Detecting Rootkits With the RAI
Runtime Application Inventory

Shabnam Aboughadareh, Christoph Csallner
Computer Science and Engineering Department
The University of Texas at Arlington, Arlington, TX 76019, USA
shabnam.aboughadareh@mavs.uta.edu, csallner@uta.edu

ABSTRACT

Remotely determining which precise code is running on which
machines is hard. This is especially true if the monitored
machines lack modern security features and may be under
malware attack, since in such a scenario the malware may
have already manipulated applications and operating sys-
tems. Existing approaches to this problem are heavy-weight
and have a large attack surface, which is frequently attacked
by both applications and malware.

To address this problem, this paper introduces RAI, a
light-weight code monitoring tool that is especially well-
suited for legacy systems. While potentially useful for many
software maintenance tasks, this paper applies RAI for de-
tecting ongoing rootkit attacks. Specifically, in our exper-
iments on several user and kernel mode rootkits, our ap-
proach achieved with moderate overhead and a relatively
low false positive rate a 100% rootkit detection rate.

CCS Concepts

eSecurity and privacy — Intrusion/anomaly detec-
tion and malware mitigation; Distributed systems se-
curity; eSoftware and its engineering — System ad-
ministration; e Applied computing — Surveillance mech-
anisms;

Keywords

RAI; TDOIM; remote runtime code monitoring; rootkit de-
tection; legacy system maintenance

1. INTRODUCTION

Remotely determining which precise code binaries are run-
ning on which machines is hard. This challenge has several
aspects. First (1), the monitored binaries may change fre-
quently in main memory at runtime. These changes often
originate from dynamically generated or self-modifying code,
e.g., for dynamic performance optimization or dynamic code
obfuscation. A more recent reason are malware attacks. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SSPREW ’16, December 5-6, 2016, Los Angeles, CA, USA
© 2016 ACM. ISBN 978-1-4503-4841-6/16/09. .. $15.00
DOL: http://dx.doi.org/10.1145/3015135.3015138

example, an attacked program’s in-memory binaries, as well
as the binaries of any other program on the machine, may be
changed frequently by an advanced persistent threat (APT).

Monitoring legacy binaries poses additional problems as
(2) legacy applications are often tightly bound to legacy sys-
tems that lack modern security infrastructure. Moreover,
(3) restarting legacy applications is often costly and should
be avoided, to prevent business interruption.

This problem is significant in practice, since legacy appli-
cations are used widely in all industries, including banking,
transportation, and health care. Legacy applications are,
e.g., susceptible to malware attacks. Among others, a mal-
ware attack may lead to a data breach. In 2014 each data
breach cost the affected company in the U.S. on average over
five million dollars [46].

Reliable data on where which code is running would be
valuable, on one hand, for software maintenance—for exam-
ple, to prioritize reverse engineering, program understand-
ing, and testing. On the other hand, it would also be valu-
able for detecting ongoing malware attacks. In this case the
data may show that due to malware infection, on some ma-
chines an executing code part differs slightly from what is
currently executing on other machines.

Malware may manipulate and subvert the underlying op-
erating system and any monitoring tool. We define legacy
systems as systems that lack the hardware-based root of
trust that is necessary for ensuring that a remote machine
has not been taken over by malware [44]. A common ex-
ample of such a hardware-based root of trust is the Trusted
Platform Module (TPM) [1]. Without such hardware exten-
sions, there will never be absolute protection from attacks
for legacy systems. But we propose an approach that gets
closer to this impossible ideal than existing techniques.

Such malware take-overs are made easy by the mono-
lithic architecture of many popular operating systems and
the many bugs and security vulnerabilities they contain. To
minimize the risk of subversion by malware, an important
design goal is therefore to minimize the footprint of any
monitoring logic deployed on any monitored machine.

Closely related existing approaches to determining which
code is running on legacy machines are programmable de-
buggers and profilers. These approaches provide valuable
runtime information but are not sufficient.

Most closely related, (programmable) debuggers such as
Dalek and IDA Pro expose much low-level information about
running processes, including memory contents and control
over the execution [42]. However, being so powerful, de-
buggers are frequently attacked by both applications and

http://dx.doi.org/10.1145/3015135.3015138

malware. Malware attacks on debuggers are made easy by
debuggers being large and complex multi-layer systems with
a large attack surface [55, Chapter 16].

To prevent debugging, many applications employ sophis-
ticated tricks to prevent debuggers from exposing runtime
information [19]. Also, to observe both user and kernel mode
programs and to detect ongoing malware attacks, a kernel-
mode debugger would be needed, which may not be available
on all running legacy machines. Finally, debuggers have a
relatively high overhead, which can alter the control flow of
the monitored application.

Modern profilers such as DTrace use low-overhead dy-
namic instrumentation to monitor given program locations,
both in the kernel and in user-space [7]. However, such pro-
filers have a big footprint (e.g., DTrace places among others
an entire VM in the operating system kernel) and are there-
fore big malware targets. Low-level assembly instruction
execution tracing has a very high overhead. Higher-level
tracing (e.g., at function boundaries) is typically not avail-
able because it requires static instrumentation, which for
many legacy applications is effectively impossible since they
are shipped without debug symbols [59].

To determine which code is executing on which machine,
we present RAI, a Runtime Application Inventory. At a
high level, RAI is a client-server scheme that periodically
monitors the physical memory contents. RAI does this with
a minimal agent deployed on client machines, which may
even be installed during an ongoing malware attack.

We evaluate RAI by applying it to detect malware in a
scenario where the monitored application is running in many
identical (or homogeneous) instances. Such a setup is often
the case in a distributed application (e.g., in a data center)
or in widely deployed consumer software.

Specifically, the Tiny Distributed On-demand Integrity
Monitor (TDOIM) extends the RAI server to compare the
current memory contents of the operating system and ap-
plications across machines. When some instances start to
diverge from the rest, this is an indication that the diverg-
ing instances may have been manipulated by malware. In
other words, the server periodically infers and updates a
white-list directly from the monitored application instances
and checks all clients against this dynamic white-list.

To evaluate TDOIM, we implemented TDOIM for Linux
and conducted several small experiments. For the experi-
ments we used different user-mode and kernel-mode rootkits
that perform code injection, hooking, and in-line patching
to infect applications. In our experiments TDOIM could
always pinpoint the compromised systems and the infected
memory regions in these systems. In our experiments the
runtime overhead on the client machines was moderate. The
number of false positives was relatively low for kernel mod-
ules (4% of the modules’ pages) and zero for the OS kernel
and user-space applications.

To summarize, this paper makes the following major con-
tributions.

e This paper describes RAI, the first approach to mon-
itoring which code is running on machines that is de-
signed to work even on legacy systems under malware
attacks.

e The paper describes TDOIM, a RAI application that
is more effective at detecting rootkits in legacy appli-
cations than the state of the art.

e The paper provides an initial empirical evaluation of
TDOIM on several Linux user and kernel mode root-
kits, where with moderate overhead and a relatively
low false positive rate our TDOIM prototype imple-
mentation achieved a 100% rootkit detection rate and
scaled to a highly distributed setup of dozens of mon-
itored application instances.

2. BACKGROUND

This section provides necessary background information
on code management and layout techniques that are com-
mon across many platforms and operating systems. We also
describe how malware, and especially rootkits, inject code
and how existing anti-malware approaches often increase the
malware attack surface of the machines the anti-malware ap-
proaches are supposed to protect.

2.1 Code Location at Runtime

While details differ among the various platforms and op-
erating systems, there are two broad categories of memory
address space, kernel and user. Most widely used operat-
ing systems are monolithic and thus both the kernel and
its extensions (such as device drivers) have full access to all
memory. Each user-mode application has its own memory
address space and cannot directly access the code or data of
other applications or the kernel.

