
Demo: Fuzzing Cyber-Physical System Development
Environments With CyFuzz

Sha�ul Azam Chowdhury
�e University of Texas at Arlington

Arlington, Texas 76010
sha�ulazam.chowdhury@mavs.uta.

edu

Taylor T. Johnson
Vanderbilt University

Nashville, Tennessee 37240
taylor.johnson@vanderbilt.edu

Christoph Csallner
�e University of Texas at Arlington

Arlington, Texas 76010
csallner@uta.edu

ABSTRACT
Hardening cyber-physical system (CPS) development environments
by �nding bugs is vital as these tool chains generate artifacts that
are deployed in safety-critical environments. In this demonstration
we present a prototype implementation of CyFuzz, which is the �rst
di�erential testing framework for CPS development environments.
CyFuzz currently targets the popular Simulink tool chain. CyFuzz
automatically generates random, but valid Simulink models and
uses them to test Simulink, by varying compilation and simula-
tion options and looking for result discrepancies between these
simulations and executions. Our automated tool has generated
thousands of valid Simulink models to date that, among others,
have semi-independently reproduced a con�rmed bug in Simulink
(version R2015a) and identi�ed interesting issues in the popular
CPS development tool chain.
ACM Reference format:
Sha�ul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner. 2017.
Demo: Fuzzing Cyber-Physical System Development Environments With
CyFuzz. In Proceedings of HSCC Demos, Pi�sburgh, PA USA, April 2017,
2 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Cyber-physical system (CPS) development environments are widely
used in industry. Typical tool chains contain simulators, compil-
ers, and code generators. Using a sophisticated development en-
vironment such as MathWorks’ Simulink, engineers can design,
simulate, and test their systems and generate code for production
environments [9]. Reducing the number of bugs present in CPS
development environments is crucial, as bugs in the tool chain may
introduce unintended behavior in simulations and generated code.

While it would be ideal to formally verify that an entire CPS
development tool chain is bug-free, unfortunately this is practically
infeasible. Moreover it is o�en not possible to get a full, up-to-
date, formal speci�cation of a commercial CPS tool chain [8]. In
contrast, di�erential testing does not need full formal speci�cations,
as it compares the results of two executions or simulations that are
supposed to produce the same results. Di�erential testing has been
e�ective in recent compiler testing projects; collectively �nding

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HSCC Demos, Pi�sburgh, PA USA
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

hundreds of bugs in commercial compiler implementations that are
part of CPS development tool chains [3, 4, 6, 10]. Our recent study
of publicly available Simulink bug-reports also suggests di�erential
testing as a good candidate for �nding CPS tool-chain bugs [2].

CyFuzz is, to the best of our knowledge, the �rst di�erential
testing framework for CPS development environments. CyFuzz
generates random (“fuzz”), but valid CPS models and tests the sys-
tem under test (SUT) using di�erential testing—on various SUT
con�gurations [2]. While existing work mostly focuses on �nding
bugs in Simulinkmodels [1, 5], CyFuzz targets the CPS tool chain [2].
Other work targeting CPS tool chain components requires a formal
SUT speci�cation, which is o�en not available [7, 8].

In this demonstration, we show how to setup CyFuzz, use CyFuzz
to generate valid Simulink models, and �nally use the models for
di�erential testing of Simulink. �e CyFuzz source code and current
evaluation results are available at the CyFuzz homepage1.

2 A DIFFERENTIAL TESTING FRAMEWORK
FOR CPS TOOL CHAINS

CyFuzz supports the conceptual CPS modeling framework com-
monly found in CPS tool chains such as Simulink. Speci�cally,
Simulink’s models follow the data-�ow paradigm and may contain
individual procedural blocks.

At a high level, CyFuzz has two subcomponents: a random model
generator and a comparison framework. �e generator automatically
creates random CPS models based on the con�guration options set
by the user. Options include the number of blocks in each model,
the depth of the model hierarchy, and the probability of picking
a block from a given library. �e generator’s �rst phase chooses
blocks randomly (according to the probabilities) and places them
in an empty model and con�gures some block parameters with
random values. �e second phase arbitrarily chooses and connects
block-ports, de�ning the model’s data-�ow. �e resulting model
may be rejected by the SUT’s compiler. CyFuzz tries to �x such
errors, by changing the model iteratively in a feedback-driven model
generation approach [2].

