
Is Data Privacy Always Good For Software Testing?

Mark Grechanik
University of Illinois at Chicago

Chicago, IL 60601
drmark@uic.edu

Christoph Csallner
University of Texas at Arlington

Arlington, TX 76019-0015
csallner@uta.edu

Chen Fu and Qing Xie
Accenture Technology Labs

Chicago, IL 60601
{chen.fu,qing.xie}@accenture.com

Abstract—Database-centric applications (DCAs) are common
in enterprise computing, and they use nontrivial databases.
Testing of DCAs is increasingly outsourced to test centers
in order to achieve lower cost and higher quality. When
releasing proprietary DCAs, its databases should also be made
available to test engineers, so that they can test using real
data. Testing with real data is important, since fake data
lacks many of the intricate semantic connections among the
original data elements. However, different data privacy laws
prevent organizations from sharing these data with test centers
because databases contain sensitive information. Currently,
testing is performed with fake data that often leads to worse
code coverage and fewer uncovered bugs, thereby reducing the
quality of DCAs and obliterating benefits of test outsourcing.

We show that a popular data anonymization algorithm called
k–anonymity seriously degrades test coverage of DCAs. We
propose an approach that uses program analysis to guide se-
lective application of k–anonymity. This approach helps protect
sensitive data in databases while retaining testing efficacy. Our
results show that for small values ofk≤ 6 it is possible to retain
a higher test coverage with our approach than with the current
state-of-the-art k–anonymization algorithm, Datafly. However,
with either our approach or Datafly, for k ≥ 7, test coverage
drops to less than 30% from the original coverage of more
than 70%, thus making it difficult to achieve good quality
when testing DCAs while applying data privacy.

I. I NTRODUCTION

Database-centric applications (DCAs)are common in
enterprise computing, and they use nontrivial databases
[1]. Some DCA owners are large organizations such as
banks, insurance companies and government agencies. Their
databases usually contain private data of many individuals.
If a large organization needs to test a new custom software
application, it typically hires a software consulting com-
pany to provide testing services. When releasing proprietary
DCAs to test centers, it is also desirable that databases
are made available, so that testing can be conducted us-
ing real data. Over the years, some DCA owners have
developed special relations with “their” test centers, which
often implies a higher level of trust. This trust enables
the transfer of sensitive data from DCA owners to test
centers. However, it becomes harder to rely on such trust
relationships when faced with recent data protection laws
and regulations around the world [2]. Currently, data owners
can no longer easily share confidential data with external
software service providers. In this paper we address the

problem of how to protect sensitive data while preserving
test quality.

Real data is very important for high quality testing.
Original data elements are often connected via intricate
semantic relationships that are not always explicitly defined
in database schema. Testing with synthetic data often does
not yield the same results compared to testing with real data.
Consider one aspect of testing – comparing results with
oracles, automatic generation of which is a fundamentally
difficult problem [3]. In many cases, domain experts review
results of testing manually, since generated data often leaves
the expected results unspecified [4, pages 114, 116]. In many
cases data generators miss important relationships between
data elements, and running applications with test cases that
use this synthetic data produces results that make little sense
to these domain experts. For example, what would be a good
oracle for medical insurance software if generated input test
data describes a male who suffers from a form of gestational
diabetes that can occur only during pregnancy? Computing
insurance premium makes no sense using this data. In reality,
there are multiple relationships among data elements, many
of which are far from obvious. Thus it is important to release
real data to testers while protecting sensitive information.

Because of recently tightened data protection regulations,
test centers no longer get access to sensitive data. Test
engineers have to operate with little or no meaningful data,it
is an obstacle to creating test suites that lead to good quality
software. As a result, test centers report worse code coverage
and fewer uncovered bugs, thereby reducing the quality of
applications and obliterating benefits of test outsourcing[5].

As an example, consider a situation where an insurance
company outsources testing of its newly developed medical
claim application to an external test center. The insurance
company accumulated historical data on its users, and it
is highly desirable that this data is used when testing the
claim application. For example, selecting individuals whose
nationalities are correlated with higher rates of certain dis-
eases yield extensive computations, and creating test cases
that involve data on these individuals may lead to more
path coverage and they are likely to reveal more bugs [6],
[7]. However, when a company sanitizes (or anonymizes)
this data, test coverage is likely to worsen. For instance,
replacing the values of nationalities with the generic value

“Human” may lead DCAs to execute some default paths that
result in exceptions or miss certain paths resulting in worse
test coverage. From this example we can see that applying
data privacy is not generally good for software testing. Re-
cent cases with U.S. Census show that applying data privacy
leads to incorrect results [8], [9]. Therefore preserving test
coverage while achieving desired data anonymity is not an
easy task.

Given the importance of this problem, it may be surprising
that there is little prior research on this topic. There may
be two main reasons for this. First, elaborate data privacy
laws are a new phenomenon, and many of these laws have
been introduced after the year 2000. Second, it is only in the
past decade that applications are increasingly being tested by
specialized software service providers, which are also called
test centers. Numerous test centers have emerged and often
offer lower cost and higher quality when compared to in-
house testing. In 2007, the test outsourcing market was worth
more than USD 25 billion and growing at 20% annually,
making test outsourcing the fastest growing segment of the
application services market [10], [11].

A. State of the Art

After interviewing professionals at IBM, Accenture, two
large health insurance companies, a biopharmaceutical com-
pany, and three major banks we found that current test data
anonymization processes are manual, laborious, and error-
prone. In a few cases, client companies outsource testing
using an especially expensive and cumbersome testing pro-
cedure calledcleanroom testing, where DCAs and databases
are kept on company premises in a physically secured
environment. Test engineers from outsourcing companies
come to the cleanroom of the client company to test client’s
DCAs. Actions of these test engineers are tightly monitored;
electronic connections to outside of the company’s network,
phone calls, USB keys, and cameras are forbidden. Clean-
room testing requires significant resources and physical
proximity of test outsourcing companies to their clients.

