
Do
ument Retrieval and Clustering: from Prin
ipal Component Analysisto Self-aggregation NetworksChris H.Q. Ding, Lawren
e Berkeley National Laboratory, Berkeley, CA 94720. 
hqding�lbl.govAbstra
t. We �rst extend Hop�eld networks to 
luster-ing bipartite graphs (words-to-do
ument asso
iation) andshow that the solution is the prin
ipal 
omponent analy-sis. We then generalize this via the min-max 
lusteringprin
iple into a self-aggregation networks whi
h are 
om-posed of s
aled PCA 
omponents via Hebb rule. Cluster-ing amounts to an updating pro
ess where 
onne
tionsbetween di�erent 
lusters are automati
ally suppressedwhile 
onne
tions within same 
lusters are enhan
ed. Thisframework 
ombines dimension redu
tion with 
lusteringvia neural networks and PCA. Self-aggregation networks
an also improve information retrieval performan
e. Ap-pli
ations are presented.1 Introdu
tionClustering do
uments[11℄ is a 
hallenging problem be
auseof the very high dimensionality; in ve
tor spa
e model,the dimensionality is the size of vo
abulary. In re
entyears, dimension redu
tion te
hniques su
h as prin
ipal
omponent analysis (PCA) (whi
h is also 
alled Latentsemanti
 indexing (LSI)[2℄) are popularly used to proje
tthe do
uments into the low-dimensional spa
e.Feedforward networks[1℄ via ba
kpropagation has beenwidely used for 
lassi�
ation tasks su
h as text 
ategoriza-tion [20℄. Although Hop�eld asso
iative-memory networks[10℄is not suitable for 
lassi�
ation, it has the 
exibility tobe adopted for solving 
ombinatorial problems[9℄ su
h astraveling saleman problem, graph partitioning, et
.In this paper, we explore the relationship between data
lustering and dimension redu
tion via the neural net-works 
onne
tion. We show that using Hop�eld networksto 
luster the bipartite graph (word-do
ument asso
iationmatrix), PCA is the solution. This provides justi�
ationfor 
lustering using PCA (see x2).By appropriately modifying the 
lustering obje
tivefun
tion a

ording to a min-max 
lustering prin
iple, weobtain a min-max 
ut 
lustering algorithm whose equa-tions are essentially res
aling of those for PCA (see x3).

Using s
aled PCA 
omponents we 
an 
onstru
t self-aggregation networks whi
h have the unique property of
luster self-aggregation: 
onne
tions between di�erent 
lus-ters are automati
ally suppressed while 
onne
tions withinsame 
lusters are enhan
ed. An indepth analysis of self-aggregation (SA) networks are provided (see x4).We use SA networks for do
ument retrieval and ob-tained improved retrieval pre
ision. We also use SA net-works for 
lustering do
uments and words simultaneously,and obtain substantially better results than the K-meansmethod (see x5).2 Hop�eld networks for 
lusteringdo
umentsIn the re
tangular m � n term-do
ument asso
iation ma-trix B = (bij), ea
h row represents a word and is denotedby an r-node in a weighted bipartite graph shown in Fig.1.Ea
h 
olumn represents a do
ument and is denoted by a
-node. Element bij in the matrix represents the 
ounts of
o-o

urren
e of row obje
t ri and 
olumn obje
t 
j, andis represented by a weighted edge between ri and 
j .
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C1 C2Figure 1: A bipartite graph with r-nodes and 
-nodes. Thedashed line indi
ates a possible partitioning.Hop�eld networks 
an be used to partition an stan-dard undire
ted graph [9℄. In this se
tion, we extend Hop-�eld networks for partition bipartite graph, and show thatthe relaxed version of the Hop�eld networks for bipartitegraphs is pre
isely the Latent Semanti
 Indexing.1



We wish to partition the r-type nodes of R into twoparts R1; R2 and simultaneously partition the 
-type nodesof C into two parts C1; C2, based on the 
lustering prin-
iple of minimizing between-
luster asso
iation and max-imizing within-
luster asso
iation (see Fig.1). We use in-di
ator ve
tor f to determine how to split R into R1; R2:f(i) = � 1 if ri 2 R1�1 if ri 2 R2 (1)and use g to determine how to split C into C1; C2:g(i) = � 1 if 
i 2 C1�1 if 
i 2 C2 (2)(For presentation purpose, we index the nodes su
h thatnodes within same 
luster are indexed 
ontiguously. The
lustering algorithms presented are independent to thisassumption. Bold fa
e lower 
ase letters are ve
tors. Ma-tri
es are denoted by upper 
ase letters.) Thus we maywrite f = � f (+)f (�)� ; g = �g(+)g(�)� (3)With this indexing, the asso
iation matrix isB = �BR1;C1 BR1 ;C2BR2 ;C1 BR2 ;C2 � (4)It is 
onvenient to 
onvert the bipartite graph into an undi-re
ted graph. We follow standard pro
edure and 
ombinethe two types nodes to one by settingq = � fg� ; W = � 0 BBT 0 � ; (5)This indu
es an undire
ted graph G, whose adja
en
y ma-trix is the symmetri
 weight matrix W .Consider the following obje
tive fun
tion,J
ut(C1; C2;R1; R2) = 12qTWq (6)= s(BR1 ;C1) + s(BR2 ;C2)� s(BR1 ;C2)� s(BR2 ;C1)where s(BR1 ;C2) � s(R1; C2) � Xri2R1 ;
j2C2 bij;and s(BR2 ;C1); s(BR1 ;C1); s(BR2 ;C2) are similarly de�ned.s(BR1;C1) is the asso
iation within 
luster 1 (see Fig.1),and we 
all it the self-asso
iation. s(BR2 ;C2) is the self-asso
iation of 
luster 2. s(BR1 ;C2) and s(BR2 ;C1) are theoverlaps between di�erent 
lusters.We propose amin-max 
lustering prin
iple: data pointsare grouped into 
lusters su
h that the overlaps s(BR1 ;C2),

s(BR2 ;C1) between di�erent 
lusters are minimized while
luster self-similarities (BR1 ;C1); s(BR2;C2) are maximized[5℄.Maximizing s(BR1;C1)+s(BR2 ;C2) while minimizing s(BR1 ;C2)+s(BR2 ;C1) is equivalent to maximizing the obje
tive fun
-tion J
ut(q).Using Hop�eld network [10, 9℄, the solution is obtainedby the update ruleq(t+1)(i) = sgn[Xj wijq(t)(j)℄:where q(t) is the value of q at t-th update. This equa-tion 
an be written in ve
tor form q(t+1) = sgn[Wq(t)℄:One 
an verify that J
ut(q) monotoni
ally de
reases inthis update.If one relaxes q(i) from dis
rete indi
ators to 
ontinu-ous values in (�1; 1), the solution q satis�esWq = �q: (7)Now utilizing the expli
it stru
tures of W and q, we have� 0 BBT 0 �� fg� = �� fg� : (8)whi
h is identi
al toBg = �f ; BT f = �g: (9)The solutions to these two equations are the singular valuede
omposition (SVD) of B. To see 
learly, upon substitu-tions, we have(BBT )f = �2f ; (BTB)g = �2g: (10)This veri�es that ffig are left singular ve
tors and fgigare right singular ve
tors of the SVD of B:B = mXk=1 fk�kgTk = Fm�mGTm: (11)We summarize these results inTheorem 1. Using Hop�eld networks to maximize theobje
tive fun
tion J
ut(q) of Eq.(6), the solutions for 
lus-tering indi
ators are given by SVD of B.Several further results 
an be obtained. First, notethat SVD of B are pre
isely the Latent Semanti
 Indexing[2℄. Thus we 
on
lude that Hop�eld networks for 
luster-ing leads to LSI. The partitioning indi
ator ve
tors are theLSI index ve
tors.Se
ond, be
ause s(BR1 ;C1) + s(BR2 ;C2) + s(BR1 ;C2) +s(BR2 ;C1) =Pij bij � s is a 
onstant for a given asso
ia-tion matrixB, we have J
ut = s�2[s(BR1 ;C2)+s(BR2 ;C1)℄:Therefore, maximizing J
ut(q) is equivalent to minimizing2



s(BR1;C2)+s(BR2 ;C1) alone. In graph theory, s(BR1 ;C2)+s(BR2;C1) is the sum of weights on the edges being 
ut, andis 
alled 
utsize. Therefore, PCA is equivalent to MinCutin graph theory. It is well known that MinCut often leadsto skewed 
uts. This imbalan
e will be addressed in x3.Thirdly, all these are 
onne
ted to K-means 
lustering.Consider the K-means squared error obje
tive fun
tion,JKmeans = KXk=1 Xxi2
k jjxi � 
kjj2 = KXk=1 Xxi;xj2
k jjxi � xj jj2nk (12)' 1�nk KXk=1 Xxi;xj2
k jjxi � xj jj2 (13)= 1�nk 24Xij jjxi � xj jj2 �Xp 6=q Xxi2
p Xxj2
q jjxi � xjjj235(14)where xj is the j-th do
ument: B = (x1; � � � ;x2); 
k; nkare the 
entroid and size of k-th 
luster, and �nk is asuitable 
onstant represents approximately the number ofpoints in a 
luster on average. In Eq.(14), the �rst termis a 
onstant, and the se
ond term is the sum of distan
esbetween do
uments in di�erent 
lusters, whi
h is analo-gous to overlapping asso
iation between di�erent 
lusters,s(BR1;C2) + s(BR2 ;C1). Therefore, Hop�eld network (andPCA) has a ni
e 
onne
tion to the K-means 
lustering:one minimizes the between-
luster asso
iations (similari-ties) whereas the other maximizes the between-
luster dis-tan
es (di-similarities).All results in this se
tion for bipartite graphs 
an beimmediately extended to an undire
ted graph, G(A), withadja
en
y matrix A. The 
lustering obje
tive fun
tionEq.6 be
omesJ
ut(C1; C2) = s(AC1 ;C1) + s(AC2 ;C2) � 2s(AC1;C2) (15)where s(AC1 ;C2) is de�ned similar to s(BR1 ;C2). The 
lus-tering indi
ators g of Eq.2 via the Hop�eld network aregiven by the eigenve
tor of Ag = �g:3 MinMaxCutApproximately speaking, the above Hop�eld network ofmaximizing Eq.6 is equivelant tomin s(BR1;C2) + s(BR2 ;C1)s(BR1;C1) + s(BR2 ;C2) : (16)Maximization of s(BR1 ;C1) + s(BR2 ;C2) does not guar-rentee the balan
e of the two terms; in fa
t it often hap-pens that s(BR1 ;C1)� s(BR2 ;C2) or s(BR1;C1)� s(BR2 ;C2):

To prevent this imbalan
e of 
luster self-asso
iations, weadd a 
luster balan
e 
ondition in the min-max 
lusteringprin
iple that s(BR1 ;C1); s(BR2 ;C2) are maximized individ-ually while overlap asso
iations s(BR1;C2)+ s(BR2 ;C1) areminimized. This leads to the MinMaxCut obje
tiveJMMC(C1; C2;R1; R2) = s(BR1 ;C2) + s(BR2 ;C1)2s(BR1 ;C1)+s(BR1 ;C2) + s(BR2 ;C1)2s(BR2 ;C2) (17)in 
ontrast to J
ut in Eq.(6).To �nd an eÆ
ient algorithm to 
ompute the optimalsolution a

ording to JMMC(C1; C2;R1; R2) we pro
eed asfollow. First, we write the weight matrix W expli
itly,W = 0BB� 0 0 BR1;C1 BR1 ;C20 0 BR2;C1 BR2 ;C2BTR1 ;C1 BTR2;C1 0 0BTR1 ;C2 BTR2;C2 0 0 1CCA (18)Now we re-order the indi
es of the nodes,q = 0B� f (+)f (�)g(+)g(�)1CA ) q = 0B� f (+)g(+)f (�)g(�)1CA ;i.e., nodes with Cluster 1 are indexed 
ontiguously irre-spe
t wether they are r-nodes or 
-nodes. With this re-ordering, W be
omes[22℄W = 0B� 0 BR1;C1 0 BR1 ;C2BTR1 ;C1 0 BTR2;C1 00 BR2;C1 0 BR2 ;C2BTR1 ;C2 0 BTR2;C2 0 1CA (19)This 
an be viewed as an undire
ted graph, with adja
en
ymatrix W = �W11 W12W21 W22� : (20)From this, Eq.(17) 
an be written asJMMC = s(W12)s(W11) + s(W12)s(W22) : (21)Eq.(21) is the min-max 
ut obje
tive fun
tion for undi-re
ted graph [5℄. One 
an show thatminq JMMC(q)) minq qT (D �W )qqTDq ; (22)subje
t to qTWe = qTDe = 0, where D = (di) is adiagonal matrix and di = Pj wij is the degree of node iand e = (1; � � � ; 1)T . We relax q(i) from dis
rete indi
ators3



to real values in (�1; 1). The solution of q for minimizingthe Rayleigh quotient of Eq.(22) is given by (D �W )q =�Dq; whi
h 
an be written asWq = �Dq; � = 1� �: (23)For 
onvenien
e, we de�ne z = D1=2q; and write Eq.(24)as a standard eigenvalue problem:
Wz = (D�1=2WD�1=2)z = �z: (24)Finally, 
oming ba
k to the bipartite graph, we haveD = �Dr 00 D
� ; z = �uv� = �D1=2r fD1=2
 g� : (25)Substituting into Eq.(24), we have� 0 bBbBT 0 ��uv� = � �uv� ; (26)where bB = D�1=2r BD�1=2
 : (27)The solutions to Eq.(26) are SVD of bB (that SVD is thesolution to Eq.24 for bipartite graph is noted earlier[22,3℄.) We emphasize that Eq.(26) is identi
al Eq.(8), withthe 
orresponden
e relationshipB ) bB; � fg�) �uv� : (28)(see also the similaritybetween Eq.(23) and Eq.(7).) There-fore, the net e�e
t of MinMaxCut of Eq.(17) over the sim-ple MinCut obje
tive Eq.(6) or Eq.(16) is the s
aling ofthe asso
iation matrix B in Eq.(27). However, with thiss
aling, the self-aggregation property emerges.4 Self-Aggregation NetworksJust as the Hop�eld networks is the solution to Min
utobje
tive, we propose the self-aggregation networks as theK-way 
lustering solution to MinMax Cut.We introdu
e nonlinear s
aling fa
tors, diagonal ma-tri
es Dr (ea
h element is the sum of a row, see Eq.25)and D
 (ea
h element is the sum of a 
olumn). Let B =D1=2r bBD1=2
 , where bB is de�ned in Eq.(27). Applying SVDon bB, we obtainB = D1=2r ( mXk uk�kvTk )D1=2
 = Dr mXk fk�kgTkD
: (29)We 
all fk = D�1=2r uk and gk = D�1=2
 vk s
aled PCA 
om-ponents. In data 
lustering perspe
tive, they are just the

relaxed 
lustering indi
ators, see Eq.(25). (We note thatthere are a number of di�erent approa
hes for nonlinearPCA [7, 13, 15, 16℄.)In Hop�eld networks, a pattern f1 is en
oded into theobje
tive fun
tion as f1fT1 (the Hebb rule); multiple pat-terns are en
oded additively: f1fT1 + � � � + fkfTk . In ourproblem, a pattern is a 
luster partitioning indi
ator ve
-tor. Let FK = (f1; � � � ; fK); and GK = (g1; � � � ;gK); andQK = (q1; � � � ;qK) = � FKGK � : (30)We 
allQKQTK =PKk=1 qkqTk the generalized self-aggregation(SA) network. From the relation,QKQTK = � FKF TK FKGTKGKFTK GKGTK � : (31)we see that FKFTK =PKk=1 fkfTk is the SA network for rowobje
ts, GKGTK = PKk=1 gkgTk is the SA network for 
ol-umn obje
ts, and FKGTK = PKk=1 fkgTk is the SA networkfor row-
olumn asso
iations,The SA networks de�ned above share an important fea-ture: 
luster self-aggregation. Using neural networks lan-guage, we 
all (FKGTK )ij the 
onne
tion (asso
iation) be-tween nodes i; j. Self-aggregation amounts to an 
onne
-tion weight updating pro
ess where 
onne
tions betweendi�erent 
lusters are automati
ally suppressed while 
on-ne
tions within same 
lusters are enhan
ed.In the following we provide a theoreti
al analysis andprove this fundamental property for SA networks. Thedevelopment follows a perturbation analysis framework[4,14, 6℄ by de
omposing 
W in Eq.(24) as
W = 
W (0) +
W (1)where 
W (0) 
orresponds to the 
ase where no overlap (
on-ne
tion) exists between di�erent 
lusters and 
W (1) 
or-responds to the 
ase where small overlaps exist betweendi�erent 
lusters.4.1 Well separated 
lustersIn this 
ase, the 
onne
tions between two 
lusters (edges
ross the 
ut line in Fig.1) do not exist. In the asso
iationmatrix, this is re
e
ted by BRp;Cq = 0; p 6= q [see Eq.(4)℄.We haveTheorem 2. When overlaps among K 
lusters are zero,the K s
aled PCA 
omponents q1; � � � ;qK get the samemaximum eigenvalue: �k = 1; k = 1; � � �K. Ea
h qk isa multistep (pie
ewise-
onstant) fun
tion (assuming ob-je
ts within a 
luster are indexed 
onse
utively). In the4



s
aled PCA subspa
es, obje
ts within the same 
lusterself-aggregate into a single point. u{The proof is a few algebrai
 manipulations. For sim-pli
ity, we illustrate the proof by providing a 
on
reteK = 3 example. The solutions to Eq.(24) arex(1) = 1p2s11 26666664D1=2r11er100D1=2
11e
100 37777775 ; x(2) = 1p2s22 2666664 0D1=2r22er200D1=2
22e
20 3777775et
. Here Drpq = diag(Bpqerq); (p; q = 1; � � � ;K), erq = ewith the size of p-th row blo
k;D
pq = diag(Bpqe
q), e
q =e with the size of p-th 
olumn blo
k; and spq = s(BRp ;Cq).Note that spq 6= sqp. LetXK = (x(1); � � � ;x(K)): (32)For any K-dim ve
tor y = (y(1); � � � ; y(K))T ,� fg� = q = D�1=2XKy = 2666666664 y(1) er1=(2s11)1=2...y(K) erK=(2sKK)1=2y(1) e
1=(2s11)1=2...y(K) e
K=(2sKK)1=2 3777777775 (33)is an eigenve
tor of Eq.(23). Now any K orthonormalfy1; � � � ;yKg leads to K eigenve
tors fq1; � � � ;qKg � QK.
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ueFigure 2: Left-top: adja
en
y matrix of a bipartite graphof 2 dense 
lusters (diagonal blo
ks) with random overlaps(o�-diagonal blo
ks). Left-bottom: FKGTK . The overlapsare redu
ed signi�
ately due to self-aggregation. Right:
omputed q2 (
y
les) and the approximation from Theo-rem 3 (solid line), in original index order (top panel) andin sorted index order (bottom panel).In the spa
e spanned by FK the 
oordinate of data ob-je
t i is ri = (f1(i); � � � ; fK(i))T ; From Eq.33, data obje
ts

within a 
luster self-aggregate to (are lo
ated at) the samepoint. Furthermore, FKFTK gives the 
lusters for row ob-je
ts, the word 
lusters (see Fig.3):FKFTK = 24 er1eTr1=2s11 0 00 er2eTr2=2s22 00 0 er3eTr3=2s3335 :(34)In the spa
e spanned by GK the 
oordinate of data ob-je
t i is ri = (g1(i); � � � ;gK(i))T ; on
e again, data obje
tswithin a 
luster are self-aggregate to the same point. Fur-thermore, GKGTK gives the 
lusters for 
olumn obje
ts, i.e,the do
ument 
lusters (see Fig.3):GKGTK = 24e
1eT
1=2s11 0 00 e
2eT
2=2s22 00 0 e
3eT
3=2s3335(35)In both SA networks FKFTK ; GKGTK , the overlap 
onne
-tions are identi
ally zero as expe
ted. However, 
onne
-tions within same 
lusters are enhan
ed signi�
antly: ev-ery pair of two obje
ts i; j within a 
luster a
quires thesame 
onne
tion strength even if obje
ts i; j may not be
onne
ted in the original asso
iation matrix B.SA network FKGTK gives the asso
iation between rowobje
ts and 
olumn obje
ts. The self-aggregation gives thesharpened row-
olumn asso
iations (see Figs.2).FKGTK = 24 er1eT
1=2s11 0 00 er2eT
2=2s22 00 0 er3eT
3=2s3335(36)This is useful for do
ument retrieval (see x5.1).4.2 Overlapping ClustersIn 
lustering, the useful 
ase is that 
lusters overlap. Herewe assume that the overlaps are small and provide a per-turbation analysis. We have the following results:Theorem 3. At the �rst order, the solutions to Eq.(24)are the following: the highest K eigenve
tors have theform q = D�1=2XKy;where XK is given in Eq.(32) and y and the eigenvalue �(� = 1� �) satisfy the eigensystem�y = �y: (37)� has the form � = 
�1=2 �� 
�1=2; where�� = 2664 h11 �s12 � s21 � � � �s1K � sK1�s21 � s12 h22 � � � �s2K � sK2... ... � � � ...�sK1 � s1K �sK2 � s2K � � � hKK 3775(38)5



where hkk =Pp6=k(skp + spk)and 
 = diag(2s11; 2s22; � � � ; 2sKK): u{The proof is bit involved and will be omitted here.This theorem 
aptures several important features of SAnetworks, whi
h are embedded in the solution to Eq.(37).Note that the K �K matrix � is symmetri
 semi-positivede�nite. Here we list two 
orollaries:Corollary 2.1. For K = 2, the se
ond lowest eigenvalueof � is �2 = (s12 + s21)=2s11 + (s12 + s21)=2s22;whi
h is pre
isely the min-max 
ut 
lustering obje
tiveJMMC in Eq.(17). Therefore, the smaller �2, the betterquality of the resulting 
lusters. The 
orresponding eigen-ve
tor isq2 = D�1=2X2y2 =r s222s11 264 er10e
10 375�r s112s22 264 0er20e
2 375 :Thus we automati
ally re
over the partitioning indi
ators.All these indi
ate SA networks is a highly 
onsistent andprin
ipled framework for 
lustering. The lowest eigenve
-tor is q1 = (1; � � � ; 1). Q2 = (q1;q2) 
onstru
ted fromthese two eigenve
tors have the forms given in Eqs.(4,4,4).Corollary 2.2. The K eigenve
tors YK = (y1; � � � ;yK) of� satisfy Y TK YK = IK. The square orthonormalmatrix YK isfull rank under general 
onditions, thus YKY TK = IK. UsingQK = D�1=2XKYK. and 
onstru
ting the SA networks,FKFTK , GKGTK and FKGTK , they will have the same blo
kdiagonal stru
tures of Eqs.(4,4,4).Corollary 2.2 provides the theoreti
al basis for usingFKFTK and GKGTK for 
lustering, and FKGTK for improvingretrieval.Example. We apply the above analysis to a bipartitegraph example with asso
iation matrix shown in Fig.2.The bipartite graph has two dense 
lusters with large over-laps between them. The indi
ator ve
tor q2 
omputeddire
tly from Eq.(24) together with that from Theorem3 are also shown in Fig.2. They agree reasonably. Theeigenvalue values from Eq.(24) and Theorem 3 also agreereasonably well: �2 = 0:456; ~�2 = 0:477: FKGTK givesa sharpened asso
iation matrix (Fig.2) where the overlapbetween the two 
lusters are greatly redu
ed. FKF TK andGKGTK 
omputed from Eq.(24) are shown in Fig.3. Theyare 
lose to the analysis results (Corollary 2.2). FKFTKgives 
lusters for row obje
ts (words) andGKGTK gives 
lus-ters for 
olumn obje
ts (do
uments).In self-aggregation, data obje
ts move towards ea
hother guided by 
onne
tivity, as 
onne
tion weights be-tween di�erent 
lusters are suppressed and 
onne
tions

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

nz = 2030

FFT

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 7470

GGT

Figure 3: Left: FKFTK for 
lustering row obje
ts. Right:GKGTK for 
lustering 
olumn obje
ts.within same 
lusters are enhan
ed. This is similar tothe self-organizing map [12℄, where feature ve
tors self-organize into a 2D feature map while data obje
ts remain�xed. In Hop�eld network, features are stored (en
oded)as asso
iative memories, whereas in SA networks, 
onne
-tion weights are dynami
ally adjusted to learn the patternsin an unsupervised way.5 Appli
ations of SA networks5.1 Do
ument RetrievalWe �rst apply SA networks to do
ument retrieval. That
lustering 
an help retrieval is suggested by the ClusteringHypothesis [17℄: if a do
ument xi is highly relevant to aquery q, then do
uments very similar to xi (de�ned by
osine similarity) are likely to be relevant to the query aswell. In many previous work, do
uments are �rst 
lusteredand query is then mat
hed to the 
luster 
entroids[19℄.However, the experimental results so far indi
ates 
luster-ing had not helped the retrieval pre
ision [19, 8℄. (A re-
ent di�erent usage is to 
luster the retrieved do
umentsto group them into di�erent topi
s[8℄.)SA networks presents a new approa
h to use 
luster-ing for retrieval. Here the 
luster stru
ture is embeddedin FKGTK whi
h is very similar to the original word-to-do
ument matrix. We trun
ate the expansion in Eq.(29)at K and set �k = 1,B ' Dr KXk=1 fkgTkD
 = DrFKGTKD
 = (~x1; � � � ;~xn); (39)the jth 
olumn ~xj is the representation of SA network fordo
ument j. The relevan
e rj of do
ument ~xj for queryq through the 
luster stru
ture is simply rj = 
os(q;~xj):If the 
lusters are well separated, all do
uments within a6




luster will have same relevan
e to a query (see Eq.(36)and Fig.2 left-bottom panel), and thus all do
uments ofthe most relevant 
luster will be retrieved, even thoughtheir original ve
tor-spa
e representations (fxjg, 
olumnsinB) 
ould di�er 
onsiderably. The self-aggregationmakesthis possible. In pra
ti
e, overlaps exist; do
uments mostsimilar to ea
h other will have similar ~xj and will get verysimilar relevan
e s
ore using the 
osine similarity metri
.Therefore, Eq.(39) is a 
onvenient and natural way to in-
orporate 
lustering information into retrieval.We de�ne the total relevan
e as the 
ombination of thekeywords mat
hing (KM) and SA network mat
hing:rj = 
os(q;xj) + � 
os(q;~xj) (40)We 
all this self-aggregation improved keywords mat
hing(SAI-KM). In all experiments below, � = 0:5We apply this retrieval method to 4 standard IR testdatatsets: Medline (1033 do
s, 30 queries), Cran�eld (1400do
s, 225 queries), CACM (3204 do
s, 64 queries) andNPL (11429 do
s, 93 queries) 
olle
tions.
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Figure 4: Pre
ision-re
all 
urves for Medline, CACM, NPLand Cran�eld 
olle
tions. 4 for keywords mat
hing, u{ forSA-improved keywords mat
hing.Pre
ision-re
all 
urves for Medline, CACM, NPL and

Cran�eld 
olle
tions are shown in Fig.4. The average pre-
isions are summarized in Table 1. Here we use tf.idfterm weighting. K=10 for Medline, K=20 for all others.On Medline, SAI-KM 
learly improves the retrieval pre-
isions at all re
all levels. It is interesting to note thatLSI also performs well on Medline. The advantage of SAnetwork is that we only store 2K ve
tors FK; GK, whereasLSI typi
ally use K = 200, about 20 times more storage.For CACM and NPL, SAI-KM improves pre
ision atlow re
all levels (0-10%). We note that retrieval pre
isionat low re
all are important be
ause in pra
ti
e user usually
he
k the few top returned do
uments only.For Cran�eld, SAI-KM performs slightly worse thanstandard keywords mat
hing. We note that 
lustering hy-pothesis were �rst experimented on this 
olle
tion and theresults are generally inferior to keywords mat
hing [18, 19℄.By examining the SA networks for Cran�eld, the 
lusterstru
ture is not dete
table, i.e, this 
olle
tion does nothave 
lear sub-stru
tures.In summary, 
omparing to standard keywords mat
h-ing, SA network improved retrieval a
hieves substantiallybetter retrieval pre
ision for Medline, improves slightly atlow re
all for CACM and NPL, and performs slightly worsefor Cran�eld. This represents a signi�
ant progress fromearlier work summarized in [19℄.Med CACM NPL CranKM 0.463 0.331 0.201 0.478SAI-KM 0.522 0.337 0.203 0.467Table 1: Average 11-point retrieval pre
ision.5.2 Do
ument ClusteringWe apply SA networks 
lustering method on newsgrouparti
les in 5 newsgroups (see Fig.5). 100 news arti
lesare randomly sele
ted from ea
h newsgroup. 1000 wordsare sele
ted based on mutual information. The term-do
ument asso
iation matrix B are solved by SVD. Theresults are shown in Fig.5. Here we emphasize the fa
t thatwords aggregate into 
lusters in the K-dim spa
e FK (seeEq.36) while do
uments are simultaneous 
lustered usingGKGTK . The 
lustering a

ura
y [Pk tkk=N; T = (tij) isthe 
ontingen
y table℄ of the 
lustering results is 86%. In
omparison, the standard K-means methods has a 
luster-ing a

ura
y of 66%, while two improved K-means meth-ods a
hieves 76-80% [21℄.7



6 SummaryWe present a do
ument 
lustering framework 
onne
tingPCA, Kmeans with Hop�eld networks. The min-max 
ut
lustering obje
tive infor
es 
luster balan
e and leads tos
aled PCA. Networks 
onstru
ted with s
aled PCA 
om-ponents via Hebb rule has the unique and desirable self-aggregation property. SA networks improves do
umentretrieval and provides an e�e
tive multi-K 
lustering algo-rithm, as shown by a number of experiments.A
knowledgements. This work is supported by Depart-ment of Energy (OÆ
e of S
ien
e) under 
ontra
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