where

s(Br,,c,) = s(R1,C9) = Z bij,

ri€R1,c;€C,

and s(Br, ¢, ), s(Br,,c, ), 5(Br,,c,) are similarly defined.
s(Br, ¢, ) 1s the association within cluster 1 (see Fig.1),
and we call it the self-association. s(Bg, ¢,) is the self-
assoclation of cluster 2. s(Bg, ¢,) and s(Bgr, c,) are the
overlaps between different clusters.

We propose a min-maz clustering principle: data points
are grouped into clusters such that the overlaps s(Bg, ¢, ),

s(Br,,c,) between different clusters are minimized while
cluster self-similarities (Bg, ¢, ), $(Br,,c,) are maximized[5].

Maximizing s(Bgr, ¢, )+5(Br,,c,) while minimizing s(Bg, ¢,)

+s(Br,,c,) is equivalent to maximizing the objective func-
tion Jeur(q).

Using Hopfield network [10, 9], the solution is obtained
by the update rule

g0y = Sgn[z wizg' ()]

where q*) is the value of q at ¢-th update. This equa-
tion can be written in vector form Y = sgn[Wq®)].
One can verify that Jeu:(q) monotonically decreases in
this update.

If one relaxes ¢(7) from discrete indicators to continu-
ous values in (—1, 1), the solution q satisfies

Wq = Aq. (7)

Now utilizing the explicit structures of W and q, we have

e o) )= 6w

which is identical to

Bg =M, BTf=)\g. (9)

The solutions to these two equations are the singular value
decomposition (SVD) of B. To see clearly, upon substitu-
tions, we have

(BBT)f = \*f, (B"B)g = \g. (10)

This verifies that {f;} are left singular vectors and {g;}
are right singular vectors of the SVD of B:

B=> filigl = FuAnGF. (11)
k=1

We summarize these results in

Theorem 1. Using Hopfield networks to maximize the
objective function Jeu(q) of Eq.(6), the solutions for clus-
tering indicators are given by SVD of B.

Several further results can be obtained. First, note
that SVD of B are precisely the Latent Semantic Indexing
[2]. Thus we conclude that Hopfield networks for cluster-
ing leads to LSI. The partitioning indicator vectors are the
LST index vectors.

Second, because s(Br, c,) + s(Br,,c,) + s(Br, ¢,) +
s(Br,,c,) = ZZ»]» b;; = s is a constant for a given associa-
tion matrix B, we have Jeus = s—2[s(Br, c,)+5(Br,,c, )]
Therefore, maximizing Jeu:(q) is equivalent to minimizing



s(Br,,c,)+5(Br,,c,) alone. In graph theory, s(Bg, c,)+
s(Br, ¢, ) is the sum of weights on the edges being cut, and
is called cutsize. Therefore, PCA is equivalent to MinCut
in graph theory. It is well known that MinCut often leads
to skewed cuts. This imbalance will be addressed in §3.
Thirdly, all these are connected to K-means clustering.
Consider the K-means squared error objective function,

X, — X
T o Sl ET I S S L =

k=1xi€ck k=1x;,X;€ck
(12)

_EZ S -l (13)

k=1x;,X;€ck

== Dl =xilP =30 3 3 el

PFGXi€ep X;€¢q

(14)
(Xla"'aXZ); Ck, Nk
are the centroid and size of k-th cluster, and nj is a

where x; is the j-th document: B =

suitable constant represents approximately the number of
points in a cluster on average. In Eq.(14), the first term
is a constant, and the second term is the sum of distances
between documents in different clusters, which is analo-
gous to overlapping association between different clusters,
s(Br,,c,) + $(Br, ¢, ). Therefore, Hopfield network (and
PCA) has a nice connection to the K-means clustering:
one minimizes the between-cluster associations (similari-
ties) whereas the other maximizes the between-cluster dis-
tances (di-similarities).

All results in this section for bipartite graphs can be
immediately extended to an undirected graph, G(A), with
adjacency matrix A. The clustering objective function
Eq.6 becomes

JCUt(Clﬁ Cz) = S(Aclycl) + S(AC2,C2) - 25(A01,C2) (15)

where s(A¢, ¢,) is defined similar to s(Bg, ¢,). The clus-
tering indicators g of Eq.2 via the Hopfield network are
given by the eigenvector of Ag = Ag.

