
8

DSD-Crasher: A Hybrid Analysis Tool
for Bug Finding

CHRISTOPH CSALLNER

Georgia Institute of Technology

YANNIS SMARAGDAKIS

University of Oregon

and

TAO XIE

North Carolina State University

DSD-Crasher is a bug finding tool that follows a three-step approach to program analysis:
D. Capture the program’s intended execution behavior with dynamic invariant detection. The

derived invariants exclude many unwanted values from the program’s input domain.
S. Statically analyze the program within the restricted input domain to explore many paths.
D. Automatically generate test cases that focus on reproducing the predictions of the static

analysis. Thereby confirmed results are feasible.
This three-step approach yields benefits compared to past two-step combinations in the litera-

ture. In our evaluation with third-party applications, we demonstrate higher precision over tools
that lack a dynamic step and higher efficiency over tools that lack a static step.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, Reliability; D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; I.2.2 [Artificial Intelligence]: Automatic Programming—Program verification

General Terms: Reliability, Verification

Additional Key Words and Phrases: Automatic testing, bug finding, dynamic analysis, dynamic
invariant detection, extended static checking, false positives, static analysis, test case generation,
usability

ACM Reference Format:
Csallner, C., Smaragdakis, Y., and Xie, T. 2008. DSD-Crasher: A hybrid analysis tool for bug find-
ing. ACM Trans. Softw. Engin. Method, 16, 3, Article 8 (April 2008), 37 pages. DOI = 10.1145/
1348250.1348254 http://doi.acm.org/10.1145/1348250.1348254

This is a revised and extended version of Csallner and Smaragdakis [2006a], a paper presented
at the 2006 International Symposium on Software Testing and Analysis (ISSTA 2006) and also
contains material from Smaragdakis and Csallner [2007]. The authors gratefully acknowledge
support from the NSF under Grants CCR-0735267 and CCR-0238289.
Authors’ addresses: email: C. Csallner: csallner@gatech.edu; Y. Smaragdakis, yannis@cs.uoregon.
edu; T. Xie: xie@csc.ncsu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1049-331X/2008/04-ART8 $5.00 DOI 10.1145/1348250.1348254 http://doi.acm.org/
10.1145/1348250.1348254

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:2 • C. Csallner et al.

1. INTRODUCTION

Dynamic program analysis offers the semantics and ease of concrete program
execution. Static analysis lends itself to obtaining generalized properties from
the program text. The need to combine the two approaches has been repeatedly
stated in the software engineering community [Young 2003; Ernst 2003; Xie and
Notkin 2003; Beyer et al. 2004; Csallner and Smaragdakis 2005]. In this article,
we present DSD-Crasher, a bug-finding tool that uses dynamic analysis to infer
likely program invariants, explores the space defined by these invariants ex-
haustively through static analysis, and finally produces and executes test cases
to confirm that the behavior is observable under some real inputs and not just
due to overgeneralization in the static analysis phase. Thus, our combination
has three steps: dynamic inference, static analysis, and dynamic verification
(DSD).

More specifically, we employ the Daikon tool by Ernst et al. [2001] to infer
likely program invariants from an existing test suite. The results of Daikon are
exported as JML annotations [Leavens et al. 1998] that are used to guide our
Check ‘n’ Crash tool [Csallner and Smaragdakis 2005]. Daikon-inferred invari-
ants are not trivially amenable to automatic processing, requiring some filtering
and manipulation (e.g., for internal consistency according to the JML behavioral
subtyping rules). Check ‘n’ Crash employs the ESC/Java static analysis tool by
Flanagan et al. [2002], applies constraint-solving techniques on the ESC/Java-
generated error conditions, and produces and executes concrete test cases. The
exceptions produced by the execution of generated test cases are processed in
a way that takes into account which methods were annotated by Daikon, for
more accurate error reporting. For example, a NullPointerException is not con-
sidered a bug if thrown by an un-annotated method, instead of an annotated
method; otherwise, many false bug reports would be produced: ESC/Java pro-
duces an enormous number of warnings for potential NullPointerExceptions
when used without annotations [Rutar et al. 2004].

Several past research tools follow an approach similar to ours, but omit one
of the three stages of our analysis. Check ‘n’ Crash is a representative of a
static-dynamic (SD) approach. There are several representatives of a DD ap-
proach, with the closest one (because of the concrete techniques used) being the
Eclat tool by Pacheco and Ernst [2005]. Just like our DSD approach, Eclat pro-
duces program invariants from test suite executions using Daikon. Eclat also
generates test cases and disqualifies the cases that violate inferred precondi-
tions. Nevertheless, there is no static analysis phase to exhaustively attempt to
explore program paths and yield a directed search through the test space. In-
stead, Eclat’s test case generation is largely random. Finally, a DS approach is
implemented by combinations of invariant detection and static analysis. A good
representative, related to our work, is the Daikon-ESC/Java (DS) combination
of Nimmer and Ernst [2002a].

The benefit of DSD-Crasher over past approaches is either in enhancing
the ability to detect bugs, or in limiting false bug warnings.1 For instance,

1We use the terms “fault,” “error,” and “bug” interchangeably, similarly the terms “report” and
“warning.”

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:3

compared to Check ‘n’ Crash, DSD-Crasher produces more accurate error re-
ports with fewer false bug warnings. Check ‘n’ Crash is by nature local and intra-
procedural when no program annotations are employed. As the Daikon-inferred
invariants summarize actual program executions, they provide assumptions on
correct code usage. Thus, DSD-Crasher can disqualify illegal inputs by using
the precondition of the method under test to exclude cases that violate common
usage patterns. As a secondary benefit, DSD-Crasher can concentrate on cases
that satisfy called methods’ preconditions. This increases the chance of return-
ing from these method calls normally and reaching a subsequent problem in the
calling method. Without preconditions, Check ‘n’ Crash is more likely to cause
a crash in a method that is called by the tested method before the subsequent
problematic statement is reached. Compared to the Eclat tool, DSD-Crasher
can be more efficient in finding more bugs because of its deeper static analysis,
relative to Eclat’s mostly random testing.

To demonstrate the potential of DSD-Crasher, we applied it to medium-size
third-party applications (the Groovy scripting language and the JMS module
of the JBoss application server). We show that, under controlled conditions
(e.g., for specific kinds of errors that match well the candidate invariants),
DSD-Crasher is helpful in removing false bug warnings relative to just us-
ing the Check ‘n’ Crash tool. Overall, barring engineering hurdles, we found
DSD-Crasher to be an improvement over Check ‘n’ Crash, provided that the
application has a regression test suite that exercises exhaustively the function-
ality under test. At the same time, the approach can be more powerful than
Eclat, if we treat the latter as a bug finding tool. The static analysis can allow
more directed generation of test cases and, thus, can uncover more errors in
the same amount of time.

2. PHILOSOPHY AND MOTIVATION

We next discuss the main principles of our approach, which concentrates on
reducing the rate of false bug warnings, at the expense of reporting fewer bugs.
We then argue why a dynamic-static-dynamic combination yields benefits in a
general setting, beyond our specific tools.

2.1 Terminology: Soundness for Incorrectness

Analyses can be classified with respect to the set of properties they can establish
with confidence. In mathematical logic, reasoning systems are often classified
in terms of soundness and completeness. A sound system is one that proves
only true sentences, whereas a complete system proves all true sentences. In
other words, an analysis is sound iff provable(p) ⇒ true(p) and complete iff
true(p) ⇒ provable(p).

In our work, we like to view program analyses as a way to prove programs
incorrect that is, to find bugs, as opposed to certifying the absence of bugs. If
we view a static checker as a system for proving the existence of errors, then
it is “sound” iff reporting an error means it is a true error and “complete” iff
all errors in programs result in error reports. In contrast, if we view the static
checker as a system for proving correctness, then it is “sound” iff passing the

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:4 • C. Csallner et al.

program means there are no errors (i.e., iff all incorrect programs produce an
error report—what we called before “complete”) and “complete” iff all correct
programs result in no error (i.e., reporting an error means that one exists—what
we called before “sound”).

The interesting outcome of this duality is that we can abolish the notion of
“completeness” from our vocabulary. We believe that this is a useful thing to do
for program analysis. Even experts are often hard pressed to name examples
of “complete” analyses, and the term rarely appears in the program analysis
literature (in contrast to mathematical logic). Instead, we can equivalently refer
to analyses that are “sound for correctness” and analyses that are “sound for
incorrectness.” An analysis does not have to be either, but it certainly cannot
be both for interesting properties.

Other researchers have settled on different conventions for classifying anal-
yses, but we think our terminology is preferable. For instance, Jackson and Ri-
nard call a static analysis “sound” when it is sound for correctness, yet call a dy-
namic analysis “sound” when it is sound for incorrectness [Jackson and Rinard
2000]. This is unsatisfactory—for example, it assumes that static analyses al-
ways attempt to prove correctness. Yet, there are static analyses whose purpose
is to detect defects (e.g., FindBugs by Hovemeyer and Pugh [2004]). Another
pair of terms used often are “over-” and “under-approximate”. These also require
qualification (e.g., “over-approximate for incorrectness” means the analysis errs
on the safe side, that is, is sound for correctness) and are often confusing.

2.2 Why Prove Programs Incorrect?

Ensuring that a program is correct is the Holy Grail of program construction.
Therefore analyses that are sound for correctness (e.g., static type systems)
have been popular, even if limited. Nevertheless, for all interesting properties,
soundness for correctness implies that the analysis has to be pessimistic and
reject valid programs. For some kinds of analyses this cost is acceptable. For
others, it is not—for instance, no mainstream programming language includes
sound static checking to ensure the lack of division-by-zero errors, exactly be-
cause of the expected high rejection rate of correct programs.

The conservativeness of static analysis has an impact on how it can be used
in a software development cycle. For the author of a piece of code, a sound-for-
correctness analysis may make sense: if the analysis is too conservative, then
the programmer probably knows how to distinguish between a false warning
and a true bug, and how to rewrite the code to expose its correctness to the
analysis. Beyond this stage of the development process, however, conservative-
ness stops being an asset and becomes a liability. A tester cannot distinguish
between a false warning and a true bug. Reporting a nonbug to the program-
mer is highly counterproductive if it happens with any regularity. Given the
ever-increasing separation of the roles of programmer and tester in industrial
practice, high confidence in detecting errors is paramount.

This need can also be seen in the experience of authors of program analyses
and other researchers. Several modern static analysis tools [Flanagan et al.
2002; Engler and Musuvathi 2004; Hovemeyer and Pugh 2004] attempt to find

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:5

program defects. In their assessment of the applicability of ESC/Java, Flanagan
et al. [2002] write:

“[T]he tool has not reached the desired level of cost effectiveness.
In particular, users complain about an annotation burden that is
perceived to be heavy, and about excessive warnings about non-bugs,
particularly on unannotated or partially-annotated programs.”

This conclusion is also supported by the findings of other researchers, as we
discuss in Section 8. Notably, Rutar et al. [2004] examine ESC/Java2, among
other analysis tools, and conclude that it can produce many spurious warn-
ings when used without context information (method annotations). One spe-
cific problem, which we revisit in later sections, is that of ESC/Java’s numerous
warnings for NullPointerExceptions. For five testees with a total of some 170
thousand noncommented source statements, ESC/Java warns of a possible null
dereference over nine thousand times. Rutar et al. thus conclude that “there
are too many warnings to be easily useful by themselves.”

To summarize, it is most promising to use analyses that are sound for correct-
ness at an early stage of development (e.g., static type systems). Nevertheless,
for analyses performed by third parties, it is more important to produce error
reports in which the user can have high confidence or even certainty. This is
the goal of our work. We attempt to increase the soundness of existing analyses
by combining them in a way that reduces false error reports.

2.3 Research Question

The ultimate goal we would like to measure DSD-Crasher against is a fully
automated tool for modern object-oriented languages that finds bugs but pro-
duces no false bug warnings. A fully automated bug finding tool should require
zero interaction with the software developer using the tool. In particular, using
the bug finding tool should not require any manual efforts to write additional
specifications or test cases. The tool should also not require manual inspection
of the produced bug warnings.

