
Mixed-Mode Malware and Its Analysis

Shabnam Aboughadareh, Christoph Csallner
University of Texas at Arlington

Arlington, TX 76019, USA
shabnam.aboughadareh@mavs.uta.edu,csallner@uta.edu

Mehdi Azarmi
Purdue University

West Lafayette, IN 47907, USA
mazarmi@purdue.edu

ABSTRACT
Mixed-mode malware contains user-mode and kernel-mode
components that are interdependent. Such malware exhibits
its main malicious payload only after it succeeds at cor-
rupting the OS kernel. Such malware may further actively
attack or subvert malware analysis components. Current
malware analysis techniques are not effective against mixed-
mode malware. To overcome the limitations of current tech-
niques, we present an approach that combines whole-system
analysis with outside-the-guest virtual machine introspec-
tion. We implement this approach in the SEMU tool for
Windows. In our experiments SEMU could successfully an-
alyze several mixed-mode malware samples that evade cur-
rent analysis approaches. The runtime overhead of SEMU is
in line with the most closely related dynamic analysis tools
TEMU and Ether.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Invasive software; D.2.7 [Software Engineering]: Distri-
bution, Maintenance, and Enhancement—Restructuring, re-
verse engineering, and reengineering

General Terms
Design, Performance, Security

Keywords
Dynamic malware analysis, mixed-mode malware, rootkit

1. INTRODUCTION
Malware analysis has been studied widely, using many

real-world malware samples. However we are not aware of
existing work that exposes malware analysis to mixed-mode
malware. Mixed-mode malware is a type of malware that
(a) has interdependent user- and kernel-mode components
and (b) may actively attack or subvert malware analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPREW-4 December 09 2014, New Orleans, LA, USA
Copyright 2014 ACM 978-1-60558-637-3/14/12 ...$15.00.

components. We say that malware components are inter-
dependent if the second component performs its main ma-
licious payload only if the kernel manipulation of the first
component succeeds.

Malware poses significant challenges to modern society.
Among others, malware can take control of a victim system
and perform arbitrary actions. For example, malware can
log individual keystrokes to steal online banking passwords
and change OS kernel data structures to remain undetected
for years. These challenges are real and affect many people.
For example, a survey conducted in January 2011 found that
one third of the 2,089 U.S. online households surveyed had
been victims of malware in the previous year [8]. The sur-
vey estimated that in the previous year malware cost U.S.
consumers overall USD 2.3 billion.

Given the big impact malware has, it is important for mal-
ware analysts to analyze malware and develop countermea-
sures. For such malware analysis, an important technique
is to monitor the execution of actual malware with state-of-
the-art dynamic malware analysis tools such as those based
on TEMU [31], Anubis [5], and Ether [9]. Monitoring mal-
ware executions allows malware analysts to reverse-engineer
and understand the subtle details of how a concrete malware
instance functions. Analysts can leverage such understand-
ing when designing and deploying malware countermeasures.
Such countermeasures can ultimately protect a wide range
of computers from both the specific malware analyzed and
from similar, derived classes of malware [5].

Current dynamic malware analyses [31, 9, 5, 34, 16] are
not effective for analyzing mixed-mode malware. The reason
is that existing malware analysis tools suffer from one or
both of the following shortcomings.

(1) First, many current analysis techniques place analysis
components in the domain in which the malware is execut-
ing and thereby expose the analysis to malware manipula-
tions. These approaches are referred to as inside-the-box,
inside-the-guest, on in-guest. For example, popular analysis
platforms such as TEMU and Anubis run the malware in a
virtual machine. To inspect the state of the malware and
the VM, such malware analyses often place some virtual ma-
chine introspection (VMI) components inside the VM, which
exposes VMI and thereby the entire analysis to malware ma-
nipulation.

(2) Second, many approaches focus on a single domain,
either kernel-mode or user-mode, but fail to fully capture
malware that operates in both modes [9, 35]. For example,
Ether leverages hardware virtualization extension to operate
outside-the-guest but focuses only on user-mode analysis.

Ether relies on the integrity of the kernel when inspecting
the system state and malware behavior. However, mixed-
mode malware manipulates the OS kernel and thereby foils
such single-mode analysis.

To address the limitations of the existing techniques and
analyze mixed-mode malware effectively, we propose a novel
dynamic malware analysis tool called SEMU (Secure EM-
Ulator). SEMU operates both outside-the-guest and across
kernel and user modes. In our experiments we also found
that SEMU’s overhead was in line with closely related exist-
ing tools, i.e., Ether and TEMU. While our current SEMU
implementation is for Windows, our analysis approach could
also be implemented for other operating systems such as
Linux. To summarize, this paper makes the following major
contributions.

• We describe and provide practical implementations of
several mixed-mode malware samples. Mixed-mode
malware cannot be fully analyzed with current state-
of-the-art dynamic malware analysis tools such as those
built on TEMU, Anubis, and Ether.

• We present SEMU, a whole-system outside-the-guest
dynamic malware analysis tool that can effectively an-
alyze mixed-mode malware. For example, SEMU de-
tects and analyzes kernel exploits that cannot be ana-
lyzed by current kernel-mode analysis approaches.

• We provide the first empirical evaluation of the run-
time characteristics of a whole-system outside-the-guest
dynamic malware analysis tool such as SEMU.

2. BACKGROUND AND RELATED WORK

Some in-guest Fully outside

User

Kernel

Kernel+User

Ether

SEMU
TEMU

(Panorama)

Anubis

 (TTAnalyze)

d-Anubis

Y = What

X =

Where

Figure 1: Two dimensions of dynamic malware anal-
ysis: Scope (y-axis) and whether an analysis places
some of its components inside-the-guest (x-axis).

We can classify dynamic malware analyses along two di-
mensions. Figure 1 shows on the x-axis whether an analysis
places some of its components inside the guest OS. Having
components inside-the-guest makes an analysis vulnerable
to malware attacks. The y-axis captures the scope of the
malware analysis. SEMU is the only analysis that combines
a kernel+user scope with being fully outside-the-guest.

2.1 Virtual Machine and Introspection
Malware may corrupt the OS it is running on and may in

turn corrupt other programs running on the OS, including
malware analyses. To retain control of the machine, malware
is thus typically run on a (guest) OS that is installed on
a hardware emulator or virtual machine (VM) [4, 31, 9].
The VM runs on another OS called the host OS. A VM

also enables an analyst to inspect all interactions between
malware and guest OS.

To be useful, a VM-based malware analysis tool has to
query the current VM state. This state is readily available
in a low-level form, i.e., in terms of register values and main
memory bytes. But a malware analysis tool is typically writ-
ten in terms of higher-level OS abstractions such as threads
and processes. This gap between the readily available low-
level hardware state and the desired high-level operating sys-
tem state is called the semantic gap [10].

Virtual machine introspection (VMI) bridges the semantic
gap, by reconstructing high-level OS information from low-
level hardware state [14]. Without bridging the semantic
gap, even basic analysis tasks such as logging the execution
trace of a malware sample become very hard if not impossi-
ble.

2.2 Inside- vs. Outside-the-Guest VMI
Since malware may corrupt anything within its reach, it is

useful to determine if a VM-based malware analysis places
any of its components inside the guest OS. This classifi-
cation notably differs from the more common classification
of where the majority of the malware analysis components
reside. While TEMU and Anubis are often described as
outside-the-guest [2], they place at least some of their VMI
components inside-the-guest.

Host OS

VM

Guest Kernel

Guest User

Anubis TEMU Ether SEMU

Hw-Ext

Malware
Analysis

Component

Flow of

VMI Data

VMI

Component
Attack Interdependency

Figure 2: Architecture comparison. Not shown is
malware’s main payload attacking the guest OS. Hw-
Ext = Hardware virtualization extension.

