
A

Generating Test Cases for Programs that Are Coded Against
Interfaces and Annotations

MAINUL ISLAM and CHRISTOPH CSALLNER, University of Texas at Arlington

Automatic test case generation for software programs is very powerful but suffers from a key limitation.
That is, most current test case generation techniques fail to cover testee code when covering that code re-
quires additional pieces of code that are not yet part of the program under test. To address some of these
cases, the Pex state-of-the-art test case generator can generate basic mock code. However, current test case
generators cannot handle cases in which the code under test uses multiple interfaces, annotations, or reflec-
tion.

To cover such code in an object-oriented setting, we describe a novel technique for generating test cases
and mock classes. The technique consists of collecting constraints on interfaces, annotations, and reflection,
combining them with program constraints collected during dynamic symbolic execution, encoding them in a
constraint system, solving them with an off-the-shelf constraint solver, and mapping constraint solutions to
test cases and custom mock classes. We demonstrate the value of this technique on open source applications.
Our approach covered such third-party code with generated mock classes, while competing approaches failed
to cover the code and sometimes produced unintended side-effects such as filling the screen with dialog boxes
and writing into the file system.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—Symbolic
execution; Testing tools; D.2.4 [Software Engineering]: Software/Program Verification—Reliability

General Terms: Algorithms, Reliability, Verification

Additional Key Words and Phrases: Dynamic symbolic execution, mock classes, stubs, test case generation

1. INTRODUCTION
Unit testing is an important technique for finding software bugs [Mockus et al. 2002;
Do et al. 2005; Venolia et al. 2005; Williams et al. 2009; Williams et al. 2011; Zaidman
et al. 2011; Mäntylä et al. 2012]. For example, according to a survey among software
developers at Microsoft in 2005, the fraction of software developers who use unit tests
was 79%. When a project uses unit tests, it often uses a lot of them. For example, it
is reported that in many projects within Microsoft the production code is smaller than
its unit tests [Tillmann and Schulte 2006b].

A unit test (or test case) consists of three steps. (1) First the test case prepares the
test by creating input values that are suitable for the code unit under test. (2) Then the
test case invokes the code under test, passing the input values determined in step one.
These input values force testee execution along a particular execution path. (3) Finally
the test case observes the execution results and passes them to a test oracle, which
determines if the test exposed a bug. The first step of finding suitable input values is

This is a revised and extended version of a WODA workshop paper [Islam and Csallner 2010]. This material
is based upon work supported by the National Science Foundation under Grants No. 1017305 and 1117369.
Authors’ addresses: M. Islam, Computer Science and Engineering Department, University of Texas at Ar-
lington, mainul.islam@mavs.uta.edu; C. Csallner, Computer Science and Engineering Department, Univer-
sity of Texas at Arlington, csallner@uta.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1049-331X/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:2 M. Islam and C. Csallner

crucial, as the input values determine the execution behavior that can be observed and
verified in the subsequent steps. That is, if we fail to find input values that can reach
a certain part of the testee, we cannot test that part of the code.

Today many unit test cases are written manually, which makes testing expensive
in terms of money and developer time. Given the importance of finding suitable in-
put values and the cost of manually writing them down in test cases, it is not sur-
prising that many tools and techniques have been developed for generating suitable
input values automatically. Recent work includes random test case generators such as
JCrasher [Csallner and Smaragdakis 2004] and Randoop by Pacheco et al. [2007],
bounded exhaustive test case generators such as Korat by Boyapati et al. [2002],
staged static and dynamic program analyses such as Check ’n’ Crash [Csallner and
Smaragdakis 2005], and systems that intertwine dynamic and symbolic analysis very
tightly such as EXE by Cadar et al. [2006], KLEE by Cadar et al. [2008], and dy-
namic symbolic (“concolic”) execution systems such as DART by Godefroid et al. [2005],
SMART by Godefroid [2007], SAGE by Godefroid et al. [2008], and Pex by Tillmann and
de Halleux [2008].

A key to the success of these test case generation tools is that, at their core, these
tools are dynamic program analyses. That is, these tools are aware of the analyzed
code’s full execution semantics and only produce results based on actual execution
paths through the code under test. This is in contrast with most static program anal-
ysis techniques, which approximate the analyzed code’s execution behavior. Despite
much progress in static analysis research, leading to tools such as ESC/Java by Flana-
gan et al. [2002], Spec# by Barnett et al. [2004], and Snugglebug by Chandra et al.
[2009], static analysis tools are still prone to false warnings and spurious results, es-
pecially when dealing with programs that use native code, reflection, or aliasing [Hind
2001; Bessey et al. 2010; Brauer and Simon 2012].

1.1. Limitation of Current Dynamic Test Case Generators
While current (dynamic) test case generators such as Pex are very powerful, they have
several problems. Ultimately these problems limit the code coverage achieved by the
generated test cases. (By code coverage we mean standard structural code coverage
such as branch coverage and statement coverage). While these problems are often cited
in the literature to motivate the development of new tools and techniques, we are not
aware of an exhaustive study of these problems.