Code and its data exist in two main forms, on disk in
files and loaded in main memory. The compiler typically
places both code and data in a number of segments or sec-
tions. While the terms have well-defined meanings that dif-
fer across platforms, in this paper we use segment and sec-
tion interchangeably to refer to a chunk of either code or
data either on disk or in main memory. For each segment
the compiler can set access rights (read, write, and execute),
which most operating systems enforce via the platform’s
memory management hardware support. For example, code
is typically placed in executable non-writable segments and
constant data values are typically placed in non-executable
non-writable segments.

On most platforms, each application is allocated in a con-
tiguous block of virtual memory, which the platform maps to
a likely non-contiguous set of pages in physical (main) mem-
ory. The physical address of a given page therefore varies
across program executions. Virtual addresses may also differ
across executions, e.g., due to address space layout random-
ization (ASLR). A program can run with only some of its
pages in physical memory, the remaining pages are swapped
out to secondary storage, such as a disk. Kernel addresses
are often an exception, as several OSs such as Linux make
sure that their kernel code and read-only data segments are
both in contiguous chunks of physical memory and never
swapped out.

Most platforms have mechanisms for dynamic code load-
ing, e.g., to support a device the user plugged in at runtime
or to handle various input values. This code is loaded into
an existing address space and adds additional code and data
segments. Common examples in the kernel are kernel-level
device drivers. In user-mode, many platforms have mecha-
nisms to dynamically load code libraries.

2.2 Malware: Code-Injecting Rootkits

The term “rootkit” has traditionally been used for software
that is used in an initial attack to elevate a user to root

access on a victim system. However in the current literature
rootkit refers to software that an attacker uses after gaining
the desired level of access through some other attack such
as a zero-day exploit. In this new definition, which we use
in this paper, a rootkit uses the existing level of access to
create a more persistent backdoor to retain access in the
long term and possibly hides itself and malicious payloads
from anti-malware tools.

Many rootkits work by injecting code into the victim sys-
tem [31]. To inject code, rootkits use their high OS privilege
level to overwrite code segments on disk or in main mem-
ory or load additional (malicious) code segments (e.g., as a
dynamically linked library) and change read-only data seg-
ments (i.e., that contain function pointers) to link to them.
A rootkit may inject code at any level, i.e., in the kernel, in
kernel extensions such as device drivers, and in user-mode
applications.

For example, a code-injecting rootkit may be planted by
a buffer overflow attack, which overwrites parts of the call
stack with a rootkit and transfers control there. In this sce-
nario the new call stack injects or overwrites code in the
heap and jumps there. This paper focuses on code-injecting
rootkits, since they are common and hard to detect, espe-
cially in legacy applications.

2.3 Current Anti-malware Limitations

Many current anti-malware techniques have a large attack
surface and thus are themselves vulnerable to many attack
vectors [60, 37, 36], which in turn makes the machines they
are running on more vulnerable. Due to their large number
and complexity, we do not enumerate all such attack vectors.
Instead we list a few of the attack vectors that are common
in existing techniques but are absent from our work.

As an example functionality, current antivirus tools store
application white-lists and malware black-lists on each mon-
itored client. (1) First, such list stores can be manipulated
on disk or in memory. (2) Second, the process of adding
new elements to the lists can be intercepted or subverted, at
the source server, during transmission, or at the client-side
antivirus tool destination. (3) Finally, retrieving elements
from the lists can be intercepted.

In addition to these direct attack vectors, there are also
the following well-known indirect attacks. Existing anti-
malware tools have a lot of features and therefore contain a
lot of code, which presents many opportunities for code vul-
nerabilities and zero-day exploits. The functionality is also
spread across many places such as disk, memory, and reg-
istry, with their own attack vectors. To access such system
resources, current anti-malware tools use a large number of
operating system APIs, such as system calls, which malware
frequently manipulates [22].

3. RAI APPROACH AND DESIGN

This section gives an overview of RAI’s main assumptions
and the resulting architecture. For example, RAT monitors
efficiently code that can be loaded dynamically and code
that is partially swapped out to disk.

On each platform running the monitored application we
install a tiny client-side agent. We keep the agent’s func-
tionality minimal to minimize the attack surface added to
the monitored machines. This agent does not require special
hardware or virtualization, which together with its minimal
functionality allows deployment on a wide variety of plat-

forms. This client-side agent can be installed on a platform
during a malware attack and does not require recompilation
or restart of the monitored application.

Each client-side agent periodically computes hash values
of the physical main memory that is currently used for ker-
nel, device drivers, and user-mode applications. Each agent
then sends the hashes to the RAI server. The RAI server
thereby keeps track of which machine is currently running
which parts of the operating system and which parts of
which applications.

3.1 Assumptions and Threat Model

A monitored application may run on a user’s system in
user-mode, kernel-mode, or both. A user system is the op-
erating system (OS) and all applications running on the OS.
The OS may run directly on hardware, in a virtual ma-
chine (VM) instance, or in a container [18].

We assume a user system may be under malware attack.
As common in rootkit-type attacks, we assume the adver-
sary has full access to the whole attacked machine, including
the file system and all memory address spaces. The adver-
sary may exploit this access and continuously hack a victim
machine’s operating system and the application running on
the machine. As part of such an attack, the attacker injects
code for both malicious payloads and to hide its trace.

The adversary may carry out the attack by manipulating
binaries on the disk, by infecting loaded images in mem-
ory, or both. For code injection into the different kinds of
software running on the victim’s machine, a concrete attack
may include a combination of the following common rootkit
techniques [22].

For injecting code into the kernel or kernel extensions, the
adversary may obtain a higher privilege level (such as root
access) and inject the malicious payload by patching the
binaries on disk, hooking the system call table, or patching
(overwriting) code sections and read-only data sections in
memory. For user-mode applications, the adversary may
patch binaries on disk or inject a malicious library in the
address space of a running legitimate user-mode process or
service, by manipulating the code section in memory.

Similar to related tools, if malware is aware of the RAI
agent on the victim systems, malware could attack the agent
or intercept its network communication. For example, since
RALI relies heavily on hashing memory contents, an attacker
could carefully craft a manipulation such that both the orig-
inal and the manipulated memory yield the same hash value.
To minimize the possibility of such attacks, RAI hides its
trace in the system (e.g., by hiding the driver code and its
network activity) and uses a minimal set of APIs that are
not common targets of malware manipulation.

3.2 RAI Architecture Overview

Since the RAI client component resides in the address
space of the OS that runs the monitored application, there
is a risk that a rootkit attacks the RAI client. To minimize
this risk, the RAI client has a tiny feature set and therefore
a tiny attack surface. In RAI many key features are located
on the server.

Figure 1 gives a high-level overview of RAI’s architecture,
using an example setup of m machines running a mix of
applications. The RAI back-end is a user-mode application
that resides outside the monitored machines, i.e., on a re-
mote host. Each of the m monitored machines has installed

OS kernel

OS kernel

RAI
Back-end

- R

Kernel module k Kernel module k

RAIl kernel module .~ RAI kernel module

Hashes Hashes -
Machine m

Machine 1
Figure 1: Example configuration of RAI, monitoring
m application instances.

a RAI client component, i.e., the RAI agent. The RAI agent
is a kernel module that sends at short random intervals to
the RAI back-end server its machine’s configuration. The
configuration includes its processor type, OS version, and a
hash of all code segments and all read-only data segments
of all processes that are currently in physical main memory.

RAI-like monitoring tools are susceptible to scrubbing at-
tacks, in which a memory resident malware predicts moni-
toring time and attempts to conceal its trace in memory at
the time the monitoring agent computes a memory hash [38].
To address such attacks, RAI obtains its memory hashes in
random intervals, which are by default 30-90 seconds. To
further address the threat of scrubbing attacks and to reduce
the RAI client’s attack surface, RAI places its random in-
terval generator on its back-end component. To prevent an
attacker from inferring hashing activity from network activ-
ity, the server’s instruction includes a random delay value,
which the client uses to decouple the times of incoming net-
work traffic from the start of hashing.