A�er generating a valid model, CyFuzz passes it to the com-
parison framework, which simulates the model many times under
varying user-de�ned SUT con�guration options. CyFuzz logs sig-
nal data at each simulation step and compares them, recording any
dissimilarity in block-output data at the �nal simulation step for
further manual inspection.

1Available: h�ps://github.com/verivital/slsf randgen

https://github.com/verivital/slsf_randgen

HSCC Demos, April 2017, Pi�sburgh, PA USA Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner

Figure 1: Top-level CyFuzz-generated model that repro-
duced a Simulink bug [2].

3 CYFUZZ PROTOTYPE FOR SIMULINK
Our prototype chooses blocks from four built-in Simulink libraries:
Continuous, Discrete, Sink, and Sources. �e prototype �xes
di�erent types of errors, including algebraic loops and data-type
incompatibilities between blocks. �e tool can generate hierar-
chical models using subsystem and for-each blocks and can log
simulation results using various Simulink APIs.

Besides using built-in blocks, Simulink can de�ne custom block-
behavior by placing procedural code (e.g., C or Matlab code) directly
via its S-function interface. CyFuzz leverages Csmith [10] to
generate random, but well-de�ned C code (according to the C99
standard) and uses them in the models as s-functions, hence
adding procedural code inside individual data-�ow nodes.

�e current prototype implementation of the comparison frame-
work only varies various simulation modes (e.g., Normal Mode,
Accelerator Mode, and Rapid Accelerator Mode) and toggles
simulation optimization [9]. Extended implementation details are
available elsewhere [2].

4 EXPERIENCE
Preliminary experiments have evaluated CyFuzz in terms of its gen-
erator’s e�ectiveness and runtime costs. Another research question
is if this scheme can feasibly �nd bugs in a mature commercial tool
such as Simulink. To answer the �rst two questions, we used Cy-
Fuzz to generate over 3,000 models in three di�erent experiments
using various CyFuzz options and collected various metrics [2].

In these experiments more than 79% of the generated models
could be compiled and simulated successfully. �e bo�leneck of Cy-
Fuzz’s implementationwas the Log Signals phase, in which Simulink
simulates the models using di�erent con�guration options, which
indeed is time consuming. However, the overall runtime (some
52 seconds on average) for completing a single experiment seems
acceptable.

In our experiments we did not �nd any new bugs, however,
we semi-independently discovered one existing bug. Figure 1 is a
screen-shot of the top level of the CyFuzz-generated model that
exposes this bug [2].

5 TOOL DETAILS AND DEMONSTRATION
We demonstrate each component of CyFuzz. CyFuzz is fully auto-
mated, to continuously generate random models and run them in
the comparison framework. Its command-line interface parses a
con�guration �le supplied by the user. CyFuzz is mostly wri�en
in Matlab and supports parallel execution of the framework by
creating multiple instances of the project. CyFuzz does not depend
on any other tool except a customized version of Csmith [10] for

generating random C code for s-functions. To date, CyFuzz sup-
ports Simulink 2015a only; we have not tested CyFuzz in recent
versions of Simulink.

While running experiments, CyFuzz stores generated models
and comparison results in the �le system. �e user can interpret the
results using a Matlab script. If the script reports any comparison
errors the user can investigate the comparison results and inspect
the associated model manually. CyFuzz also has a Python script to
detect Matlab crashes which can be useful for starting the experi-
ment automatically and to investigating the crashes later. CyFuzz’s
user manual is available on the project homepage.

To demonstrate the generator phases, we will instruct CyFuzz
to generate models in an interactive fashion, pausing a�er each
phase of the generator and the comparison framework and high-
lighting the core functionality of that phase. As an example, we
will demonstrate how CyFuzz iteratively �xes several errors from
a randomly generated model and will visually present simulating
and comparing outputs in the comparison framework.