Figure 2 gives an overview of state-of-the-art tools includ-
ing TEMU [31] and Anubis [5] that both place a custom
kernel-mode VMI driver inside the guest OS. Such a driver
is outside the malware’s reach if the malware is restricted
to user-mode. The existing drivers differ in how they pass
OS state to the analysis. The TEMU driver writes to a
predefined I/O port. The Anubis driver reports to a user-
mode application, which communicates with the analysis
component over a virtual network. The Anubis extension
dAnubis [23] patches the kernel functions that load kernel-
mode modules. The patched functions then notify dAnubis
when kernel-mode malware is loaded.

Ether [9] performs outside-the-guest VMI by relying on
a processor-specific hardware virtualization extension (Intel
VT-x [7]). The hardware extension allows Ether to run in
a privileged hypervisor mode. Certain events in the mon-
itored VM such as some exceptions trigger the hypervisor
mode and return control to Ether. For example, to log an

instruction, Ether sets a trap flag before the instruction to
force a debug exception that returns control to Ether.

While outside-the-guest VMI protects Ether from some
malware attacks, relying on hardware virtualization exten-
sions has two drawbacks. First, for a fine-grained analysis
that logs every instruction, Ether has to install a trap flag
before every instruction and handle the resulting debug ex-
ceptions. This single-step mode slows down execution by
three orders of magnitude [36]. Second, Ether requires that
the underlying processor supports hardware virtualization
extensions, but many processors do not meet this require-
ment.

Besides well-known analysis tools we described, there are
several VM-based approaches that focus on malware and
rootkit detection or protection [6, 30, 38, 25, 33, 18, 17, 29,
32]. However none of these existing tool can monitor and
log the execution of kind of mixed-mode malware or kernel
exploits described in this paper.

2.3 Scope: Single-Domain vs. Whole-System
Many analyses capture either user-mode or kernel-mode

malware activities, but not both. Such a single-mode focus
is insufficient for fully analyzing mixed-mode malware.

An example whole-system analysis is Panorama. It is a
part of BitBlaze [31] and uses TEMU for performing whole-
system taint analysis [39]. But as TEMU, Panorama per-
forms some VMI tasks inside the guest OS. Panorama and
similar approaches track the information flow of sensitive
data such as keystrokes and network packets to detect and
analyze malware [21, 26, 22, 37, 20]. But mixed-mode mal-
ware such as Figure 3 may not have such data flows and
thus cannot be fully analyzed by such approaches.

An example user-only analysis is Ether. It assumes the in-
tegrity of kernel data (i.e., the system call table) and control-
flow. A mixed- mode malware can drop a kernel-mode mal-
ware that manipulates the system call table and mislead
Ether’s analysis.

An example kernel-only analysis is the Anubis extension
dAnubis [23]. It is notified whenever malware is loaded into
kernel memory. But being single-mode, dAnubis may miss
attacks from user-space. For example, user-mode malware
can access the kernel via zero-day exploits, such as bugs
in standard device drivers. In such cases a malicious pay-
load executes with kernel privileges without loading a kernel-
mode module.

3. MIXED-MODE MALWARE
At a high level, mixed-mode malware runs in two phases.

(1) In phase one, a (typically kernel-mode) malware compo-
nent modifies a part of the OS kernel, i.e., kernel code, ker-
nel data, or both. (2) In phase two, a (typically user-mode)
malware component executes the main malicious payload.
There are three key ideas behind these phases.

The first key idea is that the payload reads modified kernel
data or invokes modified kernel code. The semantics of the
executed payload is thus determined by the success of the
phase 1 kernel manipulation attempt.

The second key idea is that a malware analysis can only
observe the main malicious payload behavior if the phase 1
kernel modification attempt succeeds. If the phase 1 attempt
did not succeed, then the phase-2 payload may amount to
benign behavior or a different malicious behavior.

The third key idea is that the phase-1 kernel modification

may also lead current malware analysis tools to incomplete
or inaccurate analysis results. Mixed-mode malware thereby
effectively prevents malware analysis with current tools.

As other malware, mixed-mode malware has various im-
plementation options. Phase-1 can be carried out by a kernel-
mode component that has been deployed by either a user-
mode component or by a user-mode dropper application.
But it may also be triggered from a user-mode component
via a zero-day kernel exploit which manipulates kernel struc-
tures. Similarly, phase 2 is typically carried out by a user-
mode component, as it is more convenient for malware writ-
ers. But phase 2 could also be implemented by a kernel-
mode component.

More formally, the state of the kernel at time T consists
of code CT and data DT . Phase 1 performs operation M to
manipulate the original kernel code CO and data DO, yield-
ing CN and DN , or M(CO, DO) = (CN , DN). If the ma-
nipulation succeeds then CN is the manipulated code CM

and DN is the manipulated data DM . In the new system
state, phase 2 executes a sequence of operations U , which in-
voke CN and read DN . The main malicious payload behav-
ior, operation P, is the sequence of commands executed with
successfully manipulated kernel data and code, U(CM , DM).

U(CN , DN) =

{
operation P if CN = CM ∧DN = DM

operation X otherwise;X 6= P

Optionally, operation M may also attack an inside-the-
guest VMI component of a malware analysis A. In this case
the analysis produces an incomplete, incorrect, or mislead-
ing report if M succeeded. Since the malicious payload is
only observable if M succeeds, analysis A is not effective for
analyzing such mixed-mode malware.

In the following we describe concrete mixed-mode mal-
ware examples that cannot be analyzed by current malware
analyses. We present these examples in a minimal style for
ease of exposition. The examples are minimal in the sense
that each example exploits one weakness of one kind of cur-
rent malware analysis technique. However these examples
could be combined into integrated, comprehensive malware
attacks that cannot be fully analyzed by several or all cur-
rent malware analysis techniques.

3.1 Misleading User-Only Analysis
This section describes how mixed-mode malware can mis-

lead user-only analysis, regardless of where the analysis per-
forms VMI. These techniques thus affect both in-guest VMI
such as Anubis and outside-the-guest VMI such as Ether.
The high-level idea is to modify those guest OS kernel en-
tities in phase 1 that the phase 2 malicious payload uses.
Since kernel modifications are outside the scope of a user-
focused analysis, the analysis misses the true semantics of
the malicious payload.

Figure 3 shows the main steps of misleading user-only
analyses such as Anubis or Ether. (1) First the user-mode
malware Mal.exe installs a rootkit (a kernel-mode compo-
nent). The rootkit creates a fake system call table that con-
tains pointers to itself instead of to the standard operating
system services. (2) Then the rootkit overwrites the pointer
(within the KTHREAD object of Mal.exe) the operating sys-
tem uses to find the address of the system call table with
the address of the fake system call table.

(3) Each time Mal.exe calls system call A the operating
system will now (4) follow the pointer to the fake system
call table. (5) The OS thereby directs the control-flow to the

…

Kernel

 User

Mal.exe KTHREAD

Pointer to

syscall table

Syscall

lookup

3. Call

A(P)

Mal.exe

Fake syscalls Real syscalls

index B

5. OS transfers control to rootkit

Rootkit

Service B

Service A index A

Pointer to B

Pointer to A

...

Pointer to rootkit

Pointer to rootkit

...

index B

index A

… ...

…

Figure 3: Example malware misleading Ether’s user-
only VMI; box = data; oval = function; solid ar-
row = attack; dashed arrow = original pointer; bold
dashed arrow = manipulated pointer; gray = cor-
rupted; P = system call A parameter values;
P’ = system call B parameter values.

rootkit instead of the original OS service. (6) The rootkit
adjusts the input parameters to system call B and invokes
the corresponding OS services. (7) After executing the in-
voked system service, the rootkit adjusts the return values
to the original system call and (8) returns the results to the
user-mode malware component.

