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ABSTRACT
Recent machine learning approaches for classifying text as human-
written or bot-generated rely on training sets that are large, labeled
diligently, and representative of the underlying domain. While
valuable, these machine learning approaches ignore programs as
an additional source of such training sets. To address this problem
of incomplete training sets, this paper proposes to systematically
supplement existing training sets with samples inferred via program
analysis. In our preliminary evaluation, training sets enriched with
samples inferred via dynamic symbolic execution were able to
improve machine learning classifier accuracy for simple string-
generating programs.
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• Computing methodologies→ Supervised learning; • Infor-
mation systems → Social networking sites; • Theory of compu-
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1 INTRODUCTION
The basic question of whether a given program can produce a given
string is undecidable in general. Practical instances of this question
though are often much more complex. For example, in this paper
we examine the problem of estimating if a given tweet has been
human-written or machine-generated. As shown in Figure 1, this
setting involves not one but a large number of programs.We assume
we have access to the source code or binaries of a subset of both
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the tweet generators (“bots” ) and libraries used by bots. These may
be open source bots or standard bot libraries1.

Figure 1: Human vs. bot tweet classification problem:
Known items are shown as solid lines, unknown ones are
dashed. For example, someTwitter accountsmay use known
bots (e.g., foo) or proprietary ones (e.g., bar). While much of
the accounts, tweets, and their relations is known, the rela-
tion between accounts and sources is hidden.

To get a good approximate answer if a given output is program-
generated, current approaches completely ignore the available
source and binary code, side-step program analysis, and instead
rely on a large number of signals that are external to the source
code and binaries. In the Twitter example, state-of-the-art work
combines over 1,000 signals into a machine learning classifier [30].
Examples of such external signals include how frequently and at
what times a given Twitter account publishes tweets, how a tweet
is related to other tweets (e.g., via retweets), or how the account
interacts with other accounts on the Twitter platform (e.g., as a
Twitter follower).

State-of-the-art work first labels each tweet in a training set as
either “bot-generated” or “human-written”. The labels are typically
obtained through trusted parties [16, 20, 31] or collected using
the APIs of social networks [21]. Then current work feeds the
training tweets into a supervised machine learning algorithm and
obtains a tweet classifier. Since labeling is expensive, training sets
are relatively small in practice and therefore can only cover a small
part of the behavior of tweet generators, which ultimately yields
sub-optimal tweet classifiers.

This problem is significant in practice, as humans typically want
to know if they are getting fed information produced by another
human or by an algorithm. An extreme example is the recent 2016

1Example libraries include the Microsoft Bot Framework (dev.botframework.com
[Accessed Feb. 2018])

https://doi.org/10.1145/3194104.3194111
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dev.botframework.com
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U.S. presidential election, where Twitter bots that posed as humans
generated many tweets to influence the outcome of the election.
But even in a more mundane scenario within the scope of software
engineering, it may still be interesting if a comment or feedback
about a piece of software has been written by a human user or has
been auto-generated, to distinguish genuine user feedback from
spam [11, 12, 25–27].

Recent work has made significant progress in using machine
learning techniques to improve program analysis [3–5, 8, 9, 17].
As an example, recent work on integrating machine learning with
symbolic execution has focused on using active machine learning as
a custom search strategy in symbolic execution. For example, active
learning [1] has been used to drive symbolic execution to learn the
input-output specification of stream processing programs [3] and
to learn method interface specifications [9]. Our work is different in
that we aim to use program analysis to complement an established
passive learning workflow that makes sense for a given domain
(e.g., a workflow that builds classifiers with supervised (passive)
learning from over 1,000 signals that are external to source code
and binaries).

To bridge this gap, this paper proposes a technique for comple-
menting an established passive machine learning (ML) workflow
with program analysis. Specifically, our techniques can improve the
quality of ML-inferred classifiers, by systematically and automat-
ically enriching the sample sets ML-algorithms use to train their
classifiers. Concretely, we perform dynamic symbolic execution to
systematically and automatically explore program execution paths
and obtain additional training samples. By definition, we can auto-
matically label all such additional samples as “bot-generated”, as
they can be generated by the analyzed bot code.

Our preliminary experiments have indicated that this approach
has the potential to improve the accuracy of machine learning
inferred classifiers. To summarize, the paper makes the following
contributions.

• The paper presents a technique for complementing an es-
tablished passive machine learning workflow via program
analysis.

