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Abstract

Principal component analysis (PCA) is a
widely used statistical technique for unsuper-
vised dimension reduction. K-means cluster-
ing is a commonly used data clustering for
unsupervised learning tasks. Here we prove
that principal components are the continuous
solutions to the discrete cluster membership
indicators for K-means clustering. Equiva-
lently, we show that the subspace spanned
by the cluster centroids are given by spec-
tral expansion of the data covariance matrix
truncated at K− 1 terms. These results indi-
cate that unsupervised dimension reduction
is closely related to unsupervised learning.
On dimension reduction, the result provides
new insights to the observed effectiveness of
PCA-based data reductions, beyond the con-
ventional noise-reduction explanation. Map-
ping data points into a higher dimensional
space via kernels, we show that solution for
Kernel K-means is given by Kernel PCA. On
learning, our results suggest effective tech-
niques for K-means clustering. DNA gene
expression and Internet newsgroups are ana-
lyzed to illustrate the results. Experiments
indicate that newly derived lower bounds for
K-means objective are within 0.5-1.5% of the
optimal values.

1. Introduction

Data analysis methods are essential for analyzing the
ever-growing massive quantity of high dimensional
data. On one end, cluster analysis(Duda et al., 2000;
Hastie et al., 2001; Jain & Dubes, 1988) attempts to
pass through data quickly to gain first order knowledge
by partitioning data points into disjoint groups such
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that data points belonging to same cluster are sim-
ilar while data points belonging to different clusters
are dissimilar. One of the most popular and efficient
clustering methods is the K-means method (Hartigan
& Wang, 1979; Lloyd, 1957; MacQueen, 1967) which
uses prototypes (centroids) to represent clusters by op-
timizing the squared error function. (A detail account
of K-means and related ISODATA methods are given
in (Jain & Dubes, 1988), see also (Wallace, 1989).)

On the other end, high dimensional data are often
transformed into lower dimensional data via the princi-
pal component analysis (PCA)(Jolliffe, 2002) (or sin-
gular value decomposition) where coherent patterns
can be detected more clearly. Such unsupervised di-
mension reduction is used in very broad areas such as
meteorology, image processing, genomic analysis, and
information retrieval. It is also common that PCA
is used to project data to a lower dimensional sub-
space and K-means is then applied in the subspace
(Zha et al., 2002). In other cases, data are embedded
in a low-dimensional space such as the eigenspace of
the graph Laplacian, and K-means is then applied (Ng
et al., 2001).

The main basis of PCA-based dimension reduction is
that PCA picks up the dimensions with the largest
variances. Mathematically, this is equivalent to find-
ing the best low rank approximation (in L2 norm) of
the data via the singular value decomposition (SVD)
(Eckart & Young, 1936). However, this noise reduction
property alone is inadequate to explain the effective-
ness of PCA.

In this paper , we explore the connection between these
two widely used methods. We prove that principal
components are actually the continuous solution of the
cluster membership indicators in the K-means cluster-
ing method, i.e., the PCA dimension reduction auto-
matically performs data clustering according to the K-
means objective function. This provides an important
justification of PCA-based data reduction.

Our results also provide effective ways to solve the K-
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means clustering problem. K-means method uses K
prototypes, the centroids of clusters, to characterize
the data. They are determined by minimizing the sum
of squared errors,

JK =

K∑

k=1

∑

i∈Ck

(xi −mk)2

where (x1, · · · ,xn) = X is the data matrix and mk =
∑

i∈Ck
xi/nk is the centroid of cluster Ck and nk is the

number of points in Ck. Standard iterative solution
to K-means suffers from a well-known problem: as
iteration proceeds, the solutions are trapped in the
local minima due to the greedy nature of the update
algorithm (Bradley & Fayyad, 1998; Grim et al., 1998;
Moore, 1998).

Some notations on PCA. X represents the original
data matrix; Y = (y1, · · · ,yn), yi = xi − x̄, repre-
sents the centered data matrix, where x̄ =

∑

i xi/n.
The covarance matrix (ignoring the factor 1/n ) is
∑

i(xi − x̄)(xi − x̄)T = Y YT . Principal directions uk

and principal components vk are eigenvectors satisfy-
ing:

Y YT uk = λkuk, YT Y vk = λkvk, vk = Y Tuk/λ
1/2

k .
(1)

These are the defining equations for the SVD of Y :

Y =
∑

k λ
1/2

k ukv
T

k (Golub & Van Loan, 1996). Ele-
ments of vk are the projected values of data points on
the principal direction uk.