Since a user-only analysis logs system calls at the interface
between user- and kernel-mode, it will log the system calls
as they are issued by Mal.exe. If the kernel modification
succeeds, the analysis will log a sequence of system calls
that differs from the actually executed system calls.

If the kernel modification does not succeed then an anal-
ysis tool cannot observe the main malicious payload, as the
system call table will not point to the malware-created one.
The commands executed by Mal.exe thus lead to system
calls that differ from the malicious payload.

3.2 Misleading Kernel-Only Analysis
This section describes how a mixed-mode malware sample

cannot be fully analyzed by a kernel-only analysis, regardless
of where it performs VMI. The malware sample thus affects
both in-guest and outside-the-guest VMI. We are not aware
of any current outside-the-guest VMI kernel-only analysis
systems. But dAnubis is a well-known in-guest VMI kernel-
only system [23].

The Stuxnet example malware does not load any mali-
cious kernel-level code and is thus not tracked by a kernel-
level analysis tool such as dAnubis. Instead, Stuxnet runs
in user-mode. To obtain administrator access to the victim
system, it executes some instructions (shellcode) with kernel
privilege. This attack uses a vulnerability in the Win32k.sys
driver of Windows XP and Windows 2000. Win32K.sys is
the driver that manages the graphical user interface envi-
ronment, e.g., by dispatching keyboard and mouse inputs
to applications. A Windows user-mode application can cre-
ate a custom keyboard layout file and activate it via the
LoadKeyboardLayout API.

To hijack the kernel execution, Stuxnet passes a mal-

Win32K.sys data

Valid addr

Valid addr 0

1

2

5

Valid addr Win32K.sys

Code

2. Load shell code

at address C

…

_aNLSVKFProc

array

User

Kernel

5. Execute code at

address C with

kernel privileges

Index

C

Shell

Code

5

layout

...

Figure 4: Stuxnet kernel exploit; box = data;
oval = function; white = original; gray = corrupted.

formed keyboard layout file as an input argument to a sys-
tem call. Stuxnet exploits that the kernel does not check
the bounds of an array index that is provided in an user-
generated keyboard layout file.

For finding the virtual key that corresponds to a keystroke,
Win32k.sys obtains an index into an array from the active
keyboard layout file. Win32k.sys gets the address at the
given index and executes the function at this address. The
attack crafts a keyboard layout file that contains an out-
of-bounds index such as 5, which points to C. When inter-
preted as a function pointer, C points within the range of the
malware’s user-mode address space, which effectively yields
control to the malware.

Figure 4 summarizes the main steps. (1) The user-mode
malware loads a crafted keyboard layout file by invoking
LoadKeyboardLayout. (2) Then it allocates memory at ad-
dress C and loads a malicious shellcode into this address.
(3) To trigger the vulnerability, it invokes the SendInput
API, which synthesizes keystrokes and triggers Win32k.sys
to use the crafted layout file for extracting the virtual key for
the requested keystrokes. (4) Therefore Win32k.sys reads
the value C as the function address and (5) executes the
malicious shellcode at location C with kernel privilege.

To summarize, if the kernel modification succeeds the mal-
ware executes code at C with kernel privileges, untracked by
dAnubis. If the kernel modification does not succeed to pro-
vide administrator access for malware code, malware cannot
execute its malicious payload.

3.3 Misleading Inside-the-guest VMI
This section describes how mixed-mode malware can de-

feat inside-the-guest VMI, regardless of the scope of the mal-
ware analysis. This approach can thus mislead user-only
techniques such as Anubis, kernel-only techniques such as
dAnubis, and whole-system techniques such as those based
on TEMU.

Figure 5 shows an example malware that can mislead in-
guest VMI techniques such as TEMU’s Module Notifier VMI
driver. In Figure 5 the main malicious payload is to call
service A with certain parameters (step 3). The malware
Mal.exe triggers this payload only if the previous kernel ma-
nipulation attempt in step 2 succeeds. But step 2 also breaks
TEMU’s VMI scheme and thereby renders TEMU ineffec-
tive.

An analyst therefore has two options. She can allow step 2

Dropper.exe

Dropper.exe

1

2

Mal.exe
3

Function Modifier

Zw1

...

Pointer to Zw1

Syscall table

Mm1
No VMI notification

VMI

Driver

...

Zw1

...

Pointer to Zw1

...

Zw1’

...

Pointer to Zw1’

...

Syscall table

Syscall table

Mm1

Mm1
VMI notification

VMI

False VMI

2.1: Hook

Function Modifier

3.1: Create

new process

User

Kernel

Zw1’’: Call ZW1,

hide Mal.exe
Service A

3.2: Call

ZW1

Dropper.exe

VMI

Driver

VMI

Driver

Figure 5: Example malware payload (calling A)
that misleads TEMU; box = data; oval = function;
dashed arrow = pointer; black dot = VMI entity;
gray = corrupted.

to trigger the malicious payload, but this renders TEMU in-
effective. The other option is to prevent the step 2 manip-
ulation, but this prevents the main malicious payload from
executing.

In more detail, Dropper.exe first drops the“Function Mod-
ifier” rootkit (step 1). This rootkit manipulates TEMU’s
VMI infrastructure (step 2). The rootkit checks the system
call table and internal OS functions and unhooks and un-
patches the functions TEMU uses. Then the rootkit manip-
ulates these functions so they return false results to TEMU’s
VMI driver.

Specifically, the rootkit unhooks the internal OS function
MmLoadSystemImage (Mm1), which TEMU hooks to detect
driver loading by malware. The rootkit also unhooks the
OS function ZwQuerySystemInformation (Zw1) of the sys-
tem call table, which TEMU uses to retrieve driver module
information. The rootkit then hooks Zw1 to point to an
alternative malicious implementation Zw1’.

In step 3, the Dropper creates a new process for Mal.exe,
which calls Zw1. If the phase-1 manipulation of step 2 does
not succeed, then this results in a notification to TEMU,
but no call to service A. If step 2 succeeds, then this call
by Mal.exe results in the malicious payload and misleading
TEMU’s VMI.

3.4 Analysis Requirements
From the threat model and example mixed-mode malware

attacks we can infer the following three requirements for
effective analysis of mixed-mode malware. (1) The analy-

sis must run outside the malware scope. For mixed-mode
malware this means that the malware analysis cannot have
any component such as VMI in the guest OS. (2) A pre-
cise and comprehensive model of both kernel data and ker-
nel code. This is a common malware analysis requirement.
Without such a model an analysis tool cannot generate a
precise and comprehensive log of potentially malicious ac-
tivities. (3) Log potentially malicious activities regardless
of where they occur. This means monitoring and logging
both kernel-mode and user-mode activities. Such logging
requires identifying which instructions in user- and kernel-
mode are run on behalf a malware component, for example,
when the OS performs a requested system call.

4. SEMU DESIGN
This section describes SEMU’s high-level design concepts.

SEMU follows earlier approaches such as TEMU in that
it uses virtualization. However SEMU places all analysis
components outside the guest OS and its analysis covers
both user-mode and kernel-mode malware codes. SEMU’s
concepts can be implemented in various ways. To evalu-
ate SEMU we implemented it on top of QEMU. However
the concepts are general and could be re-implemented us-
ing other virtualization techniques, such as various software-
based virtual machines or via hardware virtualization exten-
sions.

VMI

 Plug-in

Analysis

 Plug-in

Trace

 log

Trace

Analyzer

Analysis

Report

Data: Name,

addr, value

Code:

Name, addr

Guest

user

Guest

kernel

VMI

 Plug-in

VM

Data: Name,

addr, value

Code:

Name, addr

Host OS

Reverse

Eng.

Reverse

Eng.

Code

Data

Code

Code

Data

Code

Shadow mem. Shadow mem.

Figure 6: SEMU architecture and main execution
phases: Pre-malware-execution phase (left) and the
malware execution and post-execution log-analysis
phases (right).