• The paper reports on an initial experience that indicates that
an instance of this approach can improve the accuracy of
machine learning inferred classifiers.

This paper is presented in terms of C#, .Net, and the Pex tool [6,
10, 28]. But the underlying techniques are language-independent
and can easily be implemented for other high-level languages and
tools such as Java and Dsc [13, 14].

2 MINIMAL EXAMPLE
This section illustrates the approach using the hand-craftedminimal
Listing 1 foo method. Suppose we have collected a training set of
1,500 tweets and havemanually classified them as human-written or
bot-generated. For example, this training set contains “bot” labeled
texts “a 15” and “a 200”, and “human” labeled texts “Not OK” and “a
boy”. From this training set a supervised ML technique has inferred
a classifier that achieves on a fresh production set of 750 human-
written plus 750 bot-generated tweets (which do not overlap with
the training set) 95% precision, 50% recall, and an overall accuracy
of 74%.

1public String foo(int p) {
2if (p > 0)
3return "a" +" "+ p; // Path 1
4return "b" +" "+ (−p); // Path 2
5}

Listing 1: Minimal example bot program foo, which pro-
duces simple strings based on input parameter p.

While the initial training set yields a classifier of decent accuracy,
we observe that this set consists of only two kinds of text. First,
there are texts that cannot be produced by foo (e.g., “a boy”), since
each program output starts with “a” or “b” followed by a number.
Second, the remaining texts could have been produced by foo, but
only by its path 1, since they all start with “a”. In other words, since
the training set does not sufficiently cover path 2, the resulting
classifier will not capture outputs produced by path 2. Basically this
classifier works well on examples that are similar to the training
set, but struggles for examples produced by path 2.

To get a better classifier, we must add to our training set samples
that cover path 2 and re-run the ML algorithm. While various pro-
gram analysis techniques could be used to get such samples, in this
paper we focus on directed path exploration using dynamic sym-
bolic execution (DSE). With DSE we systematically enumerate foo’s
execution paths, generate output samples for each such enumerated
path, and automatically label each such sample as “bot-generated”.
In many cases (e.g., for foo), DSE achieves high path coverage. We
can thus use DSE to systematically and automatically complement
the initial training set.

For the foo example, our naive Bayes ML algorithm yields classi-
fier C1. Then we use dynamic symbolic execution to explore foo and
produce 375 additional program outputs that cover path 2. Rerun-
ning our naive Bayes yields classifier C2. When comparing C1 and
C2 on a single production set of tweets that does not overlap with
any training sample, the DSE-enriched classifier C2 achieved higher
precision, recall, and accuracy, e.g., yielding a total accuracy of 98%
(vs. C1’s 74% accuracy). C2’s higher accuracy makes intuitively
sense, since C2 was trained on a more comprehensive training set,
consisting of C1’s training set plus additional DSE-inferred samples
that also cover path 2.

3 BACKGROUND: TWEETS, ML, AND DSE
This section contains necessary background information on social
media bots, text classification, supervised machine learning, and
dynamic symbolic execution.

3.1 Bots And Social Media
Recent years have seen the explosive growth and adoption of social
media platforms such as Facebook and Twitter. Twitter has some
300 million monthly active users2 whereas Facebook has 2 billion3.
Both platforms are used by politicians, the traditional mass media,

2“Twitter reports 6 pct increase in monthly active users”, 26 Apr. 2017,
reuters.com/article/twitter-results/twitter-reports-6-pct-increase-in-monthly-
active-users-idUSL4N1HY48L [Accessed Feb. 2018]
3Josh Constine. “Facebook now has 2 billion monthly users. . . and responsibility”, 27
June 2017, techcrunch.com/2017/06/27/facebook-2-billion-users/ [Accessed Feb. 2018]
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companies of all sizes, celebrities, and other thought leaders. Mes-
sages on these platforms can go viral and exert vast influence, e.g.,
by influencing national politics and election outcomes.

While these platforms support various kinds of media, we focus
here on text messages such as tweets, since text is relatively easy
to analyze. Although many social media bots are benign, there are
malignant bots that may distribute spam or malicious messages,
e.g., to manipulate public opinion through fake news or propaganda.
Classifying these text messages with high accuracy into human-
written or bot-generated is an open research problem [30].

3.2 Text Classification And Supervised ML
Text classification sorts documents into predefined categories [7],
such as our two categories of human-written and bot-generated.
A popular text classification method is supervised machine learn-
ing [23], which has been used successfully, for example, to analyze
sentiments [2] or to detect spam email [22].

