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ABSTRACT
Stability is an important yet under-addressed issue in fea-
ture selection from high-dimensional and small sample data.
In this paper, we show that stability of feature selection has
a strong dependency on sample size. We propose a novel
framework for stable feature selection which first identifies
consensus feature groups from subsampling of training sam-
ples, and then performs feature selection by treating each
consensus feature group as a single entity. Experiments on
both synthetic and real-world data sets show that an algo-
rithm developed under this framework is effective at alleviat-
ing the problem of small sample size and leads to more stable
feature selection results and comparable or better generaliza-
tion performance than state-of-the-art feature selection al-
gorithms. Synthetic data sets and algorithm source code are
available at http://www.cs.binghamton.edu/∼lyu/KDD09/.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
data mining; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Feature selection, stability, ensemble, high-dimensional data,
small sample

1. INTRODUCTION
High-dimensional small-sample data is common in biologi-

cal applications like gene expression microarrays [8] and pro-
teomics mass spectrometry [20]. Classification on such data
is challenging due to the two distinct data characteristics:
high dimensionality and small sample size. Many feature
selection algorithms have been developed with a focus on
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improving classification accuracy while reducing dimension-
ality for such data [3, 9, 10, 14, 15, 22]. The issues of feature
relevance and redundancy have also been well studied [1, 5,
27]. A relatively neglected issue is the stability of feature se-
lection - the insensitivity of the result of a feature selection
algorithm to variations in the training set. This issue is im-
portant in many applications where feature selection is used
as a knowledge discovery tool for identifying characteristic
markers for the observed phenomena [19]. For example, in
microarray data analysis, a feature selection algorithm may
select largely different subsets of features (genes) under vari-
ations to the training data, although most of these subsets
are as good as each other in terms of classification perfor-
mance [11, 26]. Such instability dampens the confidence of
domain experts in investigating any of the various subsets
of selected features for biomarker identification.

In this paper, we demonstrate that stability of feature se-
lection has a strong dependency on sample size. Moreover,
we show that exploiting intrinsic feature groups in the un-
derlying data distribution is effective at alleviating the effect
of small sample size for high-dimensional data. Therefore,
we propose a novel feature selection framework (as shown
in Figure 1) which approximates intrinsic feature groups by
a set of consensus feature groups and performs feature se-
lection and classification in the transformed feature space
described by consensus feature groups.

Our framework is motivated by a key observation that
intrinsic feature groups (or groups of correlated features)
commonly exist in high-dimensional data, and such groups
are resistant to the variations of training samples. For ex-
ample, genes normally function in co-regulated groups, and
such intrinsic groups are independent to the set of observed
microarray samples. Moreover, the set of intrinsic feature
groups can be approximated by a set of consensus feature
groups obtained from subsampling of the training samples.
Another observation is that treating each feature group as
a single entity and performing learning at the group level
allows the ensemble effect of each feature group to offset
the random relevance variation of its group members. In-
tuitively, it is less likely for a group of irrelevant features
to exhibit the same trend of correlation to the class (hence,
showing artificial relevance) than for each group member to
gain some correlation to the class under random subsam-
pling, unless all features in the group are perfectly corre-
lated. Therefore, discriminating relevant groups from irrel-
evant ones based on group relevance is less prone to overfit-
ting than detection of relevant features on small samples.
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Figure 1: A framework of consensus group based feature selection.

As shown in Figure 1, there are two new issues in consen-
sus group based feature selection: (1) identifying consensus
feature groups from the given training data, and (2) repre-
senting each feature group by a single entity so that feature
selection and classification can be performed on the trans-
formed feature space. In our previous work [26], we devel-
oped an algorithm, DRAGS, which identifies dense feature
groups in the sample space and uses a representative feature
from each group in the subsequent feature selection and clas-
sification steps. The algorithm has shown some promising
results w.r.t. the stability of the dense groups and the gen-
eralization ability of the selected features. However, there
are two major limitations about DRAGS. First, DRAGS
tries to identify dense feature groups in the sample space
with dimensionality as high as dozens or a few hundreds (of
samples) which makes density estimation difficult and unre-
liable. As a result, the feature groups found are not always
stable under training data variations. Second, DRAGS faces
the density vs. relevance dilemma - it limits the selection of
relevant groups from dense groups for better stability of the
selection results, however, it will miss some relevant features
if those features are located in the relatively sparse regions.
The new framework of consensus group based feature selec-
tion addresses these two issues.

