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SUMMARY

Benchmarks are heavily used in different areas of computer science to evaluate algorithms and tools. In
program analysis and testing, open-source and commercial programs are routinely used as benchmarks to
evaluate different aspects of algorithms and tools. Unfortunately, many of these programs are written by
programmers who introduce different biases, not to mention that it is very difficult to find programs that can
serve as benchmarks with high reproducibility of results.
We propose a novel approach for generating random benchmarks for evaluating program analysis and testing
tools and compilers. Our approach uses stochastic parse trees, where language grammar production rules are
assigned probabilities that specify the frequencies with which instantiations of these rules will appear in the
generated programs. We implemented our tool for Java and applied it to generate a set of large benchmark
programs of up to 5M LOC each with which we evaluated different program analysis and testing tools and
compilers. The generated benchmarks let us independently rediscover several issues in the evaluated tools.
Copyright c© 2016 John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

A benchmark is a point of reference from which measurements can be made in order to evaluate the
performance of hardware or software or both [2]. Benchmarks are important, since organizations and
companies use different benchmarks to evaluate and choose mission-critical software for business
operation [3]. Businesses are often confronted with a limited budget and stringent performance
requirements while developing and deploying enterprise applications, and benchmarking is often
the only way to choose proper infrastructures from a variety of different technologies for these
applications. For example, application benchmarks play a crucial role in the U.S. Department
of Defense acquisition process [4]. Given that corporations spend between 3.4% and 10.5% of
their revenues on technologies, biased or poorly suitable benchmarks lead to wrong software and
hardware architecture decisions that result in billions of dollars of losses every year [5].

†This article is an extended version of our previous work presented at WODA 2012 [1].
∗Correspondence to: University of Texas at Arlington, Computer Science and Engineering Department,
Arlington, TX 76019-0015, USA. E-mail: csallner@uta.edu
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Benchmarks are very important for evaluating pRogram Analysis and Testing (RAT) algorithms
and tools [6, 7, 8, 9, 10]. Different benchmarks exist to evaluate different RAT aspects, such as
how scalable RAT tools are, how fast they can achieve high test coverage, how thorough they
handle different language extensions, how well they translate and refactor code, how effective RAT
tools are in executing applications symbolically or concolically, and how efficient these tools are
in optimizing, linking, and loading code in compiler-related technologies, as well as profiling. For
example, out of the 29 papers that described controlled experiments in software testing published
in TOSEM/TSE/ICSE/ISSTA from 1994 to 2003, 17 papers utilize the Siemens benchmark, which
includes a set of seven C programs with only several hundreds lines of code [11]. Currently, a
strong preference is towards selecting benchmarks that have much richer code complexity (e.g.,
nested if-then-else statements), class structures, and class hierarchies [8, 9]. Unfortunately,
complex benchmark applications are very costly to develop [3, page 3], and it is equally difficult to
find real-world applications that can serve as unbiased benchmarks for evaluating RAT approaches.

Consider a situation where different test input generation techniques are evaluated to determine
which one achieves higher test coverage in a shorter period of time [12]. Typically, test input
generators use different algorithms to generate input data for each application run, and the
cumulative statement coverage is reported for all runs as well as the elapsed time for these runs.
On one extreme, “real-world” applications of low complexity are poor candidate benchmarks, since
most test input data generation approaches will perform very well by achieving close to 100%
statement test coverage in very few runs. On the other extreme, it may take significant effort to adjust
these approaches to work with a real-world distributed application whose components are written in
different languages and run on different platforms. Ideally, a large number of different benchmark
applications are required with different levels of code complexity to appropriately evaluate test input
data generation tools.

Writing benchmark application from scratch requires a lot of manual effort, not to mention
that a significant bias and human error can be introduced [13]. In addition, selecting commercial
applications as benchmarks negatively affects reproducibility of results, which is a cornerstone
of the scientific method [14], since commercial benchmarks cannot be easily shared among
organizations and companies for legal reasons and trade-secret protection. For example, Accenture
Confidentiality Policy (item 69) ‡ states that source code, which is generated by the company and
relates to its business, research and development activities, clients or other business partners, or
employees are considered confidential information. Other companies have similar policies. Finally,
it is often required to have more than one benchmark to determine the sensitivity of the RAT
approaches based on the variability of results for applications that have different properties.

Ideally, users should be able to easily generate benchmark applications with desired properties.
This idea has already been used successfully in testing relational database engines, where complex
Structured Query Language (SQL) statements are generated using a random SQL statement
generator [15]. Suppose there is a claim that a relational database engine performs better at certain
aspects of SQL optimization than some other engines. The best way to evaluate this claim is to create
complex SQL statements as benchmarks for this evaluation in a way that these statements have
desired properties that are specific to these aspects of SQL optimization, for example, complicated
nested SQL statements that contain multiple joins. Since the meaning of SQL statements does not
matter for performance evaluation, this generator creates semantically meaningless but syntactically
correct SQL statements thereby enabling users to automatically create low-cost benchmarks with
significantly reduced bias.

In this article, we propose a Random Utility Generator for pRogram Analysis and Testing
(RUGRAT) for generating application benchmarks within the specified constraints and within a
range of predefined properties. Our goal is to complement “real-world” application benchmark with
synthetic ones, so that researchers and industry professionals have diverse options for evaluating
program analysis and testing tools. RUGRAT is implemented for Java and it is used to evaluate
different Java compilers and open-source RAT tools.

‡https://policies.accenture.com/Pages/0001-0100/0069.aspx
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This article makes the following contributions:

• We apply stochastic parse trees for generating random application benchmarks. In stochastic
parse trees, language grammar production rules are assigned probabilities that specify the
frequencies with which instantiations of these rules will appear in the generated programs.

• We implemented RUGRAT for Java and used it to generate dozens of applications, ranging
from 300 LOC to 5M LOC, to benchmark several versions of a popular Java source to
bytecode compiler as well as popular program analysis and testing tools. This version of
RUGRAT is open source software and available for download from the RUGRAT tool web
site§.

2. OUR APPROACH: LEVERAGING STOCHASTIC GRAMMARS TO GENERATE LARGE
RANDOM BENCHMARK APPLICATIONS

In this section we present a model for RUGRAT and discuss our goals and approach for generating
random object-oriented benchmark applications. Specifically, we review the stochastic grammar
model [16, 17] that is at the core of our technique and discuss how we can apply the stochastic model
to generating large-scale benchmark applications that resemble real-world applications. Then, we
list the benefits of our approach over handwritten programs.

2.1. Background: Stochastic Grammar Model

Consider that every program is an instance of the grammar of the language in which this program
is written. Typically, grammars are used in compiler construction to write parsers that check the
syntactic validity of a program and transform its source code into a parse tree [18]. An opposite use
of the grammar is to generate branches of a parse tree for different production rules, where each rule
is assigned the probability with which it is instantiated in a program. These grammars and parse trees
are called stochastic, and they are widely used in natural language processing, speech recognition,
information retrieval [19], and also in generating SQL statements for testing database engines [15].
We use a stochastic grammar model to generate large random object-oriented programs.

Random programs are constructed based on the stochastic grammar model, and the construction
process can be described as follows. Starting with the top production rules of the grammar, each
nonterminal is recursively replaced with its corresponding production rule. When more than one
production rule is available to replace a nonterminal, a rule is randomly chosen based on the rules’
probabilities. Terminals are replaced with randomly generated identifiers and values that preserve
syntax rules of the given language. Termination conditions for this process of generating programs
include the limit on the size of the program or selected complexity metrics.

In addition to the rules that are found in a typical context-free grammar of a programming
language, our approach takes into account additional rules and constraints that are imposed by the
programming language specification. For example, a variable has to be defined before it can be
used and a non-abstract class in an object-oriented program has to implement all abstract methods
it inherits from its super-types. With such an enhanced stochastic grammar model it is ensured that
the generated program is syntactically correct and compiles. The construction process can be fine-
tuned by varying the ranges of different configuration parameter values and limiting the grammar to
a subset of the production rules that are important for evaluating specific RAT tools (e.g., recursion,
use of arrays, or use of different data types can be turned off if a RAT approach does not address
these).

2.2. Our Goal and Approach

We address one main goal—to allow experimenters to automatically generate benchmark
applications that have desired properties for evaluating RAT approaches and tools. We do not see

§https://sites.google.com/site/rugratproject/
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RUGRAT as a replacement of real-world applications for evaluating RAT approaches and tools.
We rather see RUGRAT as a tool that enables experimenters to quickly generate a large number
of nontrivial application benchmarks that have desired properties. The goal of RUGRAT is thus to
supplement evaluations of RAT tools using not only real-world application benchmarks but also
synthetic ones that are generated on demand using a set of constraints. In a way, we see RUGRAT
as a rapid prototyping tool for producing a set of benchmark applications for initial evaluation of
RAT approaches and tools.

To achieve our goal, we should address several issues. First, generated programs must have a
wide variety of language constructs that are important for evaluating RAT approaches and tools.
Sample constructs include recursion, dynamic dispatch, and array manipulations using expressions
that compute array indices that test the boundaries of RAT algorithms. Existing program generators
often do not take into consideration such language constructs and do not add them to generated
programs.

In addition, we adhere to a requirement that generated programs and handwritten programs should
trigger similar behaviors in RAT tools. This requirement is motivated by the needs of the potential
RUGRAT users. That is, we expect that RAT tool developers and RAT tool users care most about the
performance of RAT tools on real-world programs, since processing real-world programs is likely
going to be the main use case of these RAT tools.