A more commonly used approach is to use tools that
anonymize databases indiscriminately, by generalizing or
suppressing all data. This procedure is appealing since it
does not require sophisticated reasoning about privacy goals
and protects all data.

But in many real-world settings, protecting all data blindly
makes testing very difficult. By repopulating large databases
with fake data it is likely that many implicit dependencies
and patterns among data elements are omitted, thereby
reducing testing efficacy. Moreover, fake data are likely to
trigger exceptions in DCAs leading test engineers to flood
bug tracking systems with false error reports. In addition,
testers often cannot use such anonymized data because
DCAs may throw exceptions that would not occur when
the DCAs are tested with original data.

A more sophisticated approach isselective anonymization,
where a team is assembled that comprises business analysts
and database experts. After they set privacy goals, identify
sensitive data, and mark database attributes that may help
attackers to reveal this sensitive data (these attributes are
calledquasi-identifiers (QIs)), anonymization techniques are
applied to these QIs to protect sensitive data, resulting ina
sanitized database. For example, consider a health informa-
tion database that holds information about medical historyof
individuals. In this case, the attribute that holds the names of
diseases is considered to have sensitive information. Other
attributes that hold information about individuals (e.g.,age,
race, nationality) are viewed as QIs. Knowing values of some
of QIs enables attackers to deduce sensitive information
about individuals who are identified by these values. A goal
of all anonymization approaches is to make it impossible
to deduce certain facts about entities with high confidence
from the anonymized data [12, pages 137-156].

B. Problems and Goals

A fundamental problem of test outsourcing is how a
DCA owner can release its private data with guarantees that
the subjects of the data (e.g., people, equipment, policies)
cannot be re-identified using their attributes while the data
retain their testing efficacy. Ideally, sanitized data should
induce execution paths that are similar to the ones that are
induced by the original data. That is, when sanitizing data,
information about how DCAs use this data should be taken
into account.

In many cases, in order to protect sensitive information
not all of the identified QIs need to be anonymized. For
example, consider a situation where an individual can be
identified by four QIs:Age, Race, Nationality, and
ZipCode. However, depending on privacy goals, only one
of two combinations ofAge andRace or Nationality
andZipCode need to be anonymized to protect the identity
of an individual. At the same time, if it is known that a DCA
uses the values of the attributeAge, anonymizing the values
of Nationality andZipCode is likely to have no effect
on executing this DCA. Therefore it is important to know
how DCAs use their databases to which these algorithms are
applied in order to decide which attributes to select as QIs.

Finally, different DCAs have different privacy goals and
levels of data sensitivity. Applying more relaxed protection
to databases is likely to result in greater test coverage
since a small part of the database will be anonymized;
conversely, stricter protection makes it more difficult to
outsource testing. The latter is the result of two conflicting
goals: make testing as realistic as possible and hide real data
from testers who need this data to make testing effective. A
problem is how to balance these goals, i.e., to anonymize
values of database attributes while preserving test coverage
of DCAs that use these values.

Rec Age ZipCode Nationality Disease

1 50 50000 Human Ulcer

2 50 50000 Human Viral
3 50 30000 Human Heart disease
4 20 30000 Human Gastritis
5 50 50000 Human Dyspepsia
6 20 30000 Human Dyspepsia

Rec Age ZipCode Nationality Disease

1 42 52000 American Ulcer
2 47 53000 Palauan Viral
3 51 32000 American Heart disease
4 55 32000 Japanese Gastritis
5 62 51000 Palauan Dyspepsia
6 67 35000 American Dyspepsia

k-anonymity

Figure 1. Example of applyingk−anonymity to the top table withk = 2
that results in a sanitized lower table.

For selective anonymization, after privacy goal is set,
selecting which QIs to anonymize is the only degree of
freedom when applying anonymization algorithms. Thus, it
also becomes the only point of attack if we want to preserve
test coverage without compromising privacy goal.

C. Our Contributions

This paper makes the following contributions:

• We offer a novel approach,Testing Applications with
Data Anonymization (TaDa)with which organizations
can determine how much test coverage they can lose
when applying data privacy to DCAs.

• We experiment with four nontrivial DCAs and we
selected the most popular data privacy approach called
k−anonymity, where each entity in the database must
be indistinguishable fromk−1 others [13]. We show
that for small values ofk≤ 6 (i.e., lower levels of data
privacy) it is possible to achieve higher test coverage
with our approach than with the current state-of-the-
art k–anonymization algorithm, Datafly. However, we
show that for higher values ofk≥ 7 that lead to much
stricter data privacy levels test coverage drops to less
than 30% from the original coverage of more than 70%,
thus making it difficult to achieve good quality when
testing DCAs while applying data privacy.

II. T HE PROBLEM

In this section we provide the necessary background on
DCAs and data anonymization, show how sanitizing data
affects test coverage of DCAs, and formulate the problem
statement.

A. Background

Majority of enterprise-level DCAs use general-purpose
programming languages and relational databases to maintain
large amounts of data. A primary way for these programs to
communicate with databases is to usecall-level interfaces
which allows DCAs to access database engines through stan-
dardized application programming interfaces (APIs) (e.g.,
Java DataBase Connectivity (JDBC)) [14]. Using JDBC,
SQL queries are passed as strings to corresponding API calls
to be sent to databases for execution.