The main contributions of this paper are: (i) conducting
an in-depth study on the sample size dependency for the
stability of feature selection; (ii) proposing a novel frame-
work of consensus group based feature selection which alle-
viates the problem of small sample size; and (iii) developing
a novel algorithm under this framework which overcomes the
limitations of DRAGS. Experiments on both synthetic and
real-world data sets show that the new algorithm leads to
more stable feature selection results and comparable or bet-
ter generalization performance than state-of-the-art feature
selection algorithms DRAGS and SVM-RFE.

2. SAMPLE SIZE DEPENDENCY
High-dimensional data with small samples permits too

large a hypothesis space yet too few constraints (samples),
which makes learning on such data very difficult and prone
to model overfitting. In order to find a probably approxi-
mately correct (PAC) hypothesis, PAC learning theory [12]
gives a theoretic relationship between the number of sam-
ples needed in terms of the size of hypothesis space and the
number of dimensions. For example, a binary data set with
binary classes has a hypothesis space of size 22n

where n is
the dimensionality. It would require O(2n) samples to learn
a PAC hypothesis without any inductive bias [17].

Feature selection [7, 13] is one effective approach to re-
ducing dimensionality - finding a subset of features from the
original features. The reduction of dimensionality results
in an exponential shrinkage of the hypothesis space, and

hence reduces the chance of model overfitting and improves
the generalization of classification algorithms [18]. However,
feature selection itself is a challenging problem and receives
increasing and intensified attention [16]. The shortage of
samples in high-dimensional data increases the difficulty in
finding relevant features, and reduces the stability of feature
selection results under variations of training samples.

We next illustrate based on synthetic data that success-
ful detection of relevant features and the stability of feature
selection results can have a strong dependency on the sam-
ple size. The merit of using synthetic data for illustration
is two-fold. First, it allows us to examine the sample size
dependency using training sets with a wide range of sample
sizes and other properties being equal; second, it provides
us prior knowledge about truly relevant features.

The data set used here consists of 1000 training samples
randomly drawn from the same distribution P (X, Y ). The
feature set X consists of 1000 features, including 100 mutu-
ally independent features, X1, X2, ..., X100, and a number of
(10± 5) highly correlated features to each of these 100 fea-
tures. Within each correlated group, the Pearson correlation
of each feature pair is within (0.5,1), and the average pair-
wise correlation is below 0.75. The balanced binary class
label Y is decided based on X1, X2, ..., X10 using a linear
function of equal weight to these 10 truly relevant features.

We study SVM-RFE [9], an algorithm well known for
its excellent generalization performance on high-dimensional
small-sample data. The main process of SVM-RFE is to
recursively eliminate features based on SVM, using the co-
efficients of the optimal decision boundary to measure the
relevance of each feature. At each iteration, it trains a lin-
ear SVM classifier, and eliminates one or more features with
the lowest weights. We apply SVM-RFE on the above train-
ing set with sample size 1000, and its three randomly drawn
subsets of training samples with decreasing sample sizes 500,
200, and 100, in order to observe the sample size dependency
of SVM-RFE w.r.t. successful detection of relevant features
and the stability of the selected feature subsets.

To evaluate the stability of SVM-RFE for a given training
set, we can simulate training data variation by a resampling
procedure like bootstrapping or N-fold cross-validation. We
choose 10-fold cross-validation. For each training set, SVM-
RFE is repeatedly applied to 9 out of the 10 folds, while a dif-
ferent fold is hold out each time. The stability of SVM-RFE
is calculated based on the average pair-wise subset similar-
ity of the top 10 features (the optimal number of features)
selected over the 10 folds. To evaluate the effectiveness of
SVM-RFE in detecting relevant features, the average preci-
sion of the top 10 features w.r.t the 10 truly relevant features
over the 10 folds is also calculated.