While stress-testing a RAT tool with unusual programs is also important, we expect RUGRAT
users to care most about RAT tool performance on programs that are more mainstream. In this
regard we expect RUGRAT users to be similar to RAT tool users. RAT tool users have frequently
complained about RAT tools generating input values for the analyzed program that appear exotic
and do not represent expected program behavior as well as about warnings on bugs that cannot occur
or can only occur in very rare situations [20, 21, 22, 23].

As a consequence, we enable experimenters to tune the default parameters of RUGRAT such that
generated programs are as similar as possible to what one would consider a normal handwritten
program. We implement this issue by varying the probabilities that are assigned to different
production rules of the language grammar. RUGRAT users can diverge from our default parameters
to produce more exotic kinds of programs. In our evaluation we explore an example use of RUGRAT
with non-standard parameters.

2.3. Benefits

Our approach scales to generating programs that are large, have complex properties, and can trigger
similar RAT tool behaviors as handwritten programs (see the comparison results in Section 6). While
RUGRAT-generated programs are similar to handwritten programs, our approach provides multiple
benefits over benchmarking with handwritten applications.

First, using RUGRAT one can easily generate a large variety of random programs. Such a large
set of programs can complement existing suites of handwritten benchmark programs, which are
often relatively small sets of programs. For example, the well-known Siemens suite [11] consists of
a few small programs and could benefit from a large set of complimentary applications that cover a
range of program configuration points.

Second, RUGRAT-generated programs have a designated entry point or main function. In
contrast, handwritten programs such as libraries typically lack such a clear entry point, which forces
many RAT tool developers to write test harnesses for RAT tool evaluation [24]. Each RUGRAT-
generated program has a dedicated main method that can be used to start the program directly and
does not require a test harness.

Third, our approach scales down from realistic applications to toy applications that only contain
a specified set of language features. This down-scaling is useful during RAT tool development.
That is, at an early RAT tool development stage, a RAT tool may only be able to handle a few
programming language features. At this point a RAT tool developer may still want to test her RAT
tool on large applications. However handwritten applications often use multiple language features
and it may be hard to find handwritten applications that only use a given set of language features,
especially when looking for a variety of larger applications.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
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A good example is the task of benchmarking compilers of different versions of the compiled
programming language. For this task we clearly need benchmark programs that can be compiled
by all participating compilers. Since programming languages tend to support programs coded in
prior versions of the language, this task limits generated programs to the subset of language features
supported by the oldest compiler. However it is not easy to find in open source project repositories
many large handwritten applications that only use features of, say, Java 1.2.1. (This may be due to
project developers incorporating new Java language features into their Java applications as these
features become available in new versions of the Java language.) On the other hand, it is trivial to
generate many such applications with RUGRAT, in various sizes and using various subsets of the
language.

Fourth, as another special case of down-scaling, RUGRAT is useful for generating programs that
have no external dependencies. In contrast, most realistic handwritten applications have external
dependencies such as on external libraries. Such external dependencies often complicate RAT
tool operation, even for industrial-strength RAT tools. For example, in a recent study on why the
industrial-strength Pex dynamic symbolic execution (DSE) tool achieved less than perfect branch
coverage, it is discovered that more than a quarter of the missed branches were due to calls to
external libraries such as native code [25]. To analyze such applications, DSE tool developers
sometimes have to resort to writing mock versions or models of the external dependencies, which
is tedious and laborious [26]. In contrast, programs generated by RUGRAT do not have external
dependencies, so DSE tool developers can easily compare the scalability of their tools on benchmark
applications.

Fifth, since RUGRAT-generated applications do not have external dependencies it is very easy
to compile, install, execute, and test RUGRAT-generated applications. In contrast, handwritten
programs are often difficult to install and execute. For example, before a realistic handwritten
application can be tested, external dependencies have to be resolved. For example, additional
systems such as databases, servers, and communication infrastructure have to be installed and
configured. A survey on evaluating static analysis tools and benchmarks showed that most user-
reported failures in software repositories are false failures, i.e., failures that will not be fixed as they
do not concern the code [27]. Indeed, the false failures are mostly installation failures, which may
be caused by poor documentation and difficult deployment procedures. RUGRAT users avoid this
potential pitfall as RUGRAT-generated applications do not require any installation or configuration
and can be compiled and executed immediately.

Given the difficulties inherent in using handwritten programs for benchmarking, it is maybe not
surprising that existing comparisons of RAT tools have mainly focused on using small to medium-
sized subject programs for benchmarking. That is, the empirical comparisons we are aware of are
limited to subject sizes of small test cases [28, 29, 30], less than 150k LOC [21, 23, 27], or less
than 500k LOC [31]. With RUGRAT it is easy to generate subject applications that contain several
million lines of code (see Section 4.2).

Finally, our approach enables more experiments at lower cost by providing, on demand, many
high-quality programs in short time. When evaluating a RAT tool with handwritten programs, the
RAT developer needs to explore code repositories with specific requirements if more programs
are desired, which can be time-consuming. However, with RUGRAT the developer can generate
such programs automatically in a short amount of time (see the RUGRAT resource consumption
evaluation in Section 4.2), by specifying such requirements as parameters to RUGRAT.

3. IMPLEMENTATION

We describe the implementation of our RUGRAT approach in Java. Figure 1 shows an example
snapshot of RUGRAT’s program generation process. Starting from the root of the abstract syntax
tree, RUGRAT keeps instantiating syntax rules. When there are multiple rules available for a non-
terminal, we randomly choose one that satisfies the overall program configuration. For example, if
we have reached the configured maximum depth of nested conditions in the current method, we skip
the if-else rule. Similarly, if we have reached the configured total LOC, we choose only terminals.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
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Figure 1. Left: Example RUGRAT-generated Java subtype hierarchy, rooted at the Java base type Object.
Right: Parts of an example abstract syntax tree RUGRAT generated from a stochastic grammar of the Java
programming language. RUGRAT picks types (such as class E) from such a subtype hierarchy randomly to

create instances and call methods on these instances.

At first glance such a blind random generation process may seem simplistic. However, modern
object-oriented languages such as Java, C++, or C# contain many complex features that impose
additional well-formedness rules on generated programs. It is therefore more challenging to generate
syntactically correct programs, especially if we want the generated programs to use a wide variety of
complex language features. Our goal is to let the user choose the size of the generated programs as
well as the mix of language features the generated programs should be using. As we want to generate
benchmark applications, an important additional constraint is that RUGRAT-generated programs
should resemble real-world programs relatively closely. In the following we briefly discuss how we
solve these key challenges.

3.1. Supporting Complex Language Features

Many language features cannot be generated correctly by blind random program generation, because
they have associated well-formedness rules that any legal program must satisfy. For example, a
method can only be called if it and its defining type have a visibility that permits the call from the
specific call-site; a final field defined by class Foo must be initialized directly or by each constructor
of Foo; and generated non-abstract classes have to provide implementations for all inherited abstract
methods. Special care has to be given to avoid generation of loops that may not terminate or non-
terminating recursive calls, if desired.

To enforce these restrictions, RUGRAT utilizes internal tables and sets. That is, RUGRAT
implements a symbol table to ensure that only variables from correct scopes are used, it maintains
type compatibility, and it makes a type cast for every assignment expression. It allows primitive
and reference types in method parameters and method bodies. To avoid runtime exceptions such
as divide-by-zero, RUGRAT can enforce that only non-zero valued expressions occur in the
denominator of a division operation. To avoid infinite loops RUGRAT only uses for loops with
literals in the loop condition. RUGRAT uses special configuration parameters to enable and control
recursion and indirect recursion. It also ensures that all abstract methods of all (transitive) super-
types are implemented and no non-static field is referenced in a static method.

There are certain limitations in our current RUGRAT implementation. For instance, RUGRAT
currently only supports primitive types for fields. Our prototype also does not generate calls to
Java library methods. Finally, several advanced language features such as generics have not been
implemented yet. All of these are subject to future work.

3.2. Configuration Options

To satisfy different requirements for generated programs, RUGRAT is highly configurable. Some
of the important parameters include number of classes, number of methods per class, number of
interfaces, number of methods per interface, maximum depth of the inheritance hierarchy, number
of class fields, number of parameters per method, and recursion depth (if recursion is enabled). Most
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of the parameters have a lower and an upper limit. Moreover, many parameters are inter-dependent
(e.g., there should be enough classes to populate an inheritance tree of a desired depth). Once these
limits are defined, RUGRAT randomly chooses values from each range.

For each of these configuration parameters, we define a default range that seems reasonable based
on empirical data [32, 33, 34]. For example, to determine the number of classes, we follow Zhang
et al.’s observation that LOC is roughly 114 times the number of classes in a program [33] and set
classes = LOC/114. To define the number of interfaces, we follow the observation of Collberg
et al. [34], that each package in a program has roughly 12 classes and there is one interface per
package. Hence we set interfaces = LOC/(114 ∗ 12) = LOC/1, 368. Grechanik et al. [32] found
that the average value for the ‘maximum number of methods per interface’ is 3.4, and thus we
took ten times the average value and set the upper limit of the range to 34. Collberg et al. [34]
found that 96% of the programs have less than 20 class fields, and 99% of the programs have less
than 60 methods per class. We conformed to these observations and used these values as the upper
bound for respective parameters. We used similar heuristics for other parameters, such as number of
parameters per method and maximum inheritance depth. The RUGRAT tool website has a complete
list of the configuration parameters and their default values.