Figure 6 gives a high-level overview of SEMU’s architec-
ture and main execution phases. SEMU consists of the
following four major components. (1) First, SEMU has
a reverse-engineered model of the guest OS. (2) Second,
SEMU’s pre-execution phase copies key OS level elements
from the guest OS into SEMU’s shadow memory (Figure 6
left). The right part of Figure 6 shows the remaining compo-
nents. (3) Malware execution and monitoring keeps SEMU’s
shadow memory in sync with the guest OS and creates a pre-
cise log of malware activities. (4) The last component is a
post-execution log-analysis.

SEMU logs and keeps track of both user and kernel events.
These events include system calls, I/O control (IOCTL),
calls to functions exported by dynamic-link libraries (DLLs),
and kernel-mode function calls. Such a comprehensive log
captures information flow across the kernel-user divide, such

as user-mode code calling a system call and kernel code
branching into user-space code.

Before the VM executes a guest instruction, SEMU de-
cides whether to log the instruction. When making this
decision, SEMU consults a precise and comprehensive mem-
ory model of the guest OS. This model is SEMU’s shadow
memory, which includes address ranges of code and data as
well as individual data values.

SEMU builds and maintains its shadow memory from out-
side the guest OS and thus outside malware’s reach. SEMU
builds its initial shadow memory version by traversing the
guest OS memory before malware execution. SEMU in-
terprets the guest OS memory by consulting its reverse-
engineered model of the Windows OS that includes sym-
bol information (e.g., the layout of all kernel data struc-
tures) and the addresses of kernel functions. During analysis
SEMU keeps its shadow memory updated by keeping track
of events in the guest OS that change the kernel data. Such
events include the creation and deletion of kernel objects
and writes of kernel object fields.

4.1 Reverse-engineered OS Model: PDB
SEMU performs VMI by interpreting the guest OS mem-

ory from outside the guest. To parse the current guest OS
memory, SEMU leverages the memory layout information
provided in PDB (program database) files [28]. SEMU uses
this approach because PDB data cover a wide range of ker-
nel data structures in a wide range of Windows operating
systems. While there has been promising recent work on
synthesizing outside-the-guest VMI tools automatically [10,
12, 13], these synthesized VMI tools do not cover all the ker-
nel data structures that are needed for malware analysis [10,
Section 3A]. In future work we plan to explore integrating
such synthesized VMI tools into our PDB-based approach.

To extract the precise behavior of the malware, SEMU
needs to know where important member fields of OS objects
and data structures are. For instance, to detect the Fig-
ure 3 malware attempt of changing the system call table,
SEMU has to detect a manipulation of the system call ta-
ble pointer within the KTHREAD object. SEMU thus tracks
the manipulation of KTHREAD objects including field writes.
These data structure layouts are documented as PDB sym-
bols, together with the name and offset address of internal
kernel-mode functions of the OS and drivers.

The format of data structures and other symbols differs
across Windows versions. To build an accurate model, the
VMI plug-in first resolves the guest OS and device driver
version numbers. Then SEMU downloads the corresponding
PDB symbols from Microsoft servers.

SEMU differs from the OS reverse engineering of current
tools such as Volatility 1 and Virt-ICE [24]. Volatility is
an off-line forensic analysis tool that does not monitor or
log malware actions in kernel- and user-mode. Virt-ICE is
an interactive debugger but does not monitor kernel ma-
nipulations and thus it is not effective against mixed-mode
malware.

4.2 Pre-Execution: Create Shadow Memory
Directly before malware execution starts, SEMU initial-

izes its shadow memory by copying guest OS code infor-
mation and data into its shadow memory (Figure 6 left).

1http://code.google.com/p/volatility/

SEMU performs this pre-execution phase before every exe-
cution of the malware, as the guest OS state may change
between subsequent malware executions.

Algorithm 1: Main steps of the pre-execution phase.

1 On_init_event()
2 begin
3 trusted code = phyAddr(kBase, kPE, drvBase, drvPE);
4 fMap = resolve(PDB, kBase, kPE, drvBase, drvPE);
5 dMap = resolve(kpcr pointer);
6 current proc = get_cr3_from_kprocess(kpcr pointer);

7 end

Algorithm 1 summarizes the pre-execution phase. The
algorithm basically initializes the following four key data
structures. First, SEMU infers the address range of each
trusted kernel code component and stores it in trusted code.
This includes ntoskrnl.exe, Win32k.sys, and other basic de-
vice drivers such as tcpip.sys and disk.sys. Subsequent phases
use these address ranges to distinguish trusted from non-
trusted kernel code. This step is important as monolithic
operating systems such as Windows and Linux operate large
amounts of code and drivers in kernel-mode, without address-
space separation to isolate the kernel from possibly malicious
code.

Second, SEMU creates fMap, a detailed list of functions
within each trusted code component. For each function,
fMap contains its name and its entry point address and name
of the trusted code it belongs to.

Third, SEMU creates dMap, a detailed structure of key
OS objects. dMap contains the name, address range and
field values of many OS-level objects. Finally, SEMU stores
the set of process objects also in current proc.

SEMU retrieves these guest OS data by traversing the
large number of OS objects that are reachable through the
x86/x64 segmentation registers FS (x86), GS (x64). SEMU
interprets the guest OS memory using its OS model reverse-
engineered from PDB symbols. When in kernel-mode, the
FS/GS register points to a kernel-mode data structure called
kernel processor control region (KPCR). KPCR gives access to
base addresses and PE2 information of both kernel compo-
nents (kBase, kPE) and drivers (drvBase, drvPE).

Via KPCR, SEMU retrieves information about both dy-
namic and static kernel addresses. A static address does
not change during normal OS execution. Example static
addresses include the interrupt table IDT, the system call
table SSDT, and the global descriptor table GDT. Dynamic ad-
dresses may change during normal OS execution. Examples
include OS process objects in the OS heap managed by the
kernel’s object manager such as ETHREAD and EPROCESS [28].

A special case of dynamic objects is the list of current pro-
cesses current proc. Via KPCR, SEMU extracts the base ad-
dress of the page directory for each running process from the
KPROCESS object’s DirectoryTableBase field. Subsequent
phases use this process list to track malware processes.

When executing an instruction in user-mode, the FS/GS

register points to a thread environment block (TEB) user-
mode data structure. A TEB contains information about the
currently running thread and points to a process environ-
ment block (PEB). SEMU uses the PEB to resolve user-level

2http://msdn.microsoft.com/en-
us/magazine/cc301805.aspx

information about the current process.
PEB also indirectly points to the InloadOrderModuleList

list of the loaded dynamic-link libraries (DLLs) within a
process memory. SEMU identifies each of these DLLs by
the LDR_MODULE, which includes information about its cor-
responding DLL such as the base (start) address of a DLL
in the process address space. By using the base address of
a DLL and extracting the offsets of its functions from the
export table in the PE header, SEMU finds the entry point
addresses of library functions in the process memory.

4.3 Whole-System Malware Analysis
When the malware executes, SEMU monitors and logs key

events in both user- and kernel-mode. That is, unlike the
user-only tracing common in current tools such as TEMU,
Anubis, CWsandbox, and Ether, SEMU monitors and logs
control flow in the kernel whenever the processor switches
to the kernel to serve a malware’s request. SEMU thereby
discovers system call swapping attacks such as Figure 3.

To perform whole-system malware analysis the analysis
plug-in distinguishes user-mode from kernel-mode malware
code. Address-space separation in user-mode makes it easy
to identify the user-mode malware instructions. But in kernel-
mode we need to monitor and log instruction execution in
the following two cases: (1) First, whenever the processor
switches to kernel-mode to execute the request of user-mode
malware (e.g., to perform a system call); and (2) Second,
when an untrusted kernel instruction (injected kernel code
or dropped driver module) executes.