To illustrate the effectiveness of feature selection based
on intrinsic feature groups, we exploit the prior knowledge
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Figure 2: Precision (a) and stability (b) of the
selected features by SVM-RFE and group-based
SVM-RFE on various training sample sizes.

of existing feature groups in the synthetic data sets and re-
place each known feature group by its representative feature
(the one closest to the group center). We then apply the
SVM-RFE algorithm and the simple F -Statistic ranking to
each transformed data set to selects the top 10 representa-
tive features, respectively. The group-based algorithms are
evaluated in the same experimental setting as SVM-RFE.

Figure 2 shows the precision and stability of the selected
top 10 features by SVM-RFE and the group-based SVM-
RFE across different training sample sizes. The results of
group-based F -Statistic ranking are almost the same as group-
based SVM-RFE, and hence are not shown in the figures.
Clearly, SVM-RFE shows a strong dependency on the train-
ing sample size w.r.t. successful detection of the truly rele-
vant features as well as the stability of the selected features
in this example. When the sample size reduces from 1000
to 100, both precision and stability curves drop sharply. In
contrast, the group-based algorithm shows much less depen-
dency on the sample size, especially when sample size is over
200. Moreover, the group-based algorithm consistently out-
performs SVM-RFE. Such observations suggest that intrin-
sic feature groups are stable under training sample variations
even at small sample size, and discriminating relevant fea-
tures from irrelevant ones at the group level is more effective
than at the feature level on small samples.

3. GROUP BASED FEATURE SELECTION
The study in the previous section illustrates the effective-

ness of feature selection based on intrinsic feature groups in
the underlying data distribution in an ideal situation. In
practice, it is a challenging problem to identify intrinsic fea-
ture groups from a small training set due to the shortage
of samples to observe feature correlation. In this section,
we first review a previously proposed framework of dense
group based feature selection and the DGF and DRAGS
algorithms. We then describe the details of the new frame-
work of consensus group based feature selection (as outlined
in Figure 1) and a new algorithm under this framework.

3.1 Dense Group Based Feature Selection
The dense group based framework is motivated by a key

observation that in the sample space, the dense core regions
(peak regions), measured by probabilistic density estima-
tion, are stable with respect to sampling of the dimensions
(samples). For example, a spherical Gaussian distribution
in the 100-dimensional space will likely be a stable spherical
Gaussian in any of the subspaces. The features near the core

Algorithm 1 DGF (Dense Group Finder)

Input: data D = {xi}n
i=1, kernel bandwidth h

Output: dense feature groups G1, G2, . . . , GL

for i = 1 to n do
Initialize j = 1, yi,j = xi

repeat
Compute yi,j+1 according to (1)

until convergence
Set stationary point yi,c = yi,j+1 (make yi,c a peak pi)
Merge peak pi with its closest peak if their distance < h

end for
For every unique peak pr, add xi to Gr if ||pr − xi|| < h

of the spherical Gaussian, viewed as a core group are likely
to be stable under sampling, although exactly which feature
is closest to the peak could vary [26].

Given a training set D composed of n features and m
samples, the data matrix is transposed such that original
feature vectors become data points in the new feature space
defined by the original samples. Algorithm 1, DGF (Dense
Group Finder) was introduced in [26] as a means to locate
dense feature groups from data. DGF works by employing
kernel density estimation [24] and the iterative mean shift
procedure [4] on each of the features in the sample space.
When the mean shift process converges, nearby features are
gathered into feature groups and returned by the algorithm.

The main part of DGF is the iterative mean shift proce-
dure for all features, which locates a density peak by starting
the mean at a given feature xi and using other features in
the local neighborhood (determined by a kernel bandwidth
h) to shift the mean to a denser location. Specifically

yj+1 =

Pn
i=1 xiK(

yj−xi

h
)Pn

i=1 K(
yj−xi

h
)

j = 1, 2, ... (1)

is used to determine the sequence of successive locations
of the kernel K. The algorithm has a time complexity of
O(λn2m), where λ is the number of iterations for each mean
shift procedure to converge. Details of the algorithm and the
choice of kernel function K and bandwidth are given in [26].