3.3. Choice of RUGRAT Target Language: Java Source Code

The Java language is different from many earlier languages such as C and C++ in that Java has
an explicit well-defined intermediate language, the Java bytecode language. While every legal Java
source code program can (by definition) be compiled to a Java bytecode program, there are many
legal Java bytecode programs that do not have a direct correspondence in Java source code. When
generating random Java programs, there is thus a trade-off between generating Java source code and
generating Java bytecode programs.

While other program generators for Java have targeted the Java bytecode language [35, 36],
RUGRAT generates programs as Java source code, for the following reasons. First, when generating
Java source code it is easier from an engineering perspective to write a generator that only generates
legal Java programs. Since we already have a stochastic grammar, by construction every generated
program satisfies the grammar. However, when basing the generator on the Java bytecode language,
we would need additional functionality to ensure that each generated bytecode program is also a
legal Java program.

Second, generating Java source code makes it easier to benchmark RAT tools that operate on Java
source code. While many Java RAT tools take as input Java bytecode programs, there are also RAT
tools that work on source code, such as style checkers, bug pattern detectors, and source to bytecode
compilers. Concrete example tools for Java are Checkstyle, PMD, and various compilers. On the
other hand, benchmarking such tools on generated bytecode programs seems cumbersome as such
generated bytecode programs would first have to be translated back to source form, for example, via
a bytecode disassembler.

Finally, we expect that to a lot of Java developers generated applications in Java source code
format will be more attractive and useful than generated Java bytecode programs. The key reason is
that many Java developers are more familiar with the Java source language, as many developers do
not normally interact with the Java bytecode language. We expect that this higher level of familiarity
will be important when developers attempt to investigate the cause of a given benchmark result,
attempt to change generated applications, and use generated code for testing and debugging.

4. OVERVIEW OF EXPERIMENTS WITH RUGRAT-GENERATED APPLICATIONS AS RAT
TOOL BENCHMARKS

In this section and the following two sections we describe our experience with our RUGRAT
prototype implementation for Java. That is, we conducted several experiments to explore the
usefulness of RUGRAT for the evaluation and benchmarking of Java RAT tools.

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
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At a high level, a prospective Java RAT tool user is interested in comparing and benchmarking
RAT tools and may be asking several questions. For example, how do Java RAT tools behave
when running on applications of different sizes? This question is especially relevant if experiments
published to date do not cover the kind of input application sizes that are relevant for the prospective
RAT tool user [21, 23, 28, 27, 37, 29, 30, 31].

Specifically, before acquiring a particular Java RAT tool, a prospective RAT tool user may be
wondering if a given Java RAT tool will break down for large input applications, while a competitor
RAT tool may scale to such applications. A secondary question is how for different input application
size categories the time and memory requirements of various RAT tools compare against each other.

Before using a new tool such as RUGRAT, a potential user may want to know how expensive
RUGRAT is in terms of computational resources. Part of the appeal of RUGRAT is that RUGRAT
can save the user time, as installing handwritten programs can be very time intensive. Then a natural
question is how much time it takes RUGRAT to generate programs.

When using a random benchmark program generator such as RUGRAT to explore such questions,
it is important to determine if the RUGRAT-generated applications and handwritten applications
trigger similar behaviors in RAT tools. To answer this question we compare RAT tool behavior on
RUGRAT-generated programs with a baseline of handwritten programs.

Another interesting question is whether RUGRAT-generated applications provide benefits that
handwritten applications do not provide. Section 2.3 lists such benefits and Section 5.2 describes
a concrete case in which RUGRAT can generate benchmark programs when handwritten programs
may not be easily available.

We thus explore the following concrete research questions.

• RQ1. How many computational resources (i.e., execution time, main memory and disk space)
does the RUGRAT random benchmark program generator require?

• RQ2. Can RUGRAT-generated applications be used for focused benchmarking of existing
Java RAT tools—i.e., compilers and static and dynamic program analysis tools?

– RQ2a. Can RUGRAT-generated applications be used for benchmarking the execution
time and memory requirements of existing Java source to bytecode compilers?

– RQ2b. Can RUGRAT-generated applications be used for benchmarking the execution
time and amount of output of existing static and dynamic Java program analysis tools?

• RQ3. Can RUGRAT-generated applications find defects in program analysis tools?

Besides the difference between compilers and RAT tools, the two benchmarking research
questions RQ2a and RQ2b differ in another aspect. The reason for this difference is that it is hard to
establish a good baseline of large handwritten programs that can be compiled with many versions
of a standard Java source to bytecode compiler (see Section 5.2). Such a baseline is much easier
to establish for current RAT tools (RQ2b), as these RAT tools work on recent versions of the Java
language and therefore support many modern language features (see Section 6.2).

Recall that the goal of RUGRAT is not to supplant all other ways of RAT tool benchmarking
(Section 2.2). Instead, RUGRAT aims at enabling a focused benchmarking of specific RAT tool
features. A complete benchmarking of existing Java RAT tools is therefore outside the scope of this
article. A complete benchmarking would also address important issues such as RAT tool installation
and maintenance requirements, the precision and recall of the RAT tool outputs, and ease of use. We
leave such issues for future work. Instead, in the following we focus on selected features of RAT
tools that are easy to measure, such as the quantity of RAT tool outputs as well as RAT tool memory
consumption and execution time.

4.1. Experimental Setup

We used RUGRAT to generate applications of various sizes, ranging from some 10k LOC to
5M LOC. Specifically, we picked 7 target application sizes given in non-comment, non-blank lines
of code (LOC), i.e., 10k, 50k, 100k, 500k, 1M, 2.5M, and 5M and generated several applications for
each target LOC size. (Due to implementation limitations the actual LOC of an AUT may deviate
from the target value.)

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
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Table I. RUGRAT execution time, main memory, and disk space consumption when generating programs
of various sizes on a standard desktop computer. Later experiments in Section 6 were performed on a more
powerful machine. Program sizes (10k, 50k, etc.) are given in LOC. All aborts are due to RUGRAT running

out of main memory.

Resource 10k 50k 100k 500k 1M 2.5M 5M

Time [s]
Avg. 7 26 73 440 794 5,934 3,259
Best 2 6 19 113 113 383 227

Worst 12 49 230 798 1,867 20,696 6,256

Mem [MB]
Avg. 20 48 105 415 575 847 1,327
Best 16 23 42 174 286 361 866

Worst 25 81 341 826 997 1,060 1,498

Disk [MB]
Avg. 1 5 12 55 72 173 262
Best <.4 2 4 23 40 110 137

Worst 2 12 47 109 130 315 315
Abort 0 0 0 0 0 1 5

In the context of benchmarking RAT tools, we refer to RUGRAT-generated applications and
handwritten applications used as benchmarks as applications under test or just AUTs. For these
experiments we generated only single-threaded applications. Extending RUGRAT to generate multi-
threaded applications is a subject of future work.

To capture RUGRAT’s behavior on a standard desktop computer, we performed most experiments
on a 32-bit Windows 7 OS running on a 2.5GHz AMD dual core processor with 4GB RAM. This
machine is a few years old, but it is well suited to explore the scalability limitations of the current
RUGRAT implementation. With these limitations established we switched to a more powerful
machine for subsequent experiments that benchmark existing RAT tools on RUGRAT-generated
applications. The latter machine has more computation power with 32GB RAM and is running a
64-bit Windows XP OS on a 2.33GHz Xeon processor (see Section 6).

4.2. RQ1: RUGRAT Resource Consumption: The Current RUGRAT Tool Implementation Can Be
Used On A Standard Desktop Computer

Table I summarizes the resource consumption of our RUGRAT prototype. For each column or LOC
category (10k, 50k, etc.), we used RUGRAT and its default parameter ranges to generate 10 random
programs. For 2.5M LOC we generated 9 programs, as one attempt aborted with an out of memory
exception. Similarly, for 5M LOC five attempts were aborted with out of memory exceptions. This
data indicates that the current RUGRAT implementation scales to about 2.5M LOC on a standard
desktop computer (a 2.5 GHz machine with 4 GB RAM).

For each column or group of 10 RUGRAT executions, the table shows the average, best, and worst
consumption of time, main memory¶, and disk space of that group. Lower numbers are better as
they indicate lower resource consumption. Disk space consumption is the space that is required to
store a generated application.

In our experiments the size of the generated applications grew about linearly with the target
LOC size. The data further suggests that the average RUGRAT execution time currently does not
scale linearly with respect to LOC. In general, the RUGRAT tool implementation is currently not
optimized for either speed or (main) memory consumption and we expect that these aspects can be
improved with more engineering work.

¶We used the Windows 7 default performance monitor PerfMon to log memory usage.
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5. EXPERIENCE WITH RUGRAT-GENERATED APPLICATIONS AS BENCHMARKS FOR
JAVA SOURCE TO BYTECODE COMPILERS

In this section we describe our experience with compiling both handwritten and RUGRAT-generated
programs with several versions of the standard JDK Java source to bytecode compiler (RQ2a).

5.1. Experimental Setup

We obtained 8 versions of the Java development kit (JDK) from the Oracle Java Archive‖, i.e.,
versions 1.2.1, 1.2.2, 1.3.0, 1.3.1, 1.4.0, 1.5.0, 1.6.0, and 1.7.0. Each downloaded development kit
contains a default Java source to bytecode compiler. These 8 compilers are listed in Tables II and III
by their JDK version jY.Z, i.e., as j2.1, j2.2, etc., omitting the common top-level version 1 identifier.