Once these queries are executed, the values of attributes
of database tables are returned to DCAs, which in turn
use these values as part of their application logic. This
means, values from the database may be used in branch
decisions, loop conditions, etc. and they may therefore
affect the subsequent execution of the DCAs. Depending on
returned values different paths can be taken in DCAs, and
subsequently these values affect test coverage. Removing
certain classes of values in database attributes may make
some branches and statements in DCAs unreachable.

At the same time certain classes of values of database
attributes that contain non-sensitive information shouldbe
anonymized. These attributes (i.e., quasi-identifiers (QI))
often contain information that can be linked with other data
to infer sensitive information about entities (i.e., people,
objects). For example, given the values of the QIsRace,
Sex, Height, ZipCode and the attribute that contains
sensitive data about diseases, it is possible to link a person
to specific diseases, provided that the values of these QIs
uniquely identify this person.

Existing data anonymization approaches are centered on
creating models for privacy goals and developing algorithms
for achieving these goals using particular anonymization
approaches [15]. Anonymization approaches use different
anonymization techniques including suppression, where in-
formation (e.g., nationality) is removed from the data and
generalization, where information (e.g., age) is coarsened
into sets (e.g., into age ranges) [15]. These and other tech-
niques modify values of attributes of tables, and a common
side-effect of these modifications is unreachable statements
in DCAs that are otherwise executed with the original data.

B. A Motivating Example

Consider a motivating example that shows how applying
anonymization approaches to data makes operations un-
reachable in DCAs. The original database table is shown
in the upper part of Figure 1. It contains three QIs:Age,
ZipCode, and Nationality. The attributeDisease
contains sensitive data about diseases of individuals. Even
though the names of individuals are not given in this table,
it is possible to identify them using the values of the QIs
and link these individuals to specific diseases.

This table exposes an individual whose data is shown in
row five. The values of the QIs specify that the individual

i f (n a t i o n a l i t y ==” P a lauan ” && age>60) {
f (d i s e a s e) ; }

Figure 2. A motivating example that shows how applying anonymization
approaches to the data as shown in Figure 1 makes the functionf
unreachable.

is a 62-year old Palauan who lives in zip code 51000. If we
know that there is a single 62-year old Palauan who lives
in this zip code, we can infer that this person suffers from
dyspepsia.

To protect this information, wek−anonymize this table
for the lowest possible value ofk = 2 by suppressing the
values of the QINationality, perturbing the values of
the QIsAge, and generalizing the values ofZipCode. The
resulting table is shown in the lower part of Figure 1. For
each row in this table there is at least one other row that
contains the same values for the QIs, making it difficult
to infer with certainty what individual has which specific
disease. However, statements that used to be reachable with
the original data may not be reachable with the anonymized
data.

Consider the fragment of code shown in Figure 2. After
executing JDBC API calls, the values of the QIsAge,
Nationality, andDisease are put in the corresponding
variables of the DCAnationality, age, anddisease.
Since the values of these QIs are modified, the function call
f() becomes unreachable. Clearly, applying data privacy is
not good for testing this example.

C. The Problem Statement

The problem statement that we address in this paper is
how to preserve test coverage for DCAs while achieving
desired privacy goals for databases that these DCAs use for
k–anonymity. In this paper we concentrate on the statement
coverage criterion that states that all statements are covered
if and only if for all nodesn∈ N in the control-flow graph
of some DCA, there is at least one pathp ∈ P such that
that noden is on the pathp, whereP is the set of all paths
executed during testing the DCA andN is the set of all
nodes in the control-flow graph [7].

Suppose thatNo ⊆N is the set of all nodes that are covered
when testing a DCA with the original data, andNa ⊆ N
is the set of all nodes that are covered when testing the
same DCA with the anonymized data. In general, testing
with Na makes DCAs behave in ways that are different from
specifications, and as a result new execution paths in DCAs
with anonymized data may lead to exceptions or bypassed
branches. For example, the DCA logic handles suppressed
values ofNationality by bypassing the body of theif
statement as it is shown in Figure 2. Therefore, in the worst
caseNT = No∩Na =�, whereNT is the set of nodes of the
preserved statement coverage.

Ideally, all statements (i.e., nodes in the call graph) that
are executed with original data should also be executed with
anonymized data. What makes it difficult to reach our goal
is that it is an undecidable problem to determine precisely
how values of QIs are used in DCAs [16]. Without knowing
traces between QIs and program variables it is difficult to
compute the effect of replacing values of these QIs on test
coverage of the program.

Our goal is to investigate how to select a set of QIs as
a subset of attributes of tables in a database. Different data
anonymization approaches use different heuristics on how
to select attributes as quasi-identifiers [17]. For example, a
popular heuristics for the Datafly algorithm fork−anonymity
is to select attributes that have a large number of distinct
values, while the algorithm Mondrian advocates selection of
attributes with the biggest range of values [18]. By selecting
different QIs for applyingk−anonymity it is possible to
change test coverage. It is important to know how DCAs use
values of attributes, since anonymizing values of attributes
that are not used by DCAs is unlikely to affect test coverage
of these DCAs. However, there is no heuristics that considers
how attributes are used by DCAs to preserve test coverage.

III. O UR SOLUTION

In this section, we present core ideas behind our approach
that we callTesting Applications with Data Anonymization
(TaDa) and we describe the TaDa architecture.

A. Core Ideas

Our core idea to link attributes of the database with the
DCA that uses this database. To address this idea we use a
technique that tracks how different database values affectthe
application’s behavior. That is, TaDa links program variables
automatically to database attributes. The values of these
attributes can be used in conditional expressions to make
branching decisions, thereby influencing the execution flow
of the DCA. Our goal is to quantify the effect of replacing
values of database attributes on reachability of program
statements.