The groups found by DGF may or may not be relevant,
and so these groups must be processed by a second algorithm
DRAGS (Dense Relevant Attribute Group Selector) which
relies on DGF to find dense feature groups and then eval-
uates and ranks the relevance of each feature group based
on the average relevance (F -Statistic score) of features in
each group. A representative feature (the one closest to the
group center) from each selected top relevant group will be
used for classification.

While the DGF and DRAGS algorithms have shown some
promise w.r.t. the stability of the dense groups and the gen-
eralization performance of the selected features, the dense
group based framework has two major limitations. In the
first step, as mentioned in the Introduction, density esti-
mation can be unreliable in high-dimensional spaces. Since
the dimensionality of the feature space for estimating den-
sity peaks is as high as dozens or a few hundreds (i.e., the
training sample size), the identified peaks are susceptible
to variations of the dimensions (samples), and the stability
of the identified dense groups suffer accordingly. Moreover,
the overall sample size is still much smaller than the sample
distribution, which can add to the instability of the groups
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Algorithm 2 CGS (Consensus Group Stable Feature Selec-
tion

Input: data D, # of subsampling t, relevance measure Φ
Output: selected relevant consensus feature groups
CG1, CG2, . . . , CGk

// Identifying consensus groups
for i = 1 to t do

Construct bootstrapped training set Di from D
Obtain dense feature groups by DGF (Di, h)

end for
for every pair of features Xi and Xj ∈ D

Set Wi,j=frequency of Xi and Xj grouped together/t
end for
Create consensus groups CG1, CG2, . . . , CGL by perform-
ing hierarchical clustering of all features based on Wi,j

// Feature selection based on consensus groups
for i = 1 to l do

Obtain a representative feature Xi from CGi

Measure relevance Φ(Xi)
end for
Rank CG1, CG2, . . . , CGL according to Φ(Xi)
Select top k most relevant consensus groups

found under training sample variations. In the second step,
the framework limits the selection of relevant groups from
dense groups, and will miss some relevant features if those
features are located in the relatively sparse regions. The
new framework proposed next addresses these two issues.

3.2 Consensus Group Based Feature Selection
The consensus group based framework first approximates

intrinsic feature groups by a set of consensus feature groups,
and then performs feature selection in the transformed fea-
ture space described by consensus feature groups. We next
describe each component in detail, and present a new al-
gorithm CGS (Consensus Group Stable feature selection)
which instantiates the proposed framework.

3.2.1 Identifying Consensus Groups
In practice, it is a challenging problem to identify intrinsic

feature groups from a small training set due to the shortage
of samples to observe feature correlation. Feature groups
found on small samples can be suboptimal and instable un-
der training sample variations. Our idea of approximating
intrinsic feature groups by a set of consensus feature groups
aggregated from multiple sets of feature groups originates
from ensemble learning. It is well known that ensemble
methods [2] for classification which aggregate the predic-
tions of multiple classifiers can achieve better generaliza-
tion than a single classifier, if the ensemble of classifiers are
correct and diverse. Similar to the idea of ensemble clas-
sification, ensemble clustering methods [6, 23] have also be
extensively studied, which aggregate clustering results from
multiple clustering algorithms or from the same clustering
algorithm under data manipulation. Although finding con-
sensus feature groups can be considered as ensemble feature
clustering, to the best of our knowledge, this is the first
time that ensemble learning is applied to identify consensus
feature groups for stable feature selection.