3.3 De-Relocating Virtual Addresses

In any two execution scenarios, a given kernel module or
shared library may be loaded at different virtual addresses.
For example, this may be due to two machines loading code
in different orders. Since some addresses may differ across
machines and invocation scenarios, compilers express these
addresses relative to an assumed base address. Many recent
user-level libraries implement this with position independent
code (PIC). PIC adds a level of indirection and replaces
addresses in the code segment with a lookup of the actual
virtual target address. The lookup is placed in the (writable)
data segment and is therefore not hashed by RAI If a library
is compiled to PIC it will therefore yield the same RAI hash
value regardless of where it is loaded.

Instead of position independent code, kernel modules and
legacy user-level libraries use the traditional technique of
load-time relocation using the relocation tables that are avail-
able in on-disk binaries, but not in in-memory (loaded) bi-
naries.

When loading such code the operating system fixes the
code’s base address and replaces (“relocates”) each relative
virtual address with the then-known absolute virtual target
address. After relocation, the same library or kernel module
may therefore contain different (absolute) virtual addresses
on different machines, which would yield different hash val-
ues for the same piece of code.

A straightforward solution to this problem would be to
find all such addresses in kernel modules and legacy shared
libraries and replace them with zero. While this approach
would ensure equal hash values for different relocations, it
may also produce false negatives if a rootkit only manipu-
lates such addresses.

To address this problem, RAI “de-relocates” addresses for
hashing. RAI replaces each absolute virtual address that
points to a library with the corresponding relative virtual
address. Specifically, for each absolute virtual address, RAI
determines the library and memory segment the address
points to and subtracts from the address the segment’s base
address, thus yielding the de-relocated address.

To find addresses in a library, the current RAI prototype
implementation customizes the Distorm disassembler [13],
which supports 32-bit and 64-bit Intel processors. Disas-
sembling x86 is undecidable in general [59], so no disassem-
bler will produce perfect results in all cases. However in
our experience Distorm produced reasonable results in prac-
tice. Distorm also provides convenient access to opcodes and
operands via its decomposer feature. While Distorm con-
tains some Linux header files that can only be used in user
space it is written in POSIX C (without using OS-dependent
APIs). We could thus remove user-mode specific header files
from Distorm and use it in RAI’s kernel agent.

3.4 Dynamically Loaded Code

De-relocation ensures that library hashes do not differ
based on their virtual addresses. However an application’s
hashes may still differ across executions if the executions
use different library load orders. This may happen when
two executions solve different tasks, each requiring its own
libraries or its own library load order.

Mapping an entire application to a single hash value would
lead to frequent problems. For example, the two application
instances in Figure 2 have not been manipulated. But they
would yield different hash values (Hash_T1 # Hash T2), as
only one of them has loaded the lib2.so dynamic library.

lib2.so
lib1.so Hash T2 lib1.so

Hash_T1 s - -
text text

Application A in state S2

Application A in state S1

Figure 2: Two application instances yield different
“hash of hashes” (Hash_T1 # Hash_T2), as only one
has loaded the lib2.so dynamic library.

To distinguish such cases from rootkit attacks, RAT asso-
ciates each page hash with the name of the segment the page
belongs to. RAI also computes one hash per segment. This
way, RAI can quickly compare segments across machines
and locate manipulated pages, even if different libraries are
loaded or they have been loaded in different orders.

3.5 2-Level Hash

When characterizing a program’s code and read-only data
segments as hash values, it is important to determine which
parts of the code and read-only data segment to include in
the hash. Since at any time some pages of the program’s seg-
ments may be swapped out to disk, the brute force solution
would be to first swap all segments back into main memory
and then compute the hash values. However this approach
would be very inefficient, as each swap can be time intensive
and displace pages other processes may need, triggering fur-
ther system slowdown. Furthermore, pages on disk are less
interesting as they are currently not in use, by neither the
application nor any malware.

To hash efficiently in the presence of partially swapped out
code, previous work such as SVV just computes a single hash
value of a given application using the pages that currently
happen to be in memory [50]. However this approach may
produce false positives, as on different machines different
pages may be swapped out to disk.

Virt Addr B Physical Mem Virt Addr B Physical Mem
C = r o
Pagen Hash n Pagen
Page n-1 Hash n-1 Page n-1
Hash 1 Swapped page Hash_T< No hash { Swapped page
Page 2 Hash 2 { Page 2
Page 1 Hash1 {(Paget
Virt Addr A Virt Addr A

Figure 3: Single-hash of available pages (left) vs.
hash of hashes (Hash T) plus individual page hashes
1 to n (right).

To efficiently deal with swapped-out pages, RAI uses the
following multi-level hashing scheme. Figure 3 shows an
example of hashing the N pages in virtual address range A
to B. On the left, SVV computes a single hash of all the pages
that are currently in physical memory. On the right, RAI
first locates all the pages of a given program’s code and read-
only data sections that are currently in physical memory and
therefore not swapped out. RAI then computes the hash
of each of these pages and associates each hash value with
the page’s virtual address. Further RAI computes the hash
Hash_T of these hash values.

3.6 RAI Agent’s Attack Surface

The RAI client-side component is designed to have a min-
imal feature set and therefore a minimal attack surface.
Specifically, RAI’s client-side agent calls APIs and macros
only to access and hash memory, manipulate strings, com-
municate via the network, and perform OS-level synchro-
nization.

As a concrete example of the RAI agent’s small foot-
print, all OS functions RAI’s agent calls provide essential
and widely available low-level OS features. Implementing
RALI for other Linux versions and OSs such as Windows is
thus straight-forward, since these other OSs all provide the
features RAT uses.

Besides its small footprint, all standard techniques apply
for hiding RAI’s presence from malware on client machines.
Example techniques include unlinking the RAI agent from
the list of running kernel modules, randomizing the name of
the RAI agent before deploying it, and similarly randomizing
its code and therefore its own hash signature.

3.7 RAD’s Server Component

At a high level the server’s main tasks are communicating
with RAT’s client-side agents and dealing with the hashes
it receives from these clients. To keep the attack surface
of RAT’s clients as small as possible, the server also takes
on such tasks as keeping track of all participating machines,
initiating client-server communication, and deciding random
communication intervals. For each participating client, the
server aims to maintain at least two hash values, the current
and the previous one.

After sending a request to its clients, the server waits for
a configurable duration for client responses (5 seconds by
default). If the server only receives partial (or no) hashes
from some clients, it sends another request to these systems.
If a client does not respond to server requests for a long
time (e.g., 10 requests), the server produces an alert. This
alert indicates that the client is shut down, has a network
problem, or is possibly under malware attack.

4. EXAMPLE IMPLEMENTATION: LINUX

To evaluate RAI, we have implemented its main compo-
nents as prototypes for the Linux platform. This section
describes key implementation details that allow an initial
empirical evaluation.

The goal of this prototype implementation is not to pro-
vide a highly efficient and secure large scale distributed soft-
ware, but to allow rapid evaluation. We therefore took a few
shortcuts in the implementation. Notably, in the prototype
the client-side component is a kernel module that listens
directly on the network for server commands, which poses
obvious security problems. This is not a fundamental lim-
itation, though, and can easily be replaced with handling
network communication entirely in user-mode.

Similarly, the prototype implementation is missing ad-
vanced features such as failure recovery, security and au-
thentication, high availability, scalability and performance
management. As another example, our current prototype
implementation does not actively prevent denial of service
attacks on the server component. Addressing these issues is
part of future work.

4.1 Obtaining Virtual Address Ranges

The RAT agent is a kernel module and therefore has full
access to the user system’s memory. When the agent starts
executing it creates a single-threaded work-queue [5] that
listens to a predefined port and operates based on the com-
mands it receives from the RAI back-end.

To obtain the virtual address range of Linux kernel code
and read-only data, existing rootkit detection and protection
tools consult the Linux kernel’s symbol table [47], which is
stored in the system.map file. As usual, for each kernel
function and variable the symbol table maps between name
and address. However this approach does not work if the
kernel uses run-time address randomization [17].