2. 2-way clustering

Consider the K = 2 case first. Let

d(Ck, Cℓ) ≡
∑

i∈Ck

∑

j∈Cℓ

(xi − xj)
2

be the sum of squared distances between two clusters
Ck, Cℓ. After some algebra we obtain

JK =
K∑

k=1

∑

i,j∈Ck

(xi − xj)
2

2nk
= ny2 − 1

2
JD, (2)

and

JD =
n1n2

n

[

2
d(C1, C2)

n1n2

− d(C1, C1)

n2
1

− d(C2, C2)

n2
2

]

(3)

where y2 =
∑

i y
T

i yi/n is a constant. Thus min(JK)
is equivalent to max(JD). Furthermore, we can show

d(C1, C2)

n1n2

=
d(C1, C1)

n2
1

+
d(C2, C2)

n2
2

+ (m1 −m2)
2. (4)

Substituting Eq.(4) into Eq.(3), we see JD is always
positive. We summarize these results in

Theorem 2.1. For K = 2, minimization of K-means
cluster objective function JK is equivalent to maxi-
mization of the distance objective JD, which is always
positive.

Remarks. (1) In JD, the first term represents average
between-cluster distances which are maximized; this
forces the resulting clusters as separated as possible.
(2) The second and third terms represent the aver-
age within-cluster distances which will be minimized;
this forces the resulting clusters as compact or tight
as possible. This is also evident from Eq.(2). (3) The
factor n1n2 encourages cluster balance. Since JD > 0,
max(JD) implies maximization of n1n2, which leads to
n1 = n2 = n/2.

These remarks give some insights to the K-means clus-
tering. However, the primary importance of Theorem
2.1 is that JD leads to a solution via the principal com-
ponent.

Theorem 2.2. For K-means clustering where K = 2,
the continuous solution of the cluster indicator vector
is the principal component v1, i.e., clusters C1, C2 are
given by

C1 = {i | v1(i) ≤ 0}, C2 = {i | v1(i) > 0}. (5)

The optimal value of the K-means objective satisfies
the bounds

ny2 − λ1 < JK=2 < ny2 (6)

Proof. Consider the squared distance matrix D =
(dij), where dij = ||xi−xj ||2 . Let the cluster indicator
vector be

q(i) =

{ √

n2/nn1 if i ∈ C1

−
√

n1/nn2 if i ∈ C2

(7)

This indicator vector satisfies the sum-to-zero and nor-
malization conditions:

∑

i q(i) = 0,
∑

i q2(i) = 1. One
can easily see that qTDq = −JD. If we relax the re-
striction that q must take one of the two discrete val-
ues, and let q take any values in [−1, 1], the solution
of minimization of J(q) = qTDq/qTq is given by the
eigenvector corresponding to the lowest (largest nega-
tive) eigenvalue of the equation Dz = λz.

A better relaxation of the discrete-valued indicator q

into continuous solution is to use the centered distance
matrix D, i.e, to subtract column and row means of
D. Let D̂ = (d̂ij), where

d̂ij = dij − di./n− d.j/n + d../n2 (8)
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where di. =
∑

j dij , d.j =
∑

i dij , d.. =
∑

ij dij . Now

we have qTD̂q = qTDq = −JD, since the 2nd, 3rd and
4th terms in Eq.(8) contribute zero in qTD̂q. There-
fore the desired cluster indicator vector is the eigen-
vector corresponding to the lowest (largest negative)
eigenvalue of

D̂z = λz.

By construction, this centered distance matrix D̂ has
a nice property that each row (and column) is sum-

to-zero,
∑

i d̂ij = 0, ∀j. Thus e = (1, · · · , 1)T is an

eigenvector of D̂ with eigenvalue λ = 0. Since all other
eigenvectors of D̂ are orthogonal to e, i.e, zTe = 0,
they have the sum-to-zero property,

∑

i z(i) = 0, a
definitive property of the initial indicator vector q. In
contrast, eigenvectors of Dz = λz do not have this
property.

With some algebra, di. = nx2
i + nx2 − 2nxT

i x̄, d.. =

2n2y2. Substituting into Eq.(8), we obtain

d̂ij = −2(xi − x̄)T(xj − x̄) or D̂ = −2YT Y .

Therefore, the continuous solution for cluster indicator
vector is the eigenvector corresponding to the largest
(positive) eigenvalue of the Gram matrix YT Y , which
by definition, is precisely the principal component v1.
Clearly, JD < 2λ1, where λ1 is the principal eigenvalue
of the covariance matrix. Through Eq.(2), we obtain
the bound on JK. ⊓–
Figure 1 illustrates how the principal component can
determine the cluster memberships in K-means clus-
tering. Once C1, C2 are determined via the principal
component according to Eq.(5), we can compute the
current cluster means mk and iterate the K-means
until convergence. This will bring the cluster solution
to the local optimum. We will call this PCA-guided
K-means clustering.
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Figure 1. (A) Two clusters in 2D space. (B) Principal
component v1(i), showing the value of each element i.