3 MinMaxCut

Approximately speaking, the above Hopfield network of
maximizing Eq.6 is equivelant to

5(331702) + 5(332701)

min .
S(BRlycl) + 5(332702)

(16)

Maximization of s(Bg, c,) + s(Br,,c,) does not guar-
rentee the balance of the two terms; in fact it often hap-

pens that S(BRlycl) > 5(332702) or S(BRlycl) < 5(332702)'

To prevent this imbalance of cluster self-associations, we
add a cluster balance condition in the min-max clustering
principle that s(Bg, ¢, ), s(Br, c,) are maximized individ-
ually while overlap associations s(Brg, ¢,) + s(Br, c,) are

minimized. This leads to the MinMaxCut objective

s(BRr,,c,) + s(Br,,c,)
QS(BRl,Cl)

s(BRr,,c,) + s(Br,,c,)
25(332702)

JMMC(Cla C; Ry, RZ) =

(17)

in contrast to Jeys in Eq.(6).

To find an efficient algorithm to compute the optimal
solution according to Jyuc(Ci, Ca; Ry, Ra) we proceed as
follow. First, we write the weight matrix W explicitly,

0 0 Br,,c, Br,.c.
_ 0 0 Br.,c, Br,.c.
W= Bh,c, Bh,e, 0 0 (18)
B, c. Bh,c, 0 0

Now we re-order the indices of the nodes,

£+ £+

£(-) g+
1= g | = 9= ¢ |

g(_) g(_)

i.e., nodes with Cluster 1 are indexed contiguously irre-
With this re-

spect wether they are r-nodes or c-nodes.
ordering, W becomes[22]

0 Br,,c, 0 Br,,c,
T T
W = BRl,Cl 0 BRz,Cl 0 (19)
Br,,c, 0 Br,,c,
T T
Br,c, 0 Bg,e, 0

This can be viewed as an undirected graph, with adjacency

W12)
Was ) -

From this, Eq.(17) can be written as

matrix

W= (W“ (20)

Way

(21)

Eq.(21) is the min-max cut objective function for undi-
rected graph [5]. One can show that

. . qf(D-Ww
min Jyuc(q) = min a( )4 (22)
a

a q'Dq
subject to q¥We = qf' De = 0, where D = (d;) is a
diagonal matrix and d; = Z w;; 1s the degree of node ¢

ande = (1,---,1)T.

We relax ¢(¢) from discrete indicators



to real values in (—1,1). The solution of q for minimizing
the Rayleigh quotient of Eq.(22) is given by (D — W)q =
ADq, which can be written as

Wq=(Dq, (=1-X (23)

For convenience, we define z = D/2q, and write Eq.(24)
as a standard eigenvalue problem:

Wz = (D *WD™Y?)g = (a. (24)

Finally, coming back to the bipartite graph, we have

(D, 0 _(u\_ (D)t
=3 8). +=()- () oo

Substituting into Eq.(24), we have
0 B u) u
() ()=<(b) e

B =D Y?BDIY, (27)

where

The solutions to Eq.(26) are SVD of B (that SVD is the
solution to Eq.24 for bipartite graph is noted earlier[22,
3].) We emphasize that £q.(26) is identical Eq.(8), with
the correspondence relationship

B = B, (g)jG) (28)

(see also the similarity between Eq.(23) and Eq.(7).) There-

fore, the net effect of MinMaxCut of Eq.(17) over the sim-
ple MinCut objective Eq.(6) or Eq.(16) is the scaling of
the association matrix B in Eq.(27). However, with this
scaling, the self-aggregation property emerges.

4 Self-Aggregation Networks

Just as the Hopfield networks is the solution to Mincut
objective, we propose the self-aggregation networks as the
K-way clustering solution to MinMax Cut.

We introduce nonlinear scaling factors, diagonal ma-
trices D, (each element is the sum of a row, see Eq.25)
and D, (each element is the sum of a column). Let B =
D%/zéDi/z, where B is defined in FEq.(27). Applying SVD
on é, we obtain

B=D}?(Y wlvi)DY? = DY fiGegi Do (29)
P P

We callf, = Dr_l/zuk and g = Dc_l/zvk scaled PCA com-
ponents. In data clustering perspective, they are just the

relazed clustering indicators, see Eq.(25). (We note that
there are a number of different approaches for nonlinear
PCA [7, 13, 15, 16].)

