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ABSTRACT
We present Maverick, a general, extensible framework that discov-

ers exceptional facts about entities in knowledge graphs. To the

best of our knowledge, there was no previous study of the prob-

lem. We model an exceptional fact about an entity of interest as a

context-subspace pair, in which a subspace is a set of attributes and

a context is defined by a graph query pattern of which the entity is

a match. The entity is exceptional among the entities in the context,

with regard to the subspace. The search spaces of both patterns and

subspaces are exponentially large. Maverick conducts beam search

on the patterns which uses a match-based pattern construction

method to evade the evaluation of invalid patterns. It applies two

heuristics to select promising patterns to form the beam in each

iteration.Maverick traverses and prunes the subspaces organized

as a set enumeration tree by exploiting the upper bound properties

of exceptionality scoring functions. Results of experiments and user

studies using real-world datasets demonstrated substantial perfor-

mance improvement of the proposed framework over the baselines

as well as its effectiveness in discovering exceptional facts.
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1 INTRODUCTION
Knowledge graphs such as DBpedia [4], Freebase [6], Wikidata [37],

and YAGO [31] record properties of and relationships between

real-world entities. These data are used in numerous applications,

including search, recommendation, and business intelligence. This

paper introduces Maverick, a framework that, given an entity in

a knowledge graph, discovers exceptional facts about the entity.

Informally, such exceptional facts separate the entity from many

other entities. Consider several factual statements in published

news articles:

(1) “Denzel Washington followed Sidney Poitier as only the second

black to win the Best Actor award.” (abcnews.go.com)
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(2) “This was Brazil’s first own goal in World Cup history ...” (

yahoo.com)

(3) “Hillary Clinton becomes first female presidential nominee.”

(chicagotribune.com)

An exceptional fact consists of three components: an entity of inter-
est, a context, and a set of qualifying attributes. In each exceptional

fact, among all entities in the context, the entity of interest is one

of the few or even the only one that bears a particular value com-

bination on the qualifying attributes. For example, in the above

statement 1, the entity of interest is Denzel Washington, the context

is the Academy Award Best Actor winners, and the qualifying at-

tribute is ethnicity.

Discovery of exceptional facts is useful to important applica-

tions such as computational journalism [11, 12], recommendation

systems, and data cleaning. a) In fact-finding [21, 22, 32, 41, 44],

journalists are interested in monitoring data and discovering at-

tention-seizing factual statements such as the aforementioned ex-

amples. These facts help make news stories substantiated and in-

teresting, and they may even become leads to news stories. b) In

fact-checking [20, 42], for vetting the statements made by humans,

fact-checkers at news organizations such as The Washington Post,

CNN, and PolitiFact can compare the statements with automatical-

ly-discovered facts. For example, an algorithm may find that Hillary

Clinton is the second female presidential nominee, which contradicts

with the statement 3 above.
1
c) Exceptional facts can help promote

friends, news, products, and search results in various recommenda-

tion systems. d) When the discovered facts are inconsistent with

known truth or apparent common sense, it reveals incomplete data

or data errors. Such insights aid knowledge base cleaning and com-

pletion. For example, the above statement 3 may be generated using

an incomplete source that misses the nomination of Victoria Woodhull.

Given an entity in a knowledge graph, an integer k , and an

exceptionality scoring function, the objective of exceptional fact
discovery is to find the top-k highest scored pairs of (context, at-

tribute set). The entity is exceptional with regard to the attributes,

while at the same time belonging to the context together with other

entities. This description hinges upon two concepts—context and

attribute—which we explain below.

• The attributes of an entity are the entity’s incoming/outgoing

edge labels, and the attribute values are the entity’s direct neigh-

bors. For example, Fig. 1 is an excerpt of a knowledge graph

about FIFAWorld Cup, in which the edge labeled awarded-to from
node G1 to CRO captures the fact that the goal is awarded to the

team Croatia. Entity G1 has two attributes scored-by and awarded-to,
with values S1 and CRO, respectively.

1
The first female presidential nominee was Victoria Woodhull, accord-

ing to http://www.snopes.com/victoria-woodhull-hillary-clinton/ .
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Figure 1: An excerpt of a knowledge graph.

a Pattern P1 b Match M1

c Match M2 d Match M3

Figure 2: Pattern P1 and variable ?g define a context consisting of
all the goals scored by BRA players; M1, M2, M3 are matches to P1 in
Fig. 1.

• A context is a set of entities sharing some common characteristics

defined in a pattern query. In Fig. 2a, pattern P1 and the variable

?g in it define a context C1 of all the goals scored by players of

team Brazil. Figs. 2b-2d show P1’s matches in Fig. 1. For instance,

match M1 (Fig. 2b) is a subgraph of Fig. 1, in which ?g of P1 is
mapped to G1. Hence, G1 belongs to context C1. Similarly, G2 and

G3 in Fig. 1 also belong to C1 based onM2 andM3, while G4 and

G5 are not part of C1.

• With respect to a subspace (i.e., a set of attributes), an entity is

exceptional in a context if its attribute values deviate from the

values of other entities in the same context. For example, the

value of attribute awarded-to for G1 is CRO, while the value is BRA for

both G2 and G3. The degree of exceptionality of an entity varies by

different contexts and subspaces. For instance, one interpretation

of statement 1 is that the context is the Academy Award Best

Actor winners and the qualifying attribute is ethnicity; an alter-

native interpretation is that the context is all African Americans

and the qualifying attribute is the award. Under some definitions

of exceptionality, the second interpretation may render Denzel

Washington more exceptional, since there are a lot more African

Americans than winners of the award.

A holistic solution to exceptional fact discovery may be expected

to synthesize whatever types of available data (structured databases,

graphs, text, and so on), which is beyond the scope of this paper.

Instead, our focus is on knowledge graphs which are becoming

increasingly important to analytics and intelligence applications. To

the best of our knowledge, there is no previous study on discovering

exceptional facts about entities in knowledge graphs. The two most

related areas are outlier detection in graphs [17, 28, 33, 38] and

outlying aspect mining [2, 3, 15, 21, 32, 36, 40]. Duan et al. [15]

and Vinh et al. [36] discussed the differences between these two

areas. They achieve different goals. Outlier detection searches for

all outlying objects among a set of objects. Outlying aspect mining,

however, focuses on only one given object and returns the subspaces

of attributes in which the object is relatively outlying, regardless of

its true degree of outlyingness. In terms of objectives and problem

modeling, the exceptional fact discovery problem formulated in

this paper is closer to outlying aspect mining than outlier detection.

However, it focuses on graph data. In contrast, existing outlying

aspect mining methods [3, 21, 32, 40] assume a single relational

table. These methods take a tuple as input and returns two disjoint

attribute sets. The first set of attributes define the context, i.e.,

the tuples having values identical to that of the input tuple on

the attributes. On the second set of attributes, the input tuple has

peculiar values compared to other tuples belonging to the context.

However, these methods for outlying aspect mining cannot be

effectively applied to knowledge graphs, since they are specifically

devised for single tables only. A seemingly plausible idea can be to

represent a knowledge graph as a single table and then to apply

the existing methods on the table. Consider the single-table model

of RDF proposed in [8]. When adapting it for a knowledge graph,

each tuple (row) is for an entity v and each attribute (column) cor-

responds to an edge label in the knowledge graph. The attribute is

also associated with an edge direction—either incoming into or out-

going from v . The value at the junction of the row and the column

is an entity or a set of entities adjacent to v via edges with the label

and direction given by the column. Given this single-table represen-

tation of the knowledge graph, at least a few major problems render

the existing outlying aspect mining methods inapplicable. First, in
these methods a context, defined by a set of attributes, consists

of the tuples having values identical to that of the input tuple. In

other words, the context is the result of a conjunctive query over

the attributes. For knowledge graphs, however, a context is defined

by a graph pattern query, which cannot be captured by conjunctive

queries on attributes in the aforementioned single-table representa-

tion. More specifically, an edge in the pattern may not be adjacent

to the input entity and thus does not correspond to any of the en-

tity’s attributes. Hence, evaluating a pattern may involve self-joins

of the single-table. Existing outlying aspect mining methods are

not designed to accommodate joins. Second, the aforementioned set

values in the single-table representation are not considered in the

existing methods. An adaptation of the methods will thus require

at least joins which, as mentioned above, are not supported by the

methods. Third, due to the heterogeneity and scale of a large knowl-
edge graph, such a single-table is extremely wide and sparse, which

is well beyond the capacity of the existing methods because of the

intrinsic exponential complexity of the problem’s search space.

To discover the exceptional facts about an entity, we must ex-

plore two extremely large search spaces, one of patterns and the

other of attribute subspaces. Section 5.1 shows that the number of

patterns is at least exponential in the size of the graph. It is also

clear that the number of subspaces is exponential in the number

of attributes since a subspace is a combination of attributes. It is

not computationally feasible to exhaustively enumerate all possible

patterns and subspaces. Furthermore, it is challenging to prune

patterns and subspaces, due to the non-existence of downward clo-
sure property (i.e., anti-monotone property) on typical exceptionality

scoring functions.

To tackle these challenges, this paper introduces Maverick, a
beam-search based framework. Given an input entity, Maverick
discovers the top-k context-subspace pairs that give the entity the

highest expectionality scores. Maverick allows an application to

plug in any exceptionality scoring function based on the applica-

tion needs. Conceptually,Maverick organizes the search space of

patterns as a partial order defined by the subsumption relation on



patterns and the search space of attribute subspaces as a set enumer-

ation tree [30]. Intuitively, the search for top-k context-subspace

pairs is performed in a nested-loop fashion in which the outer

loop enumerates patterns and the inner loop enumerates subspaces.

Maverick conducts breath-first beam search [43] on the space of

patterns, starting from a pattern with a single variable node. On

each visited pattern,Maverick applies a set of heuristics to prune

its children so thatMaverick visits at mostw patterns at each level,

wherew is the beam width. Each visited pattern is evaluated over

the knowledge graph to obtain the contexts it defines. For each

context,Maverick calculates the input entity’s exceptionality scores
in different subspaces. It exploits an upper bound for exceptional-

ity score to guide the traversal of the subspaces. The supersets of

a subspace are pruned if their upper-bound scores are below the

current top-k scores.

The paper reports the results of experiments on two real-world

knowledge graphs, which verifyMaverick’s effectiveness in finding
exceptional facts. The experiments compared the performance of a

breath-first search method and the beam search method coupled

with different candidate-selection heuristics. The experiment results

establish that, even though the breath-first search method may

evaluate more patterns in a fixed time frame than the beam search

methods, it is not as effective as the beam search method using the

proposed heuristics. We have also included some exceptional facts

discovered byMaverick to demonstrate its practicality.

2 PROBLEM FORMULATION
In this section we formally define the data model of knowledge

graphs, the concepts of context, attribute, and subspace, and the

problem of exceptional fact discovery.