The goal of eliminating false bug warnings is complicated because the notion
of a bug depends on interpretation. Furthermore, whether a program behavior
constitutes a bug depends not only on the program state but also on the validity
of inputs. Initially, no program behavior constitutes a bug. Only specifications
(implicit or explicit) allow us to distinguish between an expected behavior and
a bug. In practice, many implicit specifications exist, for example, in the form of
pre- and postconditions. A common precondition of object-oriented programs is
that null is never a legal input value, unless explicitly stated in a code comment.
A common postcondition is that a public method should not terminate by throw-
ing a class cast exception. Beyond such general properties, most specifications
are very specific, capturing the intended semantics of a given method.

Below we use pre and post when referring to satisfying pre- and postcondi-
tion, respectively.

(1) pre AND post is the specified behavior: the method is working in the in-
tended input domain as expected by the postcondition.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:6 • C. Csallner et al.

(2) pre AND NOT post is a bug: the method deviates from the expected behavior
in the intended input domain.

(3) NOT pre is a false bug report, since it reports behavior outside the intended
input domain of the method.

In our work, we concentrate on bugs involving only primitive language
operations (such as array accesses, dynamic type errors, and null dereferences).
The same approach can likely generalize to violations of arbitrary user speci-
fications. Nevertheless, our goal of full automation influences our focus: since
most programs in practice do not have explicit formal specifications, we con-
centrate on implicit specifications in the target language.

In terms of preconditions, we analyze a program on a per-public-method ba-
sis and try to infer which inputs are valid with subjective local reasoning. This
means that we consider an input to be valid if manual inspection reveals no
program comments prohibiting it, if invariants of the immediately surround-
ing program context (e.g., class invariants) do not disqualify the input, and if
program values produced during actual execution seem (to the human inspec-
tor) consistent with the input. We do not, however, try to confirm the validity
of a method’s input by producing whole-program inputs that give rise to it. In
other words, we consider the program as a library: We assume that its public
methods can be called for any values not specifically disallowed, as opposed to
only values that can arise during whole-program executions with valid inputs
to the program’s main method. This view of “program as library” is common in
modern development environments, especially in the Java or .Net world, where
code can be dynamically loaded and executed in a different environment. Coding
guidelines for object-oriented languages often emphasize that public methods
are an interface to the world and should minimize the assumptions on their
usage.2 Furthermore, this view is convenient for experimentation, as it lets
us use modules out of large software packages, without worrying about the
scalability of analyzing (either automatically or by hand) the entire executable
program. Finally, the per-method checking is defensive enough to withstand
most changes in the assumptions of how a class is used, or what are valid
whole-program inputs. Over time such assumptions are likely to change, while
the actual method implementation stays the same. Examples include reusing
a module as part of a new program or considering more liberal external envi-
ronments: buffer overflows were promoted in the last two decades from obscure
corner case to mission-critical bugs.

In an earlier paper [Smaragdakis and Csallner 2007] we introduced the
terms language-level soundness and user-level soundness, which we also use
in this article. A tool offers language-level sound bug warnings, if the error
can be reproduced for some input to the method, regardless of the method’s
precondition—that is, the program model used by the analysis accurately

2For instance, McConnell [2004, chapter 8] writes “The class’s public methods assume the data is
unsafe, and they are responsible for checking the data and sanitizing it. Once the data has been
accepted by the class’s public methods, the class’s private methods can assume the data is safe.”
Similarly, Meyer [1997, chapter 23] explicitly bases his guidelines of class design on the design of
libraries.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:7

Fig. 1. The goal of the first dynamic step is to infer the testee’s informal specification. The static
step may generalize this specification beyond possible executions, while the final dynamic step
will restrict the analysis to realizable problems. Each box represents a program domain. An arrow
represents a mapping between program domains performed by the respective analysis. Shading
should merely increase readability.

captures the language’s semantics. User-level soundness is a stronger notion
and means that the warning reflects a bug that arises for valid method inputs,
as determined by the local reasoning outlined above.

2.4 DSD Combinations

We use a dynamic-static-dynamic combination of analyses in order to increase
the confidence in reported faults—that is, to increase soundness for incorrect-
ness. The main idea is that of using a powerful, exhaustive, but unsound static
analysis, and then improving soundness externally using dynamic analyses.

Figure 1 illustrates the main idea of our DSD combination. The first dynamic
analysis step generalizes existing executions. This is a heuristic step, as it
involves inferring abstract properties from specific instances. Nevertheless, a
heuristic approach is our only hope for improving soundness for incorrectness.
We want to make it more likely that a reported and reproducible error will
not be dismissed by the programmer as “outside the intended domain of the
method”, If the “intended domain” of the method (i.e., the range of inputs that
constitute possible uses) were known from a formal specification, then there
would be no need for this step.

The static analysis step performs an exhaustive search of the space of de-
sired inputs (approximately described by inferred properties) for modules or
for the whole program. A static analysis may inadvertently consider infeasi-
ble execution paths, however. This is a virtually unavoidable characteristic of
static analyses—they cannot be sound both for correctness and for incorrect-
ness; therefore they will either miss errors or overreport them. Loops, proce-
dure calls, pointer aliasing, and arithmetic are common areas where analyses
are only approximate. Our approach is appropriate for analyses that tend to
favor exhaustiveness at the expense of soundness for incorrectness.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:8 • C. Csallner et al.

The last dynamic analysis step is responsible for reifying the cases reported
by the static analysis and confirming that they are feasible. If this succeeds,
the case is reported to the user as a bug. This ensures that the overall analysis
will only report reproducible errors.

Based on our earlier terminology, the last dynamic step of our approach ad-
dresses language-level soundness, by ensuring that executions are reproducible
for some input. The first dynamic step heuristically tries to achieve user-level
soundness, by making sure that the input “resembles” other inputs that are
known to be valid.

3. TOOLS BACKGROUND

Our three-step DSD-Crasher approach is based on two existing tools: Daikon
(Section 3.1) and Check ‘n’ Crash (Section 3.3), which combines ESC/Java (Sec-
tion 3.2) and the JCrasher test case generator [Csallner and Smaragdakis
2004]. This section presents background information on these tools.

3.1 Daikon: Guessing Invariants

Daikon [Ernst et al. 2001] tracks a testee’s variables during execution and
generalizes their observed behavior to invariants—preconditions, postcondi-
tions, and class invariants. Daikon instruments a testee, executes it (for ex-
ample, on an existing test suite or during production use), and analyzes the
produced execution traces. At each method entry and exit, Daikon instantiates
some three dozen invariant templates, including unary, binary, and ternary
relations over scalars, and relations over arrays (relations include linear equa-
tions, orderings, implication, and disjunction) [Ernst et al. 2001; Nimmer and
Ernst 2002b]. For each invariant template, Daikon tries several combinations
of method parameters, method results, and object state. For example, it might
propose that some method m never returns null. It later ignores those invariants
that are refuted by an execution trace—for example, it might process a situa-
tion where m returned null and it will therefore ignore the above invariant. So
Daikon summarizes the behavior observed in the execution traces as invariants
and generalizes it by proposing that the invariants might hold in all other exe-
cutions as well. Daikon can annotate the testee’s source code with the inferred
invariants as JML preconditions, postconditions, and class invariants [Leavens
et al. 1998].

3.2 ESC/Java: Guessing Invariant Violations

The Extended Static Checker for Java (ESC/Java) by Flanagan et al. [2002] is
a static program checker that detects potential invariant violations. ESC/Java
recognizes invariants stated in the Java Modeling Language (JML) [Leavens
et al. 1998]. (We use the ESC/Java2 system by Cok and Kiniry [2004]—an
evolved version of the original ESC/Java, which supports Java 1.4 and JML
specifications.) We use ESC/Java to derive abstract conditions under which
the execution of a method under test may terminate abnormally. Abnormal
termination means that the method would throw a runtime exception because
it violated the precondition of a primitive Java operation. In many cases this

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:9

Fig. 2. Check ‘n’ Crash uses ESC/Java to statically check the testee for potential bugs. In this
example, ESC/Java warns about a potential runtime exception in the analyzed method when pass-
ing a negative parameter (the ESC/Java warning is not shown). Check ‘n’ Crash then compiles
ESC/Java’s bug warnings to concrete test cases to eliminate those warnings that cannot be repro-
duced in actual executions. In this example, Check ‘n’ Crash produces a test case that passes −1
into the method and confirms that it throws the runtime exception ESC/Java has warned about.

will lead to a program crash as few Java programs catch and recover from
unexpected runtime exceptions.

ESC/Java translates the Java source code under test to a set of predicate logic
formulae [Flanagan et al. 2002]. ESC/Java checks each method m in isolation,
expressing as logic formulae the properties of the class to which the method
belongs, as well as Java semantics. Each method call or invocation of a prim-
itive Java operation in m’s body is translated to a check of the called entity’s
precondition followed by assuming the entity’s postcondition. In addition to the
explicitly stated invariants, ESC/Java knows the implicit pre- and postcondi-
tions of primitive Java operations—for example, array access, pointer derefer-
ence, class cast, or division. Violating these implicit preconditions means access-
ing an array out-of-bounds, dereferencing null pointers, mis-casting an object,
dividing by zero, etc. ESC/Java uses the Simplify theorem prover of Detlefs
et al. [2003] to derive error conditions for a method.

ESC/Java is the main static analysis tool in our DSD combination. Our earlier
discussion applies to ESC/Java: the tool is unsound (both for correctness and
for incorrectness) yet it is powerful and exhaustive.

3.3 Check ‘n’ Crash: Confirming Guessed Violations

Check ‘n’ Crash [Csallner and Smaragdakis 2005] is a tool for automatic bug
finding. It combines ESC/Java and the JCrasher random testing tool [Csallner
and Smaragdakis 2004]. Check ‘n’ Crash takes error conditions that ESC/Java
infers from the testee, derives variable assignments that satisfy the error condi-
tion (using a constraint solver), and compiles them into concrete test cases that
are executed with JCrasher to determine whether the error is language-level
sound. Figure 2 shows the elements of Check ‘n’ Crash pictorially. Compared
to ESC/Java alone, Check ‘n’ Crash’s combination of ESC/Java with JCrasher
eliminates spurious warnings and improves the ease of comprehension of error
reports through concrete Java counterexamples.

Check ‘n’ Crash takes as inputs the names of the Java files under test. It
invokes ESC/Java, which derives error conditions. Check ‘n’ Crash takes each
error condition as a constraint system over a method m’s parameters, the object

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:10 • C. Csallner et al.

state on which m is executed, and other state of the environment. Check ‘n’ Crash
extends ESC/Java by parsing and solving this constraint system. A solution is
a set of variable assignments that satisfy the constraint system. [Csallner and
Smaragdakis 2005] discusses in detail how we process constraints over integers,
arrays, and reference types in general.

Once the variable assignments that cause the error are computed,
Check ‘n’ Crash uses JCrasher to compile some of these assignments to
JUnit [Beck and Gamma 1998] test cases. The test cases are then executed
under JUnit. If the execution does not cause an exception, then the variable as-
signment was a false warning: no error actually exists. Similarly, some runtime
exceptions do not indicate errors and JCrasher filters them out. For instance,
throwing an IllegalArgumentException exception is the recommended Java
practice for reporting illegal inputs. If the execution does result in one of the
tracked exceptions, an error report is generated by Check ‘n’ Crash.

3.4 Check ‘n’ Crash Example

To see the difference between an error condition generated by ESC/Java and
the concrete test cases output by Check ‘n’ Crash, consider the following method
swapArrays, taken from a student homework solution.

public static void swapArrays(double[] fstArray, double[] sndArray)
{ //..
for(int m=0; m<fstArray.length; m++) { //..
fstArray[m]=sndArray[m]; //..

}
}

The method’s informal specification states that the method swaps the ele-
ments from fstArray to sndArray and vice versa. If the arrays differ in length,
the method should return without modifying any parameter. ESC/Java issues
the following warning, which indicates that swapArrays might crash with an
array index out-of-bounds exception.

Array index possibly too large (IndexTooBig)
fstArray[m]=sndArray[m];

^

Optionally, ESC/Java emits the error condition in which this crash might occur.
This condition is a conjunction of constraints. For swapArrays, which consists
of five instructions, ESC/Java emits some 100 constraints. The most relevant
ones are 0 < fstArray.length and sndArray.length == 0 (formatted for read-
ability).