Similar to ensemble construction in classification and clus-
tering, there are two essential steps in identifying consensus
feature groups: Step (1), to create an ensemble of feature

grouping results, and Step (2), to aggregate the ensemble
into a single set of consensus feature groups. Algorithm 2,
CGS , describes the key procedure for each of the two steps.
In Step (1) CGS adopts the DGF algorithm introduced be-
fore as the base algorithm, and applies DGF on a number of
(user-defined parameter t) bootstrapped training sets from
a given training set D. The result of this step is an ensemble
of feature groupings, {G1

1, . . . , G
1
L1 , . . . , Gt

1, . . . , G
t
Lt
}, where

Gi
j represents the j-th feature group formed in the ith DGF

run. This straightforward step has time complexity O(tλn2m)
as the base DGF algorithm has time complexity O(λn2m).

In Step (2), it is a non-trivial issue to aggregate a given en-
semble of feature groupings {G1

1, . . . , G
1
L1 , . . . , Gt

1, . . . , G
t
Lt
}

into a final set of consensus groups {CG1, . . . , CGL}, where
CGi is a consensus group. This issue resembles the well-
studied cluster ensemble problem - combining a given en-
semble of clustering solutions into a final solution [6, 23].
Previously, Strehl and Ghosh [23] proposed two approaches,
instance-based or cluster-based, to formulate the cluster en-
semble problem. The instance-based approach models each
instance as an entity and decides the similarity between each
pair of instances based on how frequently they are clustered
together among all clustering solutions. The cluster-based
approach models each cluster in the ensemble as an entity,
and decides the similarity between each pair of clusters based
on the percentage of instances they share. Given the sim-
ilarity matrix for all pairs of entities in either approach, a
final clustering can be produced based on any hierarchical
or graph clustering algorithm.

In this work, we chose the instance-based approach for
the proposed CGS algorithm for two reasons. First, this
approach is more efficient than the cluster-based approach
w.r.t. both computation and space as the number of en-
tities in the instance-based approach (i.e., the number of
features) is often much smaller than the number of enti-
ties in the cluster-based approach (i.e., the total number
of feature groups

Pt
i=1 Li in the ensemble) under the ex-

perimental settings described in the following section. Sec-
ond, our preliminary evaluation of both approaches shows
that the consensus groups formed by the instance-based ap-
proach are consistently more stable than the cluster-based
approach. Once Wi,j for every feature pairs is computed, the
CGS algorithm applies agglomerative hierarchical clustering
to group features into a final set of consensus feature groups.
To reduce the effect of outliers, we use average linkage in
deciding the similarity between two groups to be merged.
The merging process continues as long as the two feature
groups to be merged has a similarity value > 0.5, indicat-
ing, on average, the feature pairs in the resulting group are
also grouped together by a majority of the DGF runs. The
use of majority voting provides a natural stopping criterion
for deciding the final number of feature groups. The time
complexity for Step (2) is O(n2t + n2logn).

3.2.2 Feature Selection based on Consensus Groups
Consensus groups found by CGS can still be comprised

of irrelevant features, so, CGS continues to identify rele-
vant groups from the consensus feature groups. CGS works
by first forming a representative feature for each consen-
sus feature group, and then evaluates the relevance of each
feature group based on its representative feature. In our
implementation, we use the feature closest to the group cen-
ter to represent the group. Different feature selection algo-
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rithms and relevance measures can be adopted in the same
framework to select relevant feature groups since each group
has been represented by a single entity. In this work, since
our investigative emphasis is on the effectiveness of consen-
sus feature groups for stable feature selection, we use the
simple method of individual feature evaluation based on F -
Statistic to determine the group relevance in CGS, as we did
for DRAGS in [26]. However, there are two key differences
between CGS and DRAGS. First, CGS relies on consensus
feature groups, while DRAGS relies on dense feature groups.
Second, CGS considers all consensus groups during the rel-
evance selection step, while DRAGS limits the selection of
relevant groups to the top dense groups. Therefore, CGS ad-
dresses two key limitations of DRAGS discussed previously.

4. EMPIRICAL STUDY
In this section, we empirically study the framework of

stable feature selection based on consensus feature groups.
Section 4.1 introduces stability measures, Section 4.2 de-
scribes the data sets used and experimental procedures, and
Section 4.3 presents results and discussion.