Instead, memory dumping tools traverse the I/O memory
resources to find the kernel code’s physical address range [57].
The Linux kernel keeps track of the I/O operations that oc-
cur within the address range of physical resources such as
RAM. For the OS the RAM’s child resources include kernel
code, data, and uninitialized data sections (bss). However
this approach does not work for the kernel’s read-only data.

To obtain the virtual address range of Linux kernel code
and read-only data, even under run-time address random-
ization, RAI calls Linux’s kallsyms function. The kallsyms
function extracts all symbols (e.g., functions and variables)
from the kernel and is therefore commonly used by Linux
debuggers. The resulting file maps between symbol address
and name. For instance, a developer can use this file to ex-
tract the entry point address of an internal kernel function
within the OS’s virtual address space.

In most Linux distributions kallsyms is available. The RAI
agent calls kallsyms to extract the address of the symbols
that mark the start and end addresses of the kernel code and

read-only data segments (_stext, _etext
and __end_rodata).

Outside the kernel, RAI extracts code and read-only data
address ranges by traversing the kernel’s data structures in
the kernel’s heap. For example, the Linux kernel main-
tains linked lists of all processes (task_struct) and drivers
(module_struct) and RAI interprets them to find the re-
quired virtual address ranges. Specifically, RAI traverses
the above heap structures to identify each segment or wvir-
tual memory area (VMA) of the kernel, each kernel module,
and each user-mode process. RAI checks if a VMA is flagged
as executable, which indicates a code segment.

start_rodata,

PR—

4.2 Hashing Physical Memory

With the virtual addresses de-relocated (Section 3.3), hash-
ing many of the physical Linux kernel memory pages is
straightforward as the kernel makes sure that its code and
read-only data are in contiguous physical addresses and are
never swapped out. So the RAI agent takes the virtual ad-
dress ranges obtained in Section 4.1 and maps them to phys-
ical addresses via standard kernel APIs.

An interesting special case are legacy machines that have
more physical than virtual memory. For example, to access
main memory beyond 4 GB on a 32-bit x86 machine with
its 4 GB virtual address space, the Linux kernel dynamically
maps a set of virtual addresses to a larger set of physical
addresses, which is also called HHIGH_MEMORY or the kmap
segment [39].

After the kernel maps one of these virtual addresses to a
new physical address, the page at the old target address may
still be valid. But now no virtual address maps to it. Linux
memory-maps code into a process’s virtual address space.
This means that, despite being currently unreachable from
the virtual addresses, such a page may still be in Linux’s
page cache. To solve this issue and obtain the hashes of all
in-memory pages of an application, RAI reads those pages
directly from the page cache.

The current implementation uses the MD5 hashing al-
gorithm since MD5 is fast. But the choice of hash func-
tion is not important to RAI. We could easily replace MD5
with another hash function, if MD5’s level of hash colli-
sions are deemed a problem [4]. For example, switching to a
stronger hash-function such as SHA-2 or SHA-3 would lower
the chance of such hash collisions.

4.3 Sending Hashes to the Back-end

Each RAI agent has a unique RAI identifier. In the cur-
rent implementation this identifier is fixed and assigned be-
fore the RAI agent is installed. The RAI agent produces
one message to send the hashes to the back-end application.
Every message contains the user system’s RAI identifier and
the names of kernel, kernel extensions, and applications, fol-
lowed by their respective 16 byte MD5 hashes. RAI names
the hashes of the kernel “kernel code” and “kernel data”.

As mentioned earlier, RAI sends the hashes of loaded li-
braries or injected code separately from the code segments
of user-mode applications. Thus, after including the hash of
text segment of a process, RAI writes names and hashes of
loaded libraries or injected codes.

5. BUILT ON RAI: TDOIM

RAI could be used for several software maintenance tasks.
However, in this paper we focus on a proof-of-concept appli-

cation that detects ongoing rootkit attacks.

Detecting code-injection rootkit attacks conducted with
new malware is notoriously hard, even on modern systems [8].
Such attacks may be launched, e.g., by zero-day attacks.
New malware may inject malicious behavior into a trusted
application, may be persistent on the infected system, and
may manipulate the infected system to hide itself effectively.
Recent examples of code-injection rootkit attacks include
Stuxnet, Duqu, and Flame [34, 30, 56].

For such attacks, existing malware detection approaches
are not effective for legacy systems. For example, a widely
accepted best practice for detecting code-injecting rootkits
in legacy applications is running host-based third-party an-
tivirus tools and they are in wide use [9]. However, current
antivirus tools are essentially complex high-privilege exten-
sions of the underlying operating system. Such an extension
dramatically increases the malware attack surface—many
attacks on antivirus tools have been described [60, 37, 36].

Also, it may take weeks before a current antivirus tool
detects a new malware attack, since most antivirus tools
rely at least partially on comparing application files to a
blacklist of known malware signatures. For a new malware
attack it takes time for antivirus vendors to discover the
malware, distill it into signatures, and push the signatures
to protected hosts. For example, in a 2007 study on some 8k
malware samples, young (less than one week old) malware
samples went undetected at a rate from over 20% to over
60%, depending on the tool vendor [40]. A 2014 study had
similar results, e.g., antivirus tools could still not reliably
identify malware samples that were several months old [14].

Cloud-based antivirus approaches [40] remain blacklist-
based, which may leave high-value applications exposed to
new malware attacks for weeks. To support legacy appli-
cations, extensions of host-based antivirus tools catalog the
files of all applications into a whitelist'. But this approach
still has a large attack surface and may whitelist malware
that is already on the host.

Other anti-malware work also does not adequately sup-
port legacy applications, since it places strong assumptions
on the monitored applications. For example, recent tech-
niques assume virtualization [53, 47, 48, 11, 21, 27, 58],
certain VMs [53], or special hardware such as TPM or PCI
add-in cards [45, 32, 38, 16, 51, 25].

5.1 Many Homogeneous Instances

In addition to RAT’s assumptions (Section 3.1), TDOIM
also assumes that many application instances are running
at the same time. This assumption is met, for example,
by large distributed applications running many application
instances (perhaps in data centers or in the cloud) or by
many users running instances of the same stand-alone client-
side application.

As an example of this assumption, Figure 2 shows a false
warning if 1ib2.so is a benign library. However a real-world
TDOIM setup has typically many instances and therefore
more than two instances running such a benign library. Since
rootkits typically spread relatively slowly across machines,
TDOIM has a time window in which a rootkit is only present
on a relatively small number of machines. Thus TDOIM uses
a configurable threshold value (by default 10%). An occur-
rence above the threshold indicates a benign library, whereas

'For example: http://www.mcafee.com/GTTTurnltOn

a below-threshold occurrence indicates a rootkit infection.

TDOIM also works best if there are relatively few applica-
tion variants. Specifically, we assume that the applications
are relatively homogeneous in terms of their version and how
they have been compiled. This is often the case, as develop-
ers tend to use the same compiler for long periods of time
and only a few versions of a given legacy application are in
wide use.

5.2 TDOIM Use-Cases

TDOIM has two main use-cases, which differ in the type
of monitored applications and their owners. (1) First, an
administrator of many legacy application instances, which
are possibly distributed over several data centers, suspects
a malware attack on some instances. So the admin installs
the client-side agent on each machine, e.g., remotely as a
kernel extension or device driver. The server component
detects outliers, which triggers the admin to either inspect
or shut down the outliers.

In the second use-case (2) an end-user may suspect a
malware infection on her machine and installs the TDOIM
client on her local machine. TDOIM will then compare her
hash values with those of other end-users. This use-case
has stronger privacy requirements for transmitting hashed
memory regions to the server and a lower tolerance for false
warnings, as the end-user can only inspect a single instance
for possible malware infection.

Both use-cases have in common that upon completion the
TDOIM client may be uninstalled from the affected ma-
chines. Neither installation nor uninstallation require re-
compilation or application restarts.