Knowledge Graphs
A knowledge graph G (VG ,EG ) is a set of RDF [13] triples with

node set VG ⊆ I and edge set EG ⊆ VG × I ×VG , where I is the

universe of IRIs.
2
In Fig. 1, there are three kinds of entities: goals

(e.g., G1), players (e.g., S1), and teams (e.g., BRA). (Without loss of gen-

erality, we use an entity’s name as its identifier (IRI) in the ensuing

examples, assuming entity names are unique.) Three different types

of edge labels represent different relationships: each player plays

for a team (play-for), and each goal is scored by a player (scored-by)
and is awarded to a team (awarded-to). For example, there is an own

goal, as G1 is scored by S1, a player of BRA, but awarded to CRO.

Patterns and Contexts

Definition 1 (Pattern P ). A pattern is a weakly connected graph
3

P (VP ,EP ), where VP ⊆ I ∪ V , EP ⊆ VP × I × VP , and V is the

universe of variables. We also denote by XP ⊆ VP the variables

occurring in P . △

Definition 2 (MatchM). AmatchM (VM ,EM ) to a pattern P (VP ,EP )
is a subgraph of G (VM⊆VG and EM⊆EG ) such that there exists a

bijection f : VP→VM satisfying the following conditions:

• |VM | = |VP |, |EM | = |EP |;
• ∀ (vi , l ,vj ) ∈ EP ⇒ ( f (vi ), l , f (vj )) ∈ EM ;

• ∀ (ui , l ,uj ) ∈ EM ⇒ ( f −1 (ui ), l , f
−1 (uj )) ∈ EP ;

2
For the sake of simplicity, we do not consider blank nodes and literals.

3
Aweakly connected graph is a directed graph of which the correspond-

ing undirected graph is connected.

• ∀ v ∈ I ⇒ f (v ) = v .
In short, a subgraph M of G is a match to pattern P if M is edge-

isomorphic to P and, for each non-variable node v in P , f (v ) has
the same identifier. △

Note that the semantics of patterns in our definition is similar

to that of basic graph patterns in [19, 27]. However, there are two

main differences. One is that patterns in this work are weakly

connected. The other is that a match to a pattern is required to

be edge-isomorphic to the pattern. Neither of them is enforced in

[19, 27].

Definition 3 (Range of Variable RPx ). LetMP be all the matches to

pattern P in a knowledge graphG . (I.e.,MP is [[P]]G , the evaluation
of P againstG , using the terminology in [27].) For a variable x ∈ XP ,

the range of x , denoted RPx , is a set of entities defined as

RPx = { f (x ) | M ∈ MP , f : VP → VM }. △

For example, P1 in Fig. 2a has two variable nodes, ?g and ?s. (To

distinguish variables from entities, the names of variable nodes

always start with the symbol ?.) Figs. 2b-2d show P1’s matches in

Fig. 1. RP1
?д = {G1, G2, G3} and R

P1
?s = {S1, S2, S3}.

Definition 4 (Context CP,x
v ). Given an entity v , a pattern P , a

variable x ∈ XP such that v ∈ RPx , the context of v defined by P

and x is denoted CP,x
v and CP,x

v =RPx . △

For example, the context of G1 in the running example—goals

scored by BRA players—is defined by pattern P1 in Fig. 2a and variable

?д in the pattern: C
P1,?g
G1 = RP1?g = {G1, G2, G3}. On the other hand,

since G1 < RP1?s , ?s in P1 does not define a context of G1. Note that a

pattern may define multiple contexts of v , since v may be mapped

to different variables in the pattern. For example, consider pattern

P = {(?g, awarded-to, ?a), (?g, scored-by, ?s), (?s, play-for, ?t)}. It defines

two different contexts of BRA: CP,?a
BRA = {CRO, BRA}, C

P,?t
BRA = {ESP, BRA}.

Entity Attributes and Subspaces
Given an entity of interest v , an attribute corresponds to the

label of an edge incoming into or outgoing from v , and its value

is the entity at the other end of the edge. Note that we need to

distinguish between incoming attributes and outgoing attributes

since an entity can be both sources and destinations of edges of

the same label. For instance, a person can have a manager and

meanwhile be the manager of someone else.

Definition 5 (Entity Attributes Av ). Given an entity v , its at-

tributes Av is the union of its incoming and outgoing attributes:

Av = Ai

v ∪ Ao

v . The incoming attributes are a set of edge labels

Ai

v = {(l ,←) | ∃(x , l , v) ∈ EG }. Given an incoming attribute

a = (l ,←) ∈ Ai

v , v’s value on attribute a is the set v .a = {x | (x , l ,
v) ∈ EG }. Similarly, the outgoing attributes are Ao

v = {(l ,→) | ∃(v ,
l , x ) ∈ EG }. Given an outgoing attribute a = (l ,→) ∈ Ao

v , v’s value
is v .a = {x | (v , l , x ) ∈ EG }. △

Definition 6 (Subspace A). A subspace A is a subset of v’s at-
tributes, i.e., A ⊆ Av . The projection of v’s attribute values onto
subspace A is denoted v .A, and v .∅ = null. △

For example, in Fig. 1, Ai

CRO = {(play-for,←), (awarded-to,←)};
CRO.(awarded-to,←) = ⟨{G1,G4}⟩ andAo

G1 = {(scored-by,→), (awarded-to,→
)}; G1.(awarded-to,→) = ⟨{CRO}⟩. Let subspace A = {(scored-by,←),
(play-for,→)}. AS1 = A and S1.A = ⟨{G1}, {BRA}⟩.



Exceptionality Score

Definition 7 (Exceptionality Scoring Function χ ). An exception-

ality scoring function χ (v,A,C ) ∈ R measures entity v’s degree of
exceptionality with regard to subspace A in comparison with other

entities in context C . Without loss of generality, we assume the

range of χ is [0, 1], with larger χ implying greater exceptionality.

We also set χ (v,A,C )=0 if A ⊈ Av or v < C , to make χ a total

function. △

TheMaverick framework is indifferent to the choice of the excep-

tionality scoring function. It can accommodate many different in-

terestingness/outlyingness functions (see surveys such as [18, 24]).

Hence, the focus of this paper is not on the design, evaluation and

comparison of such exceptionality scoring functions. Rather, the

goal is to develop a general framework for efficiently finding excep-

tional facts under various scoring functions. Nevertheless, to make

the discussion concrete, we consider several representative func-

tions, of which one is introduced below and two more are discussed

in Section 4.2 and in Appendix A.2. To ensure consistency, the dis-

cussion uses our own notations and terminologies in presenting

the adaptation of existing functions.

One-of-the-Few χf The one-of-the-few concept is adapted from

[41]. The crux of the idea is that a factual claim about an entity is

interesting when equally or more significant claims can be made

about only few other entities. For example, in Fig. 1, it is interesting

to claim “G1 is the only own goal among the goals scored by BRA

players”, since such a unique claim cannot be made about any other

goal scored by a BRA player. On the contrary, “G1 is the only goal

scored by S1” is not impressive, because the same kind of claim “Gx

is the only goal scored by Sy” can be made for all 5 goals in Fig. 1.

The one-of-the-few measure [41] is based on multi-criteria dom-

inance relationship which is irrelevant to this work. Our adaptation

of [41] quantifies the rareness of attribute values based on frequency.

Consider a contextC , a subspace A, and any entity u in the context.

We denote by pAS , or simply pS when A is clear, the probability (or

“frequency” as in [3]) of u taking values S in subspace A, i.e.,

pAS = p (u .A = S | u ∈ C ) = | {u | u ∈ C, u .A = S } |
/
| C | . (1)

Ranking facts directly by frequency is not robust, regarding which

detailed analysis can be found in [41]. To intuitively understand the

insight, consider an extreme example. Suppose in an organization

everyone has a unique name. Given an particular individual x , a
fact “x is the only person with that name” has high exceptionality

measured by frequency itself. However, it is not truly exceptional

since the same kind of fact can be stated for everyone.

Based on the definition of pAS , the one-of-the-few χf quantifies

the exceptionality of an entity of interest v by the pessimistic rank

of the frequency of v .A. Specifically, the exceptionality of v is:

χf (v,A,C ) = | {u | u ∈ C, pu .A > pv .A} |
/
| C | . (2)

For example, consider entity of interest v0 = G1 in Fig. 1 and

context C defined by pattern P1 and variable ?g in Fig. 2a, i.e.,

C = C
P1,?д
G1 = {G1, G2, G3}. Table 1 shows the frequencies of attribute

values in all subspaces. According to Table 1, pG2.A = pG3.A =
p⟨{BRA}⟩ =

2

3
> pG1.A = p⟨{CRO}⟩ =

1

3
. Hence, χf (G1,A,C ) =

| {G2.G3} |
| C | = 2

3
. For A = {(awarded-to,→), (scored-by,→)}, χf (G1,

A, C ) = 0, since there exists no u ∈ C such that pu .A > pG1.A.

Table 1: The frequencies of attribute values in all subspaces for
entity of interest G1 with regard to context C = {G1, G2, G3}.

A v .A : pCv .A G1.A
{(awarded-to,→) } ⟨{CRO}⟩:1/3, ⟨{BRA}⟩:2/3 ⟨{CRO}⟩

{(scored-by,→) } ⟨{S1}⟩:1/3, ⟨{S2}⟩:1/3, ⟨{S3}⟩:1/3 ⟨{S1}⟩

{(awarded-to,→),
(scored-by,→) }

⟨{CRO}, {S1}⟩:1/3, ⟨{BRA}, {S2}⟩:1/3,

⟨{BRA}, {S3}⟩:1/3

⟨{CRO}, {S1}⟩

Definition 8 (Top-k Exceptional Facts Fv ). With regard to an en-

tity v , the rank of a context-subspace pair (C,A) is the number

of context-subspace pairs with greater exceptionality scores, i.e.,

rank (C,A) = | {(C ′,A′) ∈ Cv × Av | χ (v,A
′,C ′) > χ (v,A,C )} |.

Cv is the universe of v’s contexts: Cv = {C
P,x
v | P ∈ P,x ∈

P ,v ∈ RPx }, in which P is the universe of patterns over G, i.e.,
P = {P (VP ,EP ) | VP ⊆ X ∪ VG ,EP ⊆ (X ∪ VG ) × L × (X ∪
VG ), P (VP ,EP ) is weakly connected} where X is the universe of

variables. (C,A) is a top-k exceptional fact if its rank is lower than

k . Hence, the set of top-k exceptional facts about v , Fv , is defined
as Fv = {(C,A) ∈ Cv ×Av | rank (C,A) < k }.4 △

Problem Statement Given a knowledge graph G, an entity of

interest v0, an integer k , and an exceptionality scoring function χ ,
the problem of exceptional fact discovery is to find Fv0

—the top-k
exceptional facts about v0.

Continue the running example. With regard to G1, the context-

subspace pair (C
P1,?g
G1 , {(awarded-to,→)}) may be exceptional. The

context C
P1,?g
G1 is {G1, G2, G3}, i.e., the goals scored by BRA players.

An interpretation of G1’s exceptionality with regard to the pair is:

among all the goals scored by BRA players, G1 is the only own goal.

Alternative Problem Modeling
There could be other ways of defining context and subspace.