Check ‘n’ Crash parses the error condition generated by ESC/Java and feeds
the constraints to its constraint solvers. In our example, Check ‘n’ Crash creates
two integer variables, fstArray.length and sndArray.length, and passes their
constraints to the POOC integer constraint solver by Schlenker and Ringwelski
[2002]. Then Check ‘n’ Crash requests a few solutions for this constraint system
from its constraint solvers and compiles each solution into a JUnit [Beck and
Gamma 1998] test case. For this example, the test case will create an empty

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:11

Fig. 3. DSD-Crasher adds a dynamic analysis step at the front of the pipeline, to infer the in-
tended program behavior from existing test cases. It feeds inferred invariants to Check ‘n’ Crash
by annotating the testee. This enables DSD-Crasher to suppress bug warnings that are not rele-
vant to the intended uses of the program. In this example, the inferred invariant excludes negative
input values. DSD-Crasher therefore does not produce a warning about −1 causing an exception
as Check ‘n’ Crash did in Figure 2.

and a random nonempty array. This will cause an exception when executed and
JCrasher will process the exception according to its heuristics and conclude it
is a language-level sound failure and not a false bug warning.

4. DSD-CRASHER: INTEGRATING DAIKON AND CHECK ‘N’ CRASH

We next describe the elements, scope, and ideas of DSD-Crasher.

4.1 Overview and Scope

DSD-Crasher works by first running a regression test suite over an application
and deriving invariants using a modified version of Daikon. These invariants
are then used to guide the reasoning process of Check ‘n’ Crash, by influencing
the possible errors reported by ESC/Java. The constraint solving and test case
generation applied to ESC/Java-reported error conditions remains unchanged.
Finally, a slightly adapted Check ‘n’ Crash back-end runs the generated test
cases, observes their execution, and reports violations. Figure 3 illustrates this
process with an example.

The scope of DSD-Crasher is the same as that of its component tools. In brief,
the tool aims to find errors in sequential code, with fixed-depth loop unrolling
used to explore infinite loop paths. The errors that can be detected are of a few
specific kinds [Csallner and Smaragdakis 2005]:

—Assigning an instance of a supertype to an array element.
—Casting to an incompatible type.
—Accessing an array outside its domain.
—Allocating an array of negative size.
—Dereferencing null.
—Division by zero.

These cases are statically detected using ESC/Java [Leino et al. 2000, chapter
4], but they also correspond to Java runtime exceptions (program crashes) that
will be caught during JCrasher-initiated testing.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:12 • C. Csallner et al.

4.2 Benefits

The motivation of Section 2 applies to the specific features of our tools. DSD-
Crasher yields the benefits of a DSD combination compared to just using its
composite analysis. This can be seen with a comparison of DSD-Crasher with its
predecessor and component tool, Check ‘n’ Crash. Check ‘n’ Crash, when used
without program annotations, lacks interprocedural knowledge. This causes
the following problems:

(1) Check ‘n’ Crash may produce spurious error reports that do not corre-
spond to actual program usage. For instance, a method forPositiveInt
under test may throw an exception if passed a negative number as an
argument: the automatic testing part of Check ‘n’ Crash will ensure
that the exception is indeed possible and the ESC/Java warning is not
just a result of the inaccuracies of ESC/Java analysis and reasoning.
Yet, a negative number may never be passed as input to the method in
the course of execution of the program, under any user input and cir-
cumstances. That is, an implicit precondition that the programmer has
been careful to respect makes the Check ‘n’ Crash test case invalid.
Precondition annotations help Check ‘n’ Crash eliminate such spurious
warnings.

(2) Check ‘n’ Crash does not know the conditions under which a method call
within the tested method is likely to terminate normally. For example, a
method under test might call forPositiveInt before performing some prob-
lematic operation. Without additional information, Check ‘n’ Crash might
only generate test cases with negative input values to forPositiveInt.
Thus, no test case reaches the problematic operation in the tested method
that occurs after the call to forPositiveInt. Precondition annotations help
Check ‘n’ Crash target its test cases better to reach the location of interest.
This increases the chance of confirming ESC/Java warnings.

Integrating Daikon can address both of these problems. The greatest impact
is with respect to the first problem: DSD-Crasher can be more focused than
Check ‘n’ Crash and issue many fewer false bug warnings because of the Daikon-
inferred preconditions.

4.3 Design and Implementation of DSD-Crasher

4.3.1 Treatment of Inferred Invariants as Assumptions or Requirements.
Daikon-inferred invariants can play two different roles. They can be used as
assumptions on a method’s formal arguments inside its body, and on its return
value at the method’s call site. At the same time, they can also be used as
requirements on the method’s actual arguments at its call site. Consider a call
site of a method int foo(int i) with an inferred precondition of i != 0 and an
inferred postcondition of \result < 0 (following JML notation, \result denotes
the method’s return value). One should remember that the Daikon-inferred
invariants are only reflecting the behavior that Daikon observed during the
test suite execution. Thus, there is no guarantee that the proposed conditions
are indeed invariants. This means that there is a chance that Check ‘n’ Crash

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:13

will suppress useful warnings (because they correspond to behavior that Daikon
deems unusual). In our example, we will miss errors inside the body of foo for a
value of i equal to zero, as well as errors inside a caller of foo for a return value
greater or equal to zero. We are willing to trade some potential bugs for a lower
false positive rate. We believe this to be a good design decision, since false bug
warnings are a serious problem in practice. In our later evaluation, we discuss
how this trade-off has not affected DSD-Crasher’s bug finding ability (relative
to Check ‘n’ Crash) for any of our case studies.

In contrast, it is more reasonable to ignore Daikon-inferred invariants when
used as requirements. In our earlier example, if we require that each caller of
foo pass it a non-zero argument, we will produce several false bug warnings
in case the invariant i != 0 is not accurate. The main goal of DSD-Crasher,
however, is to reduce false bug warnings and increase soundness for incor-
rectness. Thus, in DSD-Crasher, we chose to ignore Daikon-inferred invariants
as requirements and only use them as assumptions. That is, we deliberately
avoid searching for cases in which the method under test violates some Daikon-
inferred precondition of another method it calls. Xie and Notkin [2003] partially
follow a similar approach with Daikon-inferred invariants that are used to pro-
duce test cases.

4.3.2 Inferred Invariants Excluded from Being Used. DSD-Crasher inte-
grates Daikon and Check ‘n’ Crash through the JML language. Daikon can
output JML conditions, which Check ‘n’ Crash can use for its ESC/Java-based
analysis. We exclude some classes of invariants Daikon would search for by
default as we deemed them unlikely to be true invariants. Almost all of the in-
variants we exclude have to do with the contents of container structures viewed
as sets (e.g., “the contents of array x are a subset of those of y”), conditions that
apply to all elements of a container structure (e.g., “x is sorted,” or “x contains no
duplicates”), and ordering constraints among complex structures (e.g., “array x
is the reverse of y”). Such complex invariants are very unlikely to be correctly
inferred from the hand-written regression test suites of large applications, as
in the setting we examine. We inherited (and slightly augmented) our list of
excluded invariants from the study of the Jov tool of Xie and Notkin [2003]. The
Eclat tool by Pacheco and Ernst [2005] excludes a similar list of invariants.

4.3.3 Adaptation and Improvement of Tools Being Integrated. To make
the Daikon output suitable for use in ESC/Java, we also had to provide JML
specifications for Daikon’s Quant class. Methods of this class appear in many
Daikon-inferred invariants. ESC/Java needs the specifications of these methods
in order to reason about them when used in such invariants.

To perform the required integration, we also needed to make a more gen-
eral change to Daikon. Daikon does not automatically ensure that inferred
invariants support behavioral subtyping [Leavens et al. 1998]. Behavioral sub-
typing is a standard object-oriented concept that should hold in well-designed
programs (e.g., see “subcontracting” in Design by Contract [Meyer 1997]). It
dictates that a subclass object should be usable wherever a superclass object is.
This means that the implementation of a subclass method (overriding method)

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:14 • C. Csallner et al.

should accept at least as many inputs as the implementation of a superclass
method (overridden method), and for those inputs it should return values that
the superclass could also return. In other words, an overriding method should
have weaker preconditions than the preconditions of the method that it over-
rides. Additionally, for values satisfying the (possibly narrower) preconditions
of the overridden method, its postconditions should also be satisfied by the
overriding method. Daikon-inferred invariants can easily violate this rule: ex-
ecutions of the overriding method do not affect the invariants of the overridden
method and vice versa. Therefore, we extended Daikon so that all behaviors ob-
served for a subclass correctly influence the invariants of the superclass and vice
versa. This change was crucial in getting invariants of sufficient consistency for
ESC/Java to process automatically—otherwise we experienced contradictions
in our experiments that prevented further automatic reasoning. The change is
not directly related to the integration of Daikon and Check ‘n’ Crash, however.
It is an independent enhancement of Daikon, valid for any use of the inferred
invariants. We are in the process of implementing this enhancement directly
on Daikon. We describe in a separate paper [Csallner and Smaragdakis 2006b]
the exact algorithm for computing the invariants so they are consistent with
the observed behaviors and as general as possible, while satisfying behavioral
subtyping.

DSD-Crasher also modifies the Check ‘n’ Crash back-end: the heuristics
used during execution of the generated test cases to decide whether a thrown
exception is a likely indication of a bug and should be reported to the user
or not. For methods with no inferred annotations (which were not exercised
enough by the regression test suite) the standard Check ‘n’ Crash heuristics
apply, whereas annotated methods are handled more strictly. Most notably, a
NullPointerException is only considered a bug if the throwing method is an-
notated with preconditions. This is standard Check ‘n’ Crash behavior [Csall-
ner and Smaragdakis 2005] and doing otherwise would result in many false
error reports: as mentioned earlier, ESC/Java produces an enormous number
of warnings for potential NullPointerExceptions when used without annota-
tions [Rutar et al. 2004]. Nevertheless, for a Daikon-annotated method, we
have more information on its desired preconditions. Thus, it makes sense to
report even “common” exceptions, such as NullPointerException, if these oc-
cur within the valid precondition space. Therefore, the Check ‘n’ Crash runtime
needs to know whether or not a method was annotated with a Daikon-inferred
precondition. To accomplish this we extended Daikon’s Annotate feature to pro-
duce a list of such methods. When an exception occurs at runtime, we check if
the method on top of the call stack is in this list. One problem is that the
call stack information at runtime omits the formal parameter types of the
method that threw the exception. Thus, overloaded methods (methods with
the same name but different argument types) can be a source for confusion. To
disambiguate overloaded methods we use BCEL [Apache Software Foundation
2003] to process the bytecode of classes under test. Using BCEL we retrieve
the start and end line number of each method and use the line number at
which the exception occurred at runtime to determine the exact method that
threw it.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:15

5. EVALUATING HYBRID TOOLS

An interesting question is how to evaluate hybrid dynamic-static tools. We next
discuss several simple metrics and how they are often inappropriate for such
evaluation. This section serves two purposes. First, we argue that the best way
to evaluate DSD-Crasher is by measuring the end-to-end efficiency of the tool
in automatically discovering bugs (which are confirmed by human inspection),
as we do in subsequent sections. Second, we differentiate DSD-Crasher from
the Daikon-ESC/Java combination of Nimmer and Ernst [2002a].

The main issues in evaluating hybrid tools have to do with the way the
dynamic and static aspects get combined. Dynamic analysis excels in narrowing
the domain under examination. In contrast, static analysis is best at exploring
every corner of the domain without testing, effectively generalizing to all useful
cases within the domain boundaries. Thus it is hard to evaluate the integration
in pieces: when dynamic analysis is used to steer the static analysis (such as
when Daikon produces annotations for Check ‘n’ Crash), then the accuracy or
efficiency of the static analysis may be biased because it operates on too narrow
a domain. Similarly, when the static analysis is used to create dynamic inputs
(as in Check ‘n’ Crash) the inputs may be too geared towards some cases because
the static analysis has eliminated others (e.g., large parts of the code may not
be exercised at all).

We discuss three examples of metrics that we have found to be inappropriate
for evaluating DSD-Crasher.

Formal Specifications and Nonstandard Test Suites. DSD-Crasher aims at
finding bugs in current, medium-sized, third-party software. These testees con-
sist of thousands of lines of code and come with the original developers’ test
suites. They have been developed and are used by people other than us. The
open-source programs we are aware of do not contain formal specifications. So
for classifying bugs we are mainly relying on our subjective judgment, source
code comments, and some external prose. This approach is explicitly dissimi-
lar from previous evaluations like the one performed on Eclat by Pacheco and
Ernst [2005], which mainly uses textbook examples, student homeworks, or li-
braries for which formal specifications were written or already existed. Some of
these testees seem to have large nonstandard test suites, for example, geared
towards finding programming errors in student homework submissions. In con-
trast, typical third-party software is not formally specified and often comes with
small test suites.