3. K-way Clustering

Above we focus on the K = 2 case using a single indi-
cator vector. Here we generalize to K > 2, using K−1

indicator vectors.

Regularized relaxation

This general approach is first proposed in (Zha et al.,
2002). Here we present a much expanded and con-
sistent relaxation scheme and a connectivity analysis.
First, with the help of Eq.(2), JK can be written as

JK =
∑

i

x2

i −
∑

k

1

nk

∑

i,j∈Ck

xT

i xj , (9)

The first term is a constant. The second term is the
sum of the K diagonal block elements of XTX ma-
trix representing within-cluster (inner-product) simi-
larities.

The solution of the clustering is represented by K non-
negative indicator vectors: HK = (h1, · · · ,hK), where

hk = (0, · · · , 0,

nk

︷ ︸︸ ︷

1, · · · , 1, 0, · · · , 0)T/n
1/2

k (10)

(Without loss of generality, we index the data such
that data points within each cluster are adjacent.)
With this, Eq.(9) becomes

JK = Tr(XTX)− Tr(HT

k XTXHk) (11)

where Tr(HT

K
XTXHK) = hT

1 XTXh1 + · · ·+hT

kXTXhk.
There are redundancies in HK. For example,
∑

K

k=1
n

1/2

k hk = e. Thus one of the hk’s is linear com-
bination of others. We remove this redundancy by (a)
performing a linear transformation T into qk’s:

QK = (q1, · · · ,qK) = HKT, or qℓ =
∑

k

hktkℓ, (12)

where T = (tij) is a K×K orthonormal matrix: T TT =
I, and (b) requiring that the last column of T is

tn = (
√

n1/n, · · · ,
√

nk/n)T. (13)

Therefore we always have

qK =

√
n1

n
h1 + · · ·+

√
nk

n
hK =

√

1

n
e.

This linear transformation is always possible (see
later). For example when K = 2, we have

T =

( √

n2/n −
√

n1/n
√

n1/n
√

n2/n

)

, (14)

and q1 =
√

n2/nh1−
√

n1/nh2, which is precisely the
indicator vector of Eq.(7). This approach for K-way
clustering is the generalization of K = 2 clustering in
§2.
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The mutual orthogonality of hk, hT

khℓ = δkℓ ( δkℓ =
1 if k = ℓ; 0 otherwise), implies the mutual orthogo-
nality of qk,

qT

kqℓ =
∑

p

hT

p tpk

∑

s

hstsℓ =
∑

p

(T TT )kℓ = δkℓ.

Let QK−1 = (q1, · · · ,qK−1), the above orthogonality
relation can be represented as

QT

K−1QK−1 = IK−1, (15)

qT

ke = 0, for k = 1, · · · , K− 1. (16)

Now, the K-means objective can be written as

JK = Tr(XTX)− eTXTXe/n− Tr(QT

k−1X
TXQk−1)

(17)
Note that JK does not distinguish the original data
{xi} and the centered data {yi}. Repeating the above
derivation on {yi}, we have

JK = Tr(YT Y )− Tr(QT

k−1Y
T Y Qk−1), (18)

noting that Y e = 0 because rows of Y are centered.
The first term is constant. Optimization of JK be-
comes

max
QK−1

Tr(QT

K−1Y
T Y QK−1) (19)

subject to the constraints Eqs.(15,16), with additional
constraint that qk are the linear transformations of
the hk as in Eq.(12). If we relax (ignore) the last
constraint, i.e., let hk to take continuous values, while
still keeping constraints Eqs.(15,16), the maximization
problem can be solved in closed form, with the follow-
ing results:

Theorem 3.1. When optimizing the K-means objec-
tive function, the continuous solutions for the trans-
formed discrete cluster membership indicator vectors
QK−1 are the K − 1 principal components: QK−1 =
(v1, · · · ,vK−1). JK satisfies the upper and lower
bounds

ny2 −
K−1∑

k=1

λk < JK < ny2 (20)

where ny2 is the total variance and λk are the principal
eigenvalues of the covariance matrix Y YT .

Note that the constraints of Eq.(16) are automatically
satisfied, because e is an eigenvector of YT Y with
λ = 0 and the orthogonality between eigenvectors as-
sociated with different eigenvalues. This result is true
for any K. For K = 2, it reduces to that of §2.