Definition 4 allows contexts based on arbitrary patterns. It is possi-

ble to adopt a more simplified and restricted definition that only

allows such patterns to be in certain “shapes” such as paths, star

graphs, and trees. Definition 6 dictates that a subspace must be a

set of entity attributes. In other words, when comparing an entity

with other entities in a context, the entity stands out with respect

to a subspace if it satisfies the conjunctive condition formed on the

attributes in the subspace (i.e., a star query) while most other enti-

ties do not. It is plausible to adopt a more complex and expressive

definition that allows the framework to assess exceptionality of

entities using more complex, general graph queries instead of only

star queries.

The current choices of Definitions 4 and 6 are formed based

on several considerations related to usability and practicality. Par-

ticularly, the exceptionality scoring functions in this section and

Section 4.2, adapted from functions in the literature that define

outlyingness of tuples in relational tables, are defined on the afore-

mentioned star queries. It is thus unclear how to define a scoring

function using more complex graph queries. While such is an in-

teresting question to ponder, it falls outside this paper’s scope. As

mentioned earlier, the Maverick framework is indifferent to the

choice of the exceptionality scoring function. The current simple

definition of subspace also eases the task of ensuring the discovered

facts can be intuitively expressed by the system and interpreted by

4
The size Fv may be greater than k due to ties in exceptionality scores

and thus ranks.



Figure 3: The framework ofMaverick.

users. On a related note, while conducting the experiments (Sec-

tion 6) we limited the sizes of the context-defining patterns and

subspaces to be very small, only involving at most a handful of

nodes and edges.

There could also be other ways of defining attributes. For exam-

ple, one can define an entity’s attributes as a vector of values either

independent to or derived from the graph. For instance, [17, 28]

consider, for each node, an associated mini-table containing in-

formation from external sources. A prevalent model of entities in

knowledge graphs is embedding-based [7, 25, 39, 45], in which each

entity is represented by a vector capturing its neighborhood infor-

mation. Such vectors can also be used as entities’ attributes. How-

ever, the vectors are indecipherable to human beings. Furthermore,

in general knowledge graphs, an entity may have sub-properties,

functional properties, and transitive properties [9, 14]. This work

does not consider such models and thus is lack of reasoning ca-

pacity based on such properties. Some of such properties may be

leveraged by pre-processing. For example, one may materialize the

transitive properties. This can be an interesting future direction to

explore.

3 OVERVIEW OF FRAMEWORK
We proposeMaverick, an iterative framework for exceptional fact

discovery. Intuitively, the process of discovering context-subspace

pairs can be viewed as nested loops. The outer loop enumerates con-

texts, while the inner loop enumerates subspaces for each context.

Given the entity of interest v0, while subspace enumeration in the

inner loop enumerates the subsets of Av0
, the outer loop enumer-

ates contexts by patterns, since each context of an entity is defined

by a pattern and one of the pattern’s variables (c.f. Definition 4).

Conceptually,Maverick organizes all the possible contexts as a par-
tial order on patterns, i.e., a Hasse diagram, in which each node

is a pattern and each edge represents the subsumption (subgraph-

supergraph) relationship between the two patterns. The essence of

the outer loop is thus a traversal of the search space of patterns.

Given that the search space of patterns can be extremely large

(Section 5), it is impractical to adopt breath-first, depth-first, or

heuristic search approaches due to memory and time constraints

[29]. To address this challenge, we propose to traverse the search

space by beam search [5]. Since beam search maintains a “beam”

of heuristicallyw best nodes and prunes all other nodes, it is not

guaranteed to be complete or optimal. However, good solutions can

be found quickly if the heuristic is sound enough.

Fig. 3 and Alg. 1 illustrate the framework ofMaverick, which has

three main components: Context Evaluator (CE), Exceptionality

Evaluator (EE), and Pattern Generator (PG). The beam search at

Algorithm 1: Discovering exceptional context-subspace pairs.

1 FACT-DISCOVER (G , v0, χ , k , w )
Input: G : the knowledge graph; v0 ∈ VG : the entity of interest;

χ : the exceptionality scoring function; k : the size of

output; w : the beam width

Output: H : k most exceptional context-subspace pairs

2 P0 ← (VP0 = {x0 }, EP0 = ∅) ; // Initial state. x0 is a variable.
3 B ← {P0 } ; // Beam.

4 i ← 1 ; // Iteration number.

5 while B , ∅ and i ≤ MAX_ITERATION do
6 i ← i + 1; Btmp ← ∅;

7 foreach P ∈ B do
// Obtain contexts of v0 and matches to P . (Section 3.1)

8 CPv0

,MP ← CONTEXT-EVALUATOR(P, v0, G );

9 foreach C ∈ CPv0

do
// Exceptionality Evaluation. (Section 4)

10 A ← EXCEPTIONALITY-EVALUATOR(v0, C, k, χ );
11 foreach A ∈ A do H ← H ∪ {(C, A) } ;

// Find Y — the children of P . (Section 5)

12 Y ← PATTERN-GENERATOR(v0, P,MP , w, G );

13 Btmp ← Btmp ∪ Y ;

14 B ← top-w of Btmp based on heuristics h ; // Section 5.4

15 return top-k pairs in H based on exceptionality scores;

the outer loop starts with a pattern P0 with a single variable node

x0 (Lines 2–3 in Alg. 1). The search results in a pattern search tree,
of which the root is P0. At each iteration, Maverick maintains a

beam B of a fixed size w (Lines 6, 13, 14). The beam consists of

heuristically the bestw patterns (e.g., P2, P3 in Fig. 3 wherew = 2)

at the visited level of the pattern search tree. For each pattern P
in B, component CE obtains the matchesMP to the pattern and

the corresponding contexts CPv0

of v0 (Line 8). For each context

C in CPv0

(e.g. C1 in Fig. 3), component EE finds the top-k scored

subspaces according to a given exceptionality scoring function χ
(Line 10, and Section 4). Component PG finds the children of the

visited pattern based on its matches (Line 12, and Section 5). Since

there are usually much more children than what the beam size

w allows, PG applies a set of heuristics (Section 5.4) to prune the

child patterns. Each child pattern is given a score that measures

how promising it is according to the heuristics. The bestw patterns

among all the children of patterns in B will become the new beam

B (Line 14), which is the input to the next iteration, e.g., {P7, P9} in
Fig. 3. The process ends when the limit on the number of iterations

has reached. The limit is set to avoid overly-complex patterns which

correspond to facts that are only convolutedly interesting. It also

practically bounds the resource spent for running the algorithm.

When the algorithm terminates, Maverick returns the k context-

subspace pairs with the highest exceptionality scores (Line 15).

Below, we discuss component CE in Section 3.1, EE in Section 4,

and PG in Section 5.

3.1 Context Evaluator
The context evaluator (CE, Line 8 in Alg. 1) is responsible for ob-

taining the matches to a given pattern as well as the corresponding

contexts. Its working is depicted in Alg. 2. We expect a graph query

system to take a pattern as the input and return all the matches

to the pattern (Line 3). The Maverick framework is agnostic to the



choice of the specific query processing system. According to Defi-

nition 4, for each variable in the pattern (x ∈ XP ), CE returns its

range RPx as a context if the entity of interest v0 is in the range

(Line 5).

For example, consider graph G in Fig. 1, the entity of interest

v0 = G1, and the pattern P1 in Fig. 2a.MP1 = {M1,M2,M3}, where

M1,M2, andM3 are in Figs. 2b–2d. P1 has two variables, ?д and ?s .

Since G1 ∈ RP1
?д = {G1, G2, G3} and G1 < RP1

?s , P1 defines one and only

one context of G1, which isC
P1,?д
G1 = RP1

?д . Therefore, C
P
G1 = {C

P1,?д
G1 }.

Algorithm 2: Context evaluator.
1 CONTEXT-EVALUATOR (P , v0, G)
2 CPv0

← ∅ ; // The set of contexts defined by P .
3 MP ← match(G, P) ; //Matches to P .
4 foreach x ∈ XP do

// Refer to Definitions 3 and 4 for RPx and CP,x
v0

.

5 if v0 ∈ RPx then CPv0

← CPv0

∪{CP,x
v0
} ;

6 return (CPv0

,MP );

4 EXCEPTIONALITY EVALUATOR
The Exceptionality Evaluator (EE) operates in the inner loop of the

Maverick framework (function EXCEPTIONALITY-EVALUATOR (v0,C , k, χ ) at
Line 10 of Alg. 1). For each context C of the entity of interest v ,
it finds the k subspaces A with the highest χ (v,A,C ) scores. Note
that it is sufficient to find these k subspaces, since the eventual

output of Maverick is the top-k context-subspace pairs across all

contexts of v . A naive solution of EE can exhaustively enumerate

all possible subspaces of Av and calculate the exceptionality score

ofv in each subspace. The apparentO (2 |Av | ) complexity of this ap-

proach renders it prohibitively expensive since many entities may

have a lot of attributes. For instance, Denzel Washington has more than

40 attributes in the August 9, 2015 Freebase graph. It is thus crucial

for Maverick to have an efficient subspace enumeration method

in order to discover more exceptional context-subspace pairs. Sec-

tion 4.1 discusses how Maverick uses a set enumeration tree to

avoid exhaustively enumerating subspaces. Specifically,Maverick
exploits the upper bound properties of exceptionality scoring func-

tions to guide the traversal of the set enumeration tree. Section 4.2

introduces three representative exceptionality scoring functions

along with their upper bound functions.

4.1 Finding Top-k Subspaces
EE applies a set enumeration tree (SE-tree) [30] to avoid exhaustively
enumerating subspaces. Each node in the tree is a subspace—a

subset of v’s attributes Av . The children of a node correspond to

various supersets of the node’s associated attributes. Formally, let

r be an (arbitrary) total order on Av . The root of an SE-tree for Av
is the empty set. The children of a node A ⊂ Av in the tree form

the set {A ∪ {a} | a ∈ Av \ A,∀a
′ ∈ A,a′ <r a}. An SE-tree for

Av = {a1,a2,a3} is shown in Fig. 3. The gist is to explore the set

enumeration tree using heuristic search methods such as best-first

search and to prune branches that are guaranteed to not contain

highly-scored subspaces.

What is particularly challenging is that an exceptionality scoring

function χ usually does not have the downward closure propertywith
respect to subspace inclusion, i.e., χ (v,A,C ) can be greater than,

Algorithm 3: Exceptionality evaluator.

1 EXCEPTIONALITY-EVALUATOR (v, C, k, χ )
// CS: current subspace; UA: attributes to visit; Tk: top-k subspaces.

2 CS← ∅; UA← Av ; Tk← ∅;
3 return EXPLORE-SUBSPACE(v, C, k, χ, CS, UA, Tk);
4 EXPLORE-SUBSPACE (v, C, k, χ, CS, UA, Tk)
5 while UA , ∅ do

// Calculate upper bounds.

6 amax ← argmaxa∈UA upper(v, CS ∪ {a }, C );

7 Amax ← CS ∪ {amax }; uppermax
← upper(v, Amax, C );

8 UA← UA \ {amax };

9 if |Tk | < k then
// −1 indicates the top-k list Tk is not full.