Coverage. Coverage metrics (e.g., statement or branch coverage in the code)
are often used to evaluate the efficiency of analysis and testing tools. Neverthe-
less, coverage metrics may not be appropriate when using test suites automat-
ically generated after static analysis of the code. Although some static analysis
tools, such as Blast by Beyer et al. [2004] and SLAM by Ball [2003], have been
adapted to generate tests to achieve coverage, static analysis tools generally
exhaustively explore statements and branches but only report those that may
cause errors. ESC/Java falls in this class of tools. The only reported condi-
tions are those that may cause an error, although all possibilities are statically

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:16 • C. Csallner et al.

examined. Several statements and paths may not be exercised at all under the
conditions in an ESC/Java report, as long as they do not cause an exception.

Consider test cases generated by Check ‘n’ Crash compared to test cases
generated by its predecessor tool, JCrasher. JCrasher will create many more
test cases with random input values. As a result, a JCrasher-generated test
suite will usually achieve higher coverage than a Check ‘n’ Crash-generated one.
Nevertheless, this is a misleading metric. If Check ‘n’ Crash did not generate
a test case that JCrasher would have, it is potentially because the ESC/Java
analysis did not find a possible program crash with these input values. Thus,
it is the role of static analysis to intelligently detect which circumstances can
reveal an error, and only produce a test case for those circumstances. The result
is that parts of the code will not be exercised by the test suite, but these parts
are unlikely to contain any of the errors that the static analysis is designed to
detect.

Precision and Recall. Nimmer and Ernst have performed some of the re-
search closest to ours in combining Daikon and ESC/Java. Reference [Nimmer
and Ernst 2002b] evaluates how well Daikon (and Houdini) can automatically
infer program invariants to annotate a testee before checking it with ESC/Java.
Reference [Nimmer and Ernst 2002a] also evaluates a Daikon-ESC/Java inte-
gration, concentrating more on automatically computed metrics.

The main metrics used by Nimmer and Ernst are precision and recall. These
are computed as follows. First, Daikon is used to produce a set of proposed
invariants for a program. Then, the set of invariants is hand-edited until (a)
the invariants are sufficient for proving that the program will not throw unex-
pected exceptions and (b) the invariants themselves are provable (“verifiable”)
by ESC/Java. Then “precision” is defined as the proportion of verifiable in-
variants among all invariants produced by Daikon. “Recall” is the proportion
of verifiable invariants produced by Daikon among all invariants in the final
verifiable set. Nimmer and Ernst measured scores higher than 90% on both
precision and recall when Daikon was applied to their set of testees.

We believe that these metrics are perfectly appropriate for human-controlled
environments (as in the Nimmer and Ernst study) but inappropriate for fully
automatic evaluation of third-party applications. Both metrics mean little with-
out the implicit assumption that the final “verifiable” set of annotations is near
the ideal set of invariants for the program. To see this, consider what really hap-
pens when ESC/Java “verifies” annotations. As discussed earlier, the Daikon-
inferred invariants are used by ESC/Java as both requirements (statements that
need proof) and assumptions (statements assumed to hold). Thus, the assump-
tions limit the space of possibilities and may result in a certain false property
being proven. ESC/Java will not look outside the preconditions. Essentially, a
set of annotations “verified” by ESC/Java means that it is internally consistent:
the postconditions only need to hold for inputs that satisfy the preconditions.

This means that it is trivial to get perfect “precision” and “recall” by just
doing a very bad job in invariant inference! Intuitively, if we narrow the do-
main to only the observations we know hold, they will always be verifiable
under the conditions that enable them. For instance, assume we have a method

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:17

meth(int x) and a test suite that calls it with values 1, 2, 3, and 10. Imagine
that Daikon were to do a bad job at invariant inference. Then a possible output
would be the precondition x=1 or x=2 or x=3 or x=10 (satisfied by all inputs)
and some similar postcondition based on all observed results of the executions.
These conditions are immediately verifiable by ESC/Java, as it will restrict its
reasoning to executions that Daikon has already observed. The result is 100%
precision and 100% recall.

In short, the metrics of precision and recall are meaningful only under the
assumption that there is a known ideal set of annotations that we are trying to
reach, and the ideal annotations are the only ones that we accept as verifiable.
Thus, precision and recall will not work as automatable metrics that can be
quantified for reasonably-sized programs.

6. EVALUATION

We want to explore two questions.

(1) Can DSD-Crasher eliminate some false bug warnings Check ‘n’ Crash
produces? Reducing false bug warnings with respect to a static-dynamic
tool like Check ‘n’ Crash was the main goal of DSD-Crasher.

(2) Does DSD-Crasher find deeper bugs than similar approaches that use a
lightweight bug search?

This evaluation will not establish that DSD-Crasher is generally better than its
competition (in all dimensions). DSD-Crasher trades improvements along the
above dimensions with disadvantages on other dimensions, such as the number
of bugs found or execution time. Instead, we would like to find evidence that
a dynamic-static-dynamic approach like DSD-Crasher can provide improved
results in some scenarios. Our goal is to provide motivation to use DSD-Crasher
as part of a multitool approach to automated bug-finding. To investigate the
first question, we are looking for cases in which Daikon-inferred invariants
help DSD-Crasher rule out cases that likely violate implicit user assumptions.
To investigate the second question, we are looking for bugs DSD-Crasher finds
that elude a lightweight static analysis such as a mostly random bug search.

6.1 JBoss JMS and Groovy

JBoss JMS is the JMS module of the JBoss open-source J2EE application server
(http://www.jboss.org/). It is an implementation of Sun’s Java Message Service
API [Hapner et al. 2002]. We used version 4.0 RC1, which consists of some five
thousand non-comment source statements (NCSS).

Groovy is an open-source scripting language that compiles to Java bytecode.
We used the Groovy 1.0 beta 1 version, whose application classes contain some
eleven thousand NCSS. We excluded low-level AST Groovy classes from the
experiments. The resulting set of testees consisted of 34 classes with a total of
some 2 thousand NCSS. We used 603 of the unit test cases that came with the
tested Groovy version, from which Daikon produced a 1.5 MB file of compressed
invariants. (The source code of the testee and its unit tests are available from
http://groovy.codehaus.org/)

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:18 • C. Csallner et al.

We believe that Groovy is a very representative test application for our kind
of analysis: it is a medium-size, third-party application. Importantly, its test
suite was developed completely independently of our evaluation by the appli-
cation developers, for regression testing and not for the purpose of yielding
good Daikon invariants. JBoss JMS is a good example of a third-party appli-
cation, especially appropriate for comparisons with Check ‘n’ Crash as it was
a part of Check ‘n’ Crash’s past evaluation [Csallner and Smaragdakis 2005].
Nevertheless, the existing test suite supplied by the original authors was insuf-
ficient and we had to supplement it ourselves to increase coverage for selected
examples.

All experiments were conducted on a 1.2 GHz Pentium III-M with 512 MB
of RAM. We excluded those source files from the experiments which any of the
tested tools could not handle due to engineering shortcomings.

6.2 More Precise than Static-Dynamic Check ‘n’ Crash

The first benefit of DSD-Crasher is that it produces fewer false bug warnings
than the static-dynamic Check ‘n’ Crash tool.

6.2.1 JBoss JMS. Check ‘n’ Crash reported five cases, which include the
errors reported earlier [Csallner and Smaragdakis 2005]. Two reports are
false bug warnings. We use one of them as an example on how DSD-Crasher
suppresses false bug warnings. Method org.jboss.jms.util.JMSMap.setBytes
uses the potentially negative parameter length as the length in creating
a new array. Calling setBytes with a negative length parameter causes a
NegativeArraySizeException.

public void setBytes(String name, byte[] value, int offset, int
length) throws JMSException {
byte[] bytes = new byte[length];
//..

}

We used unit tests that (correctly) call setBytes three times with consistent
parameter values. DSD-Crasher’s initial dynamic step infers a precondition
that includes requires length == daikon.Quant.size(value). This precondi-
tion implies that the length parameter cannot be negative. So DSD-Crasher’s
static step does not warn about a potential NegativeArraySizeException and
DSD-Crasher does not produce this false bug warning.

6.2.2 Groovy. As discussed and motivated earlier, Check ‘n’ Crash by de-
fault suppresses most NullPointerExceptions because of the high number of
false bug warnings for actual code. Most Java methods fail if a null reference
is passed instead of a real object, yet this rarely indicates a bug, but rather an
implicit precondition. With Daikon, the precondition is inferred, resulting in
the elimination of the false bug warnings.

Table I shows these results, as well as the runtime of the tools (confirming
that DSD-Crasher has a realistic runtime). All tools are based on the current
Check ‘n’ Crash implementation, which in addition to the published description

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:19

Table I. Groovy Results
The dynamic-static-dynamic DSD-Crasher vs. the

static-dynamic Check ‘n’ Crash.

Runtime Exception NullPointer
[min:s] Reports Reports

Check ‘n’ Crash classic 10:43 4 0
Check ‘n’ Crash relaxed 10:43 19 15
DSD-Crasher 30:32 11 9

[Csallner and Smaragdakis 2005] only reports exceptions thrown by a method
directly called by the generated test case. This restricts Check ‘n’ Crash’s reports
to the cases investigated by ESC/Java and removes accidental crashes inside
other methods called before reaching the location of the ESC/Java warning.
Check ‘n’ Crash classic is the current Check ‘n’ Crash implementation. It sup-
presses all NullPointerExceptions, IllegalArgumentExceptions, etc. thrown
by the method under test. DSD-Crasher is our integrated tool and reports any
exception for a method that has a Daikon-inferred precondition. Check ‘n’ Crash
relaxed is Check ‘n’ Crash classic but uses the same exception reporting as DSD-
Crasher.

Check ‘n’ Crash relaxed reports the 11 DSD-Crasher exceptions plus 8 others.
(These are 15 NullPointerExceptions plus the four other exceptions reported
by Check ‘n’ Crash classic.) In 7 of the 8 additional exceptions, DSD-Crasher’s
ESC/Java step could statically rule out the warning with the help of the Daikon-
derived invariants. In the remaining case, ESC/Java emitted the same warning,
but the more complicated constraints threw off our prototype constraint solver.
(-1 - fromIndex) == size has an expression on the left side, which is not yet
supported by our solver. The elimination of the 7 false error reports confirms
the benefits of the Daikon integration. Without it, Check ‘n’ Crash has no choice
but to either ignore potential NullPointerException-causing bugs or to report
them, resulting in a high false bug warning rate.

6.3 More Efficient than Dynamic-Dynamic Eclat

We compare DSD-Crasher with Eclat by Pacheco and Ernst [2005], since it is
the most closely related tool available to us. Specifically, Eclat also uses Daikon
to observe existing correct executions and employs random test case generation
to confirm testee behavior. This is not a perfect comparison, however: Eclat has
a broader scope than DSD-Crasher (Section 4.1). So our comparison is limited
to only one aspect of Eclat.

6.3.1 ClassCastExceptions in JBoss JMS. For the JBoss JMS exper-
iment, the main difference we observed between DSD-Crasher and the
dynamic-dynamic Eclat was in the reporting of potential dynamic type er-
rors (ClassCastExceptions). The bugs reported by Csallner and Smarag-
dakis [2005] were ClassCastExceptions. (Most of the other reports concern
NullPointerExceptions. Eclat produces 47 of them, with the vast majority be-
ing false bug warnings. DSD-Crasher produces 29 reports, largely overlapping
the Eclat ones.)

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:20 • C. Csallner et al.

Table II. JBoss JMS Results
ClassCastException (CCE) reports by the dynamic-static-

dynamic DSD-Crasher and the dynamic-dynamic Eclat.
This table omits all other exception reports as well as all of

Eclat’s non-exception reports.

CCE Runtime
Reports [min:s]

Eclat-default 0 1:20
Eclat-hybrid, 4 rounds 0 2:37
Eclat-hybrid, 5 rounds 0 3:34
Eclat-hybrid, 10 rounds 0 16:39
Eclat-exhaustive, 500 s timeout 0 13:39
Eclat-exhaustive, 1000 s timeout 0 28:29
Eclat-exhaustive, 1500 s timeout 0 44:29
Eclat-exhaustive, 1750 s timeout 0 1:25:44
DSD-Crasher 3 1:59

Table II compares the ClassCastExceptions found by DSD-Crasher and
Eclat. As in the other tables, every report corresponds to a unique combination
of exception type and throwing source line. We tried several Eclat configura-
tions, also used in our Groovy case study later. Eclat-default is Eclat’s default
configuration, which uses random input generation. Eclat-exhaustive uses ex-
haustive input generation up to a given time limit. This is one way to force
Eclat to test every method. Otherwise a method that can only be called with
a few different input values, such as static m(boolean), is easily overlooked
by Eclat. Eclat-hybrid uses exhaustive generation if the number of all possible
combinations is below a certain threshold; otherwise, it resorts to the default
technique (random).