Since some of the older Java development kits were only available in 32-bit versions, we
conducted all experiments on our standard desktop computer, a 32-bit Windows 7 OS running on
a 2.5GHz AMD dual core processor with 4GB RAM. As on this machine our current RUGRAT
random benchmark program generation prototype does not scale to generating 5M LOC programs
(Section 4.2) we used a more powerful machine to run RUGRAT and supply us with a total of 70
subject programs, 10 in each LOC size category.

For the experiments we configured each compiler to use the maximum amount of memory (heap
space) that was possible on our machine for that particular compiler. As a side note, the compiler
options for setting this maximum amount of memory changed between compiler versions and the
corresponding maximum amount that could be set on the machine also fluctuated between compiler
versions, i.e., between 1.15 GB (for j3.0) and 2 GB (for j2.1 and j2.2). The remaining compilers
accepted a maximum of either 1.6 GB (for j4.0) or 1.5 GB (j5.0, j6.0 and j7.0).

For creating a baseline of compiling handwritten programs, we are guided by the following four
goals. (1) First, we want to keep our experiments as reproducible as possible. We therefore use
programs from a major open-source program repository. (2) Second, since one of the goals of
RUGRAT is to generate programs of a wide variety of program sizes (i.e., ranging from a few
thousand to a few million LOC), the baseline would ideally use a similar variety of program
sizes. (3) Third, we want to minimize selection bias and therefore use random sampling where
possible. If random sampling does not cover an important criterion, we add other selection strategies.
(4) Finally, we have to keep the experiments feasible and therefore limit the number of programs in
our experiments.

To create a baseline of compiling handwritten programs, we used the third-party SF100 and
SF110 random samples of all Java projects on SourceForge [38]. SourceForge is a large open-source
program repository. SF100 was created by randomly sampling 100 projects from the 48,109 projects
on SourceForge tagged as “Java”. For each selected project the latest version was checked out of
the repository. SF110 contains SF100 plus the latest versions of the 10 most popular Java programs
on SourceForge.

To compare RUGRAT-generated programs with handwritten programs, we treated all non-JDK
libraries required by a handwritten program as a part of the program. This allows a fair comparison
as RUGRAT-generated programs contain all required code and do not depend on external libraries.
As a result, the LOC counts we reported for handwritten programs may differ substantially from the
literature, which typically does not include required libraries in LOC counts.

5.2. Baseline: Comparing Java Source to Bytecode Compilers on Handwritten Applications

To compare different compiler versions, we need subject programs that all compilers can compile.
This fixes the set of allowed language features to the intersection of the features supported by all
compilers. A baseline for research question RQ2a thus requires handwritten Java programs that can
be compiled with all compilers listed in the experimental setup of Section 5.1.

‖http://www.oracle.com/technetwork/java/archive-139210.html
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Table II. Failed (×) and successful (X) compilation of three groups of handwritten programs with standard
JDK Java source to bytecode compilers: A random sample of all SourceForge projects (top), a random
sample of the 10 most popular SourceForge projects (middle), and early releases of major open-source

projects (bottom). Some programs did not contain all libraries required for compilation (-).

Subject LOC j2.2 j3.0 j4.0 j5.0 j6.0 j7.0
templatedetails 282 × × × X X X
omjstate 387 × × × × X X
imsmart 1,060 × × × × X X
bpmail 1,354 × X X X X X
saxpath 1,919 X X X X X X
jni-inchi 2,108 × × × X X X
a4j 2,787 × X X X X X
dsachat 2,993 × × × X X X
javaviewcontrol 3,844 × × × X X X
beanbin 4,332 × × × X X X
water-simulator 5,433 × × × X X X
javabullboard 7,520 × X X X X X
schemaspy 8,038 × × × X X X
gangup 8,607 × × × X X X
jdbacl 14,520 × × × × X X
netweaver 19,316 × × × X X X
firebird 43,159 × × × × X X
sweethome3d 50,837 × × × X X X
JMeter 1.0.2 765 X X X X X X
Ant 1.1 5,749 - - × × × ×
Log4j 1.0.4 7,175 - - × × × ×
Tomcat 3.0 17,120 - - - × × ×

To obtain handwritten programs for such a baseline, we explored the following three avenues.
(1) First, we took a random sample of all Java projects from a large open-source project repository.
That is, we took a random sample of the SF100 random SourceForge sample. However, a large
open-source repository such as SourceForge may contain many low-quality toy projects that are not
representative of industry-grade programs. (2) To address this issue, we also examined a random
sample of the most popular Java projects on SourceForge. That is, we used a random sample of the
10 most popular Java SourceForge projects included in SF110. The first two avenues only capture
the latest (current) version of open-source projects. One may suspect that these latest versions use
recent Java language features such as parametric polymorphism (generics) and therefore cannot
be compiled by the older compilers listed in Section 5.1. To address this issue we also looked
for programs that have been developed before these newer language features became available.
(3) Third, we therefore examined the oldest still-available releases of several well-known early
major open-source Java projects, i.e., Ant, JMeter, Log4J, and Tomcat.

Table II summarizes the results. In summary, we were not able to locate a good set of handwritten
programs that would allow us to benchmark the compilers listed in Section 5.1. From our subjects
only two programs (saxpath and JMeter) worked on all compilers. Three programs worked on j3.0
and later (a4j, bpmail, and javabullboard). The remaining programs required j5.0 or later, or they
did not compile at all.

This result may be explained by Java programmers using modern language features in their
code. Such new features typically cannot be compiled by older compilers. However, there are three
programs that did not work with new compilers either (Ant, Tomcat, and Log4J). These programs
use identifiers that in later Java versions became keywords, i.e., enum and assert. These programs
also do not include in their distribution all libraries that are required to compile the program.
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12 I. HUSSAIN ET AL.

The two handwritten programs that compile with all compilers (saxpath and JMeter) are very
small, with under 2k LOC each. In the RUGRAT experiments of Section 5.3, benchmark programs
range from some 10k LOC to some 5M LOC. So within the scope of this article we could not
establish a good baseline of handwritten programs. On a side note, none of these two programs
(saxpath and JMeter) compiled with a Java 1.1 compiler.

With various amounts of effort, better-suited handwritten programs may be found and non-
compiling programs may be salvaged. For example, identifiers named enum or assert could be
systematically renamed. The required old versions of missing libraries may be located somewhere
on the Web. Program source code could be rewritten to reduce its reliance on modern language
features and libraries. In the extreme, benchmark applications could be manually implemented from
scratch. We consider the need for such costs a motivation for an automated program generator such
as RUGRAT. To compare RUGRAT-generated programs with a baseline, Section 6 compares RAT
tools by how they behave on RUGRAT-generated and handwritten programs.

5.3. RQ2a: Comparing Java Source to Bytecode Compilers on RUGRAT-Generated Programs

Table III shows the absolute execution time and main memory consumption of the subject compilers
when compiling our 70 RUGRAT-generated subject programs. For both execution time and memory
consumption the table shows average (	), maximum (>), and minimum (⊥) measurements. Lower
values are better, as they indicate lower resource consumption.

Figure 2 plots these values to show the trends in these data. Each plot in Figure 2 shows the
compiler execution time and memory consumption for all compilers on the 10 subject programs of
an AUT size category. The plot uses box and whiskers to show minimum, lower quartile, median,
upper quartile, and maximum values.

From the results we can make several observations. First, maybe expected, the newer the compiler
the more likely it can compile more of the generated applications, including the very large ones.
Each case in which a compiler failed to compile a subject is noted in Table III as “did not compile”
(dnc). In our experiments each dnc case was caused by the compiler running out of available
(heap) memory. In other words, the older the compiler, the more likely it ran out of memory when
attempting to compile some of the largest applications in our sample.

Specifically, the newest compilers, j5.0, j6.0, and j7.0, could compile the most applications and,
on the sample size of 70 generated applications, failed to compile only 13 applications. The next
older compiler, j4.0, failed to compile 14 applications; the next older compiler, j3.1, failed to
compile 15; j3.0 failed to compile 22; j2.2 failed to compile 32; and j2.1 failed to compile 34.
Table III shows that the applications that could not be compiled are mostly in the 2.5M and 5M LOC
categories.

While for this experiment we ran RUGRAT with its default parameters, the results of the
experiment, somewhat surprisingly, resemble the results of stress-testing. That is, although all
generated programs use common combinations of language features, the tested compilers could
not compile all programs. This effect increased with the size of the generated programs and was
most pronounced for the largest generated programs, i.e., in the 5M LOC category.

Second, on the subjects up to and including 2.5M LOC that each compiler could compile, the
newer compilers had the highest average memory consumption. Specifically, j7.0, had the highest
average memory consumption, followed closely by the next older compiler, j6.0. On individual
subjects the older compilers j4.0 and j3.1 had higher memory consumption than their newer peers,
but on average these older compilers consumed less memory.

Third, j2.2 was the slowest compiler with the highest average compile time for most AUT size
categories. The exceptions are the smallest and possibly the largest AUTs, since for the largest AUTs
(2.5M) this compiler did not compile a single subject. A close second slowest was the predecessor
compiler j2.1, with the same caveats for the smallest and largest AUT sizes.

Finally and maybe somewhat surprising, for the small and medium sized AUTs of up to
100k LOC, the fastest compiler was j3.0. For these AUT size categories, the average compile speed
of j3.0 was between 50 and 60% of the newer j7.0 baseline compiler. This trend continues to larger
AUTs of up to 1M LOC if we only consider the applications the respective compilers could compile.
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Table III. Average (	), maximum (>), and minimum (⊥) absolute execution time (t) and main memory
consumption (m) of standard JDK Java source to bytecode compilers compiling RUGRAT-generated
programs. Lower values are better, as they indicate lower resource consumption. Did not compile (dnc)

is the number of programs a compiler could not compile.