10 scoremin ← −1; Amin ← ∅;

11 else (Amin, scoremin) ← argmin(A,score)∈Tk score ;
12 if upper

max
> scoremin then

13 score← χ (v, Amax, C );

14 if score > scoremin then
15 if scoremin ≥ 0 then
16 Tk← Tk \ {(Amin, scoremin) };

17 Tk← Tk ∪ {(Amax, score) };
// Explore children subspaces.

18 Tk← EXPLORE-SUBSPACE(v, C, k, χ, Amax, UA, Tk);

19 return Tk;

less than, or equal to χ (v,A′,C ) for anyA′ ⊇ A. As a matter of fact,

none of the three representative functions that will be introduced

in Section 4.2 satisfies the property (proof omitted). The lack of

downward closure property makes it infeasible to prune the set

enumeration tree based on exact exceptionality scores.

EE uses upper bounds on the exceptionality scoring function χ
to allow for pruning of the set enumeration tree. Alg. 3 presents

its pseudo code. The set enumeration tree nodes (i.e., subspaces)

are visited in the descending order of their upper bounds (Line 6).

If the upper bound score of a node is not greater than the score

of the current k-th ranked subspace, the node and all its children

are pruned (Line 12). Otherwise, the exact exceptionality score of

the node is calculated (Line 13). The subspace is used to purge the

current k-th subspace if its exact score is still greater (Lines 14–

17). Regardless of whether the node makes into the top-k list, its

children are enumerated recursively (Line 18).

The general upper bound function upper in Alg. 3 is defined as

follows. By the definition, it is sound to prune a node and all its

children if the condition in Line 12 is not satisfied.

Definition 9 (Upper bound of an exceptionality scoring function

upper ). Given an exceptionality scoring function χ , an upper bound
of χ is a function that, for any entity v , context C , and subspace

A ⊆ Av , bounds the exceptionality score of v with respect toC and

any superset of A, i.e.,

upper (v,A,C ) ≥ maxA⊆A′⊆Av χ (v,A′,C ). △

The general upper bound function upper must be instantiated

for specific exceptionality scoring functions χ . TheMaverick frame-

work expects an application developer to supply upper while spec-
ifying χ . Various outlying aspect mining methods [2, 3, 15] also

devise upper bound functions for pruning set enumeration tree.

They operate on the single-table data model and are thus inappli-

cable for graphs, as explained in Section 1. EE must use different



scoring functions and upper bound functions designed for knowl-

edge graphs. The ensuing discussion in this section entails that.

4.2 Exceptionality Scoring Functions
As mentioned in Section 2, the general Maverick framework ac-

commodates different exceptionality scoring functions beyond the

one-of-the-few function χf . We discuss two more representative

functions in this section and in Appendix A.2.

Outlyingness χo This measure, adopted from [3], is based on the

distribution of attribute values. An entity receives a high score

if it has rare attribute values while a lot of other entities share

common attribute values. It quantifies the rareness of attribute

values by pAS = p (u .A = S | u ∈ C ) (the same as for χf ). Let SA be

all possible attribute values on subspace A and in context C , i.e.,
SA = {u .A | u ∈ C}. The outlyingness score of an entity v is given

by:

χo (v,A,C ) =
∑

S ∈SA
pS × (pS − pv .A ) × 1(pS > pv .A ) (3)

where 1(·) is the indicator function that returns 1 for a true condi-

tion and 0 otherwise. Essentially, the outlyingness score is the area

above the accumulated frequency histogram of the context C with

respect to the subspace A, starting from the frequency of v .A. The
score is designed to quantify the “degree of unbalance” between

the frequencies of entities in the context [3].

For instance, consider the same example used in explaining

χf : v0 = G1, C = C
P1,?д
G1 = {G1, G2, G3}, and A = {(awarded-to,→

)}. According to Table 1, χo (G1, {(awarded-to,→)},C ) = p⟨{CRO}⟩ ×

(p⟨{CRO}⟩−p⟨{CRO}⟩)×0+p⟨{BRA}⟩×(p⟨{BRA}⟩−p⟨{CRO}⟩)×1 =
2

3
( 2
3
− 1

3
)

=
2

9
. Another example is, for A = {(awarded-to,→), (scored-by,→)},

χo (G1, A,C ) = 0 since there exists no u ∈ C such that pu .A > pG1.A.

4.3 Upper Bound Functions
In this section we devise upper bound functions for the three repre-

sentative exceptionality functions introduced in Section 2 (χf ) and
Section 4.2 (χo and χi ). We prove that these designs satisfy Defini-

tion 9 and thus ensure the soundness of Alg. 3, with regard to any

given entity v , context C , and subspaces A ⊆ A′ ⊆ Av . Recall that
we denote by pAS , or simply pS , the frequency of entity’s attribute

value S in subspace A (Eq. (1)).

Theorem 1 (Upper bound of χf ). upperf (v,A,C ) ≥ χf (v, A
′,C ),

given the following definition in which Cv=C \ {v}:

upperf (v,A,C ) = | {u | u ∈ Cv , pu .A > 1/| C |} |
/
| C | (4)

The theorem holds because
1

| C | ≤ pu .A′ ≤ pu .A for anyA′ ⊇ A.

We omit the detailed proof here.

Theorem 2 (Upper bound of χo ). uppero (v,A,C ) ≥ χo (v, A
′,C ),

given the following definition where SA = {u .A | u ∈ C}:

uppero (v,A,C ) =
∑

S ∈SA
(pS )

2 −
(2 pv .A + 1) × | C | − 2

| C |2
. (5)

Our final note is that an upper bound function may have lim-

ited pruning power when it gives loose bounds on exceptionality

scores, resulting in exponential complexity in subspace enumera-

tion. Our empirical results in Section 6.2, though, verified that the

several upper bound functions proposed in this paper (Eqs. (5)–(7))

substantially reduced the overhead of subspace enumeration.

5 PATTERN GENERATOR
The Pattern Generator (PG) is used in Line 12 of Alg. 1 in the

Maverick framework. Its pseudo code is in Alg. 4. At each iteration

of the beam search on patterns, it finds the children of each visited

pattern P (Line 3, see Alg. 5) in the current beam. A child pattern,

if not pruned (see Section 5.3), is given a score that measures how

promising it is according to a few heuristics (Line 5, see Section 5.4).

Among all the children of the patterns in the current beam, the

w children with the highest scores are returned to form the new

beam (Line 14 in Alg. 1), where w is the predefined beam width.

The new beam becomes the input to the next iteration. This section

first describes the search space of patterns (Section 5.1) and then

discusses how to efficiently explore the space by applying pruning

rules (Section 5.3) and selection heuristics (Section 5.4).

Algorithm 4: Pattern generator.

1 PATTERN-GENERATOR (v0, P ,MP , w , G)
2 Y ← ∅ ; // Promising children of P .

// Find P ’s children, see Alg. 5.
3 children← FIND-CHILDREN(v0, P,MP , G );

4 foreach child ∈ children do
5 Y ← Y ∪ {(child, h (v0, child)) }; // See Section 5.4 for h.
6 return top-w of Y based on score;

5.1 Search Space of Patterns
The search space of patterns is a Hasse diagram of valid patterns,

where a pattern is valid if it contains at least one variable node

and it has a match (Definition 2) in the knowledge graph G. We

exclude invalid patterns since they cannot lead to relevant facts. For

example, pattern {(?g, scored-by, ?s1), (?g, scored-by, ?s2)} does not have
a match and is thus invalid because no goal is scored by more than

one player. Formally, the search space of patterns is a Hasse diagram

P(VP,EP), where VP is the set of valid patterns and EP ⊆ VP ×VP
is the set of edges. There exists an edge from parent pattern Pi to
child pattern Pj if Pi is an immediate subgraph of Pj , i.e., Pi has
exactly one edge less than Pj . A pattern can have multiple children

and multiple parents. Fig. 4 shows an excerpt of the search space of

patterns over the data graph in Fig. 1. In the figure, P6 and P7 are
the children of P2, and both P2 and P3 are the parents of P7.

One may realize already that P can be extremely large. We prove

in Theorem 3 that the order of P (i.e., the cardinality of VP) is
exponential to the orders of G’s weakly connected components

(WCCs). A WCC is a maximal subgraph of a directed graph, in

which every pair of vertices are connected, ignoring edge direction.

Given that knowledge graphs are all well connected, it is impossible

to exhaustively enumerate the patterns. For example, according to

Theorem 3, the data graph in Fig. 1 has at least 2
13+1 − 2− 13+ 13 =

Figure 4:Anexcerpt of the search space of patterns over Fig. 1. Edge
labels: a: awarded-to, p: play-for, s: scored-by.



Figure 5: Illustration of how the child patterns of a pattern are con-
structed. P10 and P11 are obtained based on M10 and edge e . P12 and
P13 can be obtained based on M11 and edge e′, but they are pruned
based on rules in Section 5.3.
16, 382 patterns. (The graph itself is the only WCC, with 13 nodes.)

Note that Theorem 3 only provides a loose bound. In practice, the

number is even much larger, exacerbating the challenge. Section 6.2

shows that the tiny graph has more than 69, 000 patterns with

merely no more than 5 edges.

Theorem 3. LetW be the set of WCCs in a knowledge graph G,
a lower bound on P’s order is:

| VP | ≥
∑

W ∈W
(2 | VW |+1 − 2) − | VG | + max

W ∈W
| VW |.

5.2 Match-based Construction of Patterns
Given the current beam of patterns, Maverick finds top context-

subspace pairs using its context evaluator (Section 3.1) and excep-

tionality evaluator (Section 4). Among the child patterns of the

evaluated patterns, the promising ones are chosen to form the new

beam for the next iteration. While Section 5.4 discusses how to se-

lect the promising patterns, this section proposes an efficient way of

generating the child patterns. Note that the aforementioned Hasse

diagram of patterns is not pre-materialized. Rather, the patterns

need to be constructed before we can evaluate them.

To construct the child patterns of an evaluated pattern P , a simple

approach is to enumerate all possible ways of expanding P by

adding one more edge. A major drawback of this approach is it

may construct many invalid patterns that do not have any match.

Some invalid patterns can be easily recognized by referring to the

schema graph of the data. However, chances are most of the schema-

abiding patterns are still invalid because they do not have matching

instances in the data graph, given the sheer diversity of a knowledge

graph. The system will evaluate such patterns in vain to get empty

results in order to realize they are invalid.

To avoid evaluating invalid patterns, we propose a match-based
pattern construction method. Instead of constructing the child pat-

terns by directly expanding P , this method expands the matches

of P and constructs the child patterns from the expanded matches.

It guarantees to construct only valid patterns and evade the eval-

uation of invalid patterns. The method is based on the following

theorem.

Theorem 4. Suppose P ′ is a child of P ∈ P, i.e., (P , P ′) ∈ EP
and thus P ′ is a valid pattern with matches. Given any matchM ′

to P ′, there exists a match M to P that is a subgraph of M ′, i.e.,
∀M ′ ∈ MP ′ , ∃M ∈ MP s.t. VM ⊆ VM ′ and EM ⊆ EM ′ .