4.1 Stability Measures
Evaluating the stability of feature selection algorithms re-

quires some similarity measures for two sets of feature se-
lection results. In our previous work [26], we introduced a
general similarity measure for two sets of feature selection

results R1 = {Gi}|R1|
i=1 and R2 = {Gj}|R2|

j=1 , where R1 and
R2 can be either two sets of features or two sets of feature
groups. R1 and R2 together are modeled as a weighted bi-
partite graph G = (V, E), with vertex partition V = R1∪R2,
and edge set E = {(Gi, Gj)|Gi ∈ R1, Gj ∈ R2}, and weight
w(Gi,Gj) associated with each pair (Gi, Gj). The overall
similarity between R1 and R2 is defined as:

Sim(R1, R2) =

P
(Gi,Gj)∈M w(Gi,Gj)

|M | , (2)

where M is a maximum matching in G (i.e., a subset of
non-adjacent edges in E with largest sum of weights).

Depending on how to decide w(Gi,Gj), the measure has
two forms: SimID and SimV , where the subscripts ID and

V respectively indicate that each weight is decided based on
feature indices or feature values. When Gi and Gj represent
feature groups, for SimID, each weight w(Gi,Gj) is decided
by the overlap between the two feature groups,

w(Gi,Gj) =
2|Gi ∩Gj |
|G1|+ |G2| . (3)

For SimV , each weight is decided by the Pearson correlation
coefficient between the centers of the two feature groups. In
the special case when Gi and Gj only contain one feature,
for SimID, w(Gi,Gj) = 1 for matching features and 0 other-
wise; for SimV , each weight can be simply decided by the
correlation coefficient between the two individual features.

Given the similarity measure, the stability of a feature se-
lection algorithm is then measured as the average similarity
of various feature selection results produced by the same al-
gorithm under training data variations. In [26], we used the
feature selection result from a full training set as a reference
to compare various results under subsampling of the full
training set. Although the procedure is more efficient than
pair-wise comparison among various results, the evaluation

result can be biased since the individual difference between
two sets of results can be greater than their difference to
a reference set. We use pair-wise similarity comparison in
stability calculation in this paper.

4.2 Experimental Setup
We perform our study on both synthetic data sets and

real-world data sets. Besides the synthetic data set used
in Section 2, we also create another data set with higher di-
mensionality and larger feature groups. A summary of these
data sets is provided in Table 1. To assure comparable re-
sults, we follow the same procedure in generating both data
sets as described in Section 2. For each data set, four differ-
ent training sample sizes (100, 200, 500, and 1000) will be
used to study the sample size dependency of the group-based
algorithms as in Section 2. For real-world data, we use six
frequently studied public microarray data sets characterized
in Table 2.

Table 1: Summary of Synthetic Data Sets.
Data Set Features Feature Groups Truly Rel. Feat.
D1k 1000 100 (size 10± 5) 10
D5k 5000 250 (size 20± 5) 10

Table 2: Summary of Microarray Data Sets
Data Set Genes Samples Classes
Colon 2000 62 2
Leukemia 7129 72 2
Prostate 6034 102 2
Lung 12533 181 2
Lymphoma 4026 62 3
SRBCT 2308 63 4

To empirically evaluate the stability and accuracy of SVM-
RFE, DRAGS, and CGS on a given data set, we apply the
10 fold cross-validation procedure. For each microrray data
set described above, each feature selection algorithm is re-
peatedly applied to 9 out of the 10 folds, while a different
fold is hold out each time. Different stability measures are
calculated. In addition, a classifier is trained based on the
selected features from the same training set and tested on
the corresponding hold-out fold. The CV accuracies of lin-
ear SVM and KNN classification algorithms are calculated.
The above process is repeated 10 times for different ran-
dom partitions of the data set, and the results are averaged.
For each of the two synthetic data sets, we follow the same
10×10-fold CV procedure above with two changes. First,
an independent test set of 500 samples randomly generated
from the same distribution as the training set is used in
replacement of the hold-out fold. Second, in addition to sta-
bility and accuracy measures, we also measure the precision
w.r.t. truly relevant features during each iteration of the
10×10 CV and obtained the average values. For each per-
formance measure, two-sample paired t-tests between the
best performing algorithm and the other two algorithms is
used to decide the statistical significance of the difference
between the two average values over the 10 random trials.