LOC j2.1 j2.2 j3.0 j3.1 j4.0 j5.0 j6.0 j7.0
[s,MB] [s,MB] [s,MB] [s,MB] [s,MB] [s,MB] [s,MB] [s,MB]

10k

t
> 6 6 3 3 4 6 5 7
	 4 4 2 3 3 4 4 4
⊥ 2 3 2 2 2 3 3 3

m
> 33 32 25 27 28 35 54 59
	 22 22 17 19 21 25 38 43
⊥ 18 17 7 15 16 20 29 33

50k

t
> 64 64 14 14 18 21 19 26
	 18 19 6 7 8 10 10 12
⊥ 7 8 4 4 5 6 5 8

m
> 191 187 143 144 156 175 292 318
	 76 76 61 62 68 72 114 121
⊥ 45 44 38 38 40 43 68 69

100k

t
> 110 112 31 33 37 36 41 45
	 46 47 15 16 18 20 21 25
⊥ 12 12 5 6 7 9 9 11

m
> 385 386 323 324 365 423 648 667
	 166 166 131 131 147 152 247 258
⊥ 73 73 61 60 69 67 107 111

500k

t
> 125 350 166 197 194 205 247 365
	 108 179 81 98 106 112 110 138
⊥ 76 82 31 31 35 35 34 43

m
> 398 519 969 1,273 1,444 1,432 1,483 1,510
	 333 406 510 593 665 676 948 987
⊥ 249 249 201 201 226 216 353 376

dnc 7 5 1 0 0 0 0 0

1M

t
> 237 236 204 481 466 477 367 591
	 218 220 129 177 183 194 159 208
⊥ 188 195 80 81 90 104 62 102

m
> 519 519 953 1,430 1,591 1,450 1,493 1,504
	 519 518 668 761 856 813 1,182 1,212
⊥ 518 518 437 445 507 482 737 776

dnc 7 7 2 1 0 0 0 0

2.5M

t
> n/a n/a n/a 615 729 802 583 1,021
	 n/a n/a 587 461 566 567 302 562
⊥ n/a n/a n/a 288 302 302 125 181

m
> n/a n/a n/a 1,532 1,631 1,522 1,524 1,505
	 n/a n/a 930 1,355 1,484 1,374 1,487 1,486
⊥ n/a n/a n/a 961 1,077 1,027 1,364 1,392

dnc 10 10 9 5 5 4 4 4

5M

t
> n/a n/a n/a n/a n/a n/a n/a n/a
	 n/a n/a n/a 919 1,064 1,031 214 462
⊥ n/a n/a n/a n/a n/a n/a n/a n/a

m
> n/a n/a n/a n/a n/a n/a n/a n/a
	 n/a n/a n/a 1,492 1,569 1,469 1,496 1,405
⊥ n/a n/a n/a n/a n/a n/a n/a n/a

dnc 10 10 10 9 9 9 9 9
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Figure 2. Time (left y-axis) and memory (right y-axis) consumption of standard JDK source to bytecode
compilers compiling RUGRAT-generated programs. A compiler is not plotted in a program size category
if the compiler could not compile all programs in that category. No compiler could compile all 2.5M or

5M LOC programs.

For these larger AUTs the average compile time of j3.0 fluctuated between 70 and 80% of the j7.0
baseline compiler. However, for the largest AUTs of 2.5M LOC, j3.0 failed to compile 9 of 10 AUTs
and for the one AUT it did compile j3.0 needs more than three times the compile time than the j7.0
baseline compiler.

6. EXPERIENCE WITH RUGRAT-GENERATED APPLICATIONS AS BENCHMARKS FOR
STATIC AND DYNAMIC JAVA PROGRAM ANALYSIS TOOLS

To explore the two RAT tool research questions (RQ2b and RQ3), we conducted two RUGRAT
experiments. In the first experiment, we used RUGRAT to generate applications under test (AUTs)
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using RUGRAT’s default parameter ranges, which model the properties of typical handwritten
applications.

In the second experiment we widened the parameter ranges to allow for values that are rare in
handwritten applications. While rare, these values are still possible according to the empirical data
described in Section 3.2. This second experiment simulates a stress-testing of RAT tools.

In addition to the two RUGRAT experiments, we developed a baseline of how a subset of the RAT
tools behave on handwritten applications. This allows us to compare the behaviors handwritten and
RUGRAT-generated programs trigger in the selected RAT tools.

6.1. Experimental Setup

For the first experiment we used RUGRAT to generate 10 random AUTs per LOC value, yielding
70 AUTs. For the second experiment we just generated a single AUT per LOC value, yielding 7
AUTs. We ran all experiments on a HotSpot 1.6.0 24 JVM on Windows XP on a 2.33GHz 64-bit
Xeon processor with 32GB RAM.

On each of the 77 generated AUTs, we applied five Java program analysis tools: four static
analysis tools, Checkstyle, FindBugs, JLint, and PMD and one dynamic analysis tool, Randoop∗∗.
These tools apply different techniques in analyzing programs and produce output in the form
of various kinds of warnings. Such program analysis tools are typically highly configurable. To
approximate the behavior of the tools under different configurations, for each tool we set a minimum
and a maximum configuration. In the minimum configuration, we try to evoke a minimum amount
of tool features; in the maximum configuration, we try to invoke all tool features.

In the following we briefly summarize the key features of the five Java RAT tools and describe
how we configured them for our minimum and maximum configurations.

Checkstyle Checkstyle [39] works on Java source code, is easy to expand, and supports custom
bug patterns called ‘checks’. Checkstyle provides a standard ‘check’ that has 64 modules to check
the Sun coding conventions which we used for the minimum-effort level experiments. For the
maximum effort level experiments, we enabled 128 checking modules (which include the 64 in
the standard check). Example modules are FileLength, MethodName, ConstantName, Indentation,
and ParameterNumber.

FindBugs FindBugs [40] applies syntactic bug patterns and dataflow-analysis on AUT bytecode to
find bugs. It supports custom patterns and is easily expandable. For the configurations, we used two
flags (‘effort’ and ‘reportLevel’). For the maximum configuration, we set ‘effort’ to maximum and
‘reportLevel’ to ‘low’, which yields all bugs found during analysis. For the minimum configuration,
we set ‘effort’ to minimum and ‘reportLevel’ to ‘high’, to restrict reporting to high priority bugs.

JLint Like FindBugs, JLint [41] applies syntactic bug patterns and dataflow analysis on AUT
bytecode, but it is not easy to expand [21]. JLint has patterns for detecting thread synchronization
bugs, which we disabled in the minimum configuration. For the maximum configuration, we enable
all patterns.

PMD PMD [42] applies syntactic bug patterns on AUT source code. It supports custom bug
patterns (called ruleset) and is easily expandable. For the minimum configuration, we enabled
only ruleset ‘basic’. For the maximum configuration, we also enabled rulesets braces, clone,
codesize, controversial, coupling, design, imports, naming, strictexception, strings, typersolution,
and unusedcode. Descriptions of these ruleset are in the PMD manual.

∗∗Checkstyle version 5.4: http://checkstyle.sourceforge.net/
FindBugs version 1.3.9: http://findbugs.sourceforge.net/
JLint version 2.3: http://artho.com/jlint
PMD version 4.2.5: http://pmd.sourceforge.net
Randoop version 1.3.2: http://code.google.com/p/randoop

Copyright c© 2016 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2016)
Prepared using speauth.cls DOI: 10.1002/spe



16 I. HUSSAIN ET AL.

Randoop Randoop [43] applies feedback-directed random test case generation [44] to AUT
bytecode to deduce program behavior and create assertions to detect bugs. Randoop does not have
any flags or configuration options we could set for our configurations. By default, it runs either for
100 seconds or until 100,000,000 tests are generated. We limit the timing to 100 seconds for the
minimum configuration and 2,400 seconds (40 minutes) for the maximum configuration.

6.2. Baseline: Comparing RAT Tools on Handwritten Programs

Locating handwritten programs for a baseline was much easier for RAT tools than for JDK Java
source to bytecode compilers (Section 5.2). The RAT tools listed in Section 6.1 support recent
versions of the Java language, so a wide variety of suitable handwritten programs is readily available.

For creating a baseline of analyzing handwritten programs, we are guided by the same goals we
followed for our compiler baseline in Section 5.1. That is, we keep our experiments reproducible by
using open-source programs from SourceForge, aim for a wide range of program sizes, minimize
selection bias via random sampling plus other selection strategies, and we keep the experiments
feasible by limiting the number of programs in the experiments.

We selected programs via the following four strategies. (1) First, we started with the random
SourceForge sample SF100. Since this sample contains many small programs, we picked the largest
program of a random sample of 15 SF100 programs (jdbacl). (2) Second, to get additional large
programs and since program size is often correlated with the number of classes [33], we also
selected two programs from the set of 10 SF100 programs that have the most classes (corina
and lilith).(3) Third, to prevent a possible bias towards low-quality programs we also included a
random sample of the ten most popular SourceForge programs from SF110 (sweethome, firebird,
and netweaver). (4) Finally, to obtain additional large programs, we used Boa [45] to locate the three
SourceForge programs with the most AST nodes (clarion2java, JFire, and jEdit). Table IV lists our
subject programs and their respective size, ranging from 15k LOC to over 5M LOC.

