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ABSTRACT
We present DSDSR, a generic repair tool for complex data
structures. Generic, automatic data structure repair algo-
rithms have applications in many areas. Reducing repair
time can may therefore have a significant impact on software
robustness. Current state of the art tools try to address the
problem exhaustively and their performance depend primar-
ily on the style of the correctness condition. We propose a
new approach and implement a prototype that suffers less
from style limitations and utilizes recent improvements in
automatic theorem proving to reduce the time required in
repairing a corrupt data structure. We also present experi-
mental results to demonstrate the promise of our approach
for generic repair and discuss our prototype implementa-
tion.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debug-
ging—Error handling and recovery, symbolic execution;
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Assertion checkers, class invariants, reliability

General Terms
Algorithms, Reliability, Verification

Keywords
Data structure repair, data structure invariants, dynamic
symbolic execution

1. INTRODUCTION
Generic repair of complex data structures is a new ap-

proach to software robustness [5, 4, 6, 7, 10]. It promises
to mutate the state of a running program in such a way
that the resulting state satisfies a given assertion or cor-
rectness condition. It is generic in the sense that a single
repair algorithm can repair many kinds of data structures.
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It thereby differs from traditional repair, as in traditional
repair for each kind of data structure we need a separate
repair algorithm. This makes generic repair potentially very
powerful. Indeed, initial generic repair techniques [5, 6] and
implementations such as Juzi [7] are very promising.

Besides runtime data structures and their respective cor-
rectness conditions, a generic repair algorithm does not need
any additional inputs. This makes the correctness conditions
the focal point of generic repair. However, it is well-known
that writing correctness conditions is hard [1, pages 371–
373]. I.e., a correctness condition has to satisfy several cri-
teria. First, it has to check the right properties. Second, it
has to be implemented correctly. Third, it should be imple-
mented in a way that is easy to read and understand. In ad-
dition to these criteria, current approaches to generic repair
make writing correctness conditions even harder, by adding
another requirement. I.e., in addition to the above three
criteria, a correctness condition also has to be written in a
repair-specific style. If a correctness condition does not sat-
isfy these style requirements, it may render current generic
repair approaches inefficient or ineffective—even if the cor-
rectness condition checked the correct properties, checked
them correctly, and was readable.

In [9] we motivated how dynamic symbolic techniques en-
able generic repair to support a wider range of correctness
conditions, presented a prototype that implements the pro-
posed algorithm and initial empirical results. In this paper,
we make the following contributions:

• We describe the algorithm and an implementation in
further detail.

• We present more experimental data, demonstrating
the promise of our approach for repairing data struc-
tures independent of the style of the data structure
correctness condition.

We describe our implementation in terms of object-oriented
software and especially Java programs, but the algorithm
equally applies to related languages (C++, C#, etc.) and
related programming paradigms (i.e., functional and proce-
dural languages).

2. MOTIVATING EXAMPLE
To illustrate the approach of our algorithm and how it im-

proves upon the state of the art, we now consider the binary
tree data structure given in Figure 1. We took the simplified
correctness condition from [7] and the constraints for the bi-
nary trees are: (1) acyclic along the left and right pointers



public c lass Node {
Node l e f t ;
Node r i gh t ;
// . .

}

public c lass BinaryTree {
Node root ;
int s i z e ;
// . .
public boolean repOk ( ) {
// An empty t ree must have zero in s i z e

i f ( root == null )
return ( s i z e == 0 ) ;

Set<Node> v i s i t e d = new HashSet<Node>() ;
v i s i t e d . add ( root ) ;
LinkedList<Node> workList = new LinkedList<Node>() ;
workList . add ( root ) ;

while ( ! workList . isEmpty ( ) ) {
Node cur rent = workList . removeFirst ( ) ;
i f ( cur rent . l e f t != null ) {
// The tree must have no cyc l e s along l e f t
i f ( ! v i s i t e d . add ( cur rent . l e f t ) ) {
return fa l se ;

} else
workList . add ( cur rent . l e f t ) ;

}

i f ( cur rent . r i g h t != null ) {
// The tree must have no cyc l e s along r i g h t
i f ( ! v i s i t e d . add ( cur rent . r i g h t ) ) {
return fa l se ;

} else
workList . add ( cur rent . r i g h t ) ;