In Hopfield networks, a pattern f; is encoded into the
objective function as f1f] (the Hebb rule); multiple pat-
terns are encoded additively: flflT + -+ fkfkT. In our
problem, a pattern is a cluster partitioning indicator vec-
tor. Let Fiy = (f1,--+, ), and Gx = (g1, -, 8x), and

,Ax) = [5’;] : (30)

We call Q,QF = Zle qrql the generalized self-aggregation
(SA) network. From the relation,

Qr= (a1,

FoGE ]

we see that FFl = Zle £, £ is the SA network for row
objects, G GE = Zle grgl is the SA network for col-
umn objects, and F,GL = Zle frgl is the SA network
for row-column associations,

The SA networks defined above share an important fea-
ture: cluster self-aggregation. Using neural networks lan-
guage, we call (FxGT);; the connection (association) be-
tween nodes 7, j. Self-aggregation amounts to an connec-
tion weight updating process where connections between
different clusters are automatically suppressed while con-
nections within same clusters are enhanced.

In the following we provide a theoretical analysis and
prove this fundamental property for SA networks. The
development follows a perturbation analysis framework[4,
14, 6] by decomposing W in Eq.(24) as

W= WO L 7w

where (0 corresponds to the case where no overlap (con-
nection) exists between different clusters and W cor-
responds to the case where small overlaps exist between
different clusters.

4.1 Well separated clusters

In this case, the connections between two clusters (edges
cross the cut line in Fig.1) do not exist. In the association
matrix, this is reflected by Br, ¢, = 0,p # ¢ [see Eq.(4)].
We have

Theorem 2. When overlaps among K clusters are zero,
the K scaled PCA components q1,---,qr get the same
maximum eigenvalue: (y = 1,k = 1,---K. FEach q; 1s
a multistep (piecewise-constant) function (assuming ob-
jects within a cluster are indexed consecutively). In the



scaled PCA subspaces, objects within the same cluster
self-aggregate into a single point. O

The proof 1s a few algebraic manipulations. For sim-
plicity, we illustrate the proof by providing a concrete
K = 3 example. The solutions to Eq.(24) are

Dlfen N
0 D, 5seps

1 1 0

1 — - _-

X \/ 2511 Dil/lzecl » X \/2522 1 0
0 DYZe 9
c22%¢

0 0

etc. Here D,,q = diag(Bpgerg),(p,g=1,---, K), e,y = €
with the size of p-th row block; D.,, = diag(Bpgecq), €cq =
e with the size of p-th column block; and s,, = s(Bg, c,)-
Note that s,4 # s4p. Let

Xp = (xM, o x99, (32)

For any K-dim vector y = (y(1),-- -, y(x))T,
y(1) e /(2511)"° ]

o) erf (2o | 0

f —1/2
( ) 4 Y y(1) ec1/(2s11)?

g

[ u() ecuf (2802
Now any K orthonormal

aqK} = Qx.

is an eigenvector of Eq.(23).
{y1, -, ¥x} leads to K eigenvectors {qy, - -

Soned e index

Figure 2: Left-top: adjacency matrix of a bipartite graph
of 2 dense clusters (diagonal blocks) with random overlaps
(off-diagonal blocks). Left-bottom: F,GL. The overlaps
are reduced significately due to self-aggregation. Right:
computed qa (cycles) and the approximation from Theo-
rem 3 (solid line), in original index order (top panel) and
in sorted index order (bottom panel).

In the space spanned by F the coordinate of data ob-
ject iis r; = (£1(4), - - -, £x(1))T; From Eq.33, data objects

within a cluster self-aggregate to (are located at) the same
point. Furthermore, F F'l' gives the clusters for row ob-
jects, the word clusters (see Fig.3):

erlerTl/QSH 0 0
FoFT = 0 erael, /2599 0
0 0 er38?3/2533

(34)

In the space spanned by G the coordinate of data ob-
ject i s vy = (g1(%), -
within a cluster are self-aggregate to the same point. Fur-

-, gx(1))T; once again, data objects

thermore, G GT gives the clusters for column objects, i.e,
the document clusters (see Fig.3):

eclech/an 0 0
GKGZ = 0 eczeg2/2522 0
0 0 ecgecT3/2533

(35)
In both SA networks FF!I' GGT the overlap connec-
tions are identically zero as expected. However, connec-
tions within same clusters are enhanced significantly: ev-
ery pair of two objects ¢, within a cluster acquires the
same connection strength even if objects ¢, j may not be
connected in the original association matrix B.
SA network F,GZL gives the association between row
objects and column objects. The self-aggregation gives the
sharpened row-column associations (see Figs.2).

erlech/QSH 0 0
FGT = 0 erael, /2509 0
0 0 er3eCT3/2533

(36)

This is useful for document retrieval (see §5.1).