5.3 TDOIM Architecture

To detect ongoing rootkit attacks, we built on RAT a tiny
distributed on-demand integrity monitor (TDOIM). Based
on the data received from RAI clients, the TDOIM back-end
divides the user systems into groups. Within a group, each
member has the same combination of architecture and OS
version. Within each group, TDOIM compares the hashes of
the various applications to detect outliers. For example, the
two application instances in Figure 2 have different hash of
hashes (Hash T1 # Hash T2). TDOIM thus compares the
segments’ hashes (.text, libc.so, 1d.so, libl.so, and lib2.s0)
and identifies 1ib2.so as an outlier.

The TDOIM server detects outliers only within the group
of reported hashes received by the RAI server and thereby
does not require any prior knowledge about original bina-
ries, file signatures, blacklists, or whitelist. More impor-
tantly, our server detects potential malware attacks imme-
diately and does not have to wait until a third party has
released corresponding malware signatures.

Our voting-based scheme works because a malware attack
usually spreads relatively slowly across the various locations
running the monitored application. While the malware has
only infected a minority of the monitored application in-
stances, our scheme can detect the malware infection as out-
liers.

TDOIM aims for efficient communication. For example,
by default a RAI agent only sends a single hash (of all
hashes). Only if the server flags a hash as an outlier, the
server requests more detailed hash values, to compare the
hashes of all pages in physical memory across different sys-
tems. In addition to removing the false warnings of SVV-

type approaches, RAI’s hash of hashes technique can there-
fore also pinpoint the pages that have been manipulated, if
any.

6. EVALUATION

To evaluate RAI we evaluate its proof-of-concept applica-
tion TDOIM. To evaluate TDOIM, we ask if TDOIM shows
promise for online rootkit detection. This question has two
main facets, runtime overhead and true vs. false positives.
True and false negatives are less relevant, since rootkit de-
tection is heuristic in nature and TDOIM can be combined
with other rootkit detection approaches. We therefore in-
vestigate the following four research questions (RQ), expec-
tations, and hypotheses (H).

RQ1: Does its runtime overhead preclude TDOIM from
detecting rootkits online? We do not expect TDOIM to be
applicable for all settings, because, for example, TDOIM
performs a relatively expensive analysis to compare kernel
addresses across clients to compensate for code load order
and OS address space layout randomization. H1: TDOIM
can be useful in settings in which client machines still have
significant available computational resources.

RQ2: Does its false positive rate preclude TDOIM from
being used in production? Since disassembly of x86 binaries
is undecidable, we cannot expect zero false positives. H2:
TDOIM’s false positive rate is typically greater than zero
but on average can remain below 10%.

RQ3: Can TDOIM detect common types of kernel and
user level rootkit attacks? We expect TDOIM to detect
common rootkit attack types as they occur. H3: TDOIM
can detect common rootkit attack types online.

RQ4: Does TDOIM scale to geographically widely dis-
tributed deployments? We expect TDOIM can scale to se-
tups that have realistic communication delays. H4: TDOIM
can detect rootkit attacks within a few minutes, even if the
TDOIM-monitored applications are running on geographi-
cally widely distributed machines.

We compare RAI and TDOIM qualitatively to competing
approaches throughout the paper. A full evaluation with a
quantitative comparison is subject to future work.

6.1 Subjects: Kernel and User Level Rootkits

Table 1 lists the rootkits used in the experiments. They
are a mix of third-party samples and our own development.
The rootkits operate both in user and kernel mode and ma-
nipulate both disk contents and main memory. The rootkits
perform a variety of attacks—they exchange libraries, inject
code, divert execution, and change both kernel code and
data. Following is a high-level description of each rootkit.

Exchanging libraries via LD_PRELOAD: In this approach
the rootkit exchanges a program’s libraries at load time with
malicious libraries, i.e., to divert some of the program’s li-
brary function calls such as system calls (which are calls to
the C standard library libc). Specifically, the rootkit changes
the order in which a new process loads libraries. To change
the load order, the rootkit sets the LD_.PRELOAD environ-
ment variable of a new process. Linux loads the libraries
listed in LD_PRELOAD before all other libraries, even be-
fore libc.

As an example implementation of this rootkit, we set
LD_PRELOAD to divert the execution of the open file sys-
tem call to a malicious open file function implemented in
our injected library. We expect TDOIM to detect this root-

Table 1: Rootkit subjects run either in user (u) or in kernel (k) mode; KV = Linux kernel version;
CPU = 32 vs. 64 bit; Loc = main memory (m) vs. disk (d).

Rootkit KV ~ CPU Loc Attack
LD_PRELOAD u 3/26 32/64 m Exchange libraries
Jynxkit u 2.6 32 m Exchange libraries
Patch dynamic loader u 2.6 32 d Inject code
Attach to process u 2.6 32 m Divert execution
Syscall hooking k 3 64 m Change kernel data
Suterusu k 3 64 m Change kernel code

kit by comparing the hash code of two program instances,
which will differ due to the different loaded libraries.

Jynxkit—Exchanging libraries via Id.so.preload: Beside
the process-specific LD_PRELOAD, Linux also checks the
contents of the /etc/ld.so.preload file for user-level libraries
that should be loaded before libc. Manipulating this file
thus changes the library load order of all future user-mode
processes.

For example, the third-party Jynxkit rootkit adds its ma-
licious ld_poison.so library to ld.so.preload and thereby di-
verts several system calls including open. Jynxkit remains
undetected by several common anti-rootkit tools, because
they only detect library injection attacks via LD_PRELOAD.

Patching the user-mode program loader: The previous
approaches leave the OS binaries intact. But a rootkit can
also directly rewrite on disk the binary file of the OS’s stan-
dard ld-linux.so dynamic user-mode program loader, e.g.,
using ELF hooker [3]. This rootkit adds to the loader bi-
nary on disk malicious shell-code. This patched loader sets
the entry point of a to-be-loaded program to some malicious
code. The loader also adds code that after the malicious
code execution transfers execution to the program’s origi-
nally intended benign entry point. We use the rootkit to
inject code into the cat application.

InjectSO—Diverting process execution: Instead of ma-
nipulating future processes, this attack uses an OS’s stan-
dard debugger support to attach to a running process and
diverts its execution [10]. This attack typically diverts exe-
cution to the OS’s loader and dynamically loads a malicious
library. The attack then changes some of the program’s
function pointers to divert function calls to the just injected
malicious library.

We used the InjectSO rootkit to inject into the address
space of a running standard Linux cat application a mali-
cious library. In this type of attack, TDOIM notices that
the cat instances running on different machines yield differ-
ent hash values, due to the rootkit manipulating cat’s code
segment.

Hooking the system call table: A common rootkit tech-
nique first locates kernel data structures such as the sys-
tem call table that point to important system functions. By
changing the pointers, attackers can divert or “hijack” sys-
tem calls to malicious code. These rootkits thus hijack the
kernel execution without changing any kernel code. Here we
diverted system calls with the Linux syscall hooker [6]. For
this attack we expect TDOIM to detect a difference in the
kernels’ read-only data segments.

Suterusu—In-line function patching: Besides pointers, a
rootkit can of course also directly change the kernel code to
change its control-flow. For example, in in-line patching a
rootkit may overwrite a function’s prologue with a jump to

malicious code and thereby divert kernel execution [22]. We
evaluate the effectiveness of TDOIM against the Suterusu
rootkit [12]. We expect TDOIM to notice a changed hash
value of the code segment that contains the patched func-
tion.

6.2 Experimental Setup

We conducted two sets of experiments. The first set ex-
plored RQ1 to RQ3 on a small-scale setup. While limited,
these experiments provided interesting initial insights. The
second set explored RQ4 on a geographically distributed
setup on Amazon AWS.

All experiments use a crude approximation of a legacy
system setup. That is, we mainly make sure that we do not
use any modern security features such as TPM.

Setup for RQ1 to RQ3: We set up a testbed of 20 user
systems and installed a TDOIM agent in each. These 20 user
systems communicated with one TDOIM server. For these
experiments we side-stepped (non-local) network require-
ments and place all components on the same host, each run-
ning in its own virtual machine. While this choice does not
capture typical application installation scenarios, it is still
valuable as a baseline for future experiments.