The proof is a direct application of a well-known the-
orem of Ky Fan (Fan, 1949) (Theorem 3.2 below) to
the optimization problem Eq.(19).

Theorem 3.2. (Fan) Let A be a symmetric ma-
trix with eigenvalues ζ1 ≥ · · · ≥ ζn and correspond-
ing eigenvectors (v1, · · · ,vn). The maximization of
Tr(QTAQ) subject to constraints QTQ = IK has the
solution Q = (v1, · · · ,vK)R, where R is an arbitary
K × K orthonormal matrix, and maxTr(QTAQ) =
ζ1 + · · ·+ ζK.

Eq.(11) is first noted in (Gordon & Henderson, 1977)
in slghtly different form as a referee comment and was
promptly dismissed. It is independently rediscovered
in (Zha et al., 2002) where spectral relaxation tech-
nique is applied [to Eq.(11) instead of Eq.(18)], leading
to K principal eigenvectors of XTX as the continuous
solution. The present approach has three advantages:
(a) Direct relaxation on hk in Eq.(11) is not as desir-
able as relaxation on qk of Eq.(18). This is because
qk satisfy sum-to-zero property of the usual PCA com-
ponents while hk do not. Entries of discrete indicator
vectors qk have both positive and negative values, thus
closer to the continuous solution. On the other hand,
entries of discrete indicator vectors hk have only one
sign, while all eigenvectors (except v1) of XTX have
both positive and negative entries. In other words, the
continuous solutions of hk will differ significantly from
its discrete form, while the continuous solutions of qk

will be much closer to its discrete form.
(b) The present approach is consistent with both K >
2 case and K = 2 case presented in §2 using a single
indicator vector. The relaxation of Eq.(11) for K = 2
would requires two eigenvectors; that is not consistent
with the single indicator vector approach in §2.
(c) Relaxation in Eq.(11) uses the original data,
XTX, while the present approach uses centered ma-
trix YT Y . Using YT Y makes the orthogonality condi-
tions Eqs.(15, 16) consistent since e is an eigenvector
of YT Y . Also, YT Y is closely related to covariance
matrix Y YT , a central theme in statistics.

Cluster Centroid Subspace Identifcation

Suppose we have found K clusters with mk cen-
troids. The between-cluster scatter matrix Sb =
∑

K

k=1
nkmkm

T

k (the total mean is zero), project any
vector x into the subspace spanned by the K centroids:
ST

b x =
∑

K

k=1
nk(mT

kx)mk We call this subspace as
cluster centroid subspace. From Theorem 3.1, we have

Theorem 3.3. Cluster centroid subspace is spanned
by the first K − 1 principal directions, i.e., Sb =
∑

K−1

k=1
λkuku

T

k .
Proof. A cluster centroid mk can be represented via
the cluster indicator vector, mk = (1/nk)

∑

i∈Ck
yi =

4



n
−1/2

k

∑

i hk(i)yi = n
−1/2

k Y hk. Thus

Sb =

K∑

k=1

Y hkhT

kY T = Y

K∑

k=1

hkh
T

kY T = Y

K∑

k=1

qkq
T

kY T

Now, upon using Theorem 3.1, q1,qK−1 are given by
v1, · · · ,vK−1, i.e., and qK is given by e1/n1/2. Thus
∑

K

k=1
qkq

T

k → eeT/n +
∑

K−1

k=1
vkv

T

k . Note Y e = 0
because Y contained centered data. Using Eq.(1),

Xvk = λ
1/2

k uk. This completes the proof.

Theorem 3.3 implies that PCA dimension reduction
automatically finds the cluster centroid subspace, the
most discriminative subspace. This fact explains why
PCA dimension reduction is particularly beneficial for
K-means clustering, because clustering in the cluster
subspace is typically more effective than clustering in
the original space, as explained in the following.

Proposition 3.4. In cluster subspace, between-
cluster distances remain nearly as in original space,
while within-cluster distances are reduced.

Proof. Writing the distance between yi,yj as

||yi − yj ||2d = ||y⊥
i − y⊥

j ||2r + ||y‖
i − y

‖
j ||2s

where y
‖
i is the component in the r-dimensional clus-

ter subspace and y⊥
i is the component in the s-

dimensional irrelavent subspace (d = r + s). We wish
to show that

||y‖
i − y

‖
j ||r

||yi − yj ||d
≈

{
1 if i ∈ Ck, j ∈ Cℓ 6= Ck

r/d if i, j ∈ Ck,
(21)

If yi, yj are in different clusters, yi −yj runs from one
cluster to another, or, it runs from one centroid to
another. Thus it is nearly inside the cluster subspace.
This proves the first equality in Eq.21. If yi, yj are
in the same cluster, we assume data has a Gaussian
distribution. With probability of r/d, yi−yj points to
a direction in the cluster subspace, which are retained
in after PCA projection. With probability of s/d, yi−
yj points to a direction outside the cluster subspace,
which collaps to zero, ||y⊥

i − y⊥
j ||2 ≈ 0. This proves

the second equality in Eq.21.