Based on Theorem 4, the method that constructs the child pat-

terns of P is illustrated in Alg. 5. For a matchM of P , it finds each of

its weakly connected supergraphs by adding an edge that exists in

the data graphG and is adjacent to a node inM (Line 6). Given each

such resulting supergraphM ′, let (u, l ,w ) = EM ′ \EM and, without

loss of generality, assume u ∈ VM . Ifw ∈ VM , then the only child of

P obtained fromM ′ is P + ( f −1 (u), l , f −1 (w )) (Line 13), where we

denote by P + e the supergraph of P by adding edge e for brevity. If
w < VM , then two child patterns are obtained: P+ ( f −1 (u), l ,w ) and
P + ( f −1 (u), l , z), where z is a variable and z < XP (Line 16; Line 19

for the symmetric case). Fig. 5 shows an example of obtaining a

pattern’s children. For instance, P10 can be obtained by adding e1,
which is obtained by replacing S1 of edge e with variable ?s.

Algorithm 5: Find all the children of a given pattern.

1 FIND-CHILDREN (v0, P,MP , G)
2 D ← ∅; // The set of P ’s children.
3 M←{M ∈MP | f :VP→VM and ∃x ∈XP s.t. f (x )=v0 } ; // Rule 1

4 foreach M ∈ M do
5 Let f be the bijection f : VP → VM ;

6 EM = {(u, l, w ) ∈ EG \ EM | u ∈ VM or w ∈ VM };
7 foreach (u, l, w ) ∈ EM do
8 z ← a new variable and z < XP ;

9 x ← f −1 (u ), y ← f −1 (w );

10 if ∄ x ∈ XP s.t. f (x ) = u or f (x ) = w then
11 continue; // Rule 2

12 else if u ∈ VM and w ∈ VM then
13 P1 ← P + (x, l, y );
14 D ← D ∪ {P1 } ;
15 else if w < VM then // ∃ x ∈ XP s.t. f (x ) = u
16 P1 ← P + (x, l, w ); P2 ← P + (x, l, z );
17 D ← D ∪ {P1, P2 };
18 else // ∃ y ∈ XP s.t. f (y ) = w
19 P1 ← P + (u, l, y ); P2 ← P + (z, l, y );
20 D ← D ∪ {P1, P2 };
21 return D ;

5.3 Pattern Pruning Strategies
The search space P of patterns as defined in Section 5.1 and con-

structed using the match-based pattern construction method in

Section 5.2 has an enormous size. To ensure efficiency, the Pattern

Generator (PG) employs two pruning rules to exclude irrelevant

patterns from P and to avoid repeated constructions of patterns

from certain type of parent patterns.

Rule 1 (RelevantOnly). Exclude a pattern if it does not define any

context for the entity of interest v0.
The rational behind Rule 1 is, for discovering exceptional facts

about v0, a pattern is relevant only if it defines a context for v0.
By this rule, the match-based pattern construction method only

expands a match in which v0 is an image of a variable in P . It is
guaranteed that the patterns obtained define v0’s contexts.
Rule 2 (VarOnly). Expand a pattern only if the new edge has at

least one variable.

Let P ′ be a child pattern of P . The extra edge in P ′, i.e., e=EP ′\EP ,
belongs to one of the 7 types in Fig. 6. Rule 2 avoids constructing

P ′ from P if e belongs to types 6-7. This rule is based on Theorem 5.

Simply put, enforcing Rule 2 will not miss any contexts of v0.
Theorem 5. Let P ′ be a child of P ∈ P, e = EP ′ \ EP ,C

P
v0

be all the

contexts of v0 defined by P : CP
v0

= {RPx ′ |x
′ ∈ XP ,v0 ∈ R

P
x ′ }, then

CP ′
v0

= CP
v0

, if e belongs to types 6-7.

5.4 Pattern Selection Heuristics (h)
Even with the rules proposed in Section 5.3, there are still too many

patterns. In this section, we propose two scoring heuristics for

selecting promising patterns to visit, to substantiate the function



(1) (x, l, y ) (2) (x, l, z ) (3) (x, l, w ) (4) (u, l, y )
(5) (u, l, z ) (6) (u, l, v ) (7) (u, l, w )

Figure 6: Consider a pattern P and its child pattern P ′. The 7 types
of the extra edge e = EP ′ \EP . x, y, z are variables, x, y ∈ XP , z < XP .
u, v, w are non-variables, u, v ∈ VP ∩ I, and w ∈ VG \VP .

h in Line 5 of Alg. 4. A heuristic gives each pattern a score, based

on which thew patterns with the highest scores form the beam for

the next iteration of beam search.

Heuristic 1 (Optimistic). Given a pattern P , the entity of interest

v0, let C
P
v0

be the set of contexts defined by P , i.e., CPv0

= {CP,x
v0
|x ∈

XP ,v0 ∈ R
P
x }, then

hopt (v0, P ) = max

C ∈CPv
0

upper (v0,∅,C )

where upper (v0,∅,C ) is a upper bound of χ with regard to C for

any subspace (see Defintion 9).

hopt simply uses the exceptionality score upper bound of P .
It optimistically assumes the ideal case for each pattern, where

the entity of interest is most exceptional among the entities in

a context defined by the pattern. In Section 4, we discussed the

upper bound functions for various exceptionality functions. Note

that we have pv0 .∅ = 1 (Eq. (1)) since v .∅ = null (Definition 6)

and we consider all null values equal, uppero (v0,∅,C ) = 1 −
3×| C |−2
| C |2 , upperf (v0,∅,C ) = 1 − 1

| C | , and upperi (v0,∅,C ) =

1−2−|C | log2 |C | / ( |C | log
2
|C |− |C−1 |−1) log

2
( |C−1 |))

(cf. Appendix A.2).

In sum, all the three upper bounds increase when the context size

increases. In other words, hopt selects the patterns that define large
contexts. However, a large context may contain many entities of

different characteristics, which may make the entity of interest less

exceptional. Note that, since hopt depends on context size |C |, all
the child patterns of P need to be evaluated in order to get |C |. It is
also required for heuristic hconv below for the same reason.

Heuristic 2 (Convergent). Consider a pattern P and the entity of

interest v0. Given P ′, a parent of P in the pattern search tree, we

define rx = |C
P,x
v0
|
/
|CP ′,x
v0
| . The score of P is

hconv (v0, P ) =

max

(P ′,P )∈EP and P ′∈B,C
P ′,x
v
0
∈CP

′
v
0

[
rx × maxA⊆Av

0

χ (v0,A,C
P ′,x
v0

)

+ (1 − rx ) × upper (v0,∅,C
P,x
v0

)
]

The hconv score of P is a weighted sum of the upper bound of P
(for any subspace) and the best score of the parent pattern P ′. Note
thatMaverick performs a beam search and the patterns visited form

a pattern search tree. P could be constructed from different parent

patterns in the current beam B. The above equation thus uses the

best score across all such parents. For this reason, the edge adjacent

to P in the pattern search tree comes from the parent P ′ that gives
it the best score. If P ′ posses some highly-scored context-subspace

pairs, hconv gives favorable score to P if P and P ′ define similar

contexts; otherwise, hconv favors a P that defines smaller contexts.

Compared with hopt , hconv is potentially both more efficient and

more effective. It can be more efficient since it may favor child

patterns that define smaller contexts. Such child patterns usually

can be evaluated more efficiently since they have less matches. It

can be more effective since it discards child patterns that define

contexts where the entity of interest may not be exceptional, based

on the highest score of the context-subspace pairs for the parent

pattern. When hconv is used for choosing patterns to form the

beams, the sizes of the contexts defined by the patterns in a path of

the tree may gradually become smaller and eventually converge.

We thus call hconv Convergent.

6 EXPERIMENTS
6.1 Experiment Setup
The framework and algorithms of Maverick are implemented in

Python. The experiments were conducted on a 16-core, 32GB-

RAM node in Stampede—a cluster of the Extreme Science and

Engineering Discovery Environment (XSEDE: https://www.xsede.org).

All datasets used in experiments are available in Neo4j format at

https://doi.org/10.5281/zenodo.1185476.

Datasets The experiments used the following two real-world

graphs:

• WCGoals. It was constructed by crawling data from the FIFA

World Cup website (http://www.fifa.com/worldcup/ index.html). It consists

of 49, 078 nodes, 158, 114 edges, 13 different edge labels, and 11

entity types: WorldCup, RoundCategory, Round, Stadium, Team, Game, Group,

Player, Bibnum, Participant, and Goal.

• OscarWinners. This is a subgraph of Freebase. It has 42, 148 nodes,

63, 187 edges, 24 distinct edge labels, and 13 entity types includ-

ing Person, FilmCrew, AwardWon, FilmCharacter, AwardCategory, Performance,

Genre, Award, Film, Country, FilmCrewRole, Ceremony, and SpecialPerformance-

Type. Each film in the graph has won at least one Academy Award

(Oscar).

The two graphs were stored using Neo4j (https://neo4j.com) graph

database. The patterns are expressed in Neo4j’s query language

Cypher. The experiment results using the two graphs and different

expectionality scoring functions are similar. Therefore, we only

report our findings on WCGoals and exceptionality function χo ,
except that Section A.1 reports the discovered exceptional facts

using both WCGoals and OscarWinners.

MethodsCompared The experiments compared the performance

of a breadth-first search method and several beam search methods

(Section 3) coupled with different heuristics (Section 5.4):

• Beam-Rdm: Beam search that randomly selects child patterns.

• Beam-Opt: Beam search using hopt in selecting child patterns.

• Beam-Conv: Beam search using hconv in selecting child patterns.

• Breadth-First: The breadth-first search method that enumerates

all possible patterns.

The family of beam search methods and Breadth-First differ in two

ways. Firstly, beam search only visits a fixed number of patterns at

each level of the pattern search tree, whereas Breadth-First visits all.

Secondly, beam search visits the patterns by the decreasing order of

their scores, whereas Breadth-First does not assume any order. The

experiment results establish that, even though Breadth-First may

evaluate more patterns than the beam search methods in a fixed

time frame, it is not as effective as Beam-Conv which discovers

more highly-scored context-subspace pairs using less time.

6.2 Efficiency
We measured how fastMaverick discovers highly-scored context-

subspace pairs and how fast it explores the search space of patterns.

We executed Maverick for multiple 2-minute runs and recorded

a) the scores of discovered context-subspace pairs; b) the time when

each context-subspace pair was discovered; and c) the number of

visited patterns in the outer loop of the framework.

https://www.xsede.org
https://doi.org/10.5281/zenodo.1185476
http://www.fifa.com/worldcup/index.html
https://developers.google.com/freebase/
https://neo4j.com
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Figure 7: The heat map of exceptionality scores (χo ) and times-
tamps of all the discovered context-subpsace pairs during 2-minute
runs for 10 entities of interest (v0) in WCGoals (k = 10, w = 10).