Using our idea unifies applications and their databases in a
novel way: database attributes are tied to the source code of
the DCAs and how these DCAs use values of these attributes
determines what anonymization strategy should be used to
protect data without sacrificing much of test coverage. A key
point is that often not all of the database attributes have to
be anonymized to achieve a given level of data protection.
Specifically, the value ofk in k–anonymity designates thatk
entities are indistinguishable from one another. The lowest
value ofk = 2 offers the least protection, and higher values
of k offer more protection. For example, protecting the
database of movie ticket buyers may require much lower
protection than the database that holds medical information.
Therefore it is important to extend anonymization algorithms
that implement data protection with information about how

DBFA

DCA
Concolic

Engine

SQL

Resolver

1

2

3 5

4

6 Attri-

butes

7 8

DBRA

Rela-

tions

TaDa

Analyzer

11

Anonym-

ization

Algorithm

DBO

9

8

10

Attribute

Rankings

Figure 3. TaDa architecture and workflow. Solid arrows depict the flow
of command and data between components, numbers indicate the sequence
of operations in the workflow.

DCAs use their databases to which these algorithms are
applied.

In order to determine how to maximize test coverage for
DCAs while achieving desired privacy goals for databases
that these DCAs use, we base our solution on three steps.
First, we should determine how the values of attributes affect
executions of statements in DCAs. Second, once it is clear
what attributes affect statement executions, these attributes
will be ranked using the number of statements and operations
that these attributes affect.

The third step is to feed the ranked list of attributes
into an anonymization algorithm that uses this information
to determine how to proceed with applying anonymization
techniques. Recall that business analysts, security experts,
and database administrators identify attributes that contain
sensitive information as well as QIs that can be used to
disclose this sensitive information. In general, only a few
small subsets of these QIs should be anonymized. The idea
is to automatically select those attributes from a list of QIs
whose values affect as few execution paths as possible.

Typically, control-flow decisions in the program are af-
fected by a smaller subset of input data. In an extreme case,
if some data in the database is not used in any control-flow
decision of any DCAs, then anonymizing this data will have
no effect on these DCAs. A more subtle point is that input
data may not affect most branch conditions in DCAs, and
therefore test coverage will not be affected much if this data
is anonymized. Thus it is beneficial to focus anonymization
on those aspects of the data that do not influence any or
just few deeply nested control-flow decisions. To summarize,
our key insight is that anonymizing a database attribute that
does not influence control flow decisions has little impact
on the DCA’s behavior induced by the database, in terms
of statement coverage. For testing we use this insight to
maintain higher test coverages when anonymizing databases.

B. Architecture

Figure 3 shows the architecture of TaDa. The inputs to
TaDa are the DCA bytecode and the fully anonymized
databaseDBFA (including its schema) that this DCA uses
(1). TaDa first instruments the DCA automatically, by

inserting method calls (i.e., callbacks) before and after each
instruction in the code. Test cases that drive DCA can be
obtained from either existing cases from older versions of
the same DCA, or automatically generated with concolic
exploration [19]. The purpose of these test cases is to
drive DCA for concolic engine to collect program behavior
information. Thus lack of oracle is not a problem.

During DCA execution, the callbacks enable TaDa to
create and maintain a precise symbolic representation of
each element of the DCA’s execution state, including the
invocation stack, operand stacks, local variables, and the
heap(2). TaDa maintains the symbolic state during pro-
gram execution, by mirroring the effect of each user program
instruction in the symbolic state. This includes the effects of
reading and writing any memory location, performing inte-
ger and floating point arithmetic, local and inter-procedural
control-flow, and handling exceptions.

When the DCA accesses the database(1), TaDa tracks
this access via the inserted instrumentation instructions.
TaDa treats a value directly retrieved from a database differ-
ently than all other values, by “tainting” it in the symbolic
state, i.e., by representing it with a symbolic variable instead
of a symbolic literal. Any value derived from a database
value is then represented as a symbolic expression that
contains one or more symbolic variables. This dynamic taint
analysis enables TaDa to determine how database values
affect the control flow of DCAs.

When executing the DCA, TaDa captures its SQL query
strings(3) and passes them to the SQL resolver, which uses
an SQL parser and the database schema(4) to obtain〈t,a〉
pairs, wheret is the table anda is the attribute of this table
that is referenced in this SQL query. These pairs(5) are
passed back to the concolic engine, which determines how
these attributes are used by the DCA by tainting variables
that hold the values of these attributes.

Since not all returned attributes are used in the DCA,
the engine(6) outputs the list of attributes whose values
affect some execution path(s) in the DCA. In addition, the
SQL resolver(7) outputs the list of relations between
tables (e.g., foreign keys and referential integrity constraints)
that is obtained from the database schema SQL queries
that the concolic engine passed to the SQL resolver. These
attributes and relations are passed(8) to the TaDa analyzer.
The analyzer ranks these attributes based on how many
statements their values affect, and(9) the ranked list of
attributed is outputted for review by security experts and
business analysts as specified in the Steps 2-5 of the TaDa
process.

The ranked list of attributes dictates(10) to the ano-
nymization algorithm that given equal affect on a privacy
policy, attributes with lower rank should be selected as QIs.
The algorithm(10) applied anonymization techniques to
the original databaseDBO, taking it and the ranked list of
attributes as the inputs. The algorithm outputs(11) the

resulting anonymized databaseDBRA.

C. Ranking Attributes

DCAs can access different attributes in their databases and
use the values of these attributes in different ways. Some
values are used in expressions to compute other values,
which in turn are used in other expressions and statements.
In some cases these values are used in conditional state-
ments, and they affect control flows of DCAs using control-
flow dependencies. Ideally, attributes whose values affect
many other expressions and statements in DCAs (in terms
of statement coverage) should not be picked as QIs.