}
}

// Size must be equal to #v i s i t e d nodes
return ( v i s i t e d . s i z e ( ) == s i z e ) ;
}

}

Figure 1: Example binary tree data structure, ab-
breviated, consisting of a Node class and a Binary-
Tree class. Method repOk is a contrived correctness
condition for the binary tree, which may be invoked
by assertions throughout the program.

and (2) the number of nodes reachable from the root node
along the left and right fields is stored in the size field. To
emphasize the fact that repair actions heavily depend on the
writing style of the correctness condition, we slightly mod-
ified the correctness condition of Figure 1 creating another
version as in Figure 5. This modified version of repOk pro-
duces the same result as the original one but only differs
in the style that whenever it discovers a corruption, stores
the result in a temporary boolean variable named result and
returns the desired answer only at the end of the method.

Figure 2 (a) shows an example binary that consists of five
nodes. The first node has a corrupt value in its left field,
namely it points to the root node creating a cycle. Note
that, in the modified repOk of Figure 5, the size field of the
binary tree is always the last accessed field. To repair the
corruption, Juzi first (b) tries to mutate this field- the last
accessed field of the repOk. Failing to repair the data struc-
ture, subsequently (c - g and omitted from the figure), Juzi
backtracks in the list of fields accessed by the repOk method
and continues repair actions in an exhaustive fashion trying
all possible mutations for each field. Finally, Juzi reaches
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Figure 2: Exhaustive approach in Juzi. Initially (a),
the binary tree is corrupt. Dotted lines and X in
size field show repair attempts (b - g). Omitted are
several subsequent repair attempts (h). Ultimately
repair culminates in the binary tree (z). Note that
there are no fresh objects in Juzi.

a field that the repOk method had accessed very early, the
corrupt left field of the first node, and now Juzi repairs the
binary tree successfully (z). For each repair attempt Juzi
executes the repOk method, to check if the resulting list
satisfies the repOk correctness condition.

In situations like this, an exhaustive approach works well
for repairing small data structure instances, containing few
nodes. But when repairing larger structures, at some point
exhaustive search becomes inefficient. The number of pos-
sible mutations grows exponentially and most mutations do
not result in a correct state.

Our key insight is that we can guide data structure repair
by mutating the data structure in such a way that the re-
paired data structure takes a predetermined execution path.
In our example, we want to invert the outcome of the if-
condition just after which the temporary variable result got
assigned such that, instead of returning false, repOk returns
true. For multiple corruptions, this result variable will be
assigned false multiple times. In such cases, we take the last
if-condition after which result is finally assigned false. In
our example, this does not occur as there is only one cor-
ruption in the data structure. Indeed, if we take the path
condition of the original path, which returned false, invert
that particular conjunct and ignore the following conjuncts,
and solve the resulting path condition, we can obtain the



correct repair action directly.

3. PROPOSED APPROACH, ALGORITHM
AND IMPLEMENTATION

Our tool, DSDSR consists of two parts. At the lower level
is a dynamic symbolic execution engine that has a broad in-
terface to allow modification of path conditions, etc. At the
top layer sits our generic repair algorithm. In this section we
briefly describe both components and the implementation.

3.1 Dynamic Symbolic Execution Engine
Our dynamic symbolic execution engine automatically in-

serts instrumentation code into a given repOk method, which
yields an instrumented version of repOk. The execution of
the instrumented version behaves just like the original, ex-
cept that it also creates a symbolic representation of the
program execution state. In that our engine is similar to
previous ones such as Dart, jCute, and Pex [8, 12, 13]. When
we apply dynamic symbolic execution to repOk, we obtain
a complete symbolic representation of the path taken by the
repOk correctness condition. For example, we now have a
symbolic representation of the if-condition, whose concrete
value resulted triggered repOk to return false.

3.2 Algorithm for Data Structure Repair
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Figure 3: Overview of our dynamic symbolic data
structure repair algorithm (DSDSR). RepOk is a
method that implements a given correctness condi-
tion. I-RepOk is the instrumented version of repOk.