As to algorithm settings, for SVM-RFE, we eliminate 10
percent of the remaining features at each iteration. We use
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Weka’s implementation [25] of SVM (linear kernel, default C
parameter) and KNN (K=1). For DRAGS, the selection of
relevant groups is limited to the top 50 dense feature groups.
The kernel bandwidth parameter h for the base DGF algo-
rithm is set to be the average of the average distance to its
K-nearest neighbors for all features. As discussed in [26], a
reasonable K value should be sufficiently small in order to
capture the heterogeneity of the data. In our experiments,
for each synthetic data, the K value is set to be the average
group size. For each microarray data set, the K value is
chosen from 3 to 5 based on the stability of DGF through
cross-validation. For CGS , the number of subsampling t is
set to be 10.

4.3 Results and Discussion

4.3.1 Synthetic Data
Figure 3 compares SVM-RFE, DRAGS, and CGS algo-

rithms by various performance measures on the two syn-
thetic data sets D1k and D5k under increasing training sam-
ple size. For SVM-RFE, the same trends as seen in Figure 2,
Section 2 can be observed here on both data sets. SVM-RFE
shows a strong dependency on the sample size w.r.t. suc-
cessful detection of the truly relevant features (as shown in
the precision figures in the left column) as well as the stabil-
ity of the selected features (the SimID figures in the middle
column). The SVM accuracies based on the selected features
(right column) are consistent with the precision values.

CGS also shows the same trends as the group-based al-
gorithms which perform feature selection based on repre-
sentative features of the intrinsic groups in Section 2. Our
initial experimental results (not included due to space limit)
showed that the consensus groups identified by the ensem-
ble version of the DGF algorithm approximate the intrinsic
groups very well on these synthetic data sets even when the
sample size is small. As a consequence, CGS which performs
feature selection based on representative features of the con-
sensus groups shows a much less dependency on the sample
size than SVM-RFE. A close look at Figure 3 shows that the
performance of CGS at sample size 200 is usually as good
as SVM-RFE at over twice the sample size. Such observa-
tion indicates that consensus group based feature selection
is an alternative way of improving the stability of feature
selection instead of increasing the sample size. It is worthy
to note that in many applications, increasing the number
of training samples could be impractical or very costly. For
example, in gene expression microarray data, each sample is
from the tissue of a cancer patient, which is usually hard to
obtain and costly to perform experiments on.

The inferior performance of DRAGS may appear surpris-
ing at the first look. Such performance is due to the the fact
that for each data set, different feature groups have similar
density, and the ratio of relevant to irrelevant groups is low
(1/9 for D1k and 1/24 for D5k). Therefore, the probabil-
ity that a relevant group happens to be among the top 50
dense groups and considered by DRAGS is low. If DRAGS
allowed all groups found by DGF to be considered for rel-
evant group selection, its performance would be better on
these data sets since the groups found by DGF are reason-
ably close to the true feature groups. However, for real-world
data which could have heterogenous density among various
groups, the dense group based framework faces the dilemma
of the tradeoff between density v.s. relevance. Allowing

DRAGS to select features from low density groups may in-
crease the selection accuracy but the low density groups are
sensitive to training data variations. The consensus group
based framework proposed in this work avoids the above
dilemma; it does not limit the selection from dense groups,
and it improves the stability of the resulting feature groups
based on the ensemble mechanism.