4.2 Overlapping Clusters

In clustering, the useful case is that clusters overlap. Here
we assume that the overlaps are small and provide a per-
turbation analysis. We have the following results:
Theorem 3. At the first order, the solutions to Eq.(24)
are the following: the highest K eigenvectors have the
form

q=D"""X,y,
where X is given in Eq.(32) and y and the eigenvalue A
(¢ = 1 — ) satisfy the eigensystem

Ty = \y. (37)
[ has the form I' = Q=2 T Q=12 where

hii —S812 — S21 —S1x — Skl
_ —821 — S12 haa —S82x — Sk2
I'= . . .
—S8xk1 — 81k —Sk2 — Sk h}g}g



where  hypp = Zp;ék(skp + spi)

and Q = diag(2s11, 2822, - -+, 28xx)- 0
The proof is bit involved and will be omitted here.

This theorem captures several important features of SA

networks, which are embedded in the solution to Eq.(37).

Note that the K x K matrix I' is symmetric semi-positive

definite. Here we list two corollaries:

Corollary 2.1. For K = 2, the second lowest eigenvalue

of ' is

Az = (s12 + 821)/2811 + (812 + 821)/2822,

which 1s precisely the min-max cut clustering objective
Jumec in Eq.(17). Therefore, the smaller Aa, the better
quality of the resulting clusters. The corresponding eigen-

vector 1s
€erq 0
S 0 S
_ —1/2 _ 22 11 €ro
qz = D™V Xpy, = - 0
2511 €c1 2522
€:9

Thus we automatically recover the partitioning indicators.
All these indicate SA networks is a highly consistent and
principled framework for clustering. The lowest eigenvec-
tor is q1 = (1,---,1). @2 = (q1,q2) constructed from
these two eigenvectors have the forms given in Eqs.(4,4,4).
Corollary 2.2. The K eigenvectors Yy = (y1, -+, ¥x) of
I satisfy YKTYK = Ix. The square orthonormal matrix Yy 1s
full rank under general conditions, thus Y,Y,] = I,. Using
Qx = D-Y2X.Y,. and constructing the SA networks,
FeFY G GE and FyGEL, they will have the same block
diagonal structures of Eqs.(4,4,4).

Corollary 2.2 provides the theoretical basis for using
FeFT and GxGT for clustering, and F,GT for improving
retrieval.

Example. We apply the above analysis to a bipartite
graph example with association matrix shown in Fig.2.
The bipartite graph has two dense clusters with large over-
laps between them. The indicator vector s computed
directly from Eq.(24) together with that from Theorem
3 are also shown in Fig.2. They agree reasonably. The
eigenvalue values from Eq.(24) and Theorem 3 also agree
reasonably well: Ay = 0.456, :\2 = 0.477. FKGg gives
a sharpened association matrix (Fig.2) where the overlap
between the two clusters are greatly reduced. FyFl and
GxGT computed from Eq.(24) are shown in Fig.3. They
are close to the analysis results (Corollary 2.2). F,FT
gives clusters for row objects (words) and GxGT gives clus-
ters for column objects (documents).

In self-aggregation, data objects move towards each
other guided by connectivity, as connection weights be-
tween different clusters are suppressed and connections

c6"

50 6 70 8 3 20 a0 ) 100 120 140 160

40 80
nz = 2030 nz=7470

Figure 3: Left: FFT for clustering row objects. Right:
GKGg for clustering column objects.

within same clusters are enhanced. This is similar to
the self-organizing map [12], where feature vectors self-
organize into a 2D feature map while data objects remain
fixed. In Hopfield network, features are stored (encoded)
as associative memories, whereas in SA networks, connec-
tion weights are dynamically adjusted to learn the patterns

in an unsupervised way.

5 Applications of SA networks

5.1 Document Retrieval

We first apply SA networks to document retrieval. That
clustering can help retrieval is suggested by the Clustering
Hypothesis [17]: if a document x; is highly relevant to a
query q, then documents very similar to x; (defined by
cosine similarity) are likely to be relevant to the query as
well. In many previous work, documents are first clustered
and query is then matched to the cluster centroids[19].
However, the experimental results so far indicates cluster-
ing had not helped the retrieval precision [19, 8]. (A re-
cent different usage is to cluster the retrieved documents
to group them into different topics[8].)