We tried several settings trying to cause Eclat to reproduce any of the
ClassCastException failures observed with DSD-Crasher. With running times
ranging from eighty seconds to over an hour, Eclat was not able to do so. (In
general, Eclat does try to detect dynamic type errors: for instance, it finds a
potential ClassCastException in our Groovy case study. In fairness, however,
Eclat is not a tool tuned to find crashes but to generate a range of tests.)

DSD-Crasher produces three distinct ClassCastException reports, which in-
clude the two cases presented in the past [Csallner and Smaragdakis 2005]. In
the third case, class JMSTypeConversions throws a ClassCastException when
the following method getBytes is called with a parameter of type Byte[] (note
that the cast is to a “byte[]”, with a lower-case “b”).

public static byte[] getBytes(Object value)
throws MessageFormatException {
if (value == null) return null;
else if (value instanceof Byte[]) {
return (byte[]) value;

} //..
}

6.3.2 Groovy. Table III compares DSD-Crasher with Eclat on Groovy.
DSD-Crasher finds both of the Eclat reports. Both tools report several other

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:21

Table III. Groovy Results
The dynamic-static-dynamic DSD-Crasher vs. the

dynamic-dynamic Eclat. This table omits all of Eclat’s
non-exception reports.

Exception Runtime
Reports [min:s]

Eclat-default 0 7:01
Eclat-hybrid, 4 rounds 0 8:24
Eclat-exhaustive, 2 rounds 2 10:02
Eclat-exhaustive, 500 s timeout 2 16:42
Eclat-exhaustive, 1200 s timeout 2 33:17
DSD-Crasher 4 30:32

cases, which we filtered manually to make the comparison feasible. Namely, we
remove Eclat’s reports of invariant violations, reports in which the exception-
throwing method does not belong to the testees under test specified by the user,
etc.

One of the above reports provides a representative example of why
DSD-Crasher explores the test parameter space more deeply (due to the
ESC/Java analysis). The exception reported can only be reproduced for
a certain non-null array. ESC/Java derives the right precondition and
Check ‘n’ Crash generates a satisfying test case, whereas Eclat misses it. The
constraints are: arrayLength(sources) == 1, sources:141.46[i] == null,
i == 0. Check ‘n’ Crash generates the input value new CharStream[]{null}
that satisfies the conditions, while Eclat just performs random testing and tries
the value null.

6.4 Summary of Benefits

The main question of our evaluation is whether DSD-Crasher is an improve-
ment over using Check ‘n’ Crash alone. The answer from our experiments
is positive, as long as there is a regression test suite sufficient for exercis-
ing large parts of the application functionality. We found that the simple in-
variants produced by Daikon were fairly accurate, which significantly aided
the ESC/Java reasoning. The reduction in false bug warnings enables DSD-
Crasher (as opposed to Check ‘n’ Crash) to produce reasonable reports about
NullPointerExceptions. Furthermore, we never observed cases in our experi-
ments where false Daikon invariants over-constrained a method input domain.
This would have caused DSD-Crasher to miss a bug found by Check ‘n’ Crash.
Instead, the invariants inferred by Daikon are a sufficient generalization of
observed input values, so that the search domain for ESC/Java is large enough
to locate potential erroneous inputs.

Of course, inferred invariants are no substitute for human-supplied invari-
ants. One should keep in mind that we focused on simple invariants produced
by Daikon and eliminated more “ambitious” kinds of inferred invariants (e.g.,
ordering constraints on arrays), as discussed in Section 4.3. Even such simple
invariants are sufficient for limiting the false bug warnings that Check ‘n’ Crash
produces without any other context information.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:22 • C. Csallner et al.

6.5 Applicability and Limitations

Our experience with DSD-Crasher yielded interesting lessons with respect to
its applicability and limitations. Generally, we believe that the approach is
sound and has significant promise, yet at this point it has not reached suffi-
cient maturity to be of overwhelming practical value. This may seem to con-
tradict our previously presented experiments, which showcased benefits from
the use of DSD-Crasher. It is, however, important to note that those were per-
formed in a strictly controlled, narrow-range environment, designed to bring
out the promise of DSD-Crasher under near-ideal conditions. The environment
indirectly reveals DSD-Crasher’s limitations.

Test Suite. An extensive test suite is required to produce reliable Daikon
invariants. The user may need to supply detailed test cases with high cover-
age both of program paths and of the value domain. We searched open-source
repositories for software with detailed regression test suites, and used Groovy
partly because its suite was one of the largest. A literature review reveals no
instance of using Daikon on nontrivial, third-party open-source software to in-
fer useful invariants with the original test suite that the software’s developers
supply.

Scalability. The practical scalability of DSD-Crasher is less than ideal. The
applications we examined were of medium size, mainly because scaling to large
applications is not easily possible. For instance, Daikon can quickly exhaust
the heap when executed on a large application. Furthermore, the inferred in-
variants slow down the ESC/Java analysis and may make it infeasible within
reasonable time bounds.

These shortcomings should be largely a matter of engineering. Daikon’s dy-
namic invariant inference approach is inherently parallelizable, for instance.
This is a good property for future architectures and an easy way to eliminate
scalability problems due to memory exhaustion. By examining the invariants
of a small number of methods only, memory requirements should be low, at the
expense of some loss in efficiency, which can be offset by parallelism.

Kinds of Bugs Caught. As discussed earlier, DSD-Crasher is a tool that
aims for high degrees of automation. If we were to introduce explicit specifi-
cations, the tool could target any type of error, since it would be a violation
of an explicit specification. Explicit specifications require significant human
effort, however. Therefore, the intended usage mode of the tool only includes
violations of implicit preconditions of language-level operations, which cause
runtime exceptions, as described in Section 4.1. Thus, semantic errors that do
not result in a program crash but produce incorrect results stay undetected.
Furthermore, the thorough (due to the static analysis) but relatively local na-
ture of DSD-Crasher means that it is much better for detecting violations of
boundary conditions, than it is for detecting “deep” errors involving complex
state and multiple methods. To be more precise, DSD-Crasher can detect bugs
that hinge on prior state changes or interprocedural control- and data-flow, only
if these effects are captured well by the Daikon-inferred invariants.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:23

Table IV. Experience with SIR Subjects
SIR contains three bug-seeded versions of the Apache Xml Security distribution. NCSS are

non-commented source statements. For all analyzed subject versions, ESC/Java (with the usual
DSD-Crasher settings) produces the same warnings for the unseeded and seeded classes. (For

the last version, we excluded the one seeded fault labeled “conflicting” from our analysis.)
Seeded methods are testee methods that contain at least one SIR seed. Note that this includes
cases where the ESC/Java warning occurs before a seeded change, so the seeded bug may not

necessarily influence the ESC/Java warning site. “ESC/Java wp” stands for ESC/Java’s internal
weakest precondition computation when running within DSD-Crasher. The last column gives

the number of seeded bugs that change the local backward slice of an ESC/Java warning.

Seeded Bugs
ESC/Java Warnings

In slice of
Analyzed version of In Seeded Affecting ESC/ ESC/Java
Apache Xml Security Size [kNCSS] Total Methods Total Java wp Warning
1.0.4 12.4 111 2 20 10 1
1.0.5 D2 12.8 104 3 19 10 1
1.0.71 10.3 120 5 13 7 2

To illustrate this, we analyzed different versions of a subject (the Apache Xml
Security module) from the software-artifact infrastructure repository (SIR),
which is maintained by Do et al. [2005]. The repository contains several versions
of a few medium-sized applications together with their respective test suites
and seeded bugs. Several other research groups have used subjects from this
repository to evaluate bug-finding techniques. Our results are summarized in
Table IV. We found that most of the seeded bugs are too deep for DSD-Crasher to
catch. Indeed, about half of the seeded bugs do not even affect ESC/Java’s inter-
nal reasoning, independently of whether this reasoning leads to a bug warning
or not. For instance, for version 1.0.4 of our subject, only 10 of the 20 seeded
bugs affect at all the logical conditions computed during ESC/Java’s analysis.
The eventual ESC/Java warnings produced very rarely have any relevance to
the seeded bug, even with a liberal “relevance” condition (local backward slice).
DSD-Crasher does not manage to produce test cases for any of these warnings.

It is worth examining some of these bugs in more detail, for exposition pur-
poses. An example seeded bug that cannot be detected consists of changing the
initial value of a class field. The bug introduces the code

boolean _includeComments = true;

when the correct value of the field is false. However, this does not affect
ESC/Java’s reasoning, since ESC/Java generally assumes that a field may con-
tain any value. ESC/Java maps the unseeded and the seeded versions of this
field to the same abstract value. Hence the result of ESC/Java’s internal rea-
soning will not differ for the unseeded and the seeded versions.

As another example, one of the seeded bugs consists of removing the call

super(doc);

from a constructor. Omitting a call to a method or constructor without specifi-
cations does not influence ESC/Java’s weakest precondition computation, since
current ESC/Java versions assume purity for methods without specifications.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:24 • C. Csallner et al.

The next case is interesting because the bug is within the scope of DSD-
Crasher, yet the changed code influences the weakest precondition produced
by ESC/Java only superficially. In the following code, the seeded bug con-
sists of comparing the node type to Node.ELEMENT_NODE instead of the correct
Node.TEXT_NODE.

for (int i = 0; i < iMax; i++) {
Node curr = children.item(i);

if (curr.getNodeType() == Node.ELEMENT_NODE) {
sb.append(((Text) curr).getData());

} ...

The ESC/Java analysis of the call to (specification-free) method getNodeType
results in a fresh unconstrained local variable. This local variable will not be
used outside this if test. Hence, in both the original and the seeded version, we
can simplify the equality tests between an unspecified value and a constant to
the same abstract unspecified value. The weakest precondition does not change
due to this seeded bug. Nevertheless, the test lies on an intraprocedural path
to a warning. ESC/Java warns about a potential class cast exception in the
statement under the if. Despite the warning, the original method is correct: the
path to the cast exception is infeasible. For the erroneous version, DSD-Crasher
does not manage to reproduce the error, since it involves values produced by
several other methods.

7. DISCUSSION: CODE-COVERAGE-ORIENTED TEST GENERATION

Several code-based test generation tools [Korel 1990; Gupta et al. 1998] aim at
generating test inputs to achieve high code coverage metrics, such as statement
coverage or branch coverage [Zhu et al. 1997]. Symbolic execution [King 1976;
Clarke 1976] has been shown to be effective in generating test inputs to achieve
high code coverage. For example, the Java PathFinder (JPF) model checker by
Visser et al. [2000] has been extended to support symbolic execution [Khurshid
et al. 2003; Visser et al. 2004; Anand et al. 2007]. A recent approach that has
attracted attention is concolic testing [Godefroid et al. 2005; Sen et al. 2005;
Cadar et al. 2006]: a combination of concrete and symbolic execution. Concolic
testing tools explore a program path concretely for a value, while at the same
time accumulating a “path condition”: a set of symbolic constraints that an
input needs to satisfy to follow the path. In case of a control-flow branch, a
concolic execution tool attempts to solve the symbolic constraints to generate a
value to also exercise the path not taken by the concrete execution. The power
of concolic execution comes from the fact that the concrete execution has al-
ready demonstrated a way to solve many of these constraints, thus making the
constraint solving problem often easier in practice.

Such symbolic and concolic execution tools can be generally described as code-
coverage-oriented (or just coverage-oriented) testing tools. In principle, these
tools also aim to discover bugs—the ultimate goal of all testing is to expose
defects. Nevertheless, they take a different approach from tools like ESC/Java

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:25

or DSD-Crasher. The domain-specific knowledge encoded in a coverage-oriented
tool does not focus on what constitutes a bug, unlike an analysis that tries to
find, for example, null pointer exceptions, division by zero, array dereferences
outside bounds, etc. Instead, the knowledge of a coverage-oriented tool is limited
to the aspects that enhance coverage: understanding what constitutes a control-
flow branch, deriving symbolic conditions, etc. This makes a coverage-oriented
tool more general, in that it has no preconceived notion of a “bug,” but also
more limited, in that it will only discover a bug if following a control-flow path
exposes the bug with high probability (i.e., for most, if not all, data values).