To understand which attributes affect DCAs the most, we
rank these attributes by counting the numbers of statements
that their values affect. To do that we construct and traverse a
control-flow graph (CFG) of the DCA. When traversing the
CFG we count the number of statements that are directly
control-dependent on branch conditions that are linked to
database attributes. We perform virtual call resolution using
static class hierarchy analysis, and we take a conservative
approach by counting the biggest number of statements of a
method that can potentially be invoked. We also count all the
statements in all the target methods, but only when the call
site is the only entry point of that method. Currently, we only
take into consideration that values of attributes are used in
variables that control branches. Extending it to compute how
many statements are affected by these attributes preciselyis
a subject of future work.

IV. EXPERIMENTAL EVALUATION

In this section we describe the results of experimental
evaluation of TaDa on four small example Java programs.
What we investigate in this paper is whether it is possible for
organizations to achieve both privacy and test coverage goals
when applyingk–anonymity. The core of our investigation is
Tada, a tool that is used in test centers to link the attributes in
the tables to variables in the DCAs to help security experts
to select QIs that affect the DCAs the least.

A. Research Questions

We seek to answer the following research questions.

RQ1 How effectively does TaDa recommend selection
of attributes as QIs? That is, is it possible to
preserve test coverage while achieving a desired
level of anonymity with TaDa when compared to
the popular anonymization algorithm Datafly [20]?

RQ2 Does using TaDa lead to a significant decrease
of performance for applying anonymization tech-
niques when compared to choices made by human
experts?

DCA App Test DB Tbl Att IC FAC
[kNCLOC] [MB] % %

DurboDax 2.8 2.0 49 27 114 75 23
HealthCare .8 .8 241 10 54 100 18
RiskIt 4.3 2.6 628 13 57 68 37
UnixUsage 2.8 .9 21 8 31 73 28

Table I
CHARACTERISTICS OF THE SUBJECTDCAS. APP= APPLICATION CODE,

TEST = TEST CASES, DB = DATABASE, TBL = TABLES, ATT =
ATTRIBUTES IN ALL TABLES , IC = INITIAL TEST COVERAGE WITH THE

ORIGINAL DATABASE , FAC = COVERAGE WITH THE FULLY

ANONYMIZED DATA . WE COUNTED THE PERCENTAGE OF
COVEREDSQL STATEMENTS FOR THE APPLICATION

HEALTHCARE.

B. Subject Programs

We evaluate TaDa with four example Java programs that
belong to different domains. Our selection of subject pro-
grams is influenced by several factors: sizes of the databases,
size of the source code, presence of unit tests, and the
presence of embedded SQL queries that these programs use.

We selected four subject programs that come with test
cases.HealthCare is a program for maintaining health
information records1. HealthCare differs from other sub-
ject DCAs in that its code does not contain SQL queries,
which are supplied in a separate text file. Users can execute
the application by supplying SQL queries as its inputs along
with other data.
RiskIt is a an insurance quote program2. DurboDax

enables customer support centers to manage customer data3.
Finally, UnixUsage is a program for obtaining statistics
on how users interact with Unix systems using their com-
mands4.

Table I contains characteristics of the subject programs,
their databases, and test cases. The first column shows the
names of the subject programs, followed by the number of
noncommented lines of code, NCLOC for the program code
and accompanying tests. The source code of the project
ranges from 0.8 to 4.3K NCLOC. The test cases range
from 0.8 to 2.6K NCLOC. Other columns show the size of
database, number of tables and attributes in these databases,
test coverage that is obtained with the original database,
and test coverage that is obtained with a fully anonymized
database.

C. Methodology

To evaluate TaDa, we carry out experiments to explore its
effectiveness in enabling users to determine how to preserve
test coverage while achieving data anonymity (RQ1), and
how the overhead introduced by TaDa affects its use (RQ2).

1http://healthcaredbapp.sourceforge.net as of March 5,2010.
2https://riskitinsurance.svn.sourceforge.net as of March 5,2010.
3http://se547-durbodax.svn.sourceforge.netas of March 5,2010.
4http://sourceforge.net/projects/se549unixusage as of March 5,2010.

 35
 40
 45
 50
 55
 60
 65
 70

 1 2 3 4 5 6 7 8 9 10

T
es

t c
ov

er
ag

e
[%

]

k

qis-2
qis-3
base

(a) RiskIt.

 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75

 1 2 3 4 5 6 7 8 9 10

T
es

t c
ov

er
ag

e
[%

]

k

qis-2
qis-3
base

(b) Unix usage.

 35
 40
 45
 50
 55
 60
 65
 70
 75

 1 2 3 4 5 6

T
es

t c
ov

er
ag

e
[%

]

k

qis-2
qis-3
base

(c) Durbodax.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

A
ffe

ct
ed

 S
Q

L
st

at
em

en
ts

k

base
qis-2
qis-3

(d) Healthcare.

Figure 4. Experimental results for the subject DCAs for different sets of QIs (designated asbase, qis-2, andqis-3), where the QI setbase is the
baseline obtained using the attribute selection heuristicof the algorithm Datafly.

1) Privacy Goal: We choosek−anonymity as the privacy
goal for this experiment. Our choice is dictated by a few
factors. First,k−anonymity is a widely used privacy goal.
Second, algorithms to achievek−anonymity are well-studied
and understood. In addition,k−anonymity allows users to
set different levels of privacy by changing the value ofk,
and it is important for our experiments since we attempt to
find the balance between a sufficient level of privacy and test
coverage. Finally, the same level ofk can often be achieved
by selecting different attributes for QIs, and it allows TaDa
to make recommendations as to what attributes would affect
test coverage the least.