For the baseline we used a subset of three static RAT tools—Checkstyle, FindBugs, and PMD. We
omitted the dynamic Randoop tool because several of the selected AUTs did not include all required
classes. We omitted JLint because JLint aborted unexpectedly for several AUTs, likely because we
were using an older version of JLint.

Table IV summarize the results of 54 RAT tool runs—3 RAT tools ran in the 2 effort levels of
Section 6.1 on 9 handwritten programs. For each run, Table IV lists the tool runtime and the number
of tool warnings. One run exceeded our 12 hour time budget and was terminated. From the results
we can make the following observations.

• First, as expected, both runtime and number of warnings roughly increased with program
size (LOC). The biggest exception are the values for FindBugs on the largest program. This
irregularity is likely caused by FindBugs complaining about missing classes for this program.

• Second, each tool produced more warnings in the higher effort level. For Checkstyle this
difference was within a factor of 10. For FindBugs and PMD the difference was mostly one
order of magnitude.

• Third, Checkstyle produced by far the most warnings among all the RAT tools, followed by
PMD and FindBugs. The difference in the number of warnings between Checkstyle and PMD
were mostly two orders of magnitude for minimum effort and one order of magnitude for
maximum effort. The number of warnings of PMD and FindBugs were mostly within a factor
of 10.

• Fourth, higher effort mostly had a higher runtime than lower effort. The difference was mostly
within a factor of 2 for FindBugs and PMD. For Checkstyle this difference roughly increased
with program size, from one to two orders of magnitude.

• Fifth, in many runs, FindBugs had the highest runtime, followed by PMD and Checkstyle.
The runtime difference between FindBugs and PMD was within a factor of 5, between PMD
and Checkstyle this difference increased with program size for minimum effort but decreased
for maximum effort. For maximum effort, with increasing program size Checkstyle takes
relatively longer and takes the most time for the two largest programs. This may point to
some elements of the maximum Checkstyle configuration not scaling well with program size.
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Table IV. Produced warnings (W) and runtime (T) of popular static Java RAT tools running on handwritten
programs. Both T and W are given for the two effort levels defined in Section 6.1. Tool execution was

canceled (-) after 12 hours.

AUT LOC Tool WEf−Min TEf−Min WEf−Max TEf−Max

jdbacl 15k
Checkstyle 21,758 5 54,142 11
FindBugs 17 23 479 30
PMD 216 9 4,787 14

netweaver 19k
Checkstyle 21,691 5 42,374 9
FindBugs 3 24 1,042 30
PMD 7 9 3,067 11

lilith 32k
Checkstyle 34,014 7 124,376 20
FindBugs 32 35 594 43
PMD 189 15 - -

corina 33k
Checkstyle 28,546 5 82,924 14
FindBugs 83 42 2,376 51
PMD 110 11 11,160 12

firebird 43k
Checkstyle 55,245 10 120,155 27
FindBugs 29 32 1,515 44
PMD 294 23 13,344 27

sweethome3d 51k
Checkstyle 51,243 10 156,098 27
FindBugs 126 63 2,372 84
PMD 173 16 10,425 22

jedit 75k
Checkstyle 90,954 11 289,309 42
FindBugs 157 149 2,879 213
PMD 463 44 21,099 47

jfire 145k
Checkstyle 177,276 20 847,604 198
FindBugs 417 105 11,236 139
PMD 517 64 38,879 59

clarion2java 5,689k
Checkstyle 8,929,007 512 64,058,138 24,747
FindBugs 772 129 6,096 165
PMD 20,654 2,434 1,229,716 2,384

• Finally, FindBugs produced the fewest warnings per second (W/s), followed by PMD and
Checkstyle. FindBugs had between 0.1 and 10 W/s for minimum effort and between 10 and
100 W/s for maximum effort. PMD had between 1 and 25 W/s for minimum effort and
between 250 and 1k W/s for maximum effort. Checkstyle had between 4k and 18k W/s,
increasing with LOC, for minimum effort and between 2.5k and 7k W/s for maximum effort.

6.3. RQ2b: Comparing RAT Tools on RUGRAT-Generated Programs

We performed 770 experiments by invoking 5 RAT tools in 2 configurations each on 77 generated
AUTs. The two configurations are the minimum and the maximum RAT tool effort configurations
described in Section 6.1. For each experiment we captured each tool’s execution time and the
number of warnings generated by the tool.

Tables V and VI summarize the experimental results for the bulk of the experiments, i.e., the 700
experiments on the default parameter ranges. For each RAT tool, program size category, and both
the minimum and the maximum RAT tool effort configurations, these tables give the minimum,
maximum, and average RAT tool runtime and number of warnings produced by a RAT tool.

For space limitation we omit the results of the remaining 70 experiments and instead plot
highlights of both sets of experiments in Figure 3. Figure 3 shows the average execution
time and average number of warnings for each program size category for both the minimum
and the maximum RAT tool effort configuration of the experiments on the default parameter
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Table V. Produced warnings (W) and runtime (T) of Java RAT tools running on RUGRAT-generated AUTs
of various size categories. Both T and W are given for the two effort levels (Ef) defined in Section 6.1.

AUT Ef Tool Wmin Wmax Wmean Tmin Tmax Tmean

10k

Min

Checkstyle 37,506 144,799 80,008 2 6 3
FindBugs 111 1,218 499 16 64 25
JLint 76 651 269 1 4 2
PMD 192 1,636 776 1 9 4
Randoop 0 28 8 101 107 103

Max

Checkstyle 58,354 216,221 120,970 3 9 5
FindBugs 778 7,889 3,217 17 35 25
JLint 366 1,101 694 1 5 2
PMD 3,485 17,901 9,550 4 11 7
Randoop 0 795 152 2,401 2,404 2,403

50k

Min

Checkstyle 276,984 1,351,638 513,644 10 47 19
FindBugs 1,080 7,102 2,866 45 146 68
JLint 211 11,241 2,589 1 5 2
PMD 3,149 7,631 4,277 5 60 19
Randoop 0 4 1 102 105 103

Max

Checkstyle 417,065 1,946,076 749,994 14 71 28
FindBugs 4,681 51,335 16,097 54 189 86
JLint 2,468 14,047 4,606 2 11 6
PMD 23,243 156,035 53,334 9 61 21
Randoop 0 75 18 2,402 2,410 2,406

100k

Min

Checkstyle 507,352 3,317,995 1,229,880 21 117 43
FindBugs 1,771 10,026 5,823 77 243 136
JLint 310 13,737 5,023 1 11 4
PMD 5,767 14,530 9,749 11 112 43
Randoop 0 25 4 102 109 105

Max

Checkstyle 757,294 4,637,270 1,809,312 30 158 63
FindBugs 9,067 130,142 48,889 98 326 173
JLint 881 17,486 8,936 3 19 13
PMD 44,214 403,141 144,826 16 112 46
Randoop 0 204 33 2,404 2,411 2,406

500k

Min

Checkstyle 1,798,495 13,252,753 5,998,586 62 486 209
FindBugs 5,172 70,566 30,251 255 1,101 640
JLint 2,522 123,133 30,967 4 59 19
PMD 19,105 85,612 46,662 32 393 188
Randoop 0 0 0 104 134 113

Max

Checkstyle 2,797,354 19,093,653 8,740,053 97 779 325
FindBugs 35,965 622,225 223,451 311 1,535 794
JLint 13,467 145,244 50,548 12 131 69
PMD 171,052 1,713,544 685,026 41 399 194
Randoop 0 17 2 2,406 2,438 2,415

ranges. Figure 3(f) shows these measurements for the relaxed parameter range for the FindBugs
experiments.

From the results we can make several observations. First, as one would expect, for static analysis
tools both the average execution time and the average number of warnings roughly increased with
the program size (LOC). This was true for both the minimum and the maximum effort category. The
one exception to this observation is the data for JLint in the minimum effort configuration. There the
average number of warnings decreases from 1M LOC to 2.5M LOC, while the average number of
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Table VI. Continued from Table V.

AUT Ef Tool Wmin Wmax Wmean Tmin Tmax Tmean

1M

Min

Checkst. 4,652,104 14,226,538 7,553,695 144 445 248
FindBugs 9,920 72,593 38,263 597 1,794 945
JLint 1,880 153,682 60,802 7 171 35
PMD 25,860 165,267 88,084 42 504 226
Randoop 0 2 0 105 132 116

Max

Checkst. 6,663,438 20,924,135 11,369,848 249 879 449
FindBugs 41,185 560,864 287,923 733 2,009 1,166
JLint 27,850 191,993 104,567 72 217 121
PMD 305,925 1,738,556 863,091 90 504 241
Randoop 0 17 2 2,406 2,543 2,429

2.5M

Min

Checkst. 8,980,257 43,034,144 20,266,502 394 1,304 695
FindBugs 20,455 299,848 113,640 1,221 5,114 2,540
JLint 2,596 163,099 42,259 14 167 64
PMD 25,754 370,177 226,312 93 1,569 593
Randoop 0 0 0 107 219 140

Max

Checkst. 13,188,717 59,743,379 29,621,014 716 3,237 1,506
FindBugs 71,731 1,417,767 628,937 2,006 5,834 3,173
JLint 52,112 261,345 146,593 147 607 342
PMD 268,086 4,689,904 2,056,934 213 1,560 631
Randoop 0 0 0 2,187 2,497 2,413

5M

Min

Checkst. 13,252,180 84,472,865 42,495,951 997 3,108 1,649
FindBugs 8,686 767,965 319,103 1,795 13,837 7,184
JLint 4,611 732,496 175,002 27 1,029 364
PMD 30,281 913,082 391,262 116 3,921 1,577
Randoop 0 0 0 116 816 286

Max

Checkst. 20,717,406 129,182,401 64,471,844 1,976 12,401 5,061
FindBugs 55,583 4,809,618 1,691,975 4,259 18,340 10,087
JLint 87,128 1,114,570 371,335 238 1,398 642
PMD 785,208 8,079,371 4,095,392 335 3,881 1,618
Randoop 0 13 1 1,774 2,984 2,456

warnings for 5M LOC is again higher than for both 1 and 2.5M LOC. This overall trend was largely
in line with the experiments on handwritten programs, for which we similarly observed runtime and
warnings roughly increasing with LOC.