Algorithm 2: Whole-system tracing of malware opera-
tions.

1 begin
2 if CS ∈ User and CR3 ∈ malware proc CR3 then
3 return trace user;
4 end
5 if CS ∈ Kernel then
6 if phy_addr (current instruction) 6∈ trusted code

then
7 return trace kernel;
8 else
9 kthread = current_user_thread (kpcr pointer);

10 if kthread ∈ malware proc then
11 return trace kernel;
12 end
13 end

14 end
15 return dont trace;
16 end

Algorithm 2 summarizes how the analysis plug-in enables
whole-system monitoring and logging. In line 2 the analysis
plug-in checks the processor mode and the value of the CR3

register. (The CR3 value is the base address of the page di-
rectory for the currently running process.) If the processor
performs an instruction from user space and the CR3 value
belongs to a stored list of page directory base addresses of
the malware process and new processes that the malware
has created, the analysis plug-in enables user-mode trac-
ing. Otherwise, if the processor works in kernel-mode, the
analysis plug-in enables tracing if the current instruction is
untrusted (line 6) or the current KTHREAD object belongs to
a user-mode malware thread (line 10).

When tracing is enabled, SEMU provides two main log-

ging options. The low-level logging option logs each in-
struction. The high-level option uses the data stored in the
shadow memory to provide a high-level summary in terms of
the names and addresses of both the invoked functions and
the accessed data objects. In user-mode, the resulting log
includes library calls, system calls, and IOCTLs. In kernel
mode, the resulting log includes, besides others, the kernel
code and data manipulation whenever an untrusted code at-
tempts to modify a memory location that is included in the
shadow memory. SEMU thereby detects and logs function
pointer hooking attacks and kernel data manipulations such
as DKOM (Direct Kernel Object Manipulation).

For the Figure 3 example, SEMU logs any malware system
calls from user-mode in step 1, operations performed by the
rootkit in steps 1 and 2, the malware’s service A system call
in step 3, and the rootkit’s execution of service B in step 6.

During malware execution, SEMU keeps its shadow mem-
ory in sync with the guest OS. This is done by the VMI
plug-in, which tracks the execution of kernel functions that
load new code or create, modify, or delete objects. SEMU
then reflects such operations in its shadow memory. The
VMI plug-in updates the shadow memory by adding the
addresses of newly created objects and removing the ad-
dresses of deleted objects from the dMap. For this purpose
the VMI plug-in monitors changes in the OBJECT_DIRECTORY

structure after execution of several OS functions that allo-
cate and deallocate memory in the kernel, such as RtlAl-

locateHeap, ExAllocatePoolWithTag, ExFreePoolWithTag,
and RtlFreeHeap. When malware overwrites trusted code,
SEMU similarly removes the overwritten code range from
trusted code.

4.4 Malware Logging

Description

E EP addr+name, M name
C C addr+name, T addr+name, T M name, M name
W Inst addr, D addr+name, F name, M name
R Inst addr, D addr+name, F name, M name

Table 1: Kernel execution trace format; EP = en-
try point; Addr = address; C = caller; T = tar-
get; M = module; D = data; F = member field;
Inst = current instruction.

Table 1 shows the format of the trace file the analysis plug-
in collects from the kernel during malware execution. SEMU
creates this log with information from its shadow memory,
such as addresses and names of functions and objects. E
represents the execution of a function. Whenever a function
executes, the analysis plug-in logs its entry point address
and its name (if the VMI plug-in has resolved the name).
Since there is no resolved name for the functions that exe-
cute within kernel-mode malware, the analysis plug-in only
writes the address and the name of the malware’s kernel-
mode module or U (untrusted code) for dropped drivers and
injected codes.

For each executed control transfer (C) to an address we
have in our shadow memory, the analysis plug-in writes the
caller’s address and the module name as well as the target’s
address and the module name. The analysis plug-in traces
accesses (W=write and R=read) within the address range
of a kernel object as follows. SEMU logs all direct writes

of kernel data performed by untrusted code. SEMU logs
the name of kernel data and its overwritten field members.
SEMU also monitors writes of kernel data by the memory
management functions that malware invokes.

The analysis plug-in also tags manipulated data struc-
tures. Whenever a read operation occurs within a manipu-
lated kernel data structure, SEMU logs which kernel func-
tions are affected by manipulated kernel data.

4.5 Post-Execution: Log Analysis
In the final step of mixed-mode analysis SEMU’s trace

analyzer produces a human readable report. The report
contains name and address of modified kernel data as well
as the internal OS functions that execute after user-mode
requests and the functions that referred to manipulated OS
objects.

SEMU contains a trace analyzer application that performs
post-execution operations. The post-execution aggregates
the collected log, for example, matching system calls from
user-mode with operations invoked by kernel-mode malware.
For instance, in the Figure 3 example, SEMU matches the
A call with the invocation of B, which reveals the malware’s
redirection of the system call A to the service B.

To extract the effect of kernel data manipulations in mal-
ware behavior, the trace analyzer compares the traces of
malware operations both in presence and absence of kernel
data protection. For this purpose, whenever a malware sam-
ple starts execution, SEMU takes a snapshot of the VM at
the original entry point (OEP) of the program. Then it uses
this snapshot to run the sample twice. For the first run, the
analysis plug-in protects kernel data from manipulations of
untrusted codes. In the second round, the plug-in allows the
write operations of untrusted code within the kernel data
addresses. Then, it compares the two execution logs and
reports the differences.

5. IMPLEMENTATION IN QEMU
At a high-level, SEMU uses a plug-in architecture. SEMU’s

functionality is packaged in components that plug into a
VM such as QEMU. This approach decouples SEMU’s anal-
ysis from the underlying virtual machine, which provides
two main advantages. First, SEMU plug-ins can be loaded
and unloaded dynamically at runtime to suite the analyst’s
needs. Second, all the analysis code that is specific to the
guest OS or specific to a certain OS version is encapsulated
within plug-ins. This architecture makes it relatively easy
to support additional versions of the guest OS or a different
guest OS such as Linux.

The two main SEMU plug-ins are the VMI plug-in and the
analysis plug-in. Execution reaches these plug-ins via call-
back functions. The VM calls these callback functions be-
fore processing certain events such as guest OS system calls,
switching from user-mode to kernel-mode, context switches,
and kernel heap accesses. In QEMU, memory access oper-
ations can be monitored by analyzing the semantics of x86
instructions. For example, we monitor mov instructions as
they can change the value of a memory region. The x86 lan-
guage has a vast number of read and write operations. How-
ever we can express our analysis very compactly in terms of
QEMU’s built-in write operation abstractions. QEMU then
maps our analysis to all concrete x86 write operations.

Virtual addresses are easy to infer from physical addresses.
SEMU therefore stores all addresses as physical addresses,

which makes it easy to detect cases in which malware ex-
ploits the fact that two different virtual addresses may map
to the same physical address. SEMU currently utilizes QEMU’s
built-in functions for converting virtual addresses into phys-
ical addresses.

To monitor read and write operations we customize soft-
mmu codes in QEMU. QEMU uses softmmu in order to
convert the physical addresses of the guest system to vir-
tual addresses of the host system. This conversion is needed
for each read and write. By hooking into QEMU’s softmmu
functions SEMU extracts the guest OS address being read
or written by the current instruction.

To store the kernel data in the shadow memory, the cur-
rent SEMU implementation uses the kernel data structure
layout definitions of ReactOS3. ReactOS is an open-source
re-implementation of Windows. But the SEMU code uses
these ReactOS layouts only for ease of implementation. That
is, we could easily generate these layouts from the PDB files
and will do so for future SEMU versions.

6. MIXED-MODE MALWARE SAMPLES
This section describes several samples of mixed-mode mal-

ware. These samples serve to evaluate existing and future
malware analysis tools.