Training

Labels

Texts Feature
extractor Features

ML
algorithm

Classifier

Predicted
label

FeaturesFeature
extractorText

Production

Figure 2: Supervised ML. In the machine learning literature,
the production setting is also called “testing”.

Figure 2 summarizes a typical classification process based on
supervised ML. Provided categorized (or labeled) texts, typical ap-
proaches perform standard pre-processing steps such as tokeniza-
tion, removing stop words (’a’, ’the’, etc.) that are often not signifi-
cant for classification, and word stemming to convert each word
into its canonical form (e.g., mapping "going" to "go"). We have not
removed stop words in the experiment involving Listing 1 minimal
example as ’a’ holds significance while training the classifier and
stemming of words is not performed in both of our preliminary
experiments.

A key aspect of text categorization is that the number of features
(documents or words) can be large. To address this problem, di-
mension reduction techniques are used, such as choosing a feature
subset or mapping features to a new feature set. Common sub-
set methods include term frequency-inverse document frequency
(TF-IDF), chi-square, and information gain. For example, to filter
out common words, a word receives high TF-IDF if it has high
frequency within the given text but a low frequency within the
entire corpus.

For text classification, a number of well-known algorithms have
been proposed, including k-nearest neighbor (k-NN), Naive Bayes,
and support vector machines (SVM). While SVM and k-NN algo-
rithm require parameter tuning for high-quality results, we choose
Naive Bayes for our preliminary experiment because of its simplic-
ity and good performance for the task at hand [15].

3.3 Dynamic Symbolic Execution (DSE)
Dynamic symbolic execution (DSE) or concolic execution is a form
of symbolic execution that uses an additional concrete program
execution to decide branch conditions during symbolic execution,
to automatically and efficiently enumerate a program’s execution
paths [6, 10, 28]. As a DSE engine follows a concrete program execu-
tion, the DSE performs a standard concrete execution as, e.g., in the
case of analyzing a Java program, any stock Java virtual machine
would do. But in addition to this concrete execution, the DSE engine
also maintains a symbolic representation of the program state and
records each branching decision outcome in terms of expressions
over symbolic versions of the program inputs.

As any symbolic execution tool, a DSE engine encodes a program
path as the conjunction of branch conditions. To explore another
path, the tool can manipulate these branch conditions, i.e., by flip-
ping one of the conditions, discarding the subsequent conditions,
and feeding the resulting conjunction to an off-the-shelf constraint
solver.

The constraint solver (typically a SMT solver) searches for a
variable assignment that satisfies the conjunction. The DSE engine
then maps the satisfying assignment back to a set of new program
input values. DSE is widely used for program analysis and test case
generation.

4 OVERVIEW AND DESIGN
At a high level, the goal is to address ML’s well-known GIGO
(garbage in—garbage out) problem for the special case in which a
program is available to produce additional inputs. No matter how
fancy the ML algorithm, ML will produce a low-quality classifier, if
it is stuck with a bad or incomplete training set. At its heart, an ML
algorithm builds a map from text input to label output, based on
properties of the training set. If the training set does not represent
a domain entirely, the inferred mapping function will have similar
holes.

Even when handed a training set without obvious holes, machine
learning can still produce bad classifiers if the training set is merely
too small [19]. There is no hard and fast rule that suggests the
amount of training data required to train a model. Yet this number
depends on both the problem complexity (i.e., the unknown under-
lying function we are trying to derive) and the complexity of the
machine learning algorithm. In summary, the larger and the more
representative the training set, the better the resulting classifier.

4.1 System Design

Training

Labels

Text Feature
extractor Features

ML
algorithm

Classifier

Predicted
label

TextDSEProgram

Training Supplement

Figure 3: Overview and design
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Figure 3 gives an overview of the major components of our ap-
proach. In the current setup the only input to our machine learning
algorithm is the text. Adding additional signals such as re-tweets,
the user’s popularity, or the user’s posting frequency is subject to
future work.

In addition to the training sequence of standardmachine learning
algorithms shown in Figure 2, our approach has an additional source
of training data. Specifically, our approach infers additional training
samples from the given program with dynamic symbolic execution.

Although dynamic symbolic execution is computationally ex-
pensive and has well-known scaling challenges when faced with
loops and complex program conditions, DSE still offers a systematic
technique for enumerating many feasible execution paths and often
achieves high code coverage. Future work includes replacing DSE
with random or search-based test case generation.