Figure 3 gives a high-level overview of our algorithm. As
part of its normal execution, a program invokes assertions
or other methods that implement a correctness condition.
In our description we follow previous work and name such a
method repOk [6, 7]. When the correctness condition fails,

i.e., repOk returns false, execution is handed over to our ex-
tended dynamic symbolic engine, which in turn invokes the
instrumented version of repOk. Executing the instrumented
repOk builds the path condition of the execution path that
leads to the point at which repOk failed.

With the full symbolic path condition in hand, we can
now modify the path condition to obtain a different path.
I.e., if we invert or negate the last if-condition, we obtain
a path that does not return false at the point at which the
original execution failed. Also, for our example, if we invert
the last if-condition before result ’s assignment and ignore
the following conditions, we also obtain a path that does
not return false. At the same time, solving such a new path
condition can give us an input state that will trigger the
new path. If the new state satisfies the repOk correctness
condition, we can mutate the existing state to resemble the
new one, which completes the repair.

The algorithm relies on a faithful encoding of the path
condition and other program constraints in a format suitable
for automated reasoning. It further relies on a powerful au-
tomated constraint solver that can simplify such constraints
and, if a solution exists, can produce a concrete solution.
Finally, the solution of the constraint solver needs to be
mapped back into the program state, to repair the existing
data structures.
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Figure 4: Directed approach in DSDSR. Solid lines
represent left field and dashed lines represent right
field. Initially (a), the binary tree is corrupt, as the
first node’s left field points to the root, creating a
cycle, which is incorrect according to repOk correct-
ness condition. In first attempt (b), DSDSR creates
a new node for left field. Finally, in (c), updates the
size field to reflect the repair.

We repair the data structure according to the solution of
the constraint solver and invoke repOk to check if the re-
sulting structure satisfies the repOk correctness condition.
If repOk again returns false, we may make another itera-
tion and attempt another repair. In our example, the first
solution was a new node for the left field of the root (Fig-
ure 4(b)). But resulting structure still did not satisfy re-
pOk due to mismatch in total number of nodes in size field.
A second iteration finally repaired the data structure (Fig-
ure 4(c)). At this point note that, Juzi only works with
existing objects whereas our tool can suggest new objects as
solution.

To prevent an infinite loop of repair attempts, the algo-
rithm terminates after reaching a user-defined number of
futile attempts. If the repOk method returns true, we con-
sider the repair attempt to be successful and resume normal
program execution.



The main advantage of our approach is that, unlike Juzi,
in the search for a data structure that satisfies a repOk cor-
rectness condition, we do not need to exhaustively generate
all possible candidate data structures. Instead, DSDSR de-
rives conditions directly from the repOk implementation to
generate a single data structure that satisfies the correctness
condition.

3.3 Implementation
We implement our generic repair algorithm on top of our

new dynamic symbolic execution engine for Java, called Dsc.
Dsc works on top of any standard Java virtual machine. It
does not require modifications of the virtual machine or the
user code. This means we can repair existing Java code
when it is executed on a standard JVM.

Dsc analyzes user code at the bytecode level. It uses the
instrumentation facilities provided by Java 5 to instrument
user code at load-time, using the ASM bytecode instrumen-
tation framework [3, 2].

fieldAccesses← emptyList;
instanceAccesses← emptyList;
constraints← emptyList;
lastF ieldAccessed← −1;
lastInstanceAccessed← −1;
corruptConstraint← −1;

repOkExec1(repOk);
updateMaps(root);
repOkExec2(repOk);

negate constraints[corruptConstraint];
solve constraints;
update data structure with the solution;

Algorithm 1: Main Algorithm

We explain the implementation details with the help of
our motivating example, the binary tree data structure given
in Figure 4 and the correctness condition of Figure 5. Re-
call that when the correctness condition fails, i.e., repOk
returns false, execution is handed over to the extended dy-
namic symbolic engine, which in turn invokes the instru-
mented version of repOk. It calls the instrumented version
of repOk twice, as shown in Agorithm 1, and the purpose of
these two executions are twofold:

• Explore the state space to collect meta information of
the data structure and identify the corrupt instance
and field.

• Build an appropriate path condition, by negating the
constraint that represents the corruption in the data
structure.