Eq.(21) shows that in cluster subspace, between-
cluster distances remain constant; while within-cluster
distances shrink: clusters become relatively more com-
pact. The lower the cluster subspace dimension r is,
the more compact clusters become, and the more ef-
fective the K-means clustering in the subspace.

When projecting to a subspace, the subspace represen-
tations could differ by an orthogonal transformation T .

Because K-means clustering is invariant w.r.t. T , we
do not need the explicit form of T .

In summary, the automatic identification of the clus-
ter subspace via PCA dimension reduction guarrantees
that K-means clustering in the PCA subspace is par-
ticularly effective.

Kernel K-means clustering and Kernel PCA

From Eq.(9), K-means clustering can be viwed as us-
ing the stand dot-product (Gram matrix). Thus it
can be easily extended to any other kernels (Zhang
& Rudnicky, 2002). This is done using a nonlinear
transformation (a mapping) to the higher dimensional
space

xi → φ(xi)

The clustering objective function under this mapping,
with the help of Eq.(9), can be written as

min JK(φ) =
∑

i

||φ(xi)||2−
∑

k

1

nk

∑

i,j∈Ck

φ(xi)
Tφ(xj),

(22)
The first term is a constant for a given mapping func-
tion φ(·) and can be ignored. The clustering problem
becomes the maximization of the objective function

JW
K =

∑

k

1

nk

∑

i,j∈Ck

wij = Tr HT WH = Tr QT WQ.

(23)
where W = (wij) is the kernel matrix: wij =
φ(xi)

Tφ(xj).

The advantage of Kernel K-means is that it can de-
scribe data distributions more complicated that Gaus-
sion distributions. The disadvantage of Kernel K-
means is that it no longer has cluster centroids because
there are only pairwise kernel or similarities. Thus the
fast order(n) local refinement no longer apply.

PCA has been applied to kernel matrix in (Schölkopf
et al., 1998). Some advantages has been shown due
to the nonlinear transformation. The equivalence be-
tween K-means clustering and PCA shown above can
be extended to here. Note that in general, a kernel
matrix may not be centered, whereas the linear kernel
in PCA is centered since data are centered. We center
the kernel by W ← PWP, P = I − eeT /n. Because of
Eq.(16), QT WQ = QT PWPQ, thus Eq.(23) remains
unchanged. The centered kernel has the property that
all eigenvectors qk satisfy qT

k e = 0. We assume all
data and kernel are centered. Now, repeating previ-
ously analysis, we can show that solution to Kernel
K-means is given by Kernel PCA components:

Theorem 3.5. The continuous solutions for the dis-
crete cluster membership indicator vectors in Kernel
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K-means clustering are the K− 1 Kernel PCA compo-
nents, and JW

K
(opt) has the following upper bound

JW
K (opt) <

K−1∑

k=1

ζk (24)

where ζk are the principal eigenvalues of the centered
Kernel PCA matrix W .

Recovering K clusters

Once the K−1 principal components qk are computed,
how to recover the non-negative cluster indicators hk,
therefore the clusters themselves?

Clearly, since
∑

i qk(i) = 0, each principal compo-
nent has many negative elements, so they differ sub-
stantially from the non-negative cluster indicators hk.
Thus the key is to compute the orthonormal transfor-
mation T in Eq.(12).

A K × K orthonormal transformation is equivalent to
a rotation in K-dimensional space; there are K2 ele-
ments with K(K +1)/2 constraints (Goldstein, 1980);
the remaining K(K−1)/2 degrees of freedom are most
conveniently represented by Euler angles. For K = 2
a single rotation φ specifies the transformation; for
K = 3 three Euler angles (φ, θ, ζ) determine the rota-
tion, etc. In K-means problem, we require that the last
column of T have the special form of Eq.(13); there-
fore, the true degree of freedom is FK = K(K−1)/2−1.
For K = 2, FK = 0 and the solution is fixed; it is
given in Eq.(14). For K = 3, FK = 2 and we need
to search through a 2-D space to find the best solu-
tion, i.e., to find the T matrix that will transform qk

to non-negative indicator vectors hk.