4.2 Adapting DSE to Generate Rich Labeled
Training Sets

A key observation is that, by default, existing off-the-shelf DSE
engines such as Pex are not a good fit for producing rich training
sets that are well-suited for ML-training algorithms. The reason for
this discrepancy is that DSE engines aim at producing minimal test
suites, where each of the program’s execution paths is covered by
exactly one test case. However this is not a good fit for ML training
algorithms, since standard algorithms such as naive Bayes work
better if they can work with much more samples per execution
path.

To address this mismatch between DSE engines and ML training
requirements, we modify the standard DSE process, to emit a con-
figurable number of samples per execution path. Concretely, for
each path condition the DSE engine’s constraint solvers consider
feasible, we do not only request a single solution from the DSE
engine’s constraint solvers, but a sequence of solutions.

The current prototype implementation simulates this behavior,
by annotating the program each time Pex produces a new test
case. For example, if Pex produces a test case that feeds parameter
value p==1 to the program, our technique annotates the program
to ensure that “p!=1” holds for all subsequent Pex explorations and
generated test cases.

This work-around is highly inefficient, as it forces Pex to re-
execute the program for each sample, even if all samples trigger
the same execution path. Re-analyzing each path more than once is
not necessary, since such a “p!=1” constraint can be passed to the
constraint solver directly, without re-executing the program.

5 INITIAL EXPERIENCE
While a full evaluation is subject to future work, in this paper we
focus on the core question if we can use dynamic symbolic execu-
tion to systematically improve the accuracy of an existing passive
learning scheme for the special case in which the setup contains
only a single bot whose source code or binaries are available for
program analysis. In short, here the research question is if, for a
given program, we can use DSE to strengthen a machine learning
inferred classifier.

To explore this research question, we use the following standard
machine learning notions of precision (p), recall (r ), accuracy (acc),
and F1 score (f 1).

p =
TP

TP + FP
r =

TP

TP + FN
acc =

TP +TN

total
f 1 = 2 ∗ p ∗ r

p + r

When evaluating a classifier Cx, we apply Cx on unlabeled (“pro-
duction” or “test”) text that is different from the training text sam-
ples.

5.1 Results for Motivating Example
For the Listing 1 foo method example, Table 1 shows the results
of applying 750 foo-generated and 750 human-written production
texts to both C1 and C2. C1 correctly classified 375 foo-generated
(true positives, TP) and 728 human-written (true negatives, TN)
texts. But C1 falsely classified 22 human-written texts as foo-generated
(false positives, FP) and 375 foo-generated texts as human-written
(false negatives, FN).

C1-predicted C2-predicted
Actual Bot Human Bot Human
Bot TP=375 FN=375 750 0
Human FP=22 TN=728 34 716

Table 1: Results of applying 1,500 example production texts
to classifiers C1 and C2 of the Listing 1 foo method.

The main change between C1 and C2 is that C2 had a DSE-
enhanced training set. With this more complete training set, C2’s
recall improved to 100%, with zero false negatives. Overall, the
DSE-enhanced classifier C2 correctly classified 1,466 of 1,500 texts,
yielding a 98% accuracy (vs. C1’s 74%).

5.2 Sentence Generator Subject
To get a data point besides Listing 1, we applied our approach on the
Listing 2 random sentence generator. Based on the “type” parameter,
the program randomly generates variable-length sentences, from a
(predefined) list of positive words, a list of negative words, or from
both lists.

1Random rand = new Random();
2string[] pos = {"able", "adorable", "ageless" /∗...∗/};
3string[] neg = {"aloof", "altercation", "ambiguity" /∗...∗/};
4string[] words = {"I", "welcome", "you" /∗...∗/ };
5public string createText(int numWords, int type) {
6string outText = "";
7string randomWord = words[rand.Next(0, words.Length)];
8for (int i=0; i<numWords; i++)
9{
10outText += randomWord + " ";
11if (type == 1)
12randomWord = pos[rand.Next(0, pos.Length)];
13else if (type == 0)
14randomWord = neg[rand.Next(0, neg.Length)];
15else if (rand.Next(1,50000)%3==1)
16randomWord = pos[rand.Next(0, pos.Length)];
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17else if (rand.Next(1, 50000) % 3 == 1)
18randomWord=neg[rand.Next(0, neg.Length)];
19else
20randomWord = words[rand.Next(0, words.Length)];
21}
22return outText;
23}

Listing 2: Random sentence generator (excerpt).