We further focus the experiments on a baseline via the fol-
lowing experimental choices. First, we run the same version
of each application and each kernel module on each client.
Second, for these experiments we do not explore situations
in which applications dynamically load a large number of
libraries during the experiments. On the other hand we do
not prevent applications from loading libraries.

Each client ran on an Ubuntu Linux VMWare VM with
kernel versions 2.6 or 3, 32-bit or 64-bit Intel processor, and
512 MB RAM. The TDOIM server ran on a 64-bit Ubuntu
VMWare VM with a version 3 kernel and 4 GB RAM. The
host system was Debian Linux running on a 2.33 GHz Xeon
machine with 32 GB RAM. The server and each client used
their Ubuntu OS in its default installation and configuration.
This meant that running in each OS were 100 user-mode
applications and 41 kernel modules.

For each experiment, we divided the 20 clients into two
groups. In each group each user system has an identical
configuration, i.e., the same hardware and OS configuration.
For each experiment we further infected between one and
three VMs with a given rootkit.

AWS setup for RQ4: To explore RQ4, TDOIM monitors
application instances running across the world. TDOIM can
run on both VMs and physical machines. We used VMs
in this experiment because it allowed us to quickly deploy
TDOIM to machines across the world, via Amazon Web Ser-
vices (AWS). Specifically, we ran TDOIM on up to 60 vir-
tual machines equally distributed over 10 AWS regions, i.e.,

Table 2: Breakdown of TDOIM’s average runtime
overhead; Loc = TDOIM client (c) vs. server (s).

TDOIM activity Target Loc Slowdown (%)
Hash user-mode app c 8
Hash kernel code/data ¢ 3
Hash + de-relocate kernel modules ¢ 20
Compare hashes 20 VMs s 15
Log MA_INFO 20 VMs s 42

in Virginia, California, Oregon, Ireland, Germany, Japan,
South Korea, Singapore, Australia, and Brazil.

Due to the experiment’s costs, we focused on a single rep-
resentative rootkit, i.e., the Section 6.1 one manipulating
LD_PRELOAD. Since TDOIM performs the same opera-
tions regardless of the rootkit, we do not expect different
results for different rootkits.

In this experiment, the TDOIM server and clients are run-
ning on Linux Ubuntu 14.04 LTS. Each client is running
90 user-mode applications with 0.6 GB RAM. The server
has 30 GB RAM and runs in Oregon. As a baseline, this
experiment only communicates the hash of hashes results to
the server. To provide a conservative scenario in terms of
delay until TDOIM can detect the attack, this experiment
has only a single infected client, the client is in Japan, and
the server checks its hash last.

6.3 Experimental Results

6.3.1 RQI: Moderate Runtime Overhead

To evaluate the performance of the TDOIM agent, we
measure how much time it takes to compute the page hashes
of user-mode applications and kernel data and code. For
kernel modules, we measure the overhead of page hashing
and de-relocation.

To evaluate the performance of the TDOIM back-end ap-
plication, we calculate the overhead of comparing hashes of
the kernel and 141 applications (100 user-mode applications
and 41 kernel modules) over 20 virtual machines. Also, we
customize the back-end application to produce the log of
hashes for each virtual machine and we measure the over-
head of the log producing task.

Table 2 summarizes our measurements. The table con-
tains two kinds of slowdown numbers. The server (s) slow-
down measurements represent a given task’s slowdown of the
TDOIM server component. The client (¢) measurements are
slowdown of the monitored application.

As a baseline for the server measurement, the biggest over-
head (42% slowdown) was logging the hashes received from
the clients to disk. This task is only turned on when debug-
ging the TDOIM server component. Comparing the hash
values resulted in a 15% slowdown. On the client side, the
sum of all TDOIM tasks lead to a slowdown of 31% of the
monitored client application. While this is a non-negligible
slowdown, it is still feasible for many application scenarios.
The TDOIM prototype implementation could also be further
optimized, possibly leading to smaller slowdown numbers.

6.3.2 RQ2: Few False Positives

To explore research questions RQ2 and RQ3 we care-
fully analyzed each TDOIM-produced alert. Specifically,
we dumped the pages that yielded different hash values on
different clients. We then manually analyzed the pages to

Table 3: The 7 kernel modules that produced false
alerts and their number of pages; FH = false hashes;
FP = false positives.

Kernel module Pages FH FP (%)
1000 22 3 13.6
vmwgfx 18 2 11.1
ttm 11 1 9.0
drm 33 1 3.0
bluetooth 55 3 5.4
rfcomm 9 1 11.1
psmouse 16 2 12.5
All 41 modules 314 13 4.1

determine if different hash values were caused by a rootkit.

A false positive occurs when TDOIM produces an alert
about different hash values from two or more client agents
that are not caused by a rootkit manipulation. Such false
positives could occur for different reasons, such as errors
in our TDOIM prototype implementation. For our experi-
ments we expect these false positives to stem from the in-
sufficient reverse engineering of memory addresses in client
side kernel modules.

Indeed, during our experiments all of TDOIM’s false posi-
tives came from kernel modules. Recall that kernel modules
are relatively challenging to handle due to the OS’s address
space layout randomization and possibly different module
load order.

Of the 41 kernel modules running in our standard 64 bit
Ubuntu 12.04 LTS installation, we received in our experi-
ments false positives on 7 kernel modules. These false pos-
itives are summarized in Table 3. For example, the 1000
kernel module uses 22 pages for its code and read-only data
sections. The size of each page is 4kB. TDOIM received con-
flicting hashes and thus false warnings on 3 of these 22 pages,
which corresponds to a 13.6% ratio. Across all 314 pages of
the 41 kernel modules, false warnings occurred in 13 pages
or 4.1% of pages. Reducing the false positive rate is subject
to future work.

6.3.3 RQ3: 100% Rootkit Detection Rate

Besides false positives, the experiments produced many
true positives. That is, in each experiment, TDOIM suc-
cessfully pinpointed the VM, application, and page that were
infected by a rootkit, both at the user and kernel level.

So, in summary, in our experiments on several user and
kernel mode rootkits, TDOIM achieved with moderate over-
head and a relatively low false positive rate a 100% rootkit
detection rate.

6.3.4 RQ4: Scaling to Larger Deployments

We can break the delay from rootkit attack to attack no-
tification into two parts. The first part is the random com-
munication interval determined by the server. In our ex-
periments this interval ranged from 0 to 90 seconds. More
interesting is the remaining delay, which contains the client
agent’s hash computation, network communication delays,
and the server’s hash processing.

Table 4 summarizes the second component of the attack
to notification delay. Each experiment was run on a server
with a set of clients, ranging from 6 to 60 clients equally
distributed over 10 AWS regions. This delay increased with
the number of clients, from 0.4 to 4.4 seconds.

While this roughly linear delay increase appears to limit

Table 4: Scaling a TDOIM deployment distributed
over 10 regions in North and South America, Eu-
rope, Asia, and Awustralia; M = total client ma-
chines; D = delay until attack notification in sec-
onds (in addition to TDOIM’s randomized commu-
nication intervals).

M 6 12 18 24 30 36 42 48 54 60

D {04 10 11 16 19 21 29 33 39 44

TDOIM’s scalability, parts of this scaling behavior can be
explained by our naive server implementation. For example,
the server currently creates a separate thread for each client
and has not been optimized for scalability or performance.
On the positive side, even in its current naive implementa-
tion TDOIM scales to a highly distributed setup of dozens
of application instances.

7. RELATED WORK

Beyond the related work discussed in Section 1, also re-
lated are static instrumentation approaches. However these
are not well-suited for legacy applications, as static instru-
mentation requires recompiling and restarting the applica-
tion. Besides the business impact of restarts, the lack of
source code and debug symbols makes this task undecid-
able [59]. As another issue, static approaches do not support
self-modifying code or malware-induced code changes [24].