Using Euler angles to specify the orthogonal rotation
in high dimensional space K > 3 with the special
constraint is often complicated. This problem can be
solved via the following representation. Given arbi-
trary K(K − 1)/2 positive numbers αij that sum-to-
one,

∑

1≤i≤j≤n αij = 1 and αij = αji. The degree
of freedom is K(K − 1)/2 − 1, same as the degree of
freedom in our problem. We form the following K×K
matrix:

Γ = Ω−1/2 Γ̄ Ω−1/2, Ω = diag(
√

n1, · · · ,
√

nK).

where

Γ̄ij = −αij , i 6= j; Γ̄ii =
∑

j|j 6=i

αij , (25)

It can be shown that 2
∑

ij xiΓ̄ijxj =
∑

ij αij(xi−xj)
2

for any x = (x1, · · · , xK)T. Thus the symmetric

matrix Γ is semi-positive definite. Γ has K eigen-
vectors of real values with non-negative eigenvalues:
(z1, · · · , zK) = Z, where Γzk = λkzk. Clearly, tn of
Eq.(13) is an eigenvector of Γ with eigenvalue λ = 0.
Other K − 1 eigenvectors are mutually orthonormal,
ZTZ = I. Under general conditions, Z is non-singular
and Z−1 = ZT. Thus Z is the desired orthonormal
transformation T in Eq.(12). Summerizing these re-
sults, we have
Theorem 3.3. The linear transformation T of Eq.(12)
is formed by the K eigenvectors of Γ specified by
Eq.(25).

This result indicates the K-means clustering is reduced
to an optimization problem with K(K − 1)/2− 1 pa-
rameters.

Connectivity Analysis

The above analysis gives the structure of the transfor-
mation T . But before knowning the clustering results,
we cannot compute T and thus not computing hk nei-
ther. Thus we need a method that bypasses T .

In Theorem 3.3, cluster subspace spanned via the clus-
ter centroids is given by the first K − 1 principal di-
rections, i.e., the low-dimensional spectral representa-
tion of the covariance matrix Y YT . We examine the
low-dimensional spectral representation of the kernel
(Gram) matrix YT Y =

∑
K−1

k=1
λkvkv

T

k . For subspace
projection, the coefficient λk is unimportant. Adding
a constant matrix eeT/n, we have

C = eeT/n +

K−1∑

k=1

vkv
T

k .

Following the proof of Theorem 3.3, C can be written
as

C =

K∑

k=1

qkq
T

k =

K∑

k=1

hkh
T

k .

∑

k hkh
T

k has a clear diagonal block structure, which
leads naturally to a connectivity interpretation: if
cij > 0 then xi,xj are in the same cluster, we say
they are connected. We further associate a prob-
ability for the connectivity between i, j as pij =

cij/c
1/2

ii c
1/2

jj = δij depending whether xi,xj are con-
nected or not. The diagonal block structure is the
characteristic structure for clusters.

If the data has clear cluster structure, we expect C
has similar diagonal block structure, plus some noise,
due to the fact that principal components are approx-
imations of the discrete valued indicators. For exam-
ple, C could contain negative elements. Thus we set
cij = 0 if cij < 0. Also, elements in C with small
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positive values indicate weak, possibly spurious, con-
nectivities, which should be suppressed. We set

cij = 0 if pij < β, (26)

where 0 < β < 1 and we chose β = 0.5.

Once C is computed, the block structure can be de-
tected using the spectral ordering(Ding & He, 2004).
By computing the cluster crossing, the cluster overlap
along the specified ordering, a 1-D curve exhibits the
cluster structure. Clusters can be identified using a
linearized cluster assignment (Ding & He, 2004).

4. Experiments

Gene expressions

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.2

−0.1

0

0.1

0.2
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0.4

v
1

v 2

C1: Diffuse Large B Cell Lymphoma (46)
C2: germinal center B (2) (not used)
C3: lymph node/tonsil (2) (not used)
C4: Activated Blood B (10)
C5: resting/activated T (6)
C6: transformed cell lines (6)
C7: Follicular lymphoma (9)
C8: resting blood B (4) (not used)
C9: Chronic lymphocytic leukaemia (11)

Figure 2. Gene expression profiles of human lym-
phoma(Alizadeh et al., 2000) in first two principal com-
ponents.