We believe that there are interesting insights in contrasting code-coverage-
oriented tools and bug finding tools, such as DSD-Crasher and others described
in Section 5. To expose them concretely, we analyzed the reports of DSD-Crasher
presented in the previous section and examined which of the bugs would be
found by the jCUTE [Sen and Agha 2006] concolic execution tool for Java and
by JPF [Visser et al. 2004]. We next discuss our experience, as well as ways
to expose bug-specific knowledge (e.g., the fact that a Java array throws an
exception if referenced beyond its end) as control-flow branches. This would
allow coverage-oriented tools to capture bugs that they currently do not detect.

Note that the comparison with jCUTE and JPF is qualitative rather than
quantitative: although we did run jCUTE on the subject programs (Groovy
and JBoss JMS) the handling was not automatic: we had to write explicit test
drivers for each of the errors reported by DSD-Crasher. In several cases, our
test drivers needed to be fairly contrived, in order to overcome engineering
limitations in jCUTE and expose the problem in terms that jCUTE can analyze
(e.g., transform instanceOf checks into checks on a numeric result returned by
an oracle method). In essence, we tried to approximate what an ideal version
of jCUTE or JPF would do in principle, beyond current specifics, and we base
our discussion on that.

7.1 Errors Easily Exposed via Coverage

Some errors have little data-sensitivity and would be readily exposed by just
covering the potentially erroneous statement. For instance, many of the er-
rors that DSD-Crasher reports for JBoss JMS and Groovy are due to direct
null pointer dereferencing of method arguments. In principle, a possible null
dereference is value-sensitive and exposed by very specific executions of the
offending statements. Nevertheless, both JPF and jCUTE can generate default
null references for nonprimitive-type arguments, causing these null-pointer ex-
ceptions to be thrown. This case is easy, exactly because the error is reproduced
with a well-identified value. Even for a tool that concentrates on control-flow,
covering a single known offending value is easy enough.

Some more of the errors reported by DSD-Crasher can be readily discov-
ered with jCUTE or JPF. For instance, consider the example code shown in
Section 6.3.1. This produces a class-cast exception within the true branch of
an instanceof conditional check. The bug is exposed every time the statement
causing it is covered. Although the current versions of jCUTE or JPF cannot
handle the constraints related to instanceof, this is a matter of constraint

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:26 • C. Csallner et al.

solving, which is orthogonal to the coverage-oriented nature of the tools—they
can both be extended to handle instanceof constraints, thus generating test
inputs to expose the bug.

Class cast exceptions are generally fairly easy to reproduce semi-accidentally
with coverage-oriented tools, since they are not particularly data-sensitive:
any object of the wrong type will trigger the exception. For instance, consider
one of the DSD-Crasher reports for class Container in JBoss JMS. Method
getContainer throws a ClassCastException when called with an argument of
type java.lang.Object.

public static Container getContainer(Object object) throws Throwable {

Proxy proxy = (Proxy) object;//an exception thrown here

return (Container) Proxy.getInvocationHandler(proxy);

}

The error does not always occur when the statement is covered: there is no
problem when the method is called with an argument of type Proxy. Although
the current versions of jCUTE or JPF do not instrument the Java library classes
such as java.lang.Object, this is a technicality. Both tools could potentially ex-
pose this bug since they would create an object of type java.lang.Object as the
method argument.

7.2 Errors Not Easily Exposed via Coverage

Several errors that DSD-Crasher targets are fairly data-sensitive and, thus,
not exposed easily through simple increased code coverage. Good examples are
arithmetic exceptions, negative array size exceptions, or array index out-of-
bounds exceptions.

We examined the negative-array-size exceptions that DSD-Crasher detects
for JBoss JMS and Groovy. The statements including these errors are not
within any conditionals. For a concise example, class Tuple in Groovy throws
a NegativeArraySizeException when the following method subList is called with
two integer arguments of 1 and 0.

public List subList(int fromIndex, int toIndex) {

int size = toIndex - fromIndex;

Object[] newContent = new Object[size];//exception thrown here

System.arraycopy(contents, fromIndex, newContent, 0, size);

return new Tuple(newContent);

}

This DSD-Crasher warning reveals two serious bugs, one being within
the specification of java.util. Groovy’s Tuple overrides the subList method
of java.util.AbstractList, which in turn implements the subList defini-
tion in java.util.List. The JavaDoc specifications of List and AbstractList

conflict for this case of fromIndex > toIndex amongst each other and the
implementation of Tuple conflicts with both. Specifically, List requires to
throw an IndexOutOfBoundsException, its redefinition in AbstractList requires an
IllegalArgumentException, and Tuple throws a NegativeArraySizeException (but
none of these runtime exceptions are a subtype of another).

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:27

Neither jCUTE nor JPF can detect this error because there is no branching
point in the methods for either tool to collect constraints in the path condition.
Consequently, the tool assigns a default value (e.g., 0) to the integer-type argu-
ments. Of course, the exception could be thrown by randomly selecting inputs,
but the essence of the problem is that the analysis in jCUTE or JPF has no
insight to guide it to construct inputs where fromIndex is greater than toIndex.

7.3 Exposing Data Conditions as Branches

Combining ideas from coverage-oriented tools and DSD-Crasher-like ap-
proaches seems quite promising. Perhaps surprisingly, it seems to also be very
much in the spirit of both kinds of tools. DSD-Crasher already has a symbolic
engine (in the form of ESC/Java) but it can probably benefit from the idea of
concolic execution to increase its constraint-solving abilities. At the same time,
coverage-oriented tools can benefit in their goal to increase code coverage by
integrating knowledge about errors in language-level operations, such as arith-
metic exceptions or array accesses out-of-bounds.

To do this, a coverage-oriented tool needs to understand values that violate
operation preconditions, in addition to understanding branches. The duality
of control and data-flow is well-known in the study of compilers: standard pro-
gram transformations can map a data-flow property into a control-flow property,
and vice versa. Interestingly, in the case of values that violate preconditions of
language-level operations (as in most of the bugs DSD-Crasher finds), the prop-
erties are really control-flow properties to begin with: the program would throw
an exception during its execution, which would change the flow of control. The
only reason that code-coverage-oriented tools, such as jCUTE and JPF, do not
detect these errors is that they do not recognize the possible execution branch.

To provide a concrete example, consider a statement such as:

f = i / j;

The division operation constitutes an implicit branch: it can throw a division-
by-zero exception (arithmetic exception). An equivalent way to view the above
statement is as:

if (j == 0) throw new ArithmeticException();

else f = i / j;

This simple observation leads to a somewhat counterintuitive conclusion.
Code-coverage-oriented tools need to recognize language-level exceptional con-
ditions to achieve true high coverage of all program paths. Implicit branches are
as real as explicit ones, and exploring them enhances the bug detection capa-
bilities of a testing tool. In short, adding knowledge about illegal arguments of
low-level operations to a code-coverage-oriented tool is both effective and very
much in the spirit of increasing code coverage. To our knowledge, except for Pex
[Anand et al. 2008; Csallner et al. 2008], no current code-coverage-oriented tool
follows this approach.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:28 • C. Csallner et al.

8. RELATED WORK

There is an enormous amount of work on automated bug-finding tools. We
discuss representative recent work below. We deliberately include approaches
from multiple research communities in our discussion. Particularly, we com-
pare DSD-Crasher with tools from the testing, program analysis, and verifi-
cation communities. We believe this is a valuable approach, since many tools
produced by these closely related communities have overlapping goals, that
is, to find bugs. We also discuss our choice of component analyses from which
we constructed DSD-Crasher. This should highlight that other analysis com-
binations are possible and may provide superior properties than our concrete
instantiation in the DSD-Crasher tool.

8.1 Bug-Finding Tools and False Bug Warnings

The surveys of automated bug-finding tools conducted by Zitser et al. [2004],
Wagner et al. [2005], and Rutar et al. [2004] concur with our estimate that an
important problem is not just reporting potential errors, but minimizing false
bug warnings so that inspection by humans is feasible. Zitser et al. [2004] eval-
uate five static analysis tools on 14 known buffer overflow bugs. They found
that the tool with the highest detection rate (PolySpace) suffered from one
false alarm per twelve lines of code. They conclude “[...] that while state-of-the-
art static analysis tools like Splint and PolySpace can find real buffer overflows
with security implications, warning rates are unacceptably high.” Wagner et al.
[2005] evaluate three automatic bug finding tools for Java (FindBugs by Hove-
meyer and Pugh [2004], PMD, and QJ Pro). They conclude that “as on average
two thirds of the warnings are false positives, the human effort could be even
higher when using bug finding tools because each warning has to be checked
to decide on the relevance of the warning.” Rutar et al. [2004] evaluate five
tools for finding bugs in Java programs, including ESC/Java2, FindBugs, and
JLint. The number of reports differs widely between the tools. For example,
ESC/Java2 reported over 500 times more possible null dereferences than Find-
Bugs, 20 times more than JLint, and six times more array bounds violations
than JLint. Overall, Rutar et al. conclude: “The main difficulty in using the
tools is simply the quantity of output.”

8.2 Bug-Finding Tools That Reduce Language-Level and User-Level
False Bug Warnings

Tools in this category are most similar to DSD-Crasher in that they attack
false bug warnings at the language level and at the user level. The common im-
plementation techniques are to infer program specifications from existing test
executions and to generate test cases to produce warnings only for language-
level sound bugs.

Symclat by d’Amorim et al. [2006] is a closely related tool that, like DSD-
Crasher, uses the Daikon invariant detector to infer a model of the testee from
existing test cases. Symclat uses Java PathFinder for its symbolic reasoning,
which has different tradeoffs than ESC/Java, for example, Java PathFinder
does not incorporate existing JML specifications into its reasoning. Unlike our

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:29

tools, Symclat has a broader goal of discovering general invariant violations.
It appears to be less tuned towards finding uncaught exceptions than our tools
since it does not seem to try to cover all control flow paths implicit in primitive
Java operations as we discussed in Section 7.

Palulu by Artzi et al. [2006] derives method call sequence graphs from ex-
isting test cases. It then generates random test cases that follow the call rules
encoded in the derived call graphs. Such method call graphs capture implicit
API rules (e.g., first create a network session object, then send some initial-
ization message, and only then call the testee method), which are essential in
generating meaningful test cases. It would be interesting to integrate deriving
such API rules into our first dynamic analysis step.

8.3 Bug-Finding Tools That Reduce Language-Level False Bug Warnings

Tools in this category use an overapproximating search to find as many bugs
as possible. Additionally, they use some technique to reduce the number of
false bug warnings, focusing on language-level unsound bug warnings. Our
representative of this category is Check ‘n’ Crash [Csallner and Smaragdakis
2005].

Tomb et al. [2007] present a direct improvement over Check ‘n’ Crash by
making their overapproximating bug search interprocedural (up to a user-
defined call depth). The tool otherwise closely follows the Check ‘n’ Crash ap-
proach by generating test cases to confirm the warnings of their static analysis.
On the other hand, their tool neither seems to incorporate pre-existing specifi-
cations (which provides an alternative source of interprocedurality) nor address
user-level unsound bug warnings.

Kiniry et al. [2006] motivate their recent extensions of ESC/Java2 simi-
larly: “User awareness of the soundness and completeness of the tool is vitally
important in the verification process, and lack of information about such is
one of the most requested features from ESC/Java2 users, and a primary com-
plaint from ESC/Java2 critics.” They list several sources of unsoundness for
correctness and incorrectness in ESC/Java2 including less known problems
like Simplify silently converting arithmetic overflows to incorrect results. They
propose a static analysis that emits warnings about potential shortcomings of
the ESC/Java2 output, namely potentially missing bug reports and potentially
unsound bug reports. On the bug detection side their analysis is only concerned
with language-level soundness and does not worry about soundness with regard
to user-level (and potentially informal) specifications like DSD-Crasher does.
DSD-Crasher also provides a more extreme solution for language-level unsound
bug reports as it only reports cases that are guaranteed to be language-level
sound. We believe our approach is more suitable for automated bug finding since
it provides the user with concrete test cases that prove the existence of offending
behavior. On the other hand, DSD-Crasher only addresses the unsoundness of
ESC/Java2 bug reports. On the sound-for-correctness side, DSD-Crasher would
greatly benefit from such static analysis to reduce the possibility of missing real
errors. DSD-Crasher needs such analysis even more than ESC/Java2 does, as it
may miss sound bug reports of ESC/Java2 due to its limited constraint solving.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:30 • C. Csallner et al.