2) The Structure of the Experiment:Unfortunately, it is
physically not possible to carry out an experiment using
all subsets of the powerset of attributes as QIs where we
measure test coverage for subject DCAs while achieving
anonymity, since it would require us to consider over 1030

combinations for the subject databases. Given that databases
of the subject DCAs contain between 31 and 114 attributes,
it is challenging to select a subset of them as QIs while
preserving a higher level of test coverage. Recall that in the
industry this job is done by a team that comprises business
analysts and database experts. Therefore we conduct this
experiment only with three sets of QIs: one that is selected
using the heuristics for a well-known and frequently used

k−anonymity algorithm and the other two sets of QIs are
selected using recommendations of TaDa from the ranked
list of attributes. We selected two sets of QIs since there is
more than one set of QIs to protect sensitive information,
and we wanted to obtain more measurements to evaluate
TaDa. Each set of QIs used from 17 to 36 attributes. We
analyze and compare results of this experiment to answer
RQ1 and RQ2.

A baseline for our experiment is applying ak−anonymity
algorithm called Datafly [20] to the databases of the subject
DCAs. The input to this algorithm is a list of attributes sorted
in the descending order by the numbers of distinct values,
and generalization hierarchies for these attributes (i.e., it is
an accepted heuristic for selecting attributes as QIs). An
example of a generalization hierarchy is replacing values
of exact addresses with names of cities, which in turn can
be generalized by replacing them with names of counties
and states. When Datafly is applied to subject databases,
it selects attributes from the input list and applies certain
levels from the generalization hierarchies to suppress and
generalize data. The algorithm runs until there are more than
k undistinguishable records in the database for every entity.
Once the databases are anonymized, we run test cases and
measure the resulting test coverage for different values ofk.
These values are reported in Figure 4 with lines marked as

base, which is the baseline for this experiment.
To evaluate how well TaDa recommends the selection of

attributes for QIs we include the recommended attributes
on the list of QIs for the algorithm Datafly. Consider for
a different baseline that after fully anonymizing all data
in the databases, the coverage dropped between 31% and
some 80% as it is shown in Table I. Unlike the selection
heuristics for Datafly, TaDa recommends attributes for QI
based on their measured impact on executing statements of
their corresponding DCAs. That is, attributes that affect the
smallest number of statements will be on the top of the list;
conversely, attributes that impact most statements will beon
the bottom. With lower values ofk, executing Datafly will
affect fewer QIs and involve lower levels of generalization
hierarchies; conversely, increasing values ofk will lead to
anonymizing more QIs thereby affecting test coverage. We
observe and measure a number of response variables and
report them in Section IV-E.

3) Variables: Main independent variables are the values
of k in k−anonymity and the selection of different sets of QIs
from database attributes. Two main response variables are
the time it takes to anonymize data in the database to achieve
the desired level ofk to answer RQ2 and the test coverage
in percentage of program statements to answer RQ1. For
the DCA HealthCare, we measure the number of affected
SQL queries, since the program logic is embedded in these
queries that are supplied with the application. In addition, we
measure time and memory consumption of running TaDa’s
concolic engines on the subject DCAs.

4) Factors Outside Our Control:There are three factors
that make experimental evaluation difficult. First, anonymi-
zation time is a function of the implementation of anony-
mization techniques as well as the structure of the subject
database. TaDa does not address the issue of how to improve
existing anonymization techniques, it uses them as tools to
achieve the desired levels of anonymity.

Second factor is that the structure of the database and
semantic relations between data may limit choices of QIs
and thus reduce the effectiveness of the recommendations
of TaDa. In the worse possible case, to achieve the level
of k = 2 selection of all attributes as QIs may be required,
leaving little choice for DCA owners.

In a similar vein, the logic of DCAs may leave little choice
for DCA owners. If values of some attribute control a branch
condition that affects a large number of statements, and this
attribute must be selected as a QI, then the best thing that
TaDa can do is to advise the DCA owner on the possibly
lost level of test coverage. In the end it is the decision of
the DCA owner on how to handle the trade-off between test
coverage and data privacy.

D. Threats to Validity

A threat to the validity of this experimental evaluation
is that our subject programs are of small size because it is

difficult to find a large number of open-source programs that
use nontrivial databases. Large DCAs that have millions of
lines of code and use databases whose sizes are measured
in thousands of tables and attributes may have different
characteristics compared to our small subject programs.
Increasing the size of applications to millions of lines of
code may lead to a nonlinear increase in the analysis time
and space demand for TaDa. Making TaDa more scalable is
part of our future work.

Another threat to the validity is that we selected attributes
whose values must be protected from the set database
attributes. That is, for these initial experiments we played
the role of the business analyst and database expert team
ourselves. Selecting these attribute as sources of sensitive
information may affect further selection of other attributes
as QIs. Since the domains of the subjects DCAs are easy to
understand, we believe that our selections are close to what
a group of privacy experts could select. Even though we
cannot say with certainty that others would select the same
attributes, we believe that even if others were selected, it
would not change the results of our experiments drastically.

Additional threats to validity of this study is that in our
experimentation we use programmers who created unit tests
to drive DCAs, and this task should be tackled by testing
centers. Specifically, the bad unit tests that do not exercise
paths that lead to launching SQL queries can cause TaDa to
miss attributes that affect DCA coverage. Currently, we do
not provide any support for helping programmers to create
right unit tests or select input data, it is a subject of our
future work.