4029 gene expressions of 96 tissue samples on hu-
man lymphoma is obtained by Alizadeh et al.(Alizadeh
et al., 2000). Using biological and clinic expertise, Al-
izadeh et al classify the tissue samples into 9 classes
as shown in Figure 2. Because of the large number of
classes and also highly uneven number of samples in
each classes (46, 2, 2, 10, 6, 6, 9, 4, 11), it is a relatively
difficult clustering problem. To reduce dimension, 200
out of 4029 genes are selected based on F -statistic for
this study. We focus on 6 largest classes with at least
6 tissue samples per class to adequately represent each
class; classes C2, C3, and C8 are ignored because the
number of samples in these classes are too small (8 tis-
sue samples total). Using PCA, we plot the samples
in the first two principal components as in Fig.2.

Following Theorem 3.1, the cluster structure are em-
bedded in the first K − 1 = 5 principal components.
In this 5-dimensional eigenspace we perform K-means

clustering. The clustering results are given in the fol-
lowing confusion matrix

B =










36 · · · · ·
2 10 · · · 1
1 · 9 · · ·
· · · 11 · ·
· · · · 6 ·
7 · · · · 5










where bkℓ = number samples being clustered into class
k, but actually belonging to class ℓ (by human exper-
tise). The clustering accuracy is Q =

∑

k bkk/N =
0.875, quite reasonable for this difficult problem. To
provide an understanding of this result, we perform
the PCA connectivity analysis. The cluster connec-
tivity matrix P is shown in Fig.3. Clearly, the five
smaller classes have strong within-cluster connectiv-
ity; the largest class C1 has substantial connectivity
to other classes (those in off-diagonal elements of P ).
This explains why in clustering results (first column in
contingency table B), C1 is split into several clusters.
Also, one tissue sample in C5 has large connectivity to
C4 and is thus clustered into C4 (last column in B).

0 10 20 30 40 50 60 70 80
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Figure 3. The connectivity matrix for lymphoma. The 6
classes are ordered as C1, C4, C7, C9, C6, C5.

Internet Newsgroups

We apply K-means clustering on Internet news-
group articles. A 20-newsgroup dataset is from
www.cs.cmu.edu/afs/cs/project/theo-11/www
/naive-bayes.html. Word - document matrix is first
constructed. 1000 words are selected according to the
mutual information between words and documents in
unsupervised manner. Standard tf.idf term weight-
ing is used. Each document is normalized to 1.

We focus on two sets of 2-newsgroup combinations
and two sets of 5-newsgroup combinations. These four
newsgroup combinations are listed below:

A2: B2:
7



Table 2. Clustering accuracy as the PCA dimension is re-
duced from original 1000.

Dim A5-B A5-U B5-B B5-U
5 0.81/0.91 0.88/0.86 0.59/0.70 0.64/0.62
6 0.91/0.90 0.87/0.86 0.67/0.72 0.64/0.62
10 0.90/0.90 0.89/0.88 0.74/0.75 0.67/0.71
20 0.89 0.90 0.74 0.72
40 0.86 0.91 0.63 0.68

1000 0.75 0.77 0.56 0.57

NG1: alt.atheism NG18: talk.politics.mideast

NG2: comp.graphics NG19: talk.politics.misc

A5: B5:

NG2: comp.graphics NG2: comp.graphics

NG9: rec.motorcycles NG3: comp.os.ms-windows

NG10: rec.sport.baseball NG8: rec.autos

NG15: sci.space NG13: sci.electronics

NG18: talk.politics.mideast NG19: talk.politics.misc

In A2 and A5, clusters overlap at medium level. In B2
and B5, clusters overlap substantially.

To accumulate sufficient statistics, for each newsgroup
combination, we generate 10 datasets, each is a ran-
dom sample of documents from the newsgroups. The
details are the following. For A2 and B2, each clus-
ter has 100 documents randomly sampled from each
newsgroup. For A5 and B5, we let cluster sizes vary
to resemble more realistic datasets. For balanced case,
we sample 100 documents from each newsgroup. For
the unbalanced case, we select 200,140,120,100,60 doc-
uments from different newsgroups. In this way, we
generated a total of 60 datasets on which we perform
cluster analysis:

We first assess the lower bounds derived in this pa-
per. For each dataset, we did 20 runs of K-means
clustering, each starting from different random starts
(randomly selecting data points as initial cluster cen-
troids). We pick the clustering results with the lowest
K-means objective function value as the final cluster-
ing result. For each dataset, we also compute principal
eigenvalues of the kernel matrices of XTX, YT Y from
the uncentered and centered data matrix (see §1).

Table 1 gives the K-means objective function values
and the computed lower bounds. Rows starting with
Km are the JK optimal values for each data sample.
Rows with P2 and P5 are lower bounds computed from
Eq.(20). Rows with L2a, L2b are the lower bounds of
the earlier work (Zha et al., 2002). L2a are for original
data and L2b are for centered data. The last column is
the averaged percentage difference between the bound
and the optimal value.