SA networks presents a new approach to use cluster-
ing for retrieval. Here the cluster structure is embedded
in F,GT which is very similar to the original word-to-
document matrix. We truncate the expansion in Eq.(29)
at K and set (; = 1,

K
B~ DY fig{D.= D F,GLD, = (%1,-+,%a), (39)
k=1

the jth column X; is the representation of SA network for
document j. The relevance r; of document x; for query
q through the cluster structure is simply r; = cos(q, X;).
If the clusters are well separated, all documents within a



cluster will have same relevance to a query (see Eq.(36)
and Fig.2 left-bottom panel), and thus all documents of
the most relevant cluster will be retrieved, even though
their original vector-space representations ({x; }, columns
in B) could differ considerably. The self-aggregation makes
this possible. In practice, overlaps exist; documents most
similar to each other will have similar x; and will get very
similar relevance score using the cosine similarity metric.
Therefore, Eq.(39) is a convenient and natural way to in-
corporate clustering information into retrieval.

We define the total relevance as the combination of the
keywords matching (KM) and SA network matching:

r; = cos(q, x;) + acos(q, X;) (40)

We call this self-aggregation improved keywords matching
(SAT-KM). In all experiments below, oo = 0.5

We apply this retrieval method to 4 standard TR test
datatsets: Medline (1033 docs, 30 queries), Cranfield (1400
docs, 225 queries), CACM (3204 docs, 64 queries) and
NPL (11429 docs, 93 queries) collections.

1 - - - . 07
0.98 Medline VN
06 o
0sf -
A 7
- 051 - CACM
0.7F = Iy
A o
0.6 o 4 0.4+t
: n
o
05F A 03}
a A
0.4f A g — )
A O 0.2f a
0.3 4 &,
A h=3
0.1
0.2f a0
@
01 . . . . 0 . . . .
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0.5
0.84
0 =}
045
N Cranfield
04r g NPL o
- A
0.6 o
035+ 1
03 o B
N [}
025+ =} 1 o4l a
= =]

0.2r

=]
w

0.151

=
o

0.1r

Pzl

0.05F

k3

0 L L L L 0 L L L L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 4: Precision-recall curves for Medline, CACM, NPL
and Cranfield collections. A for keywords matching, O for
SA-improved keywords matching.

Precision-recall curves for Medline, CACM, NPL and

Cranfield collections are shown in Fig.4. The average pre-
cisions are summarized in Table 1. Here we use tf.idf
term weighting. K=10 for Medline, K=20 for all others.
On Medline, SAI-KM clearly improves the retrieval pre-
cisions at all recall levels. It 1s interesting to note that
LST also performs well on Medline. The advantage of SA
network is that we only store 2K vectors Fy, G, whereas
LST typically use K = 200, about 20 times more storage.

For CACM and NPL, SAI-KM improves precision at
low recall levels (0-10%). We note that retrieval precision
at low recall are important because in practice user usually
check the few top returned documents only.

For Cranfield, SAI-KM performs slightly worse than
standard keywords matching. We note that clustering hy-
pothesis were first experimented on this collection and the
results are generally inferior to keywords matching [18, 19].
By examining the SA networks for Cranfield, the cluster
structure is not detectable, i.e, this collection does not
have clear sub-structures.

In summary, comparing to standard keywords match-
ing, SA network improved retrieval achieves substantially
better retrieval precision for Medline, improves slightly at
low recall for CACM and NPL, and performs slightly worse
for Cranfield. This represents a significant progress from
earlier work summarized in [19].

Med CACM NPL Cran
KM 0.463 0.331 0.201 0478
SAI-KM | 0.522  0.337  0.203 0.467

Table 1: Average 11-point retrieval precision.

5.2 Document Clustering

We apply SA networks clustering method on newsgroup
articles in 5 newsgroups (see Fig.5). 100 news articles
are randomly selected from each newsgroup. 1000 words
The term-

document association matrix B are solved by SVD. The

are selected based on mutual information.

results are shown in Fig.5. Here we emphasize the fact that
words aggregate into clusters in the K-dim space Fy (see
FEq.36) while documents are simultaneous clustered using
GxGE. The clustering accuracy Doptor/N,T = (L) is
the contingency table] of the clustering results is 86%. In
comparison, the standard K-means methods has a cluster-
ing accuracy of 66%, while two improved K-means meth-

ods achieves 76-80% [21].



6 Summary

We present a document clustering framework connecting
PCA, Kmeans with Hopfield networks. The min-max cut
clustering objective inforces cluster balance and leads to
scaled PCA. Networks constructed with scaled PCA com-
ponents via Hebb rule has the unique and desirable self-
aggregation property. SA networks improves document
retrieval and provides an effective multi-K clustering algo-
rithm, as shown by a number of experiments.
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Figure 5: Word aggregation in Fy space while news arti-
cles from b newsgroups are simultaneously clustered using
SA network G,GT shown in the insert. Several words in
motorcycles are brand names, and several words in baseball
are players’ names.
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