Fig. 7 shows the heat map of the context-subspace pairs’ excep-

tionality scores by their timestamps. It includes all the discovered

context-subspace pairs during the 2-minute runs for 10 entities of

interest in WCGoals. We run 10 times per entity for all the methods,

since Beam-Rdm selects child patterns randomly. Both the output

size k and the beamwidthw were set to 10. The 10 entities were ran-

domly chosen from those that have highly-scored context-subspace

pairs. Each bucket in the figure corresponds to a particular range

of scores and a 8-second time frame in the 2-min run. The color

of the bucket reflects how many context-subspace pairs (from all

100 runs for the 10 entities) discovered during the time frame fall

into the corresponding score range. Intuitively, if the upper left

portion of a heat map is more populated, the corresponding method

performs better, since it means the method discovers highly-scored

pairs faster. If the upper portion of a heat map is more populated, it

means the method discovers more highly-scored pairs. The figure

shows that Beam-Conv is both efficient and effective in discover-

ing highly-scored context-subspace pairs. In contrast, Beam-Opt

performed poorly. The results confirm the analysis in Section 5.4:

preferring patterns that produce large contexts (hopt ) degrades
not only the efficiency but also the effectiveness of Maverick. It
is because such patterns are usually more expensive to evaluate

and the produced contexts may include more varieties of entities,

which makes the entity of interest less exceptional. With regard to

Breadth-First, since it enumerates candidate patterns exhaustively,

it may discover some highly-scored pairs that reside in the low

levels of the pattern search tree. For example, some highly-scored

pairs for entity Goal(46683) were found using the 2-edge pattern in

Fig. 2a. Given that the number of patterns with no more than 2

edges is small (more details in the discussion of results regarding

pruning strategies), Beam-Rdm is likely to hit such small patterns

that define contexts in which the entity of interest is exceptional.

Fig. 8 shows the impact of output size k and beam width w
on how many patterns Maverick can manage to evaluate, in other

words, howmany nodes in P it can manage to visit. The y-axis is the

average number of evaluated patterns across the aforementioned

10 runs. Since we observed similar results on the 10 entities from

WCGoals, the figure only depicts the results on Goal(46683). Fig. 8a

shows that varying k from 1 to 10 (fixingw at 10) barely had any

impact on the number of evaluated patterns. Since k controls the

number of context-subspace pairs that Maverick returns, it mainly

affects EE, which is responsible for finding top-k subspaces with re-

gard to each context. Thus k needs to be very large in order to have
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Figure 8: Effect of k and w on the number of evaluated patterns.

a significant impact on the number of evaluated patterns, since EE

is the least time-consuming component, as explained as follows. Ta-

ble 2 provides the breakdown of execution time of different search

methods into the three components in the workflow—Context Eval-

uator (CE), Exceptionality Evaluator (EE), and Pattern Generator

(PG). The results are the average of the runs which are the same as

in Fig. 7. (The summation in each column is slightly less than 100%,

since we do not include operations such as framework initialization

in the breakdown.) Another observation from Table 2 is that the

execution time of PG dominates more substantially in Beam-Opt

and Beam-Conv than in Beam-Rdm and Breadth-First. The reason

is PG in both Beam-Opt and Beam-Conv needs to compute h for

each child pattern based on the pattern selection heuristics, which

entails evaluating the child patterns to obtain the context sizes. In

fact, on average, PG in Beam-Opt and Beam-Conv spent more than

99% and 96% of its time on applying the heuristics.

Table 2: Breakdown of execution time by components.
Beam-Rdm Beam-Opt Beam-Conv Breadth-First

CE 25.52% 1.56% 1.90% 28.36%

EE 0.41% 0.65% 0.32% 2.79%

PG 61.49% 97.69% 95.92% 53.89%

Fig. 8b depicts the results whenw varied from 3 to 10 and k was

fixed at 10. It shows the number of evaluated patterns increased byw
in the three beam search methods. Whenw increases, the methods

evaluate more patterns from lower levels in the pattern search

tree, which have less edges and can be evaluated more efficiently

than those from higher levels. In a fixed time frame, the methods

can then evaluate more patterns in total, as shown in the figure.

Fig. 10 shows the average time that Context Evaluator (Alg. 2)

spends on pattern evaluation increases when the level of pattern

(i.e., the number of edges) increases. Since Breadth-First does not

need to calculate scores for patterns and does not have a limit on

the number of patterns to visit at each level, it tends to evaluate

more patterns but may only evaluate patterns at low levels. Fig. 9a

compares the numbers of patterns evaluated at different levels by

the four methods, when both k andw stayed at 10. Breadth-First

evaluated patterns up to level 3 and spent most of its time on level

3. On the contrary, the beam search methods evaluated at most 10

patterns at each level and covered more levels.

Fig. 8b also suggests that Beam-Rdm evaluated more patterns

than Beam-Conv and Beam-Opt. It is because Beam-Rdm (like

Breadth-First) does not compute scores for child patterns, which

is expensive. Since Beam-Opt favors patterns that define larger

contexts, it evaluated the fewest patterns since it spent more time

to calculate the sizes of the contexts. On the other hand, Beam-

Conv prefers patterns defining smaller contexts, which allowed it
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to evaluate more patterns. This is verified in Fig. 9b, which shows

the numbers of evaluated patterns with different context sizes,

when k andw were both 10.

Effect of pruning strategies We examined the effectiveness of

the two pruning rules from Section 5.3 by comparing the follow-

ing pruning strategies. In order to comprehensively compare these

strategies, we used Breath-First as the search method since it ex-

haustively enumerates all possible candidate patterns at all levels.

• None: No child pattern pruning rule is applied;

• RelevantOnly (Rule 1);

• VarOnly (Rule 2);

• RelevantOnly+VarOnly: Apply both RelevantOnly and VarOnly.
Fig. 11 shows the number of patterns visited by Breath-First

on the data graph in Fig. 1. The figure reveals that both rules can

significantly reduce the number of candidate patterns. For instance,

there are 69, 582 candidate patterns at level 5 when no pruning rule

is applied (None). The number is reduced to 12, 740 and 6, 963 by fol-

lowing RelevantOnly and VarOnly, respectively. It is further reduced
to 1, 448 with both rules applied (RelevantOnly+VarOnly). The fig-
ure also shows that the number of patterns still grows exponentially

to the level of the pattern search tree even with both pruning rules

applied, which suggests an enormous search space of patterns.

Since VarOnly is stricter than RelevantOnly, as VarOnly only allows

expanding on variable nodes, the growth rate of VarOnly can be

smaller than RelevantOnly. Fig. 11 also confirms that.

Effect of upper bound of exceptionality functions Fig. 12 de-

picts the effect of using upper bound functions in pruning subspaces

(Section 4.3). It shows the time and the number of subspaces visited

for Game(903)—one of the 10 entities used in Fig. 7—with/without

applying upper bound functions under varying k . (Results for the
other 9 entities are similar.) The measures are averages of 10 runs.

The figure verifies that the upper bound functions significantly
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Figure 12: Effect of subspace pruning (upper bound functions).

improve the performance of exceptionality score calculations. Un-

der relatively small k (e.g. 10), the execution time was reduced by

more than half when the upper bound was applied. As k increased,

the upper bound function’s pruning power gradually diminished.

Eventually, it was no longer able to prune any subspaces after

k = 60.

6.3 Effectiveness
Section A.1 reports a few examples of discovered exceptional facts

using both WCGoals and OscarWinners. We also conducted experi-

ments to verify ifMaverick can effectively discover highly-scored

context-subspace pairs. Fig. 13 shows the score distributions of the

top-10 context-subspace pairs for the same 10 entities in Section 6.2.

There were 10 2-minute runs per entity. Both k andw were set to

10. The results in Fig. 13 are averaged over all entities and all runs.

The last row are the results whenMaverick uses patterns mined by

a frequent pattern (FP) mining algorithm [16] as candidate patterns,

instead of the ones discovered in P. We set the minimum support

to be 1, 000, as lower value leads to excessive execution time.
5

The results show that the output of Beam-Rdm mainly consists

of pairs scored low. It is expected because the chance of hitting

a promising pattern by a random method is very low due to the

large search space of patterns. It is not surprising either to observe

Beam-Opt performed badly as explained in Section 6.2. In contrast,

Beam-Conv significantly outperformed other beam search methods,

as it found much more highly-scored context-subspace pairs. It also

found substantially more highly-scored pairs than Breadth-First in

score range [0.8−1.0]. This observation confirms that a wide pattern

search tree hinders Breadth-First’s performance. Using FPs was not

effective in discovery of exceptional facts. There are mainly two

reasons. 1) Due to practical considerations such as efficiency and

resources, FP mining techniques usually consider only node types

(e.g., Team) but not node IDs (e.g., BRA). 2) An FP mining algorithm is

not designed for individual entities. This leads to two consequences.

One is that there may be no FP that defines some context for a given

entity. The other is that the exceptionality of the entity may not be

revealed in the contexts defined by the FPs. In fact, the experiments

on WCGoals yielded only 12 FPs and all of them are about only two

node types: Participant and Goal.

We also use a variation of coverage error [35] to measure the

effectiveness of the four methods. For each method, we evalu-

ated the result of its 2-minute run, using the result of its 10-hour

run as the ground truth. The ground truth is the list of discov-

ered context-subspace pairs during the 10-hour run, ranked by

their exceptionality scores. Given the set of discovered context-

subspace pairs in a 2-minute run, H , the coverage error is the

5
The algorithm did not finish after more than 10 hours on graph WCGoals when

the minimum support was set to 500.
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average rank position of the pairs in the ground truth, defined by

Cov = 1

| H |
∑

(C,A)∈H rank(C,A) . Fig. 14 reports the average cover-

age error of eachmethod under varying output size k . Table 3 shows
the average and median coverage errors under varying beam width

w . In Fig. 14, the coverage error of Beam-Conv is less than other

methods by orders of magnitude, which suggests that Beam-Conv

found highly-scored context-subspace pairs. Table 3 shows that

coverage error decreases when beam width increases. The reason is

that a wider beam leads to more patterns visited at every level and

thus a better coverage of patterns. It is especially beneficial when

highly-scored pairs reside in patterns at lower levels.

Table 3: The effect of beam width (w ) on the coverage errors of
top-10 context-subspace pairs of 10 entities. In each cell: the average
and the median coverage errors. Both numbers are the smaller the
better.

w Beam-Rdm Beam-Opt Beam-Conv Breadth-First

3 3375.7/2636.9 2151.0/1071.5 49.7/12.5 383.0/390.5

4 3293.2/1607.3 2675.7/1622.1 52.1/12.5 383.0/390.5

5 2743.2/1871.2 2418.3/1550.8 30.2/26.0 383.0/390.5

6 2890.9/1809.2 2288.7/1259.7 20.6/1.0 383.0/390.5

7 2821.4/1398.9 1789.3/1259.7 21.8/1.0 383.0/390.5

8 2646.4/1818.6 1721.5/1168.8 78.3/3.0 383.0/390.5

9 2262.8/1653.4 1365.5/1107.3 36.6/4.2 383.0/390.5

10 2720.8/1619.9 1365.5/1107.3 58.4/22.1 383.0/390.5

7 RELATEDWORK
In exceptional fact discovery, the output context-subspace pairs can

be viewed as a way of explaining outliers. Most conventional outlier

detection solutions, including those for graphs, focus on finding

outliers but do not explain why they are outlying. For example,

CODA [17] finds a list of community outliers, and FocusCO [28]

clusters an attributed graph and then discovers outliers in the clus-

ters. Besides the limitation that both approaches are only suitable

for homogeneous graphs, it is up to users to figure out the expla-

nations of the outliers. Although these two systems make such

explanations easier by providing the communities or clusters in

which the outliers reside, it still requires substantial expertise to

summarize the communities/clusters’ characteristics. A few works

improve the interpretation of outliers’ outlyingness [1, 23, 33]. For

instance, systems such as [1] and [23] use visualization to help users

identify outliers and potentially discover their outlying aspects.