6.1 Misleading User-Only VMI
This sample implements the Figure 3 motivating example

attack that evades analysis by Ether. The sample misleads
Ether-style user-only VMI by modifying the semantics of
the system calls invoked by the malware, which leads tools
such as Ether to log system calls that are different from the
system calls actually executed by the malware.

The sample has a user-mode component and a kernel-
mode component. The user-mode component Mal.exe is
based on the SDBOT malware. We customized SDBOT
source code to install our kernel-mode component (Figure 3,
step 1) and to make system calls (Figure 3, step 3) after the
kernel-mode component has modified the kernel.

Our kernel-mode component (also called rootkit) is a kernel-
mode driver packaged as a resource file that changes the se-
mantics of kernel system services. Our rootkit changes the
semantics of the DeleteFile and TerminateProcess system
calls.However a different implementation of our rootkit could
easily change other system calls.

When the current user-mode thread such as Mal.exe re-
quests a service, the OS follows the ServiceTable pointer
of the current thread’s user-mode KTHREAD object to find
the address of the requested service (Figure 3, step 4). To
change system call semantics, our rootkit manipulates the
ServiceTable pointer in the KTHREAD object of the user-
mode Mal.exe process.

For console applications, ServiceTable points to the sys-
tem calls exposed by OS image ntoskrnl.exe, via the sys-
tem call table SSDT. That is, the OS initializes the Servic-

eTable pointer once via the internal (non-exported) KeIni-
tializeThread function to point to the SSDT table.

Our kernel-mode component is somewhat similar to ear-
lier rootkits that operate in isolation, without a cooperating
user-mode component. These earlier rootkits set the Ser-

viceTable pointer of various threads to the address of a fake
SSDT table to hide the presence of malware processes [19].

3http://www.reactos.org

Beyond hiding processes, we manipulate system call seman-
tics to redirect subsequent system calls of Mal.exe in a way
that evades current malware analyses.

6.2 MDL System Call Semantic Modification
This sample differs from Figure 3 in that it does not ma-

nipulate kernel objects directly. Instead this sample uses
OS memory management functions to access and modify
the system call table.

Pointer to A’

Mal.exe KTHREAD

Pointer to

syscall table

Syscall

lookup

…

…

App.exe KTHREAD

Pointer to

syscall table

…

...

...

syscall table

Pointer to C

B

A

C

C

Rootkit

A’

B’

B

A

A

B

Index

…

Pointer to B’
Write via MDL

Figure 7: MDL system call semantic modification.

Figure 7 illustrates the kernel-mode component of of this
sample. By using standard functions for memory operations,
the rootkit creates a Memory Descriptor List (MDL)4. A
MDL enables the rootkit to map the addresses of the SSDT

table and overwrite its system call pointers.
In the example of Figure 7 the rootkit has overwritten

the original pointers for system services A and B with the
addresses of the A’ and B’ functions. A’ and B’ are provided
by the rootkit. These rootkit functions check the currently
running process and swap system calls A and B only if the
current process is the malware process Mal.exe.

Similar to Figure 3 this malware can mislead system call
tracing. Similar to the sample of Section 6.1 we swap the
system calls for DeleteFile with CreateFile and Termi-

nateProcess with CreateProcess. The rootkit adjusts in-
put parameters (and return values) in functions A’ and B’.

6.3 User-Level Acts on DKOM Attack
This mixed-mode malware sample consists of a user-mode

component and a kernel-mode component. The kernel-mode
component is based on the kernel-mode component of the
FU rootkit, which uses Direct Kernel Object Manipulation
(DKOM).

The FU rootkit also has a user-mode component but we
replace this component as it only acts as a UI that sends
commands to the kernel-mode FU component. Similar to
FU, our user-mode component first installs the kernel-mode
component, i.e., a kernel-mode driver. Our user-mode com-
ponent then waits for the kernel-mode component to use
DKOM to hide both malware components. The user-mode
component then checks if its own process has been hidden
successfully and then adapts its subsequent behavior accord-
ingly.

Our kernel-mode component performs DKOM by attempt-
ing to hide both malware components by unlinking the corre-
sponding EPROCESS and DRIVER_OBJECT kernel-level objects

4http://msdn.microsoft.com/en-us/library/windows/
hardware/ff565421(v=vs.85).aspx

in the list of running processes and drivers. Then the user-
mode malware component enumerates the current running
processes in the victim systems to check if the object hiding
attempt succeeded. If the user-mode process is still in the
list of running processes the user-mode component injects
its payload as a shellcode into the SVCHOST program and
terminates. Otherwise the user-mode component continues
the execution of its malicious payload.

6.4 User-Level Acts on DKSM Attack
This sample differs from the one in Section 6.3 by replac-

ing DKOM with DKSM [1]. This sample uses Direct Kernel
Structure Manipulation (DKSM) to swap the image name
and process id of the malware process with one of the run-
ning processes.

In the Windows operating system, the process id PID

and the image name ImagFileName are member fields of
the EPROCESS process object. To swap the PID and Im-

ageFileName of the malware process with a running pro-
cess, the kernel-mode rootkit accesses the list of process ob-
jects by calling the PsGetCurrentProcess function. The
kernel-mode component can traverse the process list using
the flink field. Since a kernel-mode driver such as our
kernel-mode component can write all kernel memory it is
then easy to swap the process id and process name of the
malware process with another process.

Similar to the Section 6.3 DKOM sample, if process ma-
nipulation does not succeed, malware injects its payload into
a victim process in user-mode. Otherwise, the user-mode
malware continues execution as a standalone executable.

6.5 Stuxnet’s Kernel Exploit
We used the Stuxnet-based example exploit (CVE-2010-

2743) of Figure 4 and added a shell-code that performs a
privilege escalation attack. The shell-code escalates the priv-
ilege level of the malware process, by swapping the token

fields of the SYSTEM and malware process.
Specifically, the shell-code traverses the list of EPROCESS

objects of the current running processes, searches for the
SYSTEM process, and stores the SYSTEM EPROCESS token

field. It then swaps this token field with the token field of
the malware process.

Such a modification makes the malware process execute
with administrator privileges. The malware can thus freely
invoke a range of Windows APIs that are not allowed for
non-privileged users. SEMU effectively detects the execu-
tion of the shell-code as an untrusted code running in kernel-
mode and logs the modification of the token field.

6.6 User-Level Malware Acts on User-Mode
Unhooking of Mapped Kernel SSDT

This malware is similar to the Stuxnet sample of Sec-
tion 6.5 in that it also does not have a kernel-level com-
ponent. Instead this malware sample has two user-mode
components. The first user-mode component performs the
tasks of a kernel-mode component, by writing directly into
the physical memory pages of the OS kernel. Such memory
mapping techniques are commonly used by malware [11].
Although all malware components reside in user-mode, to
analyze this malware sample, a malware analysis tool has to
keep track of both kernel-space and user-space memory.

For this sample we assume that the system call table
(SSDT) has been hooked by a malware analysis tool. Our

malware sample thus writes into kernel memory to perform
DKOM and unhook the SSDT.

Our first user-mode malware component writes to kernel
memory by calling the Windows Native API cite[27], which
is implemented in ntdll.dll. The Native API gives access
to the physical pages of the SSDT table in the kernel, i.e.,
via the NtOpenSection and NtMapViewOfSection functions.
Our second user-mode malware component then operates
based on the success of the attempted SSDT DKOM manip-
ulation.

Disk ntoskrnl.exe

ntoskrnl.exe image

Memory

(Kernel-mode)

1. Load original ntoskrnl

kernel physical page

proc 1

proc 2

2 . Map

kernel

physical

memory

3. Fix hooked

SSDT using

original loaded

image 4. Unhooking

successful?

Y

N

Memory

(User-mode)

ntoskrnl.exe

Figure 8: Unhooking system call table by a user-
mode malware.