ACKNOWLEDGMENTS
�is material is based upon work supported by the National Science
Foundation under Grants No. 1464311 and 1527398, by Air Force
O�ce of Scienti�c Research (AFOSR) contract numbers FA9550-
15-1-0258 and FA9550-16-1-0246, and by Air Force Research Lab
(AFRL) contract number FA8750-15-1-0105. Any opinions, �ndings,
and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily re�ect the views of
AFRL, AFOSR, or NSF.

REFERENCES
[1] Rajeev Alur, Aditya Kanade, S. Ramesh, and K. C. Shashidhar. 2008. Symbolic

analysis for improving simulation coverage of Simulink/State�ow models. In
Proc. 8th ACM & IEEE International Conference on Embedded So�ware (EMSOFT).
ACM, 89–98. DOI:h�p://dx.doi.org/10.1145/1450058.1450071

[2] Sha�ul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner. 2016. Cy-
Fuzz: A di�erential testing framework for cyber-physical systems development
environments. In Proc. 6th Workshop on Design, Modeling and Evaluation of Cyber
Physical Systems (CyPhy). Springer International Publishing, Cham, 46–60. DOI:
h�p://dx.doi.org/10.1007/978-3-319-51738-4 4

[3] Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Type-
checker Using CLP (T). In Proc. 30th IEEE/ACM International Conference on
Automated So�ware Engineering (ASE). IEEE, 482–493. DOI:h�p://dx.doi.org/10.
1109/ASE.2015.65

[4] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proc. 21th USENIX Security Symposium. USENIX Association, 445–
458. h�ps://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/holler

[5] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, and �omas Bruckmann. 2016.
SimCoTest: A test suite generation tool for Simulink/State�ow controllers. In
Proc. 38th International Conference on So�ware Engineering, (ICSE). ACM, 585–588.
DOI:h�p://dx.doi.org/10.1145/2889160.2889162

[6] Jesse Ruderman. 2007. Introducing jsfunfuzz. h�ps://www.squarefree.com/2007/
08/02/introducing-jsfunfuzz/. (2007).

[7] Prahladavaradan Sampath, A. C. Rajeev, S. Ramesh, and K. C. Shashidhar. 2007.
Testing Model-Processing Tools for Embedded Systems. In Proc. 13th IEEE Real-
Time and Embedded Technology and Applications Symposium. IEEE, 203–214. DOI:
h�p://dx.doi.org/10.1109/RTAS.2007.39

[8] Ingo Stürmer, Mirko Conrad, Heiko Dörr, and Peter Pepper. 2007. Systematic Test-
ing of Model-Based Code Generators. IEEE Transactions on So�ware Engineering
(TSE) 33, 9 (Sept. 2007), 622–634. DOI:h�p://dx.doi.org/10.1109/TSE.2007.70708

[9] �e MathWorks Inc. 2017. Simulation Documentation. h�p://www.mathworks.
com/help/simulink/. (2017).

[10] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and un-
derstanding bugs in C compilers. In Proc. 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM, 283–294. DOI:
h�p://dx.doi.org/10.1145/1993498.1993532

http://dx.doi.org/10.1145/1450058.1450071
http://dx.doi.org/10.1007/978-3-319-51738-4_4
http://dx.doi.org/10.1109/ASE.2015.65
http://dx.doi.org/10.1109/ASE.2015.65
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
http://dx.doi.org/10.1145/2889160.2889162
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
https://www.squarefree.com/2007/08/02/introducing-jsfunfuzz/
http://dx.doi.org/10.1109/RTAS.2007.39
http://dx.doi.org/10.1109/TSE.2007.70708
http://www.mathworks.com/help/simulink/
http://www.mathworks.com/help/simulink/
http://dx.doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 A Differential Testing Framework for CPS Tool Chains
	3 CyFuzz Prototype for Simulink
	4 Experience
	5 Tool Details and Demonstration
	References