Second, each tool produced more warnings in the higher effort level than in the lower effort level.
For Checkstyle this difference was within a factor of 2, for FindBugs within a factor of 20, and for
the other tools within a factor of 50.

The high-level trend was in line with the experiments on handwritten programs, for which the
tools also produced more warnings in the higher effort configuration. However on handwritten
programs the difference between the number of warnings in the minimum and maximum effort
levels was larger (by a factor of less than 10). The fact that handwritten programs use more
programming language features and libraries than RUGRAT-generated programs may contribute
to this larger difference in handwritten programs. The maximum configuration of especially the
static tools analyze a larger set of language features than the minimum configuration.

Third, Checkstyle produced by far the most warnings among all the RAT tools (Figure 3(a)). This
is true for both effort categories and across all AUT sizes. The difference with the second most
producing RAT tool was one or two orders of magnitude, across both effort levels and all AUT
sizes. The second highest average number of warnings was produced by the PMD tool, followed (in
order) by FindBugs, JLint, and Randoop.
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(a) Checkstyle.
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(b) Jlint.
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(c) PMD.
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(d) FindBugs.
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(e) Randoop.
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(f) FindBugs skipping some classes.

Max. config.-Time
Min. config.-Time
Max. config.-Warnings
Min. config.-Warnings

Figure 3. Comparing static and dynamic Java program analysis tools on RUGRAT-generated programs. Each
data point is the average of 10 AUTs from RUGRAT’s default parameter range (experiment 1), except for
3(f), which shows a single data point each from a wider range of configuration parameters (experiment 2);
x-axis = LOC (log scale); left y-axis = RAT tool runtime; right y-axis = RAT tool warnings (log scale);
MaxA/MinA = average A in maximum/minimum RAT tool configuration where A is either RAT tool time
or number of RAT tool warnings. For static analysis tools both the average execution time and the average
number of warnings mostly increased with program size (3(a)–3(d)). FindBugs was an exception when using

a wider parameter range (3(f)). The dynamic analysis tool Randoop also behaved differently (3(e)).

The difference in the number of warnings between Checkstyle and PMD was up to two orders
of magnitude for minimum effort and within a factor of 50 for the maximum effort category. The
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number of warnings of PMD and FindBugs were (with one exception) all within a factor of 10.
Similarly the number of warnings of FindBugs and JLint were (with few exceptions) within a factor
of 10. This observation largely follows our observations on handwritten programs, i.e., both the
order of tools by the number of warnings they produce and the relative differences between the
number of warnings.

The dynamic program analysis tool Randoop consistently produced the lowest numbers of
warnings across both effort categories and all AUT sizes (Figure 3(e)). Moreover, Randoop differed
from the other RAT tools in that it produced fewer warnings with increasing AUT LOC sizes. Since
this result is counter-intuitive we examine it more closely in Section 6.4.

Fourth, most program/tool combinations had a higher runtime in the higher effort level than in
the lower effort level. The average difference was 2 for Checkstyle, 1.3 for FindBugs and PMD, and
5 for JLint. For Checkstyle this difference roughly increased with program size, from about 1.5 to
about 4.

Most of this observation is similar to what we have seen for handwritten programs. The main
difference is the effort difference of Checkstyle was larger for handwritten programs. However we
observed the increase with LOC for both handwritten and generated programs.

Fifth, in both effort levels FindBugs had the highest runtime, followed by (in order) Checkstyle,
PMD, and JLint. An exception were smaller programs up to about 30k LOC, for which PMD took
more time than Checkstyle. The average runtime difference between FindBugs and Checkstyle was
a factor of 4 in minimum effort and a factor of 3 in maximum effort. The runtime difference between
Checkstyle and PMD was within a factor of 10. The average distance between PMD and JLint was
a factor of 10 for minimum effort and a factor of 3.3 for maximum effort.

This observation is largely similar with our observation on handwritten programs, for which we
observed the same runtime ordering of tools. We also observed that Checkstyle did not scale well
with larger programs, starting around 30k LOC.

Finally, among the static tools, FindBugs produced the fewest warnings per second (W/s),
followed by PMD, JLint, and Checkstyle. FindBugs had an average 40 W/s for minimum effort
and 190 W/s for maximum effort. PMD had an average 374 W/s for minimum and 2.9k W/s for
maximum effort. JLint had an average 1k W/s for minimum and 611 W/s for maximum effort.
Checkstyle had an average 28k W/s for minimum and 24k W/s for maximum effort.

The main difference between these results and the handwritten programs was that for generated
programs all tools generate more warnings per second. However for both handwritten and generated
programs FindBugs produced the fewest warnings per second, followed by PMD and Checkstyle.

6.4. RQ3: RUGRAT Found RAT Bugs/Issues

As a by-product of benchmarking, the RUGRAT-generated programs let us independently
rediscover several issues in RAT tools, i.e., in FindBugs and in Randoop. While not dramatic, these
results demonstrate the potential usefulness of RUGRAT for testing and debugging.

FindBugs FindBugs may skip classes and miss bugs. For example, in the second experiment,
which used wider parameter ranges simulating stress-testing, we encountered the situation depicted
in Figure 3(f), where FindBugs did not show its usual execution time and warning behavior. Instead,
it terminated quickly and reported only few warnings. Further investigation revealed that FindBugs
has two limitations, which cause it to skip some code. Specifically, if a class has more than 1,000
methods or is larger than 1MB, FindBugs declares it to be too large and skips it. In the generated
AUT, the majorities of classfiles were larger than 1MB. FindBugs thus skipped almost the entire
AUT and terminated quickly, reporting few warnings. FindBugs has no configuration option to
prevent such skipping. We confirmed with the tool authors that the recommend solution is to instead
modify the FindBugs source code.

One may argue that such limitations only affect analysis of generated programs. However, we
have found real (manually written as well as generated but then manually edited) applications on
SourceForge that have such large classes, including Apache Derby, DoctorJ, Drools, and OpenJDK.
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Reducing the number of methods for some of the applications caused FindBugs to report warnings
where it was previously skipping the analysis.

The FindBugs results are also an example of the influence of the RUGRAT parameters. While
FindBugs skipped classes and thus produced few warnings in the second experiment with non-
standard RUGRAT parameters (Figure 3(f)), FindBugs did not exhibit this erratic behavior in the
first experiment, which uses RUGRAT with its default parameter settings (Figure 3(d)).

Randoop While the other analysis tools generated more warnings for larger programs, Randoop,
surprisingly, did the opposite; i.e., the larger the programs the fewer warnings Randoop generated
(Figure 3(e)). We verified this behavior in a separate experiment, in which we increased the time
allotted to Randoop’s execution from 40 minutes to up to 8 hours, which would mirror an overnight
run as part of an automated build and integration system. Doing so did not change the average
number of warnings produced by Randoop, and therefore yields the same plot as Figure 3(e).

Increasing the runtime to up to 8 hours also led us to independently discover another issue with
Randoop. This issue has been reported previously as Issue 14 in Randoop’s issue tracking system∗.
Specifically, in the test generation phase, if no test is generated after 10 seconds of the last generated
test, Randoop terminates without writing any tests, not even the last generated test.

A third issue we discovered is that for larger programs, Randoop does not terminate after 100
seconds as it was supposed to in the default setting (our minimum configuration).

7. RELATED WORK

While RUGRAT leverages the grammar of a programming language to generate programs, there are
other program generation techniques that are not based on grammars. For example, Sreenivasan and
Kleinman describe a technique for synthesizing programs that produce close-to-realistic workloads
for hard drives [46]. The approach composes individual workloads to match certain probability
distributions. Unlike this approach, RUGRAT’s goal is to create programs that use a wide variety of
complex object-oriented language features.

In the remainder of this section we focus on related grammar-based test input generation
techniques. Grammar-based test input generation was pioneered by Hanford [47] and Purdom [48]
in the 1970s and can be roughly divided into two broad categories, random and systematic.

In the following, we discuss pieces of related work in more detail that are either representative or
closely related. Additional related work can be found in a survey article on generating programs for
compiler testing [49].

7.1. Probabilistic Grammar-Based Program Generation

Several earlier pieces of work have used probabilistic grammar-based random program generation
before [16, 17, 35, 36, 50, 51, 52, 53]. However earlier work mostly focused on testing and
debugging. These approaches thus tried to systematically cover corner cases and bugs that are
otherwise hard to find. To simplify debugging, the focus was on triggering these corner cases with
minimized, focused programs or program fragments. From our perspective, the earlier approaches
could be described as generating a collection of maximally diverse micro-benchmarks of rare
program shapes. We aim at end-to-end benchmarking and therefore generate large, complex
benchmark applications that are close to realistic applications but satisfy specific user-defined
constraints.