Several dynamic tools like the one by Xie and Notkin [2003] generate candi-
date test cases and execute them to filter out false error reports. Xie and Notkin
[2003] present an iterative process for augmenting an existing test suite with
complementary test cases. They use Daikon to infer a specification of the tes-
tee when executed on a given test suite. Each iteration consists of a static and
a dynamic analysis, using Jtest and Daikon. In the static phase, Jtest gener-
ates more test cases, based on the existing specification. In the dynamic phase,
Daikon analyzes the execution of these additional test cases to select those that
violate the existing specification—this violation represents previously uncov-
ered behavior. For the subsequent round, the extended specification is used.
Thus, the approach by Xie and Notkin is also a DSD hybrid, but Jtest’s static
analysis is rather limited (and certainly provided as a black box, allowing no
meaningful interaction with the rest of the tool). Therefore, their approach is
more useful for a less directed augmentation of an existing test suite aiming at
high testee coverage—as opposed to our more directed search for fault-revealing
test cases.

Concolic execution (see Godefroid et al. [2005], Sen et al. [2005], Cadar et al.
[2006], and Godefroid [2007]) uses concrete execution to overcome some of the
limitations of symbolic execution, which goes back to King [1976] and Clarke
[1976]. This makes it potentially more powerful than static-dynamic sequences
like Check ‘n’ Crash. But unlike DSD-Crasher, concolic execution alone does not
observe existing test cases and therefore does not address user-level soundness.

Systematic modular automated random testing (SMART) makes concolic
execution more efficient by exploring each method in isolation [Godefroid 2007].
SMART summarizes the exploration of a method in pre- and postconditions and
uses this summary information when exploring a method that calls a previously
summarized method. DSD-Crasher also summarizes methods during the first
dynamic analysis step in the form of invariants, which ESC/Java later uses
for modular static analysis. DSD-Crasher would benefit from SMART-inferred
method summaries for methods that were not covered by our initial dynamic
analysis. SMART seems like a natural replacement for the SD-part (ESC/Java
and JCrasher) of DSD-Crasher. Designing such a dynamic-concolic tool (“DC-
Crasher”) and comparing it with DSD-Crasher is part of our future work.

The commercial tool Jtest by Parasoft Inc. [2002] has an automatic white-
box testing mode that generates test cases. Jtest generates chains of values,
constructors, and methods in an effort to cause runtime exceptions, just like
our approach. The maximal supported depth of chaining seems to be three,
though. Since there is little technical documentation, it is not clear to us how
Jtest deals with issues of representing and managing the parameter-space,
classifying exceptions as errors or invalid tests, etc. Jtest does, however, seem
to have a test planning approach, employing static analysis to identify what
kinds of test inputs are likely to cause problems.

8.4 Alternative Component Analyses

DSD-Crasher integrates the dynamic Daikon, the static ESC/Java, and the
dynamic JCrasher component analyses. But these are certainly not the only

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:31

component analyses suitable for an automated bug-finding tool like DSD-
Crasher. Future variants of DSD-Crasher could be constructed from different
components. The following motivates our choice of component analyses and
compares them with competing ones.

8.4.1 Inferring Specifications to Enable Reducing User-Level False Bug
Warnings. Daikon is not the only tool for invariant inference from test case
execution, although it has pioneered the area and has seen the widest use in
practice. For instance, Hangal and Lam [2002] present the DIDUCE invariant
inference tool, which is optimized for efficiency and can possibly allow bigger
testees and longer-running test suites than Daikon. Agitar Agitator [Bosher-
nitsan et al. 2006], a commercial tool, also uses Daikon-like inference tech-
niques to infer likely invariants (termed “observations”) from test executions
and suggests these observations to developers so that the developers can man-
ually and selectively promote observations to assertions. Then Agitator further
generates test cases to confirm or violate these assertions. Agitator requires
manual effort in promoting observations to assertions in order to avoid false
warnings of observation violations, whereas our tools concentrate on automated
use.

Inferring method call sequence rules is another valuable approach for captur-
ing implicit user assumptions. Whaley et al. [2002] present static and dynamic
analyses that automatically infer over- and underapproximating finite state
machines of method call sequences. Artzi et al. [2006] have used such finite
state machines to generate test cases. Henkel et al. [2007] automatically infer
algebraic specifications from program executions, which additionally include the
state resulting from method call sequences. Algebraic specifications express re-
lations between nested method calls, like pop(push(obj)) == obj, which makes
them well-suited for specifying container classes. It is unclear, though, how
this technique scales beyond container classes. Yet it would be very interest-
ing to design an automated bug-finding tool that is able to process algebraic
specifications and compare it with DSD-Crasher.

Taghdiri et al. [2006] offer a recent representative of purely static approaches
that summarize methods into specifications. Such method summaries would
help DSD-Crasher perform deeper interprocedural analysis in its overapprox-
imating bug search component. Summarization approaches typically aim at
inferring total specifications, though. So they do not help us in distinguishing
between intended and faulty usage scenarios, which is key for a bug-finding tool
as DSD-Crasher. Kremenek et al. [2006] infer partial program specifications via
a combination of static analysis and expert knowledge. The static analysis is
based on the assumption that the existing implementation is correct most of
the time. The thereby inferred specifications helped them to correct and extend
the specifications used by the commercial bug finding tool Coverity Prevent
[Coverity Inc. 2003]. Expert knowledge is probably the most important
source of good specifications, but also the most expensive one, because it
requires manual effort. An ideal bug finding tool should combine as many
specification sources as possible, including automated static and dynamic
analyses.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:32 • C. Csallner et al.

8.4.2 The Core Bug Search Component: Overapproximating Analysis for
Bug Finding. The Check ‘n’ Crash and DSD-Crasher approach is explicitly
dissimilar to a common class of static analysis tools that have received signifi-
cant attention in the recent research literature. We call these tools collectively
“bug pattern matchers.” They are tools that statically analyze programs to de-
tect specific bugs by pattern matching the program structure to well-known
error patterns (e.g., Hallem et al. [2002], Hovemeyer and Pugh [2004], and
Xie and Engler [2003]). Such tools can be quite effective in uncovering a large
number of suspicious code patterns and actual bugs in important domains. But
the approach requires domain-specific knowledge of what constitutes a bug. In
addition, bug pattern matchers often use a lightweight static analysis, which
makes it harder to integrate with automatic test case generators. For example,
FindBugs does not produce rich constraint systems (as ESC/Java does) that
encode the exact cause of a potential bug.

Model-checking techniques offer an alternative approach to overapproximat-
ing program exploration and therefore bug searching. Recent model-checkers
directly analyze Java bytecode, which makes them comparable to our over-
approximating bug search component ESC/Java. Well-known examples are
Bogor/Kiasan by Deng et al. [2006] and Java PathFinder with symbolic ex-
tensions by Khurshid et al. [2003]. Building on model-checking techniques is
an interesting direction for bug-finding and is being explored in the context of
JML-like specification languages by Deng et al. [2007].

Verification tools such as those by Beyer et al. [2004] or Kroening et al. [2004]
are powerful ways to discover deep program errors. Nevertheless, such tools are
often limited in usability or the language features that they support. Jackson
and Vaziri [2000] and Vaziri and Jackson [2003] enable automatic checking of
complex user-defined specifications. Counterexamples are presented to the user
in the formal specification language. Their method addresses bug finding for
linked data structures, as opposed to numeric properties, object casting, array
indexing, etc., as in our approach.

8.4.3 Finding Feasible Executions. AutoTest by Meyer et al. [2007] is a
closely related automatic bug finding tool. It targets the Eiffel programming
language, which supports invariants at the language level in the form of con-
tracts [Meyer 1997]. AutoTest generates random test cases, like JCrasher, but
uses more sophisticated test selection heuristics and makes sure that generated
test cases satisfy given testee invariants. It can also use the given invariants
as its test oracle. Our tools do not assume existing invariants since, unlike Eif-
fel programmers, Java programmers usually do not annotate their code with
formal specifications.

Korat by Boyapati et al. [2002] generates all (up to a small bound) noniso-
morphic method parameter values that satisfy a method’s explicit precondi-
tion. Korat executes a candidate and monitors which part of the testee state it
accesses to decide whether it satisfies the precondition and to guide the gen-
eration of the next candidate. The primary domain of application for Korat is
that of complex linked data structures. Given explicit preconditions, Korat will
generate deep random tests very efficiently. Thus, Korat will be better than

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:33

DSD-Crasher for the cases when our constraint solving does not manage to
produce values for the abstract constraints output by ESC/Java and we resort
to random testing. In fact, the Korat approach is orthogonal to DSD-Crasher
and could be used as our random test generator for reference constraints that
we cannot solve. Nevertheless, when DSD-Crasher produces actual solutions
to constraints, these are much more directed than Korat. ESC/Java analyzes
the method to determine which path we want to execute in order to throw a
runtime exception. Then we infer the appropriate constraints in order to force
execution along this specific path (taking into account the meaning of standard
Java language constructs) instead of just trying to cover all paths.

9. CONCLUSIONS AND FUTURE WORK

We have presented DSD-Crasher: a tool based on a hybrid analysis approach
to program analysis, particularly for automatic bug finding. The approach com-
bines three steps: dynamic inference, static analysis, and dynamic verification.
The dynamic inference step uses Daikon [Ernst et al. 2001] to characterize a
program’s intended input domains in the form of preconditions, the static anal-
ysis step uses ESC/Java [Flanagan et al. 2002] to explore many paths within the
intended input domain, and the dynamic verification step uses JCrasher [Csall-
ner and Smaragdakis 2004] to automatically generate tests to verify the results
of the static analysis. The three-step approach provides several benefits over
existing approaches. The preconditions derived in the dynamic inference step
reduce the false bug warnings produced by the static analysis and dynamic ver-
ification steps alone. The derived preconditions can also help the static analysis
to reach a problematic statement in a method by bypassing unintended input
domains of the method’s callees. In addition, the static analysis step provides
more systematic exploration of input domains than the dynamic inference and
dynamic verification alone.

The current DSD-Crasher implementation focuses on finding crash-inducing
bugs, which are exposed by inputs falling into intended input domains. As we
discussed in Section 4, intended input domains inferred by Daikon could be
narrower than the real ones; therefore, a crash-inducing bug could be exposed
by an input falling outside inferred input domains but inside the (real) intended
input domain. In the future, we plan to develop heuristics to relax inferred input
domains to possibly detect more bugs. In addition, some bugs do not cause the
program to crash but violate real postconditions. The current DSD-Crasher im-
plementation does not consider inputs that satisfy inferred preconditions but vi-
olate inferred postconditions, because this may lead to additional bug warnings,
requiring much inspection effort. We plan to develop heuristics (based on con-
straints generated by ESC/Java for violating a certain postcondition) to select
for inspection a small number of inferred-postcondition-violating test inputs.

Our DSD-Crasher implementation and testees are available at: http://

www.cc.gatech.edu/cnc/

ACKNOWLEDGMENTS

We thank Koushik Sen who offered help in using jCUTE and Willem Visser and
Saswat Anand who offered help in using Java Pathfinder’s symbolic execution.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:34 • C. Csallner et al.

We are especially grateful to the anonymous referees whose detailed responses
greatly improved this article.

REFERENCES

ANAND, S., GODEFROID, P., AND TILLMANN, N. 2008. Demand-driven compositional symbolic execu-
tion. In Proceedings of the 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). Springer, To appear.

ANAND, S., PASAREANU, C., AND VISSER, W. 2007. JPF-SE: A symbolic execution extension to Java
Pathfinder. In Proceedings of the 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). Springer, 134–138.

APACHE SOFTWARE FOUNDATION. 2003. Bytecode engineering library (BCEL). http://jakarta.apache.
org/bcel/. (Accessed Dec. 2007.)

ARTZI, S., ERNST, M. D., KIEŻUN, A., PACHECO, C., AND PERKINS, J. H. 2006. Finding the nee-
dles in the haystack: Generating legal test inputs for object-oriented programs. In Proceed-
ings of the 1st International Workshop on Model-Based Testing and Object-Oriented Systems
(M-TOOS).