Similar to Listing 1, we first trained classifier C3 on a labeled
training set. This training set only contained samples for one value
of the type parameter (and therefore a subset of all execution paths),
plus samples that cannot be created by the program. Classifier C4 is
trained on C3’s training set, enhanced with samples generated with
the other relevant values of the type parameter, yielding a more
representative sample of execution paths and program-generated
sentences.

Classifier Accuracy Precision Recall F1 Score
C3 96.5 100 93.1 96.4
C4 99.4 100 98.8 99.4

Table 2: DSE strengthened the highly-accurate C3 classifier,
which yielded C4.

Table 2 shows the results of evaluating C3 and C4 on a 1,500
sentence production set (which did not overlap with the training
sets). Both C3 and C4 achieved very high accuracy. This high accu-
racy levels may be caused by the primitive nature of the Listing 2
sentence generator. This lead to a stark difference between human
and bot produced sentences, which enabled even the C3 classifier
to be 100% precise and achieve over 90% recall.

While this example is certainly extreme, it illustrates an interest-
ing point: Even for a classifier that is already very accurate, DSE
has the potential to strengthen it further.

6 RELATEDWORK
The most closely related work is an earlier combination of machine
learning and program analysis by Brun and Ernst [5]. They present
a technique to find latent code errors in programs. The technique
uses a ML model trained on properties of erroneous programs and
fixed program versions generated by program analysis. The fault-
revealing model then takes program properties as input and selects
the one that is likely to indicate program errors.

Recent work by Davies, Păsăreanu, and Raman combines con-
colic execution, machine learning, and function fitting to generate
system-level inputs with the goal of increasing test coverage in the
aerospace domain [8]. Other recent work by Li et al. proposes a
new symbolic execution tool that is driven by machine learning
based constraint solving, to handle complex path conditions such
as function calls [17]. Likewise, Botincan and Domago have used ac-
tive learning to drive symbolic execution to learn the input-output
specification of stream processing programs [3].

While earlier works such as the above have explored combina-
tions of machine learning and program analysis, they have focused
on using machine learning to augment program analysis. While

this is a very promising research direction, we take the inverse
direction and use program analysis to strengthen existing machine
learning techniques.

More specific to the problem of sub-optimal classifiers due to
the unavailability of labeled training data, an extensively studied
and used machine learning technique is active learning [24]. Active
Learning is a specialized semi-supervised technique in which a
classifier selectively queries the label of the most informative unla-
beled data instance, based on different querying strategies, from the
user. Unlike classical passive supervised learning algorithms, active
learning reduces the labeling effort by choosing a small subset of
unlabeled data to re-train the classifier.

Previous work by Tong and Koller [29] as well as Melville and
Sindhwani [18] presented ways to reduce the labeling cost of train-
ing data. Tong and Koller presented an algorithm to perform pool-
based active learning with Support Vector Machines for the text
classification problem. Melville and Sindhwani focus on actively
selecting the most informative examples and features for labeling.

While our work also has been motivated by the unavailability
of comprehensive labeled data that yields sub-optimal classifiers,
our work leverages source or binary code via program analysis, to
supplement labeled training examples rather than using unlabeled
data.

7 FUTUREWORK
The current experimental setting is severely limited, as it assumes
that there is only a single bot and we have access to the bot’s source
or binary code. Future work includes more realistic experiments
that are more in line with the original problem setup depicted in
Figure 1, i.e., involving multiple bots and bot libraries where only
some of them are available for program analysis.

In practice we may not have access to most bots’ source or binary
code. However even proprietary bots are likely written on top of
common libraries. We often have access to these libraries as many
of them are widely available, e.g., as open source libraries. So an
interesting direction for future work is designing a two-step process.
In the first step we analyze the code of a set of common libraries
in depth and infer the traits that characterize the libraries. In the
second step we then try to observe these libraries’ traits in text
samples.

Future work also includes exploring alternative program analysis
techniques in addition to dynamic symbolic execution (e.g., random
or search-based test case generation), to explore additional program
execution paths.

8 CONCLUSIONS
Current machine learning approaches ignore programs as a source
of such training sets. To address the problem of low-quality ma-
chine learning classifiers caused by small or incomplete training
sets, this paper proposed to systematically supplement training sets
with samples inferred by program analysis. In our preliminary eval-
uation, training sets enriched with samples inferred via dynamic
symbolic execution could significantly improve machine learning
classifier accuracy.
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