An early random or probabilistic program generator that is guided by a programming language
grammar is presented by Murali and Shyamasundar [16]. The technique targets the PL compiler for
a subset of Pascal, the canonical procedural programming language.

∗http://code.google.com/p/randoop/issues/detail?id=14
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An early expressive language for grammar-based random program generation is presented by
Maurer [17]. That is, the Data-Generation Language or DGL is more expressive than context-free
languages, as it supports various actions. The approach generates test suites in the C programming
language for functional testing of VLSI circuits.

Burgess describes a system for testing optimizing Fortran compilers [50]. The user specifies the
Fortran syntax in an attribute grammar and uses the attributes to express complex correctness rules.
The user can also assign probabilities or weights to individual production rules and thereby control
how frequently they are utilized in program generation. The generated programs are relatively small,
with a size of up to 4k LOC, compared to up to 5M LOC by RUGRAT.

Sirer and Bershad [35] describe probabilistic testing with production grammars. A production
grammar is a context-free grammar that can be enhanced with probabilities and actions. The
work also introduces the concrete domain specific language (DSL) lava for specifying production
grammars. The lava language was used to generate Java bytecode programs for testing Java virtual
machines. The generated programs ranged up to 60k bytecode instructions. On the other hand, in our
experiments we generate large (up to 2.5M LOC) Java source code programs and compare source
code to bytecode compilers.

In recent work, Csmith constructs legal C programs randomly using a subset of the C language
production rules [52]. Specifically, Csmith consults a probability table, similar to our stochastic
selection. Csmith systematically avoids generating programs that use language features classified
as undefined or unspecified by the C language. To achieve the goal, CSmith employs selective
construction and analysis of the generated programs. Unlike RUGRAT, Csmith does not support
object-oriented language features.

Other than testing C compilers, Cuoq et al. used Csmith for testing static analyzers [53]. They
tested Frama-C, a 300k LOC size framework for analysis and transformation of C programs and
found 50 bugs.

In the domain of object-oriented programs, a random program generator has been used to test
Java just-in-time compilers [36]. This generator takes the number of desired classes and branches as
input. Then, it generates branches and fills them randomly with bytecode instructions. In contrast to
RUGRAT, this generator does not allow features such as recursive calls. Moreover, it was evaluated
only on small programs with up to ten classes, ten methods per class, and less than 100 bytecode
instructions per method. We were unable to obtain the tool to compare it with RUGRAT.

7.2. Test Program Generation by Combinatorial Grammar Production Rule Coverage

Combinatorial coverage of grammar production rules is an alternative to stochastic production rule
coverage. In the following we briefly review representative and closely related papers.

Purdom has defined a pioneering algorithm for generating small test programs from a given
programming language grammar. That is, Purdom’s algorithm generates programs that cover each
production rule of a given context-free grammar [48].

Celentano et al. describe an early implementation of Purdom’s algorithm [54]. This work uses
multi-level grammars to support complex correctness rules that cannot be expressed in a context-
free grammar alone (such as “define before use”). However it is not clear how this approach scales
to complex Java-like languages [55].

Boujarwah et al. implement Purdom’s algorithm for a subset of Java [56]. However the
implementation has not been applied to generate entire programs and no empirical results are
available.

Lämmel and Schulte [57] describe the general-purpose syntax-driven test-data generator Geno.
Geno works on grammars written in a hybrid of EBNF and algebraic signatures. Geno systematically
achieves a user-defined combinatorial coverage of the grammar’s production rules. Geno supports
computations during test data generation, yielding expressiveness similar to attribute grammars.
However Geno does not address the complex correctness rules of Java-like programming
languages (such as “define before use”, visibility, and inheritance). Geno is also not available for
experimentation.
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Fischer, Lämmel, and Zaytsev use a grammar-guided test case generator to compare different
concrete grammars of the same grammar specification [58]. For example, the work compares various
ANTLR grammars of the Java 5 language specification. However, the program generation technique
ignores semantic rules (such as “define before use”) and removes all such rules from the input
ANTLR grammars, yielding context-free grammars.

Harm and Lämmel extend test case generation from systematically covering context-free
grammar production rules to systematically covering production rules of attribute grammars [59].
For generating benchmark programs, this technique may enable generating programs that satisfy
semantic correctness rules (such as “define before use”). However the scalability of the technique is
unclear [57] and the technique has not been applied to Java-like programming languages.

In recent work, Hoffman et al. present YouGen, a practical tool for combinatorial production
rule coverage [60]. Similar to earlier work, YouGen takes as input a context-free grammar. YouGen
has a wider range of configuration options than previous combinatorial production rule coverage
generators.

7.3. Exhaustive Test Program Generation

Exhaustive test program generation aims at enumerating all possible test programs up to a given
size. In the following we discuss three representative recent approaches.

Coppit and Lian describe yagg, a generator for test data generators that exhaustively enumerate
all possible test data up to a given length [61]. The yagg tool supports context-free input grammars
that can be enriched with semantic actions.

ASTGen by Daniel et al. systematically generates small Java programs [62]. However, ASTGen
requires the user to combine several generators. More importantly, many generated programs have
compile errors, and they do not have complex structures (e.g., only value equality (==) is supported
in conditions and no deep if nesting is possible).

Majumdar and Xu describe a directed test program generation technique that attempts to exhaust
the execution paths of a particular compiler or program analysis tool under test [63]. The technique
converts a given context-free grammar into a symbolic grammar, exhaustively derives all possible
symbolic strings (programs) up to a certain size, and uses these strings in a dynamic symbolic or
concolic execution as inputs to the program under test. This directed search yields a small set of
representative test programs, as the symbolic reasoning prevents the generation of concrete input
programs that cover the same path in the program under test. On the other hand, symbolic reasoning
is very expensive, which limits the scalability of the technique. The corresponding tool, CESE, has
been used to generate small test programs. RUGRAT on the other hand can quickly generate very
large random test programs independent of any particular program under test.

7.4. Model-Based Test Program Generation

Beyond grammar production rules, other models of programming language specifications exist.
Such models often encode rich semantic information and can be covered systematically by program
generators. Given the richness of the information encoded in these models, test case generators
are typically slower and focus on generating small programs that are focused on testing specific
features.

For example, Zhao et al. capture the rules under which individual compiler optimizations can be
applied in temporal logic [64]. The JTT tool then systematically generates focused test programs
to test individual compiler optimizations. However it is not clear how this approach scales to entire
applications and especially large-scale benchmark applications.

7.5. Random Test Data Generation for Different Domains

Random test data generators have been applied to domains related to object-oriented programming
such as generating valid XML files and generating SQL queries. In the following we focus on SQL
as an example domain.
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Probabilistic test data generation has been successfully used in testing relational database engines,
where complex SQL statements are generated using a random SQL statement generator [15].
RUGRAT extends this idea by applying it to imperative languages such as C++ and Java in that
RUGRAT generalizes the approach to generate applications with predefined properties while the
SQL statement generator is designed only for a declarative language such as SQL.

A few other approaches are created for generating SQL statements and query sets. One of them is
QGEN, a flexible, high-level query generator optimized for decision support system evaluation.
QGEN generates arbitrary query sets, which conform to a selected statistical profile without
requiring that the queries be statically defined or disclosed prior to testing [65]. QGEN links query
syntax with abstracted data distributions, enabling users to parameterize their query workload to
match an emerging access pattern or data set modification.

Another recent approach for random SQL generation is a work by Khurshid et al. that generates
syntactically and semantically correct SQL queries as inputs for testing relational databases [66].
They leverage the SAT-based Alloy tool-set to reduce the problem of generating valid SQL queries
into a SAT problem. With their approach, SQL query constraints are translated into Alloy models,
which enable it to generate valid queries that cannot be automatically generated using conventional
grammar-based generators. Both this approach and QGEN are complementary to RUGRAT, since
the latter can use generated SQL statements to integrate in its generated Java and C++ programs to
interact with backend databases. This is our work in progress that gives positive initial results.

Interestingly, generating random images is widely used to evaluate image processing and pattern
recognition algorithms [67, 68]. Essentially, finding images with desired properties to evaluate
specific algorithms is difficult and laborious; not always these images can be located on the Internet.
Yet it is important to obtain images that have specific geometric figures that highlight certain
properties of algorithms that use these images. Generating images with desired properties is a
standard practice in image processing and pattern recognition [69, 70, 71, 72].

7.6. Other Non-Generated Benchmarks

Other benchmarks of test programs have been developed besides the already discussed widely used
DaCapo Java benchmarks [8].

For example, Sewe et. al introduce a Scala benchmark based on the popular DaCapo benchmark
for the JVM [73]. Several programming languages (e.g., Scala, Clojure, Groovy, JRuby, and Jython)
are typically compiled to Java bytecode and target the JVM. But in JVM research, benchmarks
written in these languages are not commonly in use. The authors address this issue by presenting
a Scala benchmark and comparing it with the popular DaCapo benchmark on different bytecode
metrics. The results show differences between Scala and Java code.

8. CONCLUSIONS

We propose a novel approach for generating random benchmarks for evaluating compilers and
program analysis and testing tools using stochastic parse trees, where language grammar production
rules are assigned probabilities that specify the frequencies with which instantiations of these rules
will appear in the generated programs. We implemented our RUGRAT tool for Java and applied it
to generate a set of large benchmarks up to 5M LOC with which we evaluated different compilers as
well as static and dynamic program analysis tools. The generated benchmarks let us independently
rediscover several issues in the analysis tools.
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