E. Results

The results of these experiments are shown in Figure 4.
This figure includes four graphs, one for each subject DCA.
Graphs in Figure 4(a)–Figure 4(c) show how test coverages
of the DCAs Riskit, UnixUsage, and DurboDax depend on
the values ofk when applying Datafly to databases, and
the graph in Figure 4(d) shows how many SQL statements
are affected when executing the DCA Healthcare that uses
these statements to retrieve data from its database. Graphs
in Figure 4(a)–Figure 4(c) show that test coverage drops
when increasing the values ofk (i.e., increasing the level of
protection) and graphs in Figure 4(d) show that the number
of affected SQL statements grow.

These graphs give us an insight into how selection of
attributes as QI affects drops in test coverage. Recall that
the graph marked asbase represents a baseline obtained
by applying the algorithm Datafly without using TaDa rec-
ommendation. In every case we see that TaDa issued recom-
mendations that permitted higher values of test coverage for
certain values ofk. For example, it is shown in Figure 4(a)
that for 3≤ k < 6 TaDa recommended QIsqis-2 beat the
baseline test coverage by approximately more than 11%.

DCA Min2 Max2 Min3 Max3 Dif2 Dif3
[mins] [mins] % %

DurboDax -2 0.01 0 1 33 13
HealthCare -23 39 -128 2 19 58
RiskIt -91 4 -207 2 29 43
UnixUsage -0.1 25 -0.1 21 130 103

Table II
ANONYMIZATION TIMES FOR DIFFERENT SUBSETS OFQIS WHEN

COMPARED TO THE BASELINES THAT USEDATAFLY. POSITIVE
VALUES MEAN THAT IT TAKES ADDITIONAL TIME AND

NEGATIVE VALUES MEAN THAT IT TAKES LESS TIME TO
ANONYMIZE DATA WHEN COMPARED TO THE BASELINE TIMES.
M IN2 = THE MINIMUM AMOUNT OF TIME FOR QIS-2, MAX 2 =

THE MAXIMUM AMOUNT OF TIME FOR QIS-2, MIN3 = THE
MINIMUM AMOUNT OF TIME FOR QIS-3, MAX 3 = THE
MAXIMUM AMOUNT OF TIME FOR QIS-3, DIF2 = MAX
PERCENTANGE DIFFERENCE FOR QIS-2, DIF3 = MAX

PERCENTANGE DIFFERENCE FOR QIS-3.

Interestingly, with all subject DCAs the test coverages
dropped to their worst levels whenk > 7. We confirmed
this phenomenon with other research groups in Accenture
Technology Labs whose researchers worked independently
on applying data anonymization algorithms to different
databases. To explain this result, consider the DCA RiskIt
(see Figure 4(a)) where TaDa recommends users to avoid
anonymizing attributesage and occupationcode be-
cause their values are used in many branch conditions
and consequently affect a large number of statements.
Anonymizing values of these attributes can be easily avoided
when achieving the level ofk−anonymity up to five. Less
impactful attributes are anonymized, and the coverage of
RiskIt drops only to little more than 90% of the original
test coverage. However, when trying to achieve the level
of 5 < k ≤ 8, the values of both attributes have to be
anonymized, and subsequently test coverage drops to little
over 60% of the original test coverage. To summarize, higher
levels of k require wider applications of anonymization
techniques to QIs that invariably affects test coverage of
DCAs.

While the differences are big in resulting test coverages
for difference values ofk, time differences are not that
significant between anonymizing different sets of QIs. Ta-
ble II contains the results of the anonymization times when
compared between using QIs that were recommended by
TaDa with the baseline results of the algorithm Datafly. The
maximum increase in anonymization time is a little more
than 39 minutes, which is acceptable for such a difficult
and laborious process as test outsourcing. At the same
time, TaDa selection recommendations led to decreases in
anonymizaton time at 117 minutes.

Replacing one attribute with some other for a choice
of QI may increase the time it takes to anonymize data.
However, the intuition is that it should not happen. Recall
that the heuristic that guides the QI selection process leadto

attributes with many distinct values or big ranges in values.
For example, attributes asage and occupationcode
do have many distinct values, they both can be used to
identify sensitive information. However, replacingage with
occupationcode and vice versa for a choice of QI is
unlikely to change the running time of data anonymization
process, since it involves physical data scrambling, whichis
proportional to the size of data.

V. RELATED WORK

Our work is related to regression testing since TaDa is
used to assess the impact of data anonymization on test-
ing. Numerous techniques have been proposed to automate
regression testing. These techniques usually rely on infor-
mation obtained from the modifications made to the source
code. Some of the popular regression testing techniques
include analyzing the program’s control-flow structure, an-
alyzing changes in functions, types, variables, and macro
definitions [21], using def-use chains [22], and constructing
procedure dependence graphs [23], and analyzing code and
class hierarchy for object-oriented programs [24]. These
techniques are not directly applicable to preserving test cov-
erage while achieving data anonymity for test outsourcing,
since regression information is derived from changes made
to the source code and not to how this code uses databases.

Closely related to TaDa is an anonymization technique
for protecting private information in bug reports that are
delivered to vendors when programs crash on computers of
customers [25]. This technique provides software vendors
with new input values that satisfy the conditions required
to make the software follow the same execution path until
it fails, but are otherwise unrelated with the original inputs.
Like TaDa, this technique uses symbolic execution to create
new inputs that allow vendors to reproduce the bug while
revealing less private information than existing approaches.
A key difference is that TaDa works with DCAs which use
databases, and it is unclear if this technique can be extended
to anonymize databases to preserve test coverage.

The concolic engine of TaDa builds on the pioneering
work of Godefroid et al. and Cadar et al. on the Dart and
EGT concolic exploration systems [26]. This first generation
of tools, which also includes Cute and jCute [19], showed
the feasibility of dynamic symbolic (concolic) execution,
but only supported a subset of user programs. The concolic
engine of TaDa belongs to the second generation of tools
[27], [28], [29], which aim at supporting any user program
written in a given programming language.