Although most existing outlying aspects mining approaches fo-

cus on finding global outlying aspects and do not consider contexts

[15, 36], there are a few attempts to find contextual outlying as-

pects [2, 3, 32, 40]. The generalMaverick framework allows users

to adopt any exceptionality measure in the literature such as out-

lierness [3]. AlthoughMaverick focuses on categorical attributes at

this stage, it can be extended for numerical attributes so that mea-

sures such as skyline points [32], promotiveness [40], outlierness

[2], outlyingness rank [15], and z-score [36] can be adopted in the

framework.

Trummer et al. [34] developed the SURVEYOR system to mine

the dominant opinion on the Web regarding whether a subjective

property (e.g., “safe cities”) applies to an entity. This is useful for

populating a knowledge base with ground truth for answering

subjective queries. While they focus on deriving entities’ hidden

properties which may or may not be exceptional,Maverick focuses
on finding exceptional entities using existing data in knowledge

graphs.

8 CONCLUSION AND FUTUREWORK
In this paper, we study the problem of discovering exceptional facts

about entities in knowledge graphs. Each exceptional fact consists

of a pair (context, subspace). To tackle the challenge of exploring the
exponential large search spaces of both contexts and subspaces, we

propose a beam search based framework, Maverick, which applies

a set of heuristics during the discovery. The experiment results

show that our proposed framework is both efficient and effective

for discovering exceptional facts.

Interesting future work can be pursued along several directions

on both efficiency and usability. With regard to efficiency, the cur-
rent system focuses on finding exceptional facts given a specific

entity. What is more appealing is a discovery mode in which the

system automatically finds facts for all entities. Straightforwardly

applying the system on a large knowledge graph will thus lead

to exhaustive and repetitive computations for a huge number of

entities. Devising algorithms for sharing computations across differ-

ent entities can significantly increase the system’s capability over

large knowledge graphs. Furthermore, the system currently consid-

ers a static knowledge graph which in reality constantly evolves

and grows. To produce up-to-date facts, one has to repeatedly ap-

ply the system, which is not practical given the sheer size and

change frequency of real-world knowledge bases. Hence, another

substantial improvement of the system will be adding incremental

exceptional fact discovery algorithms. With regard to usability, how
to present exceptional facts poses intriguing challenges related to

user interface, data visualization, and exceptionality measures. For

instance, it is appealing for the system to produce natural language

descriptions of the facts. While exceptionality measures such as

one-of-the-few may lend itself to simple template-based transla-

tions, it is much more challenging to precisely convey facts ranked

by more complex measures such as outlyingness and isolation score.

Moreover, while our user study helps gain insights into different

exceptionality scoring functions, to thoroughly understand their

strengths and limitations, a more comprehensive and larger scale

user study is worth doing.
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A APPENDIX
A.1 Case Study
To illustrate the effectiveness of Maverick, we present below some

examples of exceptional facts discovered byMaverick in both graph
WCGoals and graph OscarWinners.

Goal(46683) is the only own goal in Brazil’s World Cup his-
tory.
Exceptionality χo = 0.986

Subspace {(awared-to,→)}

Context CP,x0
Goal(46683), where P = {(x0, scored-by, x1), (x1,

play-for , BRA)}

Indeed, among all the 221 goals that were scored by Brazil players

in the FIFA World Cup Finals tournaments, Goal(46683), which was

awarded to Croatia, was the only goal not awarded to Brazil. This

exceptional fact has a very high score.

Among all the crewmembers of Oscarwinning films, Paul
J. Franklin (FilmCrew(7674)) is the only crewmemberwith role
Computer Animation.
Exceptionality χf = 0.784

Subspace {(film-crew-role,→)}

Context CP0,x0
FilmCrew(7674)

This example demonstrates the utility ofMaverick in revealing

data errors, as motivated in Section 1. While investigating why this

entity is exceptional, an analyst will realize the exceptional fact

is due to a data error. An edge mistakenly links from node Paul J.

Franklin to a genre node Computer Animation which is incorrectly used

in this case as a role node. The correct crew role node should have

been Computer Animator.



Goal(23464) is the only goal awarded to Paraguay, among all
the goals scored in matches hosted in Mexico City that had
at least two goals.
Exceptionality χf = 0.983

Subspace {(awared-to,→)}

Context CP,x1
Goal(24227), where P = {(x0, goal, x1), (x0, goal,

x2), (x0, venue, Mexico City)}

There are in total 62 goals scored in matches hosted in Mexico City,

among which 58 were scored in 18multiple-goal matches. These 58

goals were awarded to 12 different teams. Paraguay is the only team

that was awarded only one of the 58 goals.

Game(899) is one of the only two games in which the home
team was Senegal, among all the games where there was a
player wearing the number 21 shirt.
Exceptionality χf = 0.959

Subspace {(home,→)}

Context CP,x1
Game(899), where P = {(x0, bibnum, Bibnum(21)),

(x0, participate-in, x1)}

In 761 games some player wore number 21. Game(899) is one of the

only two such games in which the home team was Senegal.

Among the Oscar winning films produced in the United
States, The Lord of the Rings: The Return of the King (Film(31768)) is
one of the only 7 films that were also produced in New
Zealand.
Exceptionality χo = 0.676

Subspace {(country,→)}

Context CP,x0
Film(31768), where P = {(x0, country , USA)}

There are in total 662 Oscar winning films produced in the United

States, of which 545 were produced solely in the United States. Only 7

of the co-produced films were co-produced in New Zealand. However,

the score of this fact is not as high as that of the last two facts,

because China, Brazil, and a few other countries co-produced even

less films.

A.2 Exceptionality Scoring Function: Isolation
Score χi

Isolation Score χi The isolation score χi is inspired by iForest [26]
and iPath [36]. Both iForest and iPath are applicable on real value

attributes. By randomly choosing a pivot in the range of an attribute,

both methods iteratively split a set of entities into two disjoint

subsets, until the entities in each set have an identical value. The

iForest score and iPath score are defined using the number of splits

applied. iPath only iteratively splits the subsets containing the

entity of interest. The entity’s score is the number of splits until

the entity has the same value as other entities in its subsuming

set. iForest splits all subsets. Essentially, both iForest and iPath

follow the minimum description length principle, and both scores

are functions of the estimated description length of the entity’s

attribute value, which is the number of splits. Inspired by iForest

score, we define isolation score χi as follows:

χi (v,A,C ) = 1 − 2
−

− log
2
pv .A

−
∑
S∈SA

(pS ×log2 pS )
(6)

where the numerator in the exponent is the description length of

v’s attribute value, while the denominator is the average descrip-

tion length of attribute values in subspace A. Intuitively, if v .A is

peculiar, then the description length of v .A is longer than average

and χi (v,A,C ) is closer to 1.

For example, let the conditions be the same as the ones used in

explaining χo and χf : v0 = G1, C = C
P1,?д
G1 = {G1, G2, G3}, and A =

{(awarded-to,→)}. According to Table 1, −
∑
S ∈{⟨{BRA}⟩,⟨{CRO}⟩} (pS ×

log
2
pS ) = −(

1

3
× log

2

1

3
+ 2

3
× log

2

2

3
) = log

2
3 − 2

3
= 0.91,

− log
2
pG1.A = 1.58, then χf (G1, A, C ) = 0.7. Similarly, χf (G1,

{(awarded-to,→), (scored-by,→)}, C ) = 0.

Theorem 6 (Upper bound of χi ). upperi (v,A,C ) ≥ χi (v, A
′,C ),

given the following definition:

upperi (v,A,C ) = 1 − 2
−

− log
2

1

| C |
−qv .A−

∑
S∈SA\{v .A} (pS ×log2 pS )

(7)

where qv .A =
1

| C | × log2
1

| C | + (pv .A−
1

| C | )× log2 (pv .A−
1

| C | ).

Proof. Please refer to Appendix A.5 for the proof.

A.3 Complexity Analysis of the Beam Search
Method

This section presents a brief analysis of the complexity of our beam

search method. Letw be the beam size, if Maverick stops at level l
of the Hasse diagram P, which is the search sapce of patterns, then

it evaluates exceptionality in at least (l−1)w +1 contexts (patterns).
For each context, the complexity of computing exceptionality is

O (2 |Av0 | ), as we discussed in Section 4. Assume the average degree

of an entity is d , the average number of variables in a pattern

of size k is
k
2
, then a pattern of size k has (d + 1)k/2 children.

For each child, Maverick needs to compute h scores for selecting

promising candidates (Section 5.4). The main computational cost of

h scores is the calculation of context sizes, which requires pattern

evaluation. Given a pattern of size k , its evaluation can be done in

O ( |E (G ) |k ), since it may require k self-join operations on EG . In

sum, the estimated complexity isO ((w (l−1)+1) (2 |Av0 |+
∑l
k=0 (d+

1)k/2 × |E (G ) |k )) = O (2 |Av0 | + d l |E (G ) |l ).

A.4 User Study for Comparing Exceptionality
Scoring Functions

We conducted a user study to assess the quality of four different

exceptionality scoring functions χf (one-of-the-few, Section 2), χo
(outlyingness, Section 4.2), χi (isolation score, Appendix A.2), and

frequency rank (Eq. (1)). The measure frequency rank is simply

to rank the exceptionality of entities in context C with respect

to subspace A based on their attribute value frequency Pv .A, as
defined in Eq. (1). The lower the frequency, the more exceptional it

is. We compared the rankings of exceptional facts based on these

functions as well as actual user preferences.

The user study participants were asked to choose a fact from a

pair of facts that they deemed to be more exceptional. For quality

assurance we manually crafted a set of trivial facts that are clearly

non-exceptional or dull. We then formulated test pairs, of which

each is composed of a regular fact and a trivial fact. The participants

are expected to choose the regular fact as more exceptional. A par-

ticipant’s quality is thus gauged by their accuracy on the test pairs,



which were mixed together with regular pairs without disclosure

to the participants.