Figure 8 summarizes the attack procedure. As a first step,
(1) the malware loads the file of the OS (ntoskrnl.exe) from
disk into its user-level memory. This enables the malware to
obtain the system service indices from the original SSDT ta-
ble, which has not yet been hooked by other programs such
as a malware analysis or anti-virus software. In step (2), us-
ing Native API functions, the malware maps kernel memory
to its own address space. In step (3) the malware compares
the current SSDT with the original unhooked SSDT and fixes
the current SSDT in the kernel memory based on the origi-
nal unhooked SSDT loaded from disk. Based on the success
of unhooking the system call table, the malware executes
either “proc 1” or “proc 2”.

If a malware analysis tool such as a sandbox for user-mode
malware analysis depends on SSDT hooking for malware anal-
ysis then the malware exposes two different behaviors, de-
pending on the success of the attempted kernel manipula-
tion. First, if the malware analysis tool protects the SSDT

table from being overwritten by malware it can only ana-
lyze “proc 1”. Second, if the user-mode malware unhooks
the SSDT successfully then the analysis tool is ineffective for
monitoring the rest of the malware execution.

When tracing such a sample with SEMU, we run the sam-
ple twice. In the first run we allow the malware to access
and overwrite the kernel. In the second run, we prevent the
kernel from being overwritten, either directly by malware or
indirectly by OS functions invoked by malware. This en-
ables SEMU to analyze both malware behaviors (proc1 and
proc2).

7. EVALUATION
To evaluate the SEMU approach of analyzing mixed-mode

malware we ask the following two research questions.

• RQ1: Can SEMU analyze mixed-mode malware that
cannot be fully analyzed by current state-of-the-art ap-
proaches?

• RQ2: Is the SEMU execution time competitive with
current state-of-the-art approaches?

To answer these two research questions we first implemented
SEMU on top of QEMU as described in Section 5. We then
compared our SEMU implementation with the two tools that
are both closely related to SEMU and are fully available
for experimentation, i.e., tools that provide access to their
source code. These two tools were TEMU version 1.0 and
the latest available Ether release (version 0.1).

7.1 Analyzing Mixed-Mode Malware (RQ1)
For RQ1, we implemented variations of our motivating

examples of Section 3 in Section 6 and analyzed them on
TEMU, Ether, and SEMU. We conducted these malware
analysis experiments on a Debian Wheezy host system run-
ning on a 2.9 G.Hz Intel Core i7-3520M processor machine.
The guest OS was Windows XP SP3 with 1 GB RAM 32 bit.

The six malware samples are written in C/C++. Table 2
lists the size of each malware sample in lines of code (LOC).
The slowdown numbers in the last column are the overhead
SEMU imposes for monitoring the system and writing the
system log during malware sample execution. We compare
SEMU’s overhead with the overhead of competing malware
analysis approaches in the following Section 7.2.

The samples perform attacks including DKOM, DKSM [1],
and hooking, by manipulating OS objects or data structures
such as SSDT, KTHREAD, EPROCESS, and DRIVER_OBJECT. In
this comparison SEMU was the only tool that could log all
the events that are necessary for analyzing these attacks.

7.2 Malware Analysis Execution Time (RQ2)
For RQ2, we compared the total execution times of TEMU

and SEMU in Table 3 and of Ether and SEMU in Table 4. To
summarize, SEMU was faster than TEMU but slower than
Ether. The TEMU/SEMU difference can be explained by
the newer QEMU version used by SEMU. The Ether/SEMU
difference is due to Ether using hardware extensions. How-
ever SEMU also works if these extensions are not available.

7.2.1 SEMU vs. TEMU’s Inside-the-Guest VMI
This section compares the performance of SEMU with the

closely related TEMU. SEMU and TEMU are built on the
same QEMU VM architecture. TEMU uses QEMU v0.9
whereas SEMU uses the newer QEMU v0.14. While the
QEMU versions differ slightly, we do not expect a big per-
formance difference from these different QEMU versions.

The main conceptual difference between SEMU and TEMU
is the placement of VMI components (partially in-guest in
TEMU vs. outside-the-guest in SEMU). The main goal of
the evaluation in this section is thus to determine if this
change of VMI architecture has a large negative impact on
the malware analysis overhead. A malware analyst may be
concerned that the switch from in-guest VMI in TEMU to
outside-the-guest VMI in SEMU incurs a prohibitive perfor-
mance penalty.

To compare the performance of in-guest with outside-the-
guest VMI, we picked a typical, coarse-grained analysis task
(symbol extraction), and applied it on five standard pro-
grams. Table 3 lists both the programs and the analy-
sis times of TEMU and SEMU. The performance numbers
show that SEMU did not incur an additional overhead over
TEMU.

Description Affected Object Via OS functions Kernel LOC User LOC Slow-down

6.1 Modify system calls KTHREAD no 370 1,684 35.3
6.2 Modify system calls (MDL) SSDT yes 417 1,684 38.7
6.3 DKOM object hiding EPROCESS, DRIVER_OBJECT no 96 451 28.2
6.4 DKSM renaming EPROCESS no 111 451 20.6
6.5 Privilege escalation EPROCESS no 0 149 25.2
6.6 User-mode unhook SSDT yes 0 710 29.1

Table 2: Results of analyzing six mixed-mode malware samples. Via OS functions denotes if the malware
manipulates kernel entities directly or by calling OS functions; # = section describing the malware.

Subject
w/o VMI [s] Coarse [s] % O/H

T S T S T S
PsGetsid 1.68 0.56 3.44 1.09 105 95
Pslist -t 3.19 1.03 4.69 1.31 47 27
Psinfo -s 5.76 2.88 9.79 4.78 70 66
Coreinfo 1.70 0.65 3.75 1.07 121 63
ListDLLs 3.20 2.58 5.01 3.75 57 45

Table 3: Performance comparison of TEMU’s (T)
inside-the-guest VMI vs. SEMU’s (S) outside-the-
guest VMI using a typical, coarse-grained analysis
task (symbol extraction); O/H = Overhead; List-
DLLs = ListDLLs -d ntdll.dll.

To make this comparison, we re-implemented the TEMU
symbol extraction feature in SEMU, but placed it outside-
the-guest with the rest of SEMU. TEMU extracts the names
of processes, modules, and exported symbols from a running
Windows system. In other words, it keeps track of which
processes have which modules loaded at which address, and
it enumerates the exported symbols from each module.

To perform the comparison, we execute a Windows batch
file in the guest OS that automatically executes and termi-
nates our benchmark applications. The batch file records
the application start and termination time stamps.

The guest system in our experiment is Windows XP SP 3
with 512MB allocated RAM. The first column of Table 3 lists
benchmark applications from the Sysinternals utilities5. The
second and third columns are average run-time of the appli-
cations in TEMU and SEMU when the guest system runs
in its normal state—without VMI. The next two columns
are the average application run-times when VMI is active
and extracts symbols. The last two columns show the over-
head of in-guest VMI in TEMU against our outside-the-
guest VMI in SEMU. SEMU exhibited both an overall lower
runtime and a lower relative VMI overhead.

7.2.2 SEMU vs. Ether’s Single-Domain Analysis
This section compares SEMU’s performance with the closely

related Ether. Both tools place their analysis components
(such as VMI) outside the guest OS.

SEMU differs from Ether in two key aspects. First, while
SEMU is implemented on a software virtual machine, Ether
leverages hardware extensions. We expect this difference to
lead to higher performance in Ether. Second, Ether focuses
on a single analysis domain, whereas SEMU covers both
kernel-mode and user-mode. We expect this difference to
further favor Ether over SEMU in terms of performance.

We conducted this experiment to determine if SEMU’s

5http://technet.microsoft.com/en-us/sysinternals

performance remains within the same order of magnitude as
the hardware-accelerated Ether. While hardware accelera-
tion is often useful, not every hardware platform offers such
acceleration. So it is important to have a an alternative
such as SEMU that does not have the hardware constraints
of Ether but still provides reasonable performance.

Subject
w/o VMI [s] fine VMI [s] Slowdown
Ether S Ether S Ether S

Efsinfo 0.63 2.42 20.54 21.39 32 8
Timezone 0.05 0.79 4.41 13.03 87 16
Whoami 0.03 0.72 4.49 19.83 149 27
UPX 0.32 9.00 45.58 322.60 141 35
RAR a 0.15 3.07 45.16 302.93 300 98

Table 4: Fine-grained VMI: Instruction tracing in
Ether and SEMU (S). Timezone is Timezone /g.

To compare the performance of SEMU to the hardware-
accelerated Ether, we picked a typical fine-grained VMI task,
i.e., logging each instruction, and applied it on the five stan-
dard programs listed in Table 4. The programs are Win-
dows XP tools and the command-line version of the popular
packing and archiving tools UPX and RAR. This experi-
ment was conducted on a Debian Lenny domain-0 OS run-
ning on a 2.33 GHz Xeon machine with 32 GB RAM with a
1 GB RAM 32 bit Windows XP SP2 guest OS.

Table 4 also lists the analysis times of SEMU and Ether.
SEMU maintains a reasonable performance when compared
to the hardware-accelerated Ether.

We expect SEMU’s performance to improve in future ver-
sions, as we have not yet optimized SEMU for speed. For
example, SEMU does not yet leverage QEMU accelerators
such as KQEMU [3] or KVM [15].

8. CONCLUSIONS
This paper provided proof-of-concept implementations of

malware samples that cannot be fully analyzed by current
tools such as TEMU and Ether. To analyze such mal-
ware, we presented the SEMU whole-system outside-the-
guest analysis tool. The paper compared both analysis ca-
pabilities and overhead of SEMU with TEMU on Ether.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grants No. 1017305 and 1117369.

9. REFERENCES
[1] S. Bahram et al. DKSM: Subverting virtual machine

introspection for fun and profit. In SRDS, pages
82–91. IEEE, 2010.

[2] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda,
C. Krügel, and G. Vigna. Efficient detection of split
personalities in malware. In NDSS. The Internet
Society, 2010.

[3] D. Bartholomew. QEMU: A multihost, multitarget
emulator. Linux Journal, (145), 2006.

[4] U. Bayer, C. Krügel, and E. Kirda. TTAnalyze: A
tool for analyzing malware. In EICAR. EICAR, 2006.

[5] U. Bayer, A. Moser, C. Krügel, and E. Kirda.
Dynamic analysis of malicious code. Journal in
Computer Virology, 2(1):67–77, 2006.

[6] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping kernel objects to enable systematic
integrity checking. In CCS, pages 555–565. ACM,
2009.

[7] D. Chisnall. The definitive guide to the Xen
hypervisor. Pearson Education, 2007.

[8] Consumer Reports. Online exposure. Consumer
Reports Magazine, June 2011.

[9] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee.
Ether: Malware analysis via hardware virtualization
extensions. In CCS, pages 51–62. ACM, 2008.

[10] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and
W. Lee. Virtuoso: Narrowing the semantic gap in
virtual machine introspection. In Security and
Privacy, pages 297–312. IEEE, 2011.

[11] E. Florio. When malware meets rootkits. In Virus
Bulletin. Virus Bulletin, 2005.

[12] Y. Fu and Z. Lin. Space traveling across VM:
Automatically bridging the semantic gap in virtual
machine introspection via online kernel data
redirection. In Security and Privacy, pages 586–600.
IEEE, 2012.

[13] Y. Fu and Z. Lin. Bridging the semantic gap in virtual
machine introspection via online kernel data
redirection. ACM TISSEC, 16(2):7:1–7:29, 2013.

[14] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In NDSS. The Internet Society, 2003.

[15] I. Habib. Virtualization with KVM. Linux Journal,
(166), 2008.

[16] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. C.
Freiling. Measurements and mitigation of
peer-to-peer-based botnets: A case study on storm
worm. In LEET. USENIX, 2008.

[17] X. Jiang and X. Wang. “Out-of-the-box” monitoring of
VM-based high-interaction honeypots. In RAID, pages
198–218. Springer, 2007.

[18] X. Jiang, X. Wang, and D. Xu. Stealthy malware
detection through VMM-based “out-of-the-box”
semantic view reconstruction. In CCS, pages 128–138.
ACM, 2007.

[19] A. Kapoor and R. Mathur. Predicting the future of
stealth attacks. In Virus Bulletin Conference, 2011.

[20] C. Kolbitsch, E. Kirda, and C. Kruegel. The power of
procrastination: detection and mitigation of
execution-stalling malicious code. In CCS, pages
285–296. ACM, 2011.

[21] A. Lanzi, M. Sharif, and W. Lee. K-tracer: A system
for extracting kernel malware behavior. In NDSS. The
Internet Society, 2009.

[22] A. Moser, C. Krügel, and E. Kirda. Exploring multiple
execution paths for malware analysis. In Security and
Privacy, pages 231–245. IEEE, 2007.

[23] M. Neugschwandtner, C. Platzer, P. Comparetti, and
U. Bayer. dAnubis - dynamic device driver analysis
based on virtual machine introspection. In DIMVA,
pages 41–60. Springer, 2010.

[24] N. A. Quynh and K. Suzaki. Virt-ICE:
Next-generation debugger for malware analysis. Black
Hat Briefings USA, July 2010.

[25] R. Riley, X. Jiang, and D. Xu. Guest-transparent
prevention of kernel rootkits with VMM-based
memory shadowing. In RAID, pages 1–20. Springer,
2008.

[26] R. Riley, X. Jiang, and D. Xu. Multi-aspect profiling
of kernel rootkit behavior. In EuroSys, pages 47–60.
ACM, 2009.

[27] M. E. Russinovich and D. A. Solomon. Microsoft
Windows Internals: Microsoft Windows Server 2003,
Windows XP, and Windows 2000. Microsoft Press,
fourth edition, 2005.

[28] S. B. Schreiber. Undocumented Windows 2000 secrets:
A programmer’s cookbook. Addison-Wesley, 2001.

[29] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor:
A tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. In SOSP, pages
335–350. ACM, 2007.

[30] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure
in-vm monitoring using hardware virtualization. In
CCS, pages 477–487. ACM, 2009.

[31] D. X. Song et al. BitBlaze: A new approach to
computer security via binary analysis. In ICISS, pages
1–25. Springer, 2008.

[32] A. Srivastava and J. Giffin. Efficient protection of
kernel data structures via object partitioning. In
ACSAC, pages 429–438. ACM, 2012.

[33] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering
kernel rootkits with lightweight hook protection. In
CCS, pages 545–554. ACM, 2009.

[34] C. Willems, T. Holz, and F. C. Freiling. Toward
automated dynamic malware analysis using
CWSandbox. IEEE Security and Privacy, 5(2):32–39,
2007.

[35] C. Xuan, J. Copeland, and R. Beyah. Toward
revealing kernel malware behavior in virtual execution
environments. In RAID, pages 304–325. Springer,
2009.

[36] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin.
V2E: Combining hardware virtualization and software
emulation for transparent and extensible malware
analysis. In VEE, pages 227–237. ACM, 2012.

[37] H. Yin, Z. Liang, and D. Song. Hookfinder:
Identifying and understanding malware hooking
behaviors. In NDSS. The Internet Society, 2008.

[38] H. Yin, P. Poosankam, S. Hanna, and D. X. Song.
Hookscout: Proactive binary-centric hook detection.
In DIMVA, pages 1–20. Springer, 2010.

[39] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing system-wide information flow
for malware detection and analysis. In CCS, pages
116–127. ACM, 2007.