VI. CONCLUSION

In this paper we show that applying a popular data privacy
approach calledk–anonymity leads to serious degradation of
test coverage. We offer a novel and effective approach called
TaDa that helps organizations to understand how to balance
privacy and software testing goals. We show that for small

values ofk≤ 6 it is possible to achieve a higher test coverage
with our approach than with the current state-of-the-artk–
anonymization algorithm, Datafly. However, we also show
that for higher values ofk ≥ 7 test coverage drops to less
than 30% from the original coverage of more than 70%,
thus making it difficult to achieve good quality when testing
DCAs while applying data privacy.

REFERENCES

[1] G. M. Kapfhammer and M. L. Soffa, “A family of test
adequacy criteria for database-driven applications,” inProc.
11th ACM SIGSOFT FSE. ACM, 2003, pp. 98–107.

[2] “International data privacy laws,”
http://www.informationshield.com/intprivacylaws.html.

[3] D. J. Richardson, S. Leif-Aha, and T. O. O’Malley,
“Specification-based Test Oracles for Reactive Systems,” in
Proceedings of the 14th ICSE, May 1992, pp. 105–118.

[4] C. Kaner, J. Bach, and B. Pettichord,Lessons Learned in
Software Testing. New York, NY, USA: John Wiley & Sons,
Inc., 2001.

[5] T. E. Murphy, “Managing test data for maximum
productivity,” http://www.gartner.com/DisplayDocument
?doc cd=163662&ref=g economy2reduce, Dec. 2008.

[6] A. S. Namin and J. H. Andrews, “The influence of size and
coverage on test suite effectiveness,” inProc. 18th ISSTA.
ACM, 2009, pp. 57–68.

[7] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test
coverage and adequacy,”ACM Comput. Surv., vol. 29, no. 4,
pp. 366–427, 1997.

[8] J. T. Alexander, M. Davern, and B. Stevenson, “Inaccurate
age and sex data in the census pums files: Evidence
and implications,” National Bureau of Economic Research,
Working Paper 15703, January 2010. [Online]. Available:
http://www.nber.org/papers/w15703

[9] C. Bialik, “Census bureau obscured personal data – too well,
some say,”The Wall Street Journal, Feb. 2010.

[10] W. Aspray, F. Mayades, and M. Vardi,Globalization and
Offshorting of Software. ACM, 2006.

[11] Datamonitor, “Application testing services: global market
forecast model,” Aug. 2007.

[12] C. C. Aggarwal and P. S. Yu,Privacy-Preserving Data
Mining: Models and Algorithms. Springer, 2008.

[13] P. Samarati, “Protecting respondents’ identities in microdata
release,”IEEE Trans. Knowl. Data Eng., vol. 13, no. 6, pp.
1010–1027, 2001.

[14] INCITS/ISO/IEC, “Information technology - database lan-
guages - sql - part 5: Host language bindings (sql/bindings).”
INCITS/ISO/IEC, Tech. Rep., 1999.

[15] G. Cormode and D. Srivastava, “Anonymized data: genera-
tion, models, usage,” inProc. 35th ACM SIGMOD. ACM,
2009, pp. 1015–1018.

[16] W. Landi, “Undecidability of static analysis,”ACM Lett.
Program. Lang. Syst., vol. 1, no. 4, pp. 323–337, 1992.

[17] J. Nin, J. Herranz, and V. Torra, “Attribute selection in
multivariate microaggregation,” inProc. PAIS. ACM, 2008,
pp. 51–60.

[18] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Mondrian
multidimensional k-anonymity,” inProc. 22nd ICDE. IEEE,
2006, p. 25.

[19] K. Sen and G. Agha, “Cute and jCute: Concolic unit test-
ing and explicit path model-checking tools,” inProc. CAV.
Springer, Aug. 2006, pp. 419–423.

[20] L. Sweeney, “k-anonymity: A model for protecting pri-
vacy,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 10, no. 5, pp. 557–570, 2002.

[21] J.-M. Kim and A. A. Porter, “A history-based test prioritiza-
tion technique for regression testing in resource constrained
environments,” inICSE, 2002, pp. 119–129.

[22] M. J. Harrold, R. Gupta, and M. L. Soffa, “A methodology
for controlling the size of a test suite,”ACM Trans. Softw.
Eng. Methodol., vol. 2, no. 3, pp. 270–285, Jul. 1993.

[23] R. A. Santelices, P. K. Chittimalli, T. Apiwattanapong,
A. Orso, and M. J. Harrold, “Test-suite augmentation for
evolving software,” inASE, 2008, pp. 218–227.

[24] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley,
“Chianti: a tool for change impact analysis of java programs,”
in OOPSLA, 2004, pp. 432–448.

[25] M. Castro, M. Costa, and J.-P. Martin, “Better
bug reporting with better privacy,” in Proc. 13th
ASPLOS. ACM, Mar. 2008, pp. 319–328. [Online].
Available: http://research.microsoft.com/ jpmartin/papers/-
Castro08Better.pdf

[26] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed
automated random testing,” inProc. ACM SIGPLAN PLDI.
ACM, Jun. 2005, pp. 213–223.

[27] N. Tillmann and J. de Halleux, “Pex - white box test genera-
tion for .Net,” in Proc. 2nd International Conference on Tests
And Proofs (TAP). Springer, Apr. 2008, pp. 134–153.

[28] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted
and automatic generation of high-coverage tests for complex
systems programs,” inProc. 8th USENIX OSDI. USENIX,
Dec. 2008, pp. 209–224.

[29] C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy: Dy-
namic symbolic execution for invariant inference,” inProc.
30th ACM/IEEE ICSE. ACM, May 2008, pp. 281–290.