For TDOIM, most closely related are cloud-based antivirus
approaches, pioneered by CloudAV [40, 41, 61, 26]. These
approaches reduce the attack surface for malware on the
monitored client, by shifting much of the detection func-
tionality from the client to a cloud-based server, which also
makes them attractive for resource constrained (e.g., mo-
bile) devices [41, 61, 26]. However cloud-based antivirus ap-
proaches still rely on manually (and thus relatively slowly)
curated blacklists.

Similar to TDOIM, a rootkit detector built on Pioneer
also periodically computes hashes of the kernel code and
read-only data and sends these hashes to a server compo-
nent [54, 33, 28, 2, 20]. Pioneer does not rely on virtual-
ized OS stacks or special hardware. Instead, Pioneer times
its execution and thereby detects rootkits. However, Pio-
neer requires prior knowledge of the installed software and
makes strong assumptions about machine and communica-
tion speed. While these assumptions have been partially
relaxed, they do not support legacy applications communi-
cating over public networks [33, 28].

Traditional malware detection approaches are similar to
antivirus tools, as they compare relevant data against ex-
isting white-lists or black-lists and can check for an entire
class of attacks [29]. However, they focus exclusively on the
integrity of the kernel, have a large attack surface, and can-
not be applied in an ongoing malware attack. For example,
when the kernel loads a device driver, earlier work analyzes
the driver with static symbolic execution, to check if the
driver matches given patterns of malicious behavior [29].
Nickle hashes kernel code and prevents execution of code
that does not match this hash [47]. Poker uses Nickle to de-
tect rootkit execution at runtime and then captures a trace
of the rootkit execution [48].

However detecting kernel-level attacks is not sufficient.
For example, by employing user-mode rootkit techniques,

attackers can compromise systems, run malicious payloads,
and remain undetected from these approaches. By monitor-
ing user-mode and kernel-mode applications as well as the
whole operating system, TDOIM is effective against com-
mon user- and kernel-mode rootkits.

Several integrity checking techniques such as Nickle and
Vigilare rely on modern infrastructure that is not available
in legacy systems, such as virtualization (e.g., based on a hy-
pervisor or software-based virtualization) [53, 47, 48, 11, 21]
and specific hardware such as TPM or PCI add-in cards [45,
32, 38, 16, 51, 25, 35, 52].

File integrity checkers such as Tripwire rely on an accu-
rate comparison of runtime memory contents with original
on-disk binaries [51, 27]. Such a comparison requires either
the files’ original signatures or a clean system state, to en-
sure that no binary is patched by malware. In other words,
such tools cannot be used in an ongoing attack. For exam-
ple, the system virginity verifier (SVV) is a cross-view based
Windows rootkit detection approach that checks if code sec-
tions of important system dlls and system drivers in memory
are consistent with their on-disk binaries [50].

8. LIMITATIONS AND FUTURE WORK

Not covered by our threat model are stack manipulations.
For example, in return-oriented programming (ROP) attack-
ers hijack the application control flow without code injec-
tion [49, 23], by instead overwriting an application’s stack.

Detecting ROP attacks with TDOIM would require mon-
itoring and comparing application control-flows across ma-
chines. Moreover, several other approaches mitigate ROP
attacks by monitoring the control flow or via compiler-level
approaches for building less vulnerable binaries [15, 43].

Also not covered by our threat model are manipulations
of dynamic data structures in the kernel’s heap such as di-
rect kernel object manipulation (DKOM). The most com-
mon DKOM attack is manipulating the linked lists the ker-
nel uses to keep track of kernel modules and processes, to
hide the presence of malware in the victim system.

While TDOIM does not detect such heap manipulations,
many real-world attacks use DKOM only to hide their pres-
ence. In addition, such attacks rely on rootkits covered by
our threat model to attack applications. TDOIM can thus
detect such combined attacks, even if their traces are hidden
via DKOM.

9. CONCLUSIONS

Remotely determining which precise code is running on
which machines is hard. This is especially true if the mon-
itored machines lack modern security features and may be
under malware attack, since in such a scenario the malware
may have already manipulated applications and operating
systems. Existing approaches to this problem are heavy-
weight and have a large attack surface, which is frequently
attacked by both applications and malware.

To address this problem, this paper introduced RAI, a
light-weight code monitoring tool that is especially well-
suited for legacy systems. While potentially useful for many
software maintenance tasks, this paper applied RAI for de-
tecting ongoing rootkit attacks. Specifically, in our exper-
iments on several user and kernel mode rootkits, our ap-
proach achieved with moderate overhead and a relatively
low false positive rate a 100% rootkit detection rate.

Acknowledgments

We would like to thank Matthew Elder, Nathan Evans, Azze-
dine Benameur, and the anonymous reviewers for their help-
ful feedback. This material is based upon work supported by
the National Science Foundation under Grants No. 1117369
and 1527398.

10.

1]
2]

[13]

14

[15]

REFERENCES

Trusted Platform Module. ISO/IEC 11889, May 2009.
F. Armknecht, A. Sadeghi, S. Schulz, and

C. Wachsmann. A security framework for the analysis
and design of software attestation. In Proc. ACM
Conference on Computer and Communications
Security (CCS), pages 1-12. ACM, Nov. 2013.

N. Bareil. Id-linux.so ELF hooker.
http://justanothergeek.chdir.org/
2011/11/1d-linuxso-elf-hooker/. Accessed Sept. 2016.
J. Black, M. Cochran, and T. Highland. A study of
the MD5 attacks: Insights and improvements. In Proc.
13th International Workshop on Fast Software
Encryption (FSE), pages 262—-277. Springer, Mar.
2006.

D. P. Bovet and M. Cesati. Understanding the Linuz
kernel. 7 O’Reilly Media, Inc.”, 2005.

E. Bradbury. linux-syscall-hooker.
https://github.com/ebradbury/linux-syscall-hooker.
Accessed Sept. 2016.

B. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In
Proc. USENIX Annual Technical Conference, pages
15-28. USENIX, June 2004.

cert.pl. More human than human: Flame’s code
injection techniques.
https://www.cert.pl/en/news/single/more-human-
than-human-flames-code-injection-techniques/, Aug.
2012. Accessed Sept. 2016.

S. K. Cha, I. Moraru, J. Jang, J. Truelove,

D. Brumley, and D. G. Andersen. SplitScreen:
Enabling efficient, distributed malware detection. In
Proc. 7th USENIX NSDI, Apr. 2010.

S. Clowes. Injectso: Modifying and spying on running
processes under linux and solaris. In Blach Hat
FEurope, Nov. 2001.

M. Conover and T.-c. Chiueh. Code injection from the
hypervisor: Removing the need for in-guest agents.
Black Hat USA, July 2009.

M. Coppola. Suterusu rootkit: Inline kernel function
hooking on x86 and ARM.
https://poppopret.org/2013/01/07 /suterusu-rootkit-
inline-kernel-function-hooking-on-x86-and-arm/.
Accessed Sept. 2016.

G. Dabah. Distorm: Powerful disassembler library for
x86/amd64. https://github.com/gdabah/distorm.
Accessed Sept. 2016”.

Damballa. State of infections report: Q4 2014.
http://landing.damballa.com/state-infections-report-
q4-2014.html. Accessed Sept.

2016.

L. Davi, A.-R. Sadeghi, and M. Winandy.
Ropdefender: A detection tool to defend against
return-oriented programming attacks. In Proc. 6th

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

(30]

ACM Symposium on Information, Computer, and
Communications Security, pages 40-51. ACM, 2011.
L. Duflot, D. Etiemble, and O. Grumelard. Using CPU
system management mode to circumvent operating
system security functions. CanSec West/core06, 2006.
J. Edge. Kernel address space layout randomization.
Oct. 2013.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio.
An updated performance comparison of virtual
machines and Linux containers. Technical Report
RC25482, IBM Research, July 2014.

M. N. Gagnon, S. Taylor, and A. K. Ghosh. Software
protection through anti-debugging. IEEFE Security €
Privacy, 5(3):82-84, May 2007.