On the positive side, in recent years first empirical studies have appeared that shed
some light on the problems of automatic test case generation techniques. Most closely
related is the study by Xiao et al. [2011], which carefully analyzed why the Pex dy-
namic symbolic execution engine failed to achive high coverage of 10 files of four .Net
programs. In these files, the most common problem was the object-creation problem,
i.e., Pex could not determine which methods to call in which order and with which pa-
rameters in order to bring objects needed for testee execution into a state needed for
forcing execution along a certain path. In order of occurrence, the remaining problems
found were the inability to analyze external code such as native code, exploring all
paths through loops and recursion, and certain constraints not being supported by the
underlying constraint solver.

Similar studies, by Anand et al. [2007] and Jaygarl et al. [2010], on related but dif-
ferent test case generation techniques had similar themes. That is, Anand et al. [2007]
studied the problems encountered during symbolic execution with Java PathFinder.
The two encountered kinds of problems were the tool’s inability to reason about ex-
ternal code (i.e., native code) and certain constraints not being fully supported by the
underlying constraint solver. Finally, Jaygarl et al. [2010] studied problems in random
test case generation encountered by the Randoop tool. The main problem of Randoop,

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:3

similar to the Pex study by Xiao et al. [2011], was the inability of the tool to create the
right kind of objects.

In this article we examine a problem that is related but orthogonal to the object-
creation problem. That is, current test case generators do not work in several cases
in which the testee can be compiled but not executed and therefore not tested. The
reason for this problem is that the testee invokes some interfaces and there exists no
code yet that implements these interfaces (see Section 1.2 for an example). Since no
implementation class exists yet, current test case generators do not know how to create
objects that implement these interfaces.

This limitation prevents current test case generators from advancing further on a
grand goal of testing and software engineering, which is finding bugs earlier in the soft-
ware development process [McConnell 2004, page 29]. People want to find bugs sooner
because the longer a bug lingers in the code, the more costly it is to fix that bug. These
increased costs have been explained and documented, for example in the 2002 NIST
study on the economic impacts of shortcomings of current testing practices [National
Institute of Standards and Technology (NIST) 2002, Section 4.1.2]:

“An important reason why it is more costly to correct bugs the longer they
are left undetected is because additional code is written around the code
containing the bug. The task of unraveling mounting layers of code becomes
increasingly costly the further downstream the error is detected.”

When code required for testing is missing, a test case generator may generate code
that can stand in for the missing code. Such stand-in code is often called a stub or
a mock [Beizer 1990, page 115] [McConnell 2004, page 523f] [Pezzè and Young 2007,
page 229f]. In the literature special cases of such code are sometimes also referred to
as dummy, stand-in, fake, and double [Meszaros 2007, page 743]. For simplicity, we
will refer to any code that is used to stand in for a current or future piece of code for
testing as a mock. 1

To contrast this problem with the object-creation problem, the object-creation prob-
lem deals with creating objects from existing classes, by calling existing methods. On
the other hand, this article focuses on how to create objects from classes that do not
exist yet.

While in recent years we have seen many practical mock frameworks for object-
oriented programs from the open-source community (for example, jMock [Freeman
et al. 2004a; 2004b; Freeman and Pryce 2006]), such frameworks have different goals
and capabilities. At a high level, these mock frameworks aim at supporting manually
written test cases. While these mock frameworks generate mock classes according to a
user-provided specification, these frameworks do not attempt to explore and cover the
testee automatically and do not generate test cases. In contrast, we aim for an auto-
matic test case generator that can generate test cases with high code coverage, even if
high code coverage requires generating mock classes.

In a modern object-oriented programming language such as Java or C#, generating
mock classes is hard. Programs written in such languages make frequent use of in-
terfaces and therefore multiple inheritance, dynamic type checks, annotations, native
code, and reflection. For example, according to an empirical study of some 100,000 Java
classes and interfaces, there is an instanceof dynamic type check expression in about
every other class [Collberg et al. 2007].

1Another potential source of confusion is that some related work on testing object-oriented programs refers
to mock classes as mock objects [Marri et al. 2009, Footnote 1]. Since in the terminology of object-oriented
programming each such mock object is really a class, we prefer the term mock class and use it throughout
this article.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:4 M. Islam and C. Csallner

For a test case to reach a certain part of the testee, we may therefore have to gen-
erate mock classes that implement certain interfaces, have certain annotations, sat-
isfy complex type checks stemming from dynamic type checks and reflection, and sat-
isfy constraints placed on the values returned from generated mock class methods.
In our approach, we collect such complex constraints during dynamic symbolic execu-
tion [Godefroid et al. 2005; Godefroid 2007; Tillmann and de Halleux 2008; Elkarablieh
et al. 2009] of the testee, encode them in the input language of an off-the-shelf SMT-
solver [Moura and Bjørner 2008], interpret constraint solver models as test cases and
mock classes, and generate concrete corresponding test cases and mock classes.

1.2. Motivating Example
As an example, in an object-oriented program the programmer may have just coded
Listing 1, which is a first version of class C. In this freshly coded class the foo method
casts its parameter p of static type interface I to a different interface J, calls on the
parameter the bar method, and uses the result of the method call in its control-flow
decisions. Now the programmer may want to start testing the foo method—before cod-
ing classes that implement I and J.

1public interface I { public int doX(); /∗ .. ∗/ }
2public interface J { public int bar(); /∗ .. ∗/ }
3public class C {
4public static void foo(I p, int x, Class c)
5{
6if (p instanceof J)
7{
8J j = (J) p;
9if (j.bