
Doument Retrieval and Clustering: from Prinipal Component Analysisto Self-aggregation NetworksChris H.Q. Ding, Lawrene Berkeley National Laboratory, Berkeley, CA 94720. hqding�lbl.govAbstrat. We �rst extend Hop�eld networks to luster-ing bipartite graphs (words-to-doument assoiation) andshow that the solution is the prinipal omponent analy-sis. We then generalize this via the min-max lusteringpriniple into a self-aggregation networks whih are om-posed of saled PCA omponents via Hebb rule. Cluster-ing amounts to an updating proess where onnetionsbetween di�erent lusters are automatially suppressedwhile onnetions within same lusters are enhaned. Thisframework ombines dimension redution with lusteringvia neural networks and PCA. Self-aggregation networksan also improve information retrieval performane. Ap-pliations are presented.1 IntrodutionClustering douments[11℄ is a hallenging problem beauseof the very high dimensionality; in vetor spae model,the dimensionality is the size of voabulary. In reentyears, dimension redution tehniques suh as prinipalomponent analysis (PCA) (whih is also alled Latentsemanti indexing (LSI)[2℄) are popularly used to projetthe douments into the low-dimensional spae.Feedforward networks[1℄ via bakpropagation has beenwidely used for lassi�ation tasks suh as text ategoriza-tion [20℄. Although Hop�eld assoiative-memory networks[10℄is not suitable for lassi�ation, it has the exibility tobe adopted for solving ombinatorial problems[9℄ suh astraveling saleman problem, graph partitioning, et.In this paper, we explore the relationship between datalustering and dimension redution via the neural net-works onnetion. We show that using Hop�eld networksto luster the bipartite graph (word-doument assoiationmatrix), PCA is the solution. This provides justi�ationfor lustering using PCA (see x2).By appropriately modifying the lustering objetivefuntion aording to a min-max lustering priniple, weobtain a min-max ut lustering algorithm whose equa-tions are essentially resaling of those for PCA (see x3).

Using saled PCA omponents we an onstrut self-aggregation networks whih have the unique property ofluster self-aggregation: onnetions between di�erent lus-ters are automatially suppressed while onnetions withinsame lusters are enhaned. An indepth analysis of self-aggregation (SA) networks are provided (see x4).We use SA networks for doument retrieval and ob-tained improved retrieval preision. We also use SA net-works for lustering douments and words simultaneously,and obtain substantially better results than the K-meansmethod (see x5).2 Hop�eld networks for lusteringdoumentsIn the retangular m � n term-doument assoiation ma-trix B = (bij), eah row represents a word and is denotedby an r-node in a weighted bipartite graph shown in Fig.1.Eah olumn represents a doument and is denoted by a-node. Element bij in the matrix represents the ounts ofo-ourrene of row objet ri and olumn objet j, andis represented by a weighted edge between ri and j .
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C1 C2Figure 1: A bipartite graph with r-nodes and -nodes. Thedashed line indiates a possible partitioning.Hop�eld networks an be used to partition an stan-dard undireted graph [9℄. In this setion, we extend Hop-�eld networks for partition bipartite graph, and show thatthe relaxed version of the Hop�eld networks for bipartitegraphs is preisely the Latent Semanti Indexing.1



We wish to partition the r-type nodes of R into twoparts R1; R2 and simultaneously partition the -type nodesof C into two parts C1; C2, based on the lustering prin-iple of minimizing between-luster assoiation and max-imizing within-luster assoiation (see Fig.1). We use in-diator vetor f to determine how to split R into R1; R2:f(i) = � 1 if ri 2 R1�1 if ri 2 R2 (1)and use g to determine how to split C into C1; C2:g(i) = � 1 if i 2 C1�1 if i 2 C2 (2)(For presentation purpose, we index the nodes suh thatnodes within same luster are indexed ontiguously. Thelustering algorithms presented are independent to thisassumption. Bold fae lower ase letters are vetors. Ma-tries are denoted by upper ase letters.) Thus we maywrite f = � f (+)f (�)� ; g = �g(+)g(�)� (3)With this indexing, the assoiation matrix isB = �BR1;C1 BR1 ;C2BR2 ;C1 BR2 ;C2 � (4)It is onvenient to onvert the bipartite graph into an undi-reted graph. We follow standard proedure and ombinethe two types nodes to one by settingq = � fg� ; W = � 0 BBT 0 � ; (5)This indues an undireted graph G, whose adjaeny ma-trix is the symmetri weight matrix W .Consider the following objetive funtion,Jut(C1; C2;R1; R2) = 12qTWq (6)= s(BR1 ;C1) + s(BR2 ;C2)� s(BR1 ;C2)� s(BR2 ;C1)where s(BR1 ;C2) � s(R1; C2) � Xri2R1 ;j2C2 bij;and s(BR2 ;C1); s(BR1 ;C1); s(BR2 ;C2) are similarly de�ned.s(BR1;C1) is the assoiation within luster 1 (see Fig.1),and we all it the self-assoiation. s(BR2 ;C2) is the self-assoiation of luster 2. s(BR1 ;C2) and s(BR2 ;C1) are theoverlaps between di�erent lusters.We propose amin-max lustering priniple: data pointsare grouped into lusters suh that the overlaps s(BR1 ;C2),

s(BR2 ;C1) between di�erent lusters are minimized whileluster self-similarities (BR1 ;C1); s(BR2;C2) are maximized[5℄.Maximizing s(BR1;C1)+s(BR2 ;C2) while minimizing s(BR1 ;C2)+s(BR2 ;C1) is equivalent to maximizing the objetive fun-tion Jut(q).Using Hop�eld network [10, 9℄, the solution is obtainedby the update ruleq(t+1)(i) = sgn[Xj wijq(t)(j)℄:where q(t) is the value of q at t-th update. This equa-tion an be written in vetor form q(t+1) = sgn[Wq(t)℄:One an verify that Jut(q) monotonially dereases inthis update.If one relaxes q(i) from disrete indiators to ontinu-ous values in (�1; 1), the solution q satis�esWq = �q: (7)Now utilizing the expliit strutures of W and q, we have� 0 BBT 0 �� fg� = �� fg� : (8)whih is idential toBg = �f ; BT f = �g: (9)The solutions to these two equations are the singular valuedeomposition (SVD) of B. To see learly, upon substitu-tions, we have(BBT )f = �2f ; (BTB)g = �2g: (10)This veri�es that ffig are left singular vetors and fgigare right singular vetors of the SVD of B:B = mXk=1 fk�kgTk = Fm�mGTm: (11)We summarize these results inTheorem 1. Using Hop�eld networks to maximize theobjetive funtion Jut(q) of Eq.(6), the solutions for lus-tering indiators are given by SVD of B.Several further results an be obtained. First, notethat SVD of B are preisely the Latent Semanti Indexing[2℄. Thus we onlude that Hop�eld networks for luster-ing leads to LSI. The partitioning indiator vetors are theLSI index vetors.Seond, beause s(BR1 ;C1) + s(BR2 ;C2) + s(BR1 ;C2) +s(BR2 ;C1) =Pij bij � s is a onstant for a given assoia-tion matrixB, we have Jut = s�2[s(BR1 ;C2)+s(BR2 ;C1)℄:Therefore, maximizing Jut(q) is equivalent to minimizing2



s(BR1;C2)+s(BR2 ;C1) alone. In graph theory, s(BR1 ;C2)+s(BR2;C1) is the sum of weights on the edges being ut, andis alled utsize. Therefore, PCA is equivalent to MinCutin graph theory. It is well known that MinCut often leadsto skewed uts. This imbalane will be addressed in x3.Thirdly, all these are onneted to K-means lustering.Consider the K-means squared error objetive funtion,JKmeans = KXk=1 Xxi2k jjxi � kjj2 = KXk=1 Xxi;xj2k jjxi � xj jj2nk (12)' 1�nk KXk=1 Xxi;xj2k jjxi � xj jj2 (13)= 1�nk 24Xij jjxi � xj jj2 �Xp 6=q Xxi2p Xxj2q jjxi � xjjj235(14)where xj is the j-th doument: B = (x1; � � � ;x2); k; nkare the entroid and size of k-th luster, and �nk is asuitable onstant represents approximately the number ofpoints in a luster on average. In Eq.(14), the �rst termis a onstant, and the seond term is the sum of distanesbetween douments in di�erent lusters, whih is analo-gous to overlapping assoiation between di�erent lusters,s(BR1;C2) + s(BR2 ;C1). Therefore, Hop�eld network (andPCA) has a nie onnetion to the K-means lustering:one minimizes the between-luster assoiations (similari-ties) whereas the other maximizes the between-luster dis-tanes (di-similarities).All results in this setion for bipartite graphs an beimmediately extended to an undireted graph, G(A), withadjaeny matrix A. The lustering objetive funtionEq.6 beomesJut(C1; C2) = s(AC1 ;C1) + s(AC2 ;C2) � 2s(AC1;C2) (15)where s(AC1 ;C2) is de�ned similar to s(BR1 ;C2). The lus-tering indiators g of Eq.2 via the Hop�eld network aregiven by the eigenvetor of Ag = �g:3 MinMaxCutApproximately speaking, the above Hop�eld network ofmaximizing Eq.6 is equivelant tomin s(BR1;C2) + s(BR2 ;C1)s(BR1;C1) + s(BR2 ;C2) : (16)Maximization of s(BR1 ;C1) + s(BR2 ;C2) does not guar-rentee the balane of the two terms; in fat it often hap-pens that s(BR1 ;C1)� s(BR2 ;C2) or s(BR1;C1)� s(BR2 ;C2):

To prevent this imbalane of luster self-assoiations, weadd a luster balane ondition in the min-max lusteringpriniple that s(BR1 ;C1); s(BR2 ;C2) are maximized individ-ually while overlap assoiations s(BR1;C2)+ s(BR2 ;C1) areminimized. This leads to the MinMaxCut objetiveJMMC(C1; C2;R1; R2) = s(BR1 ;C2) + s(BR2 ;C1)2s(BR1 ;C1)+s(BR1 ;C2) + s(BR2 ;C1)2s(BR2 ;C2) (17)in ontrast to Jut in Eq.(6).To �nd an eÆient algorithm to ompute the optimalsolution aording to JMMC(C1; C2;R1; R2) we proeed asfollow. First, we write the weight matrix W expliitly,W = 0BB� 0 0 BR1;C1 BR1 ;C20 0 BR2;C1 BR2 ;C2BTR1 ;C1 BTR2;C1 0 0BTR1 ;C2 BTR2;C2 0 0 1CCA (18)Now we re-order the indies of the nodes,q = 0B� f (+)f (�)g(+)g(�)1CA ) q = 0B� f (+)g(+)f (�)g(�)1CA ;i.e., nodes with Cluster 1 are indexed ontiguously irre-spet wether they are r-nodes or -nodes. With this re-ordering, W beomes[22℄W = 0B� 0 BR1;C1 0 BR1 ;C2BTR1 ;C1 0 BTR2;C1 00 BR2;C1 0 BR2 ;C2BTR1 ;C2 0 BTR2;C2 0 1CA (19)This an be viewed as an undireted graph, with adjaenymatrix W = �W11 W12W21 W22� : (20)From this, Eq.(17) an be written asJMMC = s(W12)s(W11) + s(W12)s(W22) : (21)Eq.(21) is the min-max ut objetive funtion for undi-reted graph [5℄. One an show thatminq JMMC(q)) minq qT (D �W )qqTDq ; (22)subjet to qTWe = qTDe = 0, where D = (di) is adiagonal matrix and di = Pj wij is the degree of node iand e = (1; � � � ; 1)T . We relax q(i) from disrete indiators3



to real values in (�1; 1). The solution of q for minimizingthe Rayleigh quotient of Eq.(22) is given by (D �W )q =�Dq; whih an be written asWq = �Dq; � = 1� �: (23)For onveniene, we de�ne z = D1=2q; and write Eq.(24)as a standard eigenvalue problem:Wz = (D�1=2WD�1=2)z = �z: (24)Finally, oming bak to the bipartite graph, we haveD = �Dr 00 D� ; z = �uv� = �D1=2r fD1=2 g� : (25)Substituting into Eq.(24), we have� 0 bBbBT 0 ��uv� = � �uv� ; (26)where bB = D�1=2r BD�1=2 : (27)The solutions to Eq.(26) are SVD of bB (that SVD is thesolution to Eq.24 for bipartite graph is noted earlier[22,3℄.) We emphasize that Eq.(26) is idential Eq.(8), withthe orrespondene relationshipB ) bB; � fg�) �uv� : (28)(see also the similaritybetween Eq.(23) and Eq.(7).) There-fore, the net e�et of MinMaxCut of Eq.(17) over the sim-ple MinCut objetive Eq.(6) or Eq.(16) is the saling ofthe assoiation matrix B in Eq.(27). However, with thissaling, the self-aggregation property emerges.4 Self-Aggregation NetworksJust as the Hop�eld networks is the solution to Minutobjetive, we propose the self-aggregation networks as theK-way lustering solution to MinMax Cut.We introdue nonlinear saling fators, diagonal ma-tries Dr (eah element is the sum of a row, see Eq.25)and D (eah element is the sum of a olumn). Let B =D1=2r bBD1=2 , where bB is de�ned in Eq.(27). Applying SVDon bB, we obtainB = D1=2r ( mXk uk�kvTk )D1=2 = Dr mXk fk�kgTkD: (29)We all fk = D�1=2r uk and gk = D�1=2 vk saled PCA om-ponents. In data lustering perspetive, they are just the

relaxed lustering indiators, see Eq.(25). (We note thatthere are a number of di�erent approahes for nonlinearPCA [7, 13, 15, 16℄.)In Hop�eld networks, a pattern f1 is enoded into theobjetive funtion as f1fT1 (the Hebb rule); multiple pat-terns are enoded additively: f1fT1 + � � � + fkfTk . In ourproblem, a pattern is a luster partitioning indiator ve-tor. Let FK = (f1; � � � ; fK); and GK = (g1; � � � ;gK); andQK = (q1; � � � ;qK) = � FKGK � : (30)We allQKQTK =PKk=1 qkqTk the generalized self-aggregation(SA) network. From the relation,QKQTK = � FKF TK FKGTKGKFTK GKGTK � : (31)we see that FKFTK =PKk=1 fkfTk is the SA network for rowobjets, GKGTK = PKk=1 gkgTk is the SA network for ol-umn objets, and FKGTK = PKk=1 fkgTk is the SA networkfor row-olumn assoiations,The SA networks de�ned above share an important fea-ture: luster self-aggregation. Using neural networks lan-guage, we all (FKGTK )ij the onnetion (assoiation) be-tween nodes i; j. Self-aggregation amounts to an onne-tion weight updating proess where onnetions betweendi�erent lusters are automatially suppressed while on-netions within same lusters are enhaned.In the following we provide a theoretial analysis andprove this fundamental property for SA networks. Thedevelopment follows a perturbation analysis framework[4,14, 6℄ by deomposing W in Eq.(24) asW = W (0) +W (1)where W (0) orresponds to the ase where no overlap (on-netion) exists between di�erent lusters and W (1) or-responds to the ase where small overlaps exist betweendi�erent lusters.4.1 Well separated lustersIn this ase, the onnetions between two lusters (edgesross the ut line in Fig.1) do not exist. In the assoiationmatrix, this is reeted by BRp;Cq = 0; p 6= q [see Eq.(4)℄.We haveTheorem 2. When overlaps among K lusters are zero,the K saled PCA omponents q1; � � � ;qK get the samemaximum eigenvalue: �k = 1; k = 1; � � �K. Eah qk isa multistep (pieewise-onstant) funtion (assuming ob-jets within a luster are indexed onseutively). In the4



saled PCA subspaes, objets within the same lusterself-aggregate into a single point. u{The proof is a few algebrai manipulations. For sim-pliity, we illustrate the proof by providing a onreteK = 3 example. The solutions to Eq.(24) arex(1) = 1p2s11 26666664D1=2r11er100D1=211e100 37777775 ; x(2) = 1p2s22 2666664 0D1=2r22er200D1=222e20 3777775et. Here Drpq = diag(Bpqerq); (p; q = 1; � � � ;K), erq = ewith the size of p-th row blok;Dpq = diag(Bpqeq), eq =e with the size of p-th olumn blok; and spq = s(BRp ;Cq).Note that spq 6= sqp. LetXK = (x(1); � � � ;x(K)): (32)For any K-dim vetor y = (y(1); � � � ; y(K))T ,� fg� = q = D�1=2XKy = 2666666664 y(1) er1=(2s11)1=2...y(K) erK=(2sKK)1=2y(1) e1=(2s11)1=2...y(K) eK=(2sKK)1=2 3777777775 (33)is an eigenvetor of Eq.(23). Now any K orthonormalfy1; � � � ;yKg leads to K eigenvetors fq1; � � � ;qKg � QK.
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ueFigure 2: Left-top: adjaeny matrix of a bipartite graphof 2 dense lusters (diagonal bloks) with random overlaps(o�-diagonal bloks). Left-bottom: FKGTK . The overlapsare redued signi�ately due to self-aggregation. Right:omputed q2 (yles) and the approximation from Theo-rem 3 (solid line), in original index order (top panel) andin sorted index order (bottom panel).In the spae spanned by FK the oordinate of data ob-jet i is ri = (f1(i); � � � ; fK(i))T ; From Eq.33, data objets

within a luster self-aggregate to (are loated at) the samepoint. Furthermore, FKFTK gives the lusters for row ob-jets, the word lusters (see Fig.3):FKFTK = 24 er1eTr1=2s11 0 00 er2eTr2=2s22 00 0 er3eTr3=2s3335 :(34)In the spae spanned by GK the oordinate of data ob-jet i is ri = (g1(i); � � � ;gK(i))T ; one again, data objetswithin a luster are self-aggregate to the same point. Fur-thermore, GKGTK gives the lusters for olumn objets, i.e,the doument lusters (see Fig.3):GKGTK = 24e1eT1=2s11 0 00 e2eT2=2s22 00 0 e3eT3=2s3335(35)In both SA networks FKFTK ; GKGTK , the overlap onne-tions are identially zero as expeted. However, onne-tions within same lusters are enhaned signi�antly: ev-ery pair of two objets i; j within a luster aquires thesame onnetion strength even if objets i; j may not beonneted in the original assoiation matrix B.SA network FKGTK gives the assoiation between rowobjets and olumn objets. The self-aggregation gives thesharpened row-olumn assoiations (see Figs.2).FKGTK = 24 er1eT1=2s11 0 00 er2eT2=2s22 00 0 er3eT3=2s3335(36)This is useful for doument retrieval (see x5.1).4.2 Overlapping ClustersIn lustering, the useful ase is that lusters overlap. Herewe assume that the overlaps are small and provide a per-turbation analysis. We have the following results:Theorem 3. At the �rst order, the solutions to Eq.(24)are the following: the highest K eigenvetors have theform q = D�1=2XKy;where XK is given in Eq.(32) and y and the eigenvalue �(� = 1� �) satisfy the eigensystem�y = �y: (37)� has the form � = 
�1=2 �� 
�1=2; where�� = 2664 h11 �s12 � s21 � � � �s1K � sK1�s21 � s12 h22 � � � �s2K � sK2... ... � � � ...�sK1 � s1K �sK2 � s2K � � � hKK 3775(38)5



where hkk =Pp6=k(skp + spk)and 
 = diag(2s11; 2s22; � � � ; 2sKK): u{The proof is bit involved and will be omitted here.This theorem aptures several important features of SAnetworks, whih are embedded in the solution to Eq.(37).Note that the K �K matrix � is symmetri semi-positivede�nite. Here we list two orollaries:Corollary 2.1. For K = 2, the seond lowest eigenvalueof � is �2 = (s12 + s21)=2s11 + (s12 + s21)=2s22;whih is preisely the min-max ut lustering objetiveJMMC in Eq.(17). Therefore, the smaller �2, the betterquality of the resulting lusters. The orresponding eigen-vetor isq2 = D�1=2X2y2 =r s222s11 264 er10e10 375�r s112s22 264 0er20e2 375 :Thus we automatially reover the partitioning indiators.All these indiate SA networks is a highly onsistent andprinipled framework for lustering. The lowest eigenve-tor is q1 = (1; � � � ; 1). Q2 = (q1;q2) onstruted fromthese two eigenvetors have the forms given in Eqs.(4,4,4).Corollary 2.2. The K eigenvetors YK = (y1; � � � ;yK) of� satisfy Y TK YK = IK. The square orthonormalmatrix YK isfull rank under general onditions, thus YKY TK = IK. UsingQK = D�1=2XKYK. and onstruting the SA networks,FKFTK , GKGTK and FKGTK , they will have the same blokdiagonal strutures of Eqs.(4,4,4).Corollary 2.2 provides the theoretial basis for usingFKFTK and GKGTK for lustering, and FKGTK for improvingretrieval.Example. We apply the above analysis to a bipartitegraph example with assoiation matrix shown in Fig.2.The bipartite graph has two dense lusters with large over-laps between them. The indiator vetor q2 omputeddiretly from Eq.(24) together with that from Theorem3 are also shown in Fig.2. They agree reasonably. Theeigenvalue values from Eq.(24) and Theorem 3 also agreereasonably well: �2 = 0:456; ~�2 = 0:477: FKGTK givesa sharpened assoiation matrix (Fig.2) where the overlapbetween the two lusters are greatly redued. FKF TK andGKGTK omputed from Eq.(24) are shown in Fig.3. Theyare lose to the analysis results (Corollary 2.2). FKFTKgives lusters for row objets (words) andGKGTK gives lus-ters for olumn objets (douments).In self-aggregation, data objets move towards eahother guided by onnetivity, as onnetion weights be-tween di�erent lusters are suppressed and onnetions
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Figure 3: Left: FKFTK for lustering row objets. Right:GKGTK for lustering olumn objets.within same lusters are enhaned. This is similar tothe self-organizing map [12℄, where feature vetors self-organize into a 2D feature map while data objets remain�xed. In Hop�eld network, features are stored (enoded)as assoiative memories, whereas in SA networks, onne-tion weights are dynamially adjusted to learn the patternsin an unsupervised way.5 Appliations of SA networks5.1 Doument RetrievalWe �rst apply SA networks to doument retrieval. Thatlustering an help retrieval is suggested by the ClusteringHypothesis [17℄: if a doument xi is highly relevant to aquery q, then douments very similar to xi (de�ned byosine similarity) are likely to be relevant to the query aswell. In many previous work, douments are �rst lusteredand query is then mathed to the luster entroids[19℄.However, the experimental results so far indiates luster-ing had not helped the retrieval preision [19, 8℄. (A re-ent di�erent usage is to luster the retrieved doumentsto group them into di�erent topis[8℄.)SA networks presents a new approah to use luster-ing for retrieval. Here the luster struture is embeddedin FKGTK whih is very similar to the original word-to-doument matrix. We trunate the expansion in Eq.(29)at K and set �k = 1,B ' Dr KXk=1 fkgTkD = DrFKGTKD = (~x1; � � � ;~xn); (39)the jth olumn ~xj is the representation of SA network fordoument j. The relevane rj of doument ~xj for queryq through the luster struture is simply rj = os(q;~xj):If the lusters are well separated, all douments within a6