For datasets A2 and B2, the newly derived lower-
bounds (rows starting with P2) are consistently closer
to the optimal K-means values than previously derived
bound (rows starting with L2a or L2b).

Across all 60 random samples the newly derived lower-

bound (rows starting with P2 or P5) consistently gives
close lower bound of the K-means values (rows start-
ing with Km). For K = 2 cases, the lower-bound is
about 0.6% within the optimal K-means values. As
the number of cluster increase, the lower-bound be-
come less tight, but still within 1.4% of the optimal
values.

PCA-reduction and K-means

Next, we apply K-means clustering in the PCA sub-
space. Here we reduce the data from the original 1000
dimensions to 40, 20, 10, 6, 5 dimensions respectively.
The clustering accuracy on 10 random samples of each
newsgroup combination and size composition are av-
eraged and the results are listed in Table 2. To see the
subtle difference between centering data or not at 10,
6, 5 dimensions; results for original uncentered data
are listed at left and the results for centered data are
listed at right.

Two observations. (1) From Table 2, it is clear that as
dimensions are reduced, the results systematically and
significantly improves. For example, for datasets A5-
balanced, the cluster accuracy improves from 75% at
1000-dim to 91% at 5-dim. (2) For very small number
of dimensions, PCA based on the centered data seem
to lead to better results. All these are consitent with
previous theoretical analysis.

Discussions

Traditional data reduction perspective derives PCA as
the best set of bilinear approximations (SVD of Y ).
The new results show that principal components are
continuous (relaxed) solution of the cluster member-
ship indicators in K-means clustering (Theorems 2.2
and 3.1). These two views (derivations) of PCA are
in fact consistent since data clustering also is a form
of data reduction. Standard data reduction (SVD)
happens in Euclidean space, while clustering is a data
reduction to classification space (data points in same
cluster are considered belonging to same class while
points in different clusters are considered belonging to
different classes). This is best explained by the vector
quantization widely used in signal processing(Gersho
& Gray, 1992) where the high dimensional space of sig-
nal feature vectors are divided into Voronoi cells via
the K-means algorithm. Signal feature vectors are ap-
proximated by the cluster centroids, the code-vectors.
That PCA plays crucial roles in both types of data
reduction provides a unifying theme in this direction.
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Table 1. K-means objective function values and theoretical bounds for 6 datasets.

Datasets: A2
Km 189.31 189.06 189.40 189.40 189.91 189.93 188.62 189.52 188.90 188.19 —
P2 188.30 188.14 188.57 188.56 189.10 188.89 187.85 188.54 187.91 187.25 0.48%
L2a 187.37 187.19 187.71 187.68 188.27 187.99 186.98 187.53 187.29 186.37 0.94%
L2b 185.09 184.88 185.63 185.33 186.25 185.44 185.00 185.56 184.75 184.02 2.13%

Datasets: B2
Km 185.20 187.68 187.31 186.47 187.08 186.12 187.12 187.36 185.51 185.50 —
P2 184.44 186.69 186.05 184.81 186.17 185.29 186.13 185.62 184.73 184.19 0.60%
L2a 183.22 185.51 184.97 183.67 185.02 184.19 184.88 184.50 183.55 183.08 1.22%
L2b 180.04 182.97 182.36 180.71 182.46 181.17 182.38 181.77 180.42 179.90 2.74%

Datasets: A5 Balanced
Km 459.68 462.18 461.32 463.50 461.71 462.70 460.11 463.24 463.83 463.54 —
P5 452.71 456.70 454.58 457.61 456.19 456.78 453.19 458.00 457.59 458.10 1.31%

Datasets: A5 Unbalanced
Km 575.21 575.89 576.56 578.29 576.10 579.12 579.77 574.57 576.28 573.41 —
P5 568.63 568.90 570.10 571.88 569.51 572.26 573.18 567.98 569.32 566.79 1.16%

Datasets: B5 Balanced
Km 464.86 464.00 466.21 463.15 463.58 464.70 464.45 465.57 466.04 463.91 —
P5 458.77 456.87 459.38 458.19 456.28 458.23 458.37 458.38 459.77 458.84 1.36%

Datasets: B5 Unbalanced
Km 580.14 581.11 580.76 582.32 578.62 581.22 582.63 578.93 578.27 578.30 —
P5 572.44 572.97 574.60 575.28 571.45 574.04 575.18 571.76 571.16 571.13 1.25%
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