Meta information includes the subtype and supertype re-
lation, the dynamic type of objects, types of referenced ob-
jects, visibility, etc. Algorithm 2 describes the handler that
interprets the first call of the instrumented repOk method.
It mainly detects the corrupt instance and corrupt field of
the data structure. Ideally, there should not be any assign-
ment statements in correctness conditions, so for any such
assignment statement at a program point P, as in line 19 in
Figure 5, we wrap the value with two indices: the last field
and instance accessed prior to program point P and push it
to the operand stack. At the end of this call, when repOk

finally returns false, either by unwrapping the operand stack
top value e or simply getting the maximum index of field-
Accesses and instanceAccesses, lastFieldAccessed and lastIn-
stanceAccessed hold the indices to the field and instance ac-
cessed last. In our example, as shown in Figure 5 in line
37, when repOk returns false using temporary variable re-
sult, we deduce that the first node (node 1) is the corrupt
instance and its left field is the corrupt field.

while more statements do
match statement do

case field read:
resolve accessed instance and field;
add to fieldAccesses;
add to instanceAccesses;

case local variable read:
if local variable maps to field access then

resolve accessed instance and field;
add to fieldAccesses;
add to instanceAccesses;

case (x ← e):
wrap e with pointers to maximum index of
fieldAccesses, instanceAccesses;

case return e:
if operand stack top e is wrapped then

unwrap the e and get pointers:
fieldAccessedPointer
instanceAccessedPointer;
lastF ieldAccessed←
fieldAccessedPointer;
lastInstanceAccessed←
instanceAccessedPointer;

else
lastF ieldAccessed←
maximum index of fieldAccesses;
lastInstanceAccessed←
maximum index of instanceAccesses;

Algorithm 2: repOkExec1(Method repOk)

Between the two repOk calls, Algorithm 3 uses Java’s re-
flection mechanism to traverse the data structure and map
the value of each reference field to our symbolic representa-
tion of object fields. But to allow the constraint solver to
compute a solution, we do not assert such constraints for
the corrupt instance and field.

Algorithm 4 describes the interpreter for the second call of
the instrumented repOk method, which builds the path con-
dition, incorporating all the meta information. For similar
reasons as in Algorithm 2, for any assignment statement we
wrap the value e with the maximum index of constraints at
that point, which basically points to the constraint that rep-
resents the corruption. At the end, before returning, if the
stack top value e is wrapped, we unwrap it to get the index
to the corrupt constraint or uses the maximum index of the
constraints. For each branch condition, we create a corre-
sponding constraint to represent the outcome of the branch
condition. At the end of the execution, the conjunction of all
such constraints yields the path condition. For example, in
Figure 5 with root node (node 1), line 3 creates a constraint
: notNull (node 1), line 16 creates notNull((node 1).left) and
from Set’s add method in line 18 (in our example, the last
if-condition before the result is assigned false) Dsc creates



classes← emptySet;
objects← emptySet;
objects.add(root);
worklist← emptyQueue;
worklist.enqueue(root);
corruptF ield← fieldAccesses[lastF ieldAccessed];
corruptInstance←
instanceAccesses[lastInstanceAccessed];

while worklist not empty do
obj ← worklist.dequeue();
classes.add(class(obj));
foreach field f in refF ields(obj) do

if obj!=corruptInstance AND f !=corruptF ield
then

refObj ← get referenced object in f of obj;
update map for f at index obj with refObj;
if objects.add(refObj) then

worklist.enqueue(refObj);

foreach class in classes do
foreach field in refF ields(class) do

assert map for field;

Algorithm 3: updateMaps(Object root)

yet another constraint (node1) == (node 1).left. At the very
end of this algorithm, Dsc uses corruptConstraint to negate
this constraint, resulting in (node 1) != (node 1).left and
in conjunction with the previously formed constraints, we
finally have the path condition to solve.

while more statements do
match statement do

case branch:
create constraint of outcome;
add constraint to constraints;

case (x ← e):
wrap e with pointer to maximum index of
constraints;

case return e:
if operand stack top e is wrapped then

unwrap the e and get pointer:
ptConstraint;
corruptConstraint← ptConstraint;

else
corruptConstraint←
maximum index of constraints;

Algorithm 4: repOkExec2(Method repOk)

4. PRELIMINARY RESULTS
We conducted experiments with binary trees of different

sizes. Each run constructed a correct binary tree of a given
size, corrupted one of the leaf node’s left or right field by
pointing the root as its child, invoked one of the repair tools,
and measured the time the tool takes to repair.1 To empha-
size the fact that writing good correctness condition is very