4.3.2 Microarray Data
Figures 4 and 5 compare SVM-RFE, DRAGS, and CGS by

various performance measures on the six microarray data
sets used in this study. Figures in the left column compare
the stability of CGS and DRAGS w.r.t. the similarity of
the selected features groups. CGS shows significantly better
stability than DRAGS for all six data sets except Leukemia
and Lung. This verifies the effectiveness of the ensemble
mechanism of CGS at stabilizing the feature groups pro-
duced by the DGF algorithm. Figures in the middle column
compare the stability of CGS , DRAGS, and SVM-RFE,
w.r.t. the similarity of the selected features. CGS is sig-
nificantly better than DRAGS for all six data sets except
Leukemia. Overall, the stability of CGS is the best among
all three algorithm in comparison. Figures in the right col-
umn compare the SVM accuracy of the three algorithms.
CGS in general results in significantly higher accuracy than
DRAGS and SVM-RFE on two data sets, Colon and SR-
BCT, and comparable results in the other data sets. For
all data sets, the stability trends w.r.t. SimV measure (in
Section 4.1) are consistent with those w.r.t SimID, and the
accuracy trends from KNN are in general similar to SVM.
Due to space limit, curves for SimV and KNN accuracy are
not reported.

Although CGS is computationally more costly than DRAGS
and SVM-RFE, the payoff of significantly improved stabil-
ity makes CGS a valuable tool for biologists who seek to
identify not only highly predictive features but also stable
feature groups. Such feature groups provide valuable in-
sights about how relevant features are correlated, and may
suggest high-potential candidates for biomarker detection.

5. RELATED WORK
There exist very limited studies on the stability of feature

selection algorithms. An early work in this direction was
done by Kalousis et al. (2007) . Their work raised the issue
of feature selection stability and compared the stability of
a number of conventional feature selection algorithms under
training data variation based on three stability measures on
high-dimensional data. More recently, two approaches were
proposed to explicitly achieve stable feature selection with-
out sacrificing classification accuracy: the dense group based
feature selection in our previous work [26], and ensemble fea-
ture selection [21]. In the later, Saeys, et al. studied ensem-
ble feature selection which aggregates the feature selection
results from a conventional feature selection algorithm such
as SVM-RFE repeatedly applied on different bootstrapped
samples of the same training set. Their results show that
the stability of ensemble SVM-RFE does not improve signifi-
cantly from single run of SVM-RFE. Our ensemble approach
in the proposed feature selection framework is different as
it applies the idea of ensemble learning to identify consen-
sus feature groups instead of consensus feature rankings or
feature subsets. We also evaluated ensemble SVM-RFE and
observed a similar trend as in [21] in our initial study.
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6. CONCLUSION
In this paper, we have studied the sample size dependency

for stability of feature selection. We have proposed a novel
consensus group based framework for stable feature selec-
tion. Experiments on both synthetic and real-world data
sets show that the CGS algorithm is effective at alleviat-
ing the problem of small sample size, and the algorithm in
general leads to more stable feature selection results and
comparable or better generalization performance than two
state-of-the-art feature selection algorithms, DRAGS and
SVM-RFE. Future work is planned to investigate different
ensemble methods for identifying consensus feature groups,
for example, different ways of generating and aggregating
ensemble based on DGF algorithm or other robust cluster-
ing algorithms.
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Figure 3: Comparison of SVM-RFE, DRAGS, and CGS on synthetic data sets. Figures in the left, middle,
and right columns respectively show the precision w.r.t. the truly relevant features, the stability w.r.t.
SimID of the selected representative features, and the SVM classification accuracy, for the top 10 selected
representative features under increasing sample size.
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Figure 4: Comparison of SVM-RFE, DRAGS, and CGS on Colon and Leukemia microarray data sets. Figures
in the left, middle, and right columns respectively show the stability w.r.t. SimID of the selected feature
groups, the stability w.r.t. SimID of the selected representative features, and the SVM classification accuracy,
for various numbers of selected features (or groups).
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Figure 5: Comparison of SVM-RFE, DRAGS, and CGS on Lung, Prostate, Lymphoma and SRBCT microarray
data sets. Figures in the left, middle, and right columns respectively show the stability w.r.t. SimID of
the selected feature groups, the stability w.r.t. SimID of the selected representative features, and the SVM
classification accuracy, for various numbers of selected features (or groups).
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