luster will have same relevane to a query (see Eq.(36)and Fig.2 left-bottom panel), and thus all douments ofthe most relevant luster will be retrieved, even thoughtheir original vetor-spae representations (fxjg, olumnsinB) ould di�er onsiderably. The self-aggregationmakesthis possible. In pratie, overlaps exist; douments mostsimilar to eah other will have similar ~xj and will get verysimilar relevane sore using the osine similarity metri.Therefore, Eq.(39) is a onvenient and natural way to in-orporate lustering information into retrieval.We de�ne the total relevane as the ombination of thekeywords mathing (KM) and SA network mathing:rj = os(q;xj) + � os(q;~xj) (40)We all this self-aggregation improved keywords mathing(SAI-KM). In all experiments below, � = 0:5We apply this retrieval method to 4 standard IR testdatatsets: Medline (1033 dos, 30 queries), Cran�eld (1400dos, 225 queries), CACM (3204 dos, 64 queries) andNPL (11429 dos, 93 queries) olletions.
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Figure 4: Preision-reall urves for Medline, CACM, NPLand Cran�eld olletions. 4 for keywords mathing, u{ forSA-improved keywords mathing.Preision-reall urves for Medline, CACM, NPL and

Cran�eld olletions are shown in Fig.4. The average pre-isions are summarized in Table 1. Here we use tf.idfterm weighting. K=10 for Medline, K=20 for all others.On Medline, SAI-KM learly improves the retrieval pre-isions at all reall levels. It is interesting to note thatLSI also performs well on Medline. The advantage of SAnetwork is that we only store 2K vetors FK; GK, whereasLSI typially use K = 200, about 20 times more storage.For CACM and NPL, SAI-KM improves preision atlow reall levels (0-10%). We note that retrieval preisionat low reall are important beause in pratie user usuallyhek the few top returned douments only.For Cran�eld, SAI-KM performs slightly worse thanstandard keywords mathing. We note that lustering hy-pothesis were �rst experimented on this olletion and theresults are generally inferior to keywords mathing [18, 19℄.By examining the SA networks for Cran�eld, the lusterstruture is not detetable, i.e, this olletion does nothave lear sub-strutures.In summary, omparing to standard keywords math-ing, SA network improved retrieval ahieves substantiallybetter retrieval preision for Medline, improves slightly atlow reall for CACM and NPL, and performs slightly worsefor Cran�eld. This represents a signi�ant progress fromearlier work summarized in [19℄.Med CACM NPL CranKM 0.463 0.331 0.201 0.478SAI-KM 0.522 0.337 0.203 0.467Table 1: Average 11-point retrieval preision.5.2 Doument ClusteringWe apply SA networks lustering method on newsgroupartiles in 5 newsgroups (see Fig.5). 100 news artilesare randomly seleted from eah newsgroup. 1000 wordsare seleted based on mutual information. The term-doument assoiation matrix B are solved by SVD. Theresults are shown in Fig.5. Here we emphasize the fat thatwords aggregate into lusters in the K-dim spae FK (seeEq.36) while douments are simultaneous lustered usingGKGTK . The lustering auray [Pk tkk=N; T = (tij) isthe ontingeny table℄ of the lustering results is 86%. Inomparison, the standard K-means methods has a luster-ing auray of 66%, while two improved K-means meth-ods ahieves 76-80% [21℄.7



6 SummaryWe present a doument lustering framework onnetingPCA, Kmeans with Hop�eld networks. The min-max utlustering objetive infores luster balane and leads tosaled PCA. Networks onstruted with saled PCA om-ponents via Hebb rule has the unique and desirable self-aggregation property. SA networks improves doumentretrieval and provides an e�etive multi-K lustering algo-rithm, as shown by a number of experiments.Aknowledgements. This work is supported by Depart-ment of Energy (OÆe of Siene) under ontrat DE-AC03-76SF00098 through a LDRD grant. LBNL-51339,August 2002,
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