1The current version of our prototype makes only one repair
attempt. For cases where we needed multiple repair actions
to finally correct the data structure, we ran the tool multiple
times—adding the time taken each time to simulate the final
repair.

public boolean repOk ( ) {
2 boolean r e s u l t = true ;

i f ( root == null ) {
i f ( s i z e != 0)
r e s u l t = fa l se ;

return r e s u l t ;
7 }

Set<Node> v i s i t e d = new HashSet<Node>() ;
v i s i t e d . add ( root ) ;
LinkedList<Node> workList = new LinkedList<Node>() ;

12 workList . add ( root ) ;

while ( ! workList . isEmpty ( ) ) {
Node cur rent = workList . removeFirst ( ) ;
i f ( cur rent . l e f t != null ) {

17 // The tree must have no cyc l e s along l e f t
i f ( ! v i s i t e d . add ( cur rent . l e f t ) ) {
r e s u l t = fa l se ;

} else
workList . add ( cur rent . l e f t ) ;

22 }

i f ( cur rent . r i g h t != null ) {
// The tree must have no cyc l e s along r i g h t
i f ( ! v i s i t e d . add ( cur rent . r i g h t ) ) {

27 r e s u l t = fa l se ;
} else
workList . add ( cur rent . r i g h t ) ;

}
}

32

// Size must be equal to #v i s i t e d nodes
i f ( v i s i t e d . s i z e ( ) != s i z e )
r e s u l t = fa l se ;

37 return r e s u l t ;
}

Figure 5: Modified correctness condition. It pro-
duces the same output as the corresponding correct-
ness condition of Figure 1. However, it stores the
status of the check temporarily in a local variable
and returns it at the end.

hard and repair actions heavily depend on the programmer
defined correctness condition, we considered slightly differ-
ent versions of the same correctness condition and applied
both the repair tools. We considered three versions of the
same correctness condition. They vary in places of return
statements, e.g., the first one returns false immediately when
it detects a corruption (Figure 1) , second one waits until
the end of the method (Figure 5) and the last one returns
false immediately if the corruption is in the right pointer but
returns late if it is in the left pointer and vice versa.

As before [9], We conducted experiments with the latest
version of Juzi (0.0.0.1) which we obtained from the Juzi
website2 and took all measurements on a Sun HotSpot JVM
1.6.0 17 running on Windows on an intel laptop 2.26GHz
Core2 Duo processor.

Figures 6, 7, and 8 show the result of our experiment. For
a carefully designed correctness condition, Juzi repairs more
efficiently than our prototype implementation, as shown in
Figure 6. But with a modified correctness condition, as
shown in Figure 7, starting with 5 nodes, our approach is
more efficient.

Figure 8 shows the result of our experiment with third ver-
sion of repOk that returns false immediately if the corrup-
tion is in the right pointer but returns late if the corruption

2http://users.ece.utexas.edu/˜elkarabl/Juzi/index.html
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sizes and immediately returning correctness condi-
tion (Figure 1). #nodes is the number of nodes in
the binary tree. Repair time is the time a tool took
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Figure 7: Repair time for binary trees of different
sizes and late returning correctness condition (Fig-
ure 5).
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Figure 8: Repair time for three sets of random bi-
nary trees and yet another variation of the correct-
ness condition. We had to terminate Juzi for 10, 11,
or 14 nodes.

is in the left pointer. We found similar results for the oppo-
site case of this repOk, which returns immediately for left
field corruption but returns late if corruption is in the right
field. We applied both the tools for three sets of binary trees,
where each set had randomly built binary trees containing
from 1 to 15 nodes. In each case, we had to terminate Juzi
prematurely because it was taking too long to repair. This is
intuitively expected as an exhaustive approach such as Juzi
is bound to be inefficient for larger data structures. This

motivates our more directed approach, which takes approx-
imately the same amount of time to repair—irrespective of
the size of the data structure and variation in the correctness
conditions.

5. RELATED WORK
Generic data structure repair, pioneered by Demsky and

Rinard [5], is a relatively new area of research. Non-generic
data structure repair is not new, classic examples include
the IBM MVS/XA operating system [11].
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