A. Ghosh, A. Sapello, A. Poylisher, C. J. Chiang,

A. Kubota, and T. Matsunaka. On the feasibility of
deploying software attestation in cloud environments.
In Proc. 7th IEEE International Conference on Cloud
Computing (CLOUD), pages 128-135. IEEE, June
2014.

O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and

E. Witchel. Ensuring operating system kernel integrity
with OSck. In Proc. 16th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 279-290. ACM,
Mar. 2011.

G. Hoglund and J. Butler. Rootkits: Subverting the
Windows kernel. Addison-Wesley Professional, Aug.
2005.

R. Hund, T. Holz, and F. C. Freiling. Return-oriented
rootkits: Bypassing kernel code integrity protection
mechanisms. In Proc. 18th USENIX Security
Symposium, pages 383-398. USENIX, Aug. 2009.

Y. Hwang, T. Lin, and R. Chang. Disirer: Converting
a retargetable compiler into a multiplatform binary
translator. ACM Transactions on Architecture and
Code Optimization (TACO), 7(4), Dec. 2010.

T. Jaeger, R. Sailer, and U. Shankar. Prima:
Policy-reduced integrity measurement architecture. In
Proc. 11th ACM Symposium on Access Control Models
and Technologies, pages 19-28. ACM, 2006.

C. Jarabek, D. Barrera, and J. Aycock. Thinav: Truly
lightweight mobile cloud-based anti-malware. In
Proceedings of the 28th Annual Computer Security
Applications Conference, pages 209-218. ACM, 2012.
G. H. Kim and E. H. Spafford. The design and
implementation of Tripwire: A file system integrity
checker. In Proc. 2nd ACM Conference on Computer
and Communications Security (CCS), pages 18-29.
ACM, 1994.

X. Kovah, C. Kallenberg, C. Weathers, A. Herzog,

M. Albin, and J. Butterworth. New results for
timing-based attestation. In Proc. IEEE Symposium
on Security and Privacy (Oakland), pages 239-253.
IEEE, May 2012.

C. Kruegel, W. Robertson, and G. Vigna. Detecting
kernel-level rootkits through binary analysis. In Proc.
20th Annual Computer Security Applications
Conference, pages 91-100. IEEE, 2004.

Laboratory of Cryptography and System Security
(CrySyS). Duqu: A stuxnet-like malware found in the
wild. Technical report, Budapest University of

[36]

[37]

[39]

[40]

[46]

Technology and Economics, Oct. 2011.

A. Lineberry. Malicious code injection via /dev/mem.
Black Hat Europe, Mar. 2009.

P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, and
C. D. McDonell. Linux kernel integrity measurement
using contextual inspection. In Proc. ACM Workshop
on Scalable Trusted Computing, pages 21-29. ACM,
Nov. 2007.

L. Martignoni, R. Paleari, and D. Bruschi. Conqueror:
Tamper-proof code execution on legacy systems. In
Proc. 7th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment
(DIMVA), pages 21-40. Springer, July 2010.

A. Matrosov, E. Rodionov, D. Harley, and J. Malcho.
Stuxnet under the microscope. ESET LLC (September
2010), 2010.

J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: An execution infrastructure for
TCB minimization. In Proc. EuroSys, pages 315-328.
ACM, Apr. 2008.

B. Min and V. Varadharajan. A novel malware for
subversion of self-protection in anti-virus. Software:
Practice and Ezperience, 46(3):289-431, Mar. 2016.

B. Min, V. Varadharajan, U. K. Tupakula, and

M. Hitchens. Antivirus security: Naked during
updates. Software: Practice and Fxperience,
44(10):1201-1222, Oct. 2014.

H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B.
Kang. Vigilare: toward snoop-based kernel integrity
monitor. In Proc. ACM Conference on Computer and
Communications Security (CCS), pages 28-37. ACM,
2012.

D. Mosberger and S. Eranian. IA-64 Linux Kernel:
Design and Implementation. Prentice Hall, Feb. 2002.
J. Oberheide, E. Cooke, and F. Jahanian. CloudAV:
N-version antivirus in the network cloud. In Proc. 17th
USENIX Security Symposium, pages 91-106.
USENIX, July 2008.

J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn,
and F. Jahanian. Virtualized in-cloud security services
for mobile devices. In Proc. 1st Workshop on
Virtualization in Mobile Computing (MobiVirt), pages
31-35. ACM, 2008.

R. A. Olsson, R. H. Crawford, and W. W. Ho. Dalek:
A GNU, improved programmable debugger. In Proc.
USENIX Summer Technical Conference, pages
221-232. USENIX, June 1990.

K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-free: Defeating return-oriented
programming through gadget-less binaries. In Proc.
26th Annual Computer Security Applications
Conference, pages 49-58. ACM, 2010.

B. Parno, J. M. McCune, and A. Perrig.
Bootstrapping trust in commodity computers. In Proc.
81st IEEE Symposium on Security and Privacy
(Oakland), pages 414-429. IEEE, May 2010.

N. L. Petroni Jr, T. Fraser, J. Molina, and W. A.
Arbaugh. Copilot-a coprocessor-based kernel runtime
integrity monitor. In Proc. USENIX Security
Symposium, pages 179-194. USENIX, 2004.

Ponemon Institute. 2014 cost of data breach study:

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

Global analysis, May 2014.

R. Riley, X. Jiang, and D. Xu. Guest-transparent
prevention of kernel rootkits with VMM-based
memory shadowing. In Proc. 11th International
Symposium on Recent Advances in Intrusion Detection
(RAID), pages 1-20. Springer, Sept. 2008.

R. Riley, X. Jiang, and D. Xu. Multi-aspect profiling
of kernel rootkit behavior. In Proc. 4th ACM
European Conference on Computer Systems
(EuroSys), pages 47-60. ACM, Apr. 2009.

R. Roemer, E. Buchanan, H. Shacham, and S. Savage.
Return-oriented programming: Systems, languages,
and applications. ACM Transactions on Information
and System Security (TISSEC), 15(1):2:1-2:34, Mar.
2012.

J. Rutkowska. System virginity verifier. In Hack in the
Box security Conference, pages 2—25, 2005.

R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn.
Design and implementation of a tcg-based integrity
measurement architecture. In Proc. USENIX Security
Symposium, volume 13, pages 223-238, 2004.

D. Schellekens, B. Wyseur, and B. Preneel. Remote
attestation on legacy operating systems with trusted
platform modules. Science of Computer Programming,
74(1-2):13-22, Dec. 2008.

A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor:
A tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. In Proc. 21st ACM
Symposium on Operating Systems Principles (SOSP),
pages 335-350. ACM, Oct. 2007.

A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn,
and P. K. Khosla. Pioneer: Verifying code integrity
and enforcing untampered code execution on legacy
systems. In Proc. 20th ACM Symposium on Operating
Systems Principles (SOSP), pages 1-16. ACM, Oct.
2005.

M. Sikorski and A. Honig. Practical Malware Analysis:
The Hands-On Guide to Dissecting Malicious
Software. No Starch Press, Mar. 2012.

sKyWIper Analysis Team. sKyWIper (a.k.a. flame
a.k.a. flamer): A complex malware for targeted
attacks. Technical report, Budapest University of
Technology and Economics, May 2012.

J. Sylve. Lime: Linux memory extractor.
https://github.com/504ensicslabs/lime. September
2016.

J. Torrey. MoRE shadow walker: TLB-splitting on
modern x86. In Black Hat USA Briefings. UBM Tech,
Aug. 2014.

R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu,
and B. M. Thuraisingham. Differentiating code from
data in x86 binaries. In Proc. European Conference on
Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD), pages 522-536. Springer,
Sept. 2011.

F. Xue. Attacking antivirus. In Black Hat Furope,
Mar. 2008.

S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov,
and W. Sanders. Secloud: A cloud-based
comprehensive and lightweight security solution for
smartphones. Computers & Security, 37:215-227, 2013.