We used 10 regular facts and thus 45 pairs of these facts. We

randomly selected 10 entities from graph OscarWinners, and run

Maverick using Beam-Conv to discover exceptional facts of the

entities. The exceptionality scoring function used in the discovery

was outlierness (χo ). Among all the facts discovered byMaverick,
10 facts are picked so that the scores of facts are roughly evenly

distributed in [0, 1]. For each selected fact, χf , χi , and frequency
rank are also calculated. We crafted 8 trivial facts and formulated 8

test pairs by pairing up these trivial facts with regular ones. Hence a

participant responded to at most 53 pairs. The facts were presented

to the participants in their natural language descriptions which we

manually generated in the form of one-of-the-few facts. The study

was conducted on line, for which the participants were solicited

from computer science graduate students in the authors’ institution.

4, 212 responses from 84 participants were recorded in total.

For each exceptionality scoring function, we constructed a vector

X of 45 values corresponding to the 45 pairs of regular facts. For each

pair, the value inX is the difference between the two facts’ ranks ac-

cording to the scoring function. We also constructed another vector

Y , in which a value is the difference between how many partici-

pants favored one fact versus another in the corresponding pair. The

correlation between the scoring function and the participants is cal-

culated using the Pearson Correlation Coefficient (PCC) which is de-

fined as (E(XY )−E(X )E(Y ))/(
√
E(X 2) − (E(X ))2

√
E(Y 2) − (E(Y ))2).

A PCC value in the ranges of [0.5,1.0], [0.3,0.5) and [0.1,0.3) in-

dicates a strong, medium and small positive correlation, respec-

tively [10].

Table 4: User study results at different participant quality levels.

# of pairs # of χi χf χo frequency
correct (≥) participants rank

0 84 0.370 0.564 0.295 0.429

1 84 0.370 0.564 0.295 0.429

2 78 0.392 0.585 0.317 0.412

3 74 0.410 0.597 0.335 0.400

4 66 0.449 0.642 0.378 0.338

5 53 0.491 0.649 0.422 0.377

6 43 0.614 0.730 0.558 0.283

7 22 0.738 0.831 0.696 0.061

8 9 0.750 0.864 0.711 −0.007

The results of the user study are presented in Table 4, in which

each row shows the PCC values calculated using participants at a

different quality level (measured by number of test pairs the par-

ticipants got correct, i.e., the first column in the table). We can

make a few observations on the results. 1) As the quality level in-

creases the number of participants that are accounted for at that

level decreases, showing that the test pairs were successful in fil-

tering out low performing participants. 2) For scoring functions

χi , χf and χo , the correlation with participants steadily increases

when the participants’ quality increases. 3) In general, the scoring

function that performed the best was χf , followed by χi and χo .
The results show a strong correlation between these three func-

tions and high-quality human participants, which suggests these

functions are effective in ranking the facts. The observation that

χf performed the best could be due to a bias: the natural language

descriptions of the facts were in the form of one-of-the-few facts.

(On a side note, this suggests a strength of χf related to usability,

as there is no clear way of directly expressing facts in line with χi
and χo .) 4) On the contrary, frequency rank displayed a decrease in

correlation as participant quality increases and its correlation was

never strong. We reason that this could be due to low performing

participants directly using frequency to hastily assess whether a

fact is exceptional or not, without carefully examining the nature

of the fact. The fact that frequency rank attains stronger correlation

with lower-quality participants verifies that it cannot be used as a

robust exceptionality scoring function, as explained in Section 2.

A.5 Proofs of Theorems
Proof of Theorem 2

Proof. Let {pv .A,pS1 , · · · ,pSN } be the probability distribution

of attribute values in subspace A. According to [3], for any A′ ⊇ A,
χo (v,A

′,C ) is maximized when the additional attributes in A′ \A
preserve the current attribute value distribution, except that the

additional attributes make v different from all other entities, i.e.,

the optimal distribution of attribute values in subspaceA′ is {pv .A′ ,
pv .A−pv .A′ ,pS1 , · · · ,pSN }, where pv .A′=

1

| C | . (Note that pS≥
1

| C |
for any S .) In other words, the entities having valuev .A on subspace

A are partitioned into v itself (having value v .A′ on subspace A′)
and the rest (having identical value on A′). Based on Eq. (3), after

a few polynomial manipulations, which we omit here, we have

χo (v,A
′,C )≤

∑
S ∈SA pS

2 −
(2 pv .A+1)×| C |−2

| C |2 .

Proof of Theorem 6

Proof. By Eq. (6), χi (v,A
′,C ) is maximized when the denomina-

tor in the exponent is minimized and the numerator is maximized.

Let {pv .A,pS1 , · · · ,pSN } be the probability distribution of attribute

values in subspace A. Similar to the proof of Theorem 2, we prove

that χi (v,A
′,C ) is maximized when the distribution in subspaceA′

is {pv .A′ , pv .A−pv .A′ ,pS1 , · · · ,pSN }, where pv .A′=
1

| C | . Partition

the entities having value S in A into two disjoint subsets that have

values S1 and S2 in A′, respectively, i.e., PAS = PA
′

S ′ + P
A′
S ′′ . Without

loss of generality, assume PA
′

S ′ ≤ PA
′

S ′′ . We have

(1) −pA
′

S ′ log2 p
A′
S ′ − p

A′
S ′′ log2 p

A′
S ′′ ≥ −p

A
S log

2
pAS ,

(2) −pA
′

S ′ log2 p
A′
S ′ − p

A′
S ′′ log2 p

A′
S ′′ ≥

−pA
′

v .A′ log2 p
A′
v .A′− (pAS − p

A′
v .A′ ) log2 (p

A
S − p

A′
v .A′ ).

They can be derived by

(1) −pA
′

S ′ log2 p
A′
S ′ − p

A′
S ′′ log2 p

A′
S ′′ ≥ −p

A′
S ′ log2 p

A′
S ′′ − p

A′
S ′′ log2 p

A′
S ′′

= −(pA
′

S ′ + p
A′
S ′′ ) log2 p

A′
S ′′ = −p

A
S log

2
pA
′

S ′′ ≥ −p
A
S log

2
pAS ,

(2) Let pAS = n p
A′
v .A′ =

n
| C | , p

A′
S ′ =m pA

′

v .A′ =
m
| C | , then 1 ≤ m <

n, −pA
′

S ′ log2 p
A′
S ′ − pA

′

S ′′ log2 p
A′
S ′′ − (−pA

′

v .A′ log2 p
A′
v .A′ − (pAS −

pA
′

v .A′ ) log2 (p
A
S − p

A′
v .A′ )) = −m pA

′

v .A′ log2m pA
′

v .A′ − (n pA
′

v .A′ −

m pA
′

v .A′ ) log2 (n p
A′
v .A′ −m pA

′

v .A′ )+p
A′
v .A′ log2 p

A′
v .A′ + (n p

A′
v .A′ −

pA
′

v .A′ ) log2 (np
A′
v .A′−p

A′
v .A′ ) = p

A′
v .A′ ((n−1) log2 (n−1)−mloд2m−

(n −m)loд2 (n −m)) = pA
′

v .A′ log2
(n−1) (n−1)

mm (n−m) (n−m )

≥ pA
′

v .A′ log2min(
(n−1) (n−1)

1
1 (n−1) (n−1)

,
(n−1) (n−1)

(n−1) (n−1) (n−(n−1)) (n−(n−1))
) = 0.
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Figure 15: Execution time of enumerating all candidates up to level
2 by different orders of graphs.

As a result, since − log
2
pv .A′ ≥ log

2
pi for any pi ≥ pv .A′ , by

dividing pv .A to pv .A′ and pv .A − pv .A′ , χi (v,A
′,C ) is maximized.

In other words, the optimal distribution in subspace A′ is {pv .A′ ,
pv .A−pv .A′ ,pS1 , · · · ,pSN }.

Proof of Theorem 3

Proof. Given a WCCW ∈ W , it has at least one subgraph

of order i , for every i ∈ [ 1, |VW | ]. For each subgraph of size i ,
there are 2

i
corresponding patterns that can be constructed by

replacing some nodes with variables. Hence, for eachW , there are

at least

∑ |VW |
i=1 2

i = 2
|VW |+1 − 2 patterns. Since every such pattern

is isomorphic to a subgraph of W , it is guaranteed to be valid.

Note that two patterns of the same order constructed from two

subgraphs in two differentWCCs can be equivalent if all their nodes

are variables. Therefore, eachW ∈ W has at most | VW | patterns
that are equivalent to others. There are at least maxW |VW | unique
patterns in which all nodes are variables. Thus, after excluding

double-counted patterns,

| VP | ≥
∑

W
(2 |VW |+1 − 2) −

∑
W
|VW | +max

W
|VW |

=
∑

W
(2 |VW |+1 − 2) − |VG | +max

W
|VW |.

Proof of Theorem 4

Proof. Since P ′ is a child of P , P ′ has one edge more than P .
Suppose (u, l ,w ) = EP ′ \EP , and f ′ is the bijection f ′ : VP ′ → VM ′ .
We prove the theorem by constructing M . More specifically, let

EM = EM ′ \ {( f
′(u), l , f ′(w ))}, and VM = ∪(vi ,l ′,vj )∈EM {vi ,vj }.

We can construct a bijection f : VP → VM such that f (u) = f ′(u)
for any u ∈ VP . Since f ′ satisfies the edge isomorphism, f also

satisfies it, i.e., ∀(vi , l
′,vj ) ∈ EP , ( f (vi ), l

′, f (vj )) ∈ EM , and vice

versa. By Definition 2,M is a match to P .

Proof of Theorem 5

Proof. Since both ends of e are entities, we have XP = XP ′ . By

Theorem 4, ∀M ′ ∈ MP ′ , there existsM ∈ MP which is a subgraph

of M ′. Let e ′ = EM ′ \ EM , then e ′ = e by Definition 2. Therefore,

∀x ∈ XP ′ , R
P ′
x ⊆ RPx . Similarly, ∀M ∈ MP , the graph M + e is a

match to P ′. As a result, ∀x ∈ XP , R
P
x ⊆ RP

′

x . In sum, ∀x ∈ XP ,

RPx = RP
′

x , and CP
v0

= {RPx ′ |x
′ ∈ XP ,v0 ∈ RPx ′ } = {R

P ′
x ′ |x

′ ∈

XP ′ ,v0 ∈ R
P ′
x ′ } = C

P ′
v0

.

A.6 Scalability
To test the scalability of Maverick, we generated synthetic graphs

using a benchmark data generator BSBM about products, vendors,

consumers, and reviews (http://wifo5-03.informatik.uni-mannheim.de/bizer/
berlinsparqlbenchmark/ spec/BenchmarkRules). We varied the number of prod-

ucts from 100 to 2, 000, which resulted in graphs of order |V (G ) |
from 14, 195 to 215, 895. Fig. 15 shows how the execution time of all

algorithms increased along with the order of the graphs. Given that

Beam-Conv and Beam-Rdm need less computation in candidate

selection, both scaled much more gracefully than others. The figure

also shows the execution time of two A* algorithms guided by hopt
and hconv , respectively. The results confirmed that computing hopt
is more expensive than hconv . This is because computing hopt re-
quires examining all the variables in a pattern, while computing

hconv only requires that for context-defining variables in the par-

ent. Due to the overhead of computing h scores, the A* algorithms

are shown more expensive than Breadth-First.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/BenchmarkRules
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