BALL, T. 2003. Abstraction-guided test generation: A case study. Tech. rep. MSR-TR-2003-86,
Microsoft Research.

BECK, K. AND GAMMA, E. 1998. Test infected: Programmers love writing tests. Java Report 3, 7,
37–50.

BEYER, D., CHLIPALA, A. J., HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R. 2004. Generating tests
from counterexamples. In Proceedings of the 26th International Conference on Software Engi-
neering (ICSE). IEEE, 326–335.

BOSHERNITSAN, M., DOONG, R., AND SAVOIA, A. 2006. From Daikon to Agitator: Lessons and chal-
lenges in building a commercial tool for developer testing. In Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). ACM, 169–180.

BOYAPATI, C., KHURSHID, S., AND MARINOV, D. 2002. Korat: Automated testing based on Java pred-
icates. In Proceedings of the ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). ACM, 123–133.

CADAR, C., GANESH, V., PAWLOWSKI, P. M., DILL, D. L., AND ENGLER, D. R. 2006. EXE: Automati-
cally generating inputs of death. In Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS). ACM, 322–335.

CENTONZE, P., FLYNN, R. J., AND PISTOIA, M. 2007. Combining static and dynamic analysis for
automatic identification of precise access-control policies. In Proceedings of the 23rd Annual
Computer Security Applications Conference (ACSAC). IEEE, 292–303.

CLARKE, L. A. 1976. A system to generate test data and symbolically execute programs. IEEE
Trans. Softw. Engin. 2, 3, 215–222.

COK, D. R. AND KINIRY, J. R. 2004. ESC/Java2: Uniting ESC/Java and JML: Progress and issues
in building and using ESC/Java2. Tech. rep. NIII-R0413, Nijmegen Institute for Computing and
Information Science.

COVERITY INC. 2003. Coverity Prevent. http://www.coverity.com/. (Accessed Dec. 2007).
CSALLNER, C. AND SMARAGDAKIS, Y. 2004. JCrasher: An automatic robustness tester for Java. Softw.

Prac. Exp. 34, 11, 1025–1050.
CSALLNER, C. AND SMARAGDAKIS, Y. 2005. Check ‘n’ Crash: Combining static checking and testing.

In Proceedings of the 27th International Conference on Software Engineering (ICSE). ACM, 422–
431.

CSALLNER, C. AND SMARAGDAKIS, Y. 2006a. DSD-Crasher: A hybrid analysis tool for bug finding. In
Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). ACM, 245–254.

CSALLNER, C. AND SMARAGDAKIS, Y. 2006b. Dynamically discovering likely interface invariants.
In Proceedings of the 28th International Conference on Software Engineering (ICSE), Emerging
Results Track. ACM, 861–864.

CSALLNER, C., TILLMANN, N., AND SMARAGDAKIS, Y. 2008. DySy: Dynamic symbolic execution for
invariant inference. In Proceedings of the 30th ACM/IEEE International Conference on Software
Engineering (ICSE). ACM, To appear.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:35

D’AMORIM, M., PACHECO, C., XIE, T., MARINOV, D., AND ERNST, M. D. 2006. An empirical comparison
of automated generation and classification techniques for object-oriented unit testing. In Pro-
ceedings of the 21st IEEE International Conference on Automated Software Engineering (ASE).
IEEE, 59–68.

DENG, X., LEE, J., AND ROBBY. 2006. Bogor/Kiasan: A k-bounded symbolic execution for checking
strong heap properties of open systems. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 157–166.

DENG, X., ROBBY, AND HATCLIFF, J. 2007. Kiasan/KUnit: Automatic test case generation and anal-
ysis feedback for open object-oriented systems. In Proceedings of the Testing: Academia and
Industry Conference—Practice And Research Techniques (TAIC PART). IEEE, 3–12.

DETLEFS, D., NELSON, G., AND SAXE, J. B. 2003. Simplify: A theorem prover for program checking.
Tech. rep. HPL-2003-148, Hewlett-Packard Systems Research Center.

DO, H., ELBAUM, S. G., AND ROTHERMEL, G. 2005. Supporting controlled experimentation with
testing techniques: An infrastructure and its potential impact. Empir .Softw. Engin. 10, 4 (Oct.),
405–435.

ENGLER, D. AND MUSUVATHI, M. 2004. Static analysis versus software model checking for bug
finding. In Proceedings of the 5th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI). Springer, 191–210.

ERNST, M. D. 2003. Static and dynamic analysis: Synergy and duality. In Proceedings of the ICSE
Workshop on Dynamic Analysis (WODA). 24–27.

ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND NOTKIN, D. 2001. Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Softw. Engin. 27, 2 (Feb.),
99–123.

FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NELSON, G., SAXE, J. B., AND STATA, R. 2002. Ex-
tended static checking for Java. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). ACM, 234–245.

GODEFROID, P. 2007. Compositional dynamic test generation. In Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM,
47–54.

GODEFROID, P., KLARLUND, N., AND SEN, K. 2005. DART: Directed automated random testing. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI). ACM, 213–223.

GUPTA, N., MATHUR, A. P., AND SOFFA, M. L. 1998. Automated test data generation using an iter-
ative relaxation method. In Proceedings of the 6th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE). ACM, 231–244.

HALLEM, S., CHELF, B., XIE, Y., AND ENGLER, D. 2002. A system and language for building system-
specific, static analyses. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI). ACM, 69–82.

HANGAL, S. AND LAM, M. S. 2002. Tracking down software bugs using automatic anomaly detec-
tion. In Proceedings of the 24th International Conference on Software Engineering (ICSE). ACM,
291–301.

HAPNER, M., BURRIDGE, R., SHARMA, R., AND FIALLI, J. 2002. Java Message Service: Version 1.1. Sun
Microsystems, Inc.

HENKEL, J., REICHENBACH, C., AND DIWAN, A. 2007. Discovering documentation for Java container
classes. IEEE Trans. Softw. Engin. 33, 8, 526–543.

HOVEMEYER, D. AND PUGH, W. 2004. Finding bugs is easy. In Companion to the 19th ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA).
ACM, 132–136.

JACKSON, D. AND RINARD, M. 2000. Software analysis: A roadmap. In Proceedings of the Conference
on The Future of Software Engineering. ACM, 133–145.

JACKSON, D. AND VAZIRI, M. 2000. Finding bugs with a constraint solver. In Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA). ACM, 14–25.

KHURSHID, S., PASAREANU, C. S., AND VISSER, W. 2003. Generalized symbolic execution for model
checking and testing. In Proceedings of the 9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). Springer, 553–568.

KING, J. C. 1976. Symbolic execution and program testing. Comm. ACM 19, 7, 385–394.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

8:36 • C. Csallner et al.

KINIRY, J. R., MORKAN, A. E., AND DENBY, B. 2006. Soundness and completeness warnings in
ESC/Java2. In Proceedings of the 5th International Workshop on Specification and Verification
of Component-Based Systems (SAVCBS). ACM, 19–24.

KOREL, B. 1990. Automated software test data generation. IEEE Trans. Softw. Engin. 16, 8,
870–879.

KREMENEK, T., TWOHEY, P., BACK, G., NG, A., AND ENGLER, D. 2006. From uncertainty to belief:
Inferring the specification within. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implemetation (OSDI). USENIX, 161–176.

KROENING, D., GROCE, A., AND CLARKE, E. M. 2004. Counterexample guided abstraction refinement
via program execution. In Proceedings of the 6th International Conference on Formal Engineering
Methods (ICFEM). Springer, 224–238.

LEAVENS, G. T., BAKER, A. L., AND RUBY, C. 1998. Preliminary design of JML: A behavioral interface
specification language for Java. Tech. rep. TR98-06y, Department of Computer Science, Iowa
State University.

LEINO, K. R. M., NELSON, G., AND SAXE, J. B. 2000. ESC/Java user’s manual. Tech. rep. 2000-002,
Compaq Computer Corporation Systems Research Center.

MCCONNELL, S. 2004. Code Complete, 2nd Ed. Microsoft Press.
MEYER, B. 1997. Object-Oriented Software Construction, 2nd Ed. Prentice Hall PTR.
MEYER, B., CIUPA, I., LEITNER, A., AND LIU, L. 2007. Automatic testing of object-oriented software.

In Proceedings of the 33rd Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM). Springer, 114–129.

NIMMER, J. W. AND ERNST, M. D. 2002a. Automatic generation of program specifications. In Pro-
ceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis (IS-
STA). ACM, 229–239.

NIMMER, J. W. AND ERNST, M. D. 2002b. Invariant inference for static checking: An empirical
evaluation. In Proceedings of the 10th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE). ACM, 11–20.

PACHECO, C. AND ERNST, M. D. 2005. Eclat: Automatic generation and classification of test inputs.
In Proceedings of the 19th European Conference on Object-Oriented Programming (ECOOP).
Springer, 504–527.

PARASOFT INC. 2002. Jtest. http://www.parasoft.com/. Accessed Dec. 2007.
RUTAR, N., ALMAZAN, C. B., AND FOSTER, J. S. 2004. A comparison of bug finding tools for Java. In

Proceedings of the 15th International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 245–256.

SCHLENKER, H. AND RINGWELSKI, G. 2002. POOC: A platform for object-oriented constraint pro-
gramming. In Proceedings of the Joint ERCIM/CologNet International Workshop on Constraint
Solving and Constraint Logic Programming. Springer, 159–170.

SEN, K. AND AGHA, G. 2006. CUTE and jCUTE: Concolic unit testing and explicit path model-
checking tools. In Proceedings of the 18th International Conference on Computer Aided Verifica-
tion (CAV). Springer, 419–423.

SEN, K., MARINOV, D., AND AGHA, G. 2005. CUTE: A concolic unit testing engine for C. In Proceed-
ings of the 13th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (FSE). ACM, 263–272.

SMARAGDAKIS, Y. AND CSALLNER, C. 2007. Combining static and dynamic reasoning for bug detec-
tion. In Proceedings of the 1st International Conference on Tests And Proofs (TAP). Springer,
1–16.

TAGHDIRI, M., SEATER, R., AND JACKSON, D. 2006. Lightweight extraction of syntactic specifications.
In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE). ACM, 276–286.

TOMB, A., BRAT, G. P., AND VISSER, W. 2007. Variably interprocedural program analysis for runtime
error detection. In Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA). ACM, 97–107.

VAZIRI, M. AND JACKSON, D. 2003. Checking properties of heap-manipulating procedures
with a constraint solver. In Proceedings of the 9th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Springer, 505–
520.

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

DSD-Crasher: A Hybrid Analysis Tool for Bug Finding • 8:37

VISSER, W., HAVELUND, K., BRAT, G., AND PARK, S. 2000. Model checking programs. In Proceedings
of the 15th IEEE International Conference on Automated Software Engineering (ASE). IEEE,
3–12.

VISSER, W., PASAREANU, C. S., AND KHURSHID, S. 2004. Test input generation with Java PathFinder.
In Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). ACM, 97–107.

WAGNER, S., JÜRJENS, J., KOLLER, C., AND TRISCHBERGER, P. 2005. Comparing bug finding tools with
reviews and tests. In Proceedings of the 17th IFIP TC6/WG 6.1 International Conference on
Testing of Communicating Systems (TestCom). Springer, 40–55.

WHALEY, J., MARTIN, M. C., AND LAM, M. S. 2002. Automatic extraction of object-oriented component
interfaces. In Proceedings of the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA). ACM, 218–228.

XIE, T. AND NOTKIN, D. 2003. Tool-assisted unit test selection based on operational violations.
In Proceedings of the 18th IEEE International Conference on Automated Software Engineering
(ASE). IEEE, 40–48.

XIE, Y. AND ENGLER, D. 2003. Using redundancies to find errors. IEEE Trans. Softw. Engin. 29, 10,
915–928.

YOUNG, M. 2003. Symbiosis of static analysis and program testing. In Proceedings of the 6th
International Conference on Fundamental Approaches to Software Engineering (FASE). Springer,
1–5.

ZHU, H., HALL, P. A. V., AND MAY, J. H. R. 1997. Software unit test coverage and adequacy. ACM
Comput. Surv. 29, 4, 366–427.

ZITSER, M., LIPPMANN, R., AND LEEK, T. 2004. Testing static analysis tools using exploitable buffer
overflows from open source code. In Proceedings of the 12th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE). ACM, 97–106.

Received April 2007; revised October 2007; accepted December 2007

ACM Transactions on Software Engineering and Methodology, Vol. 17, No. 2, Article 8, Publication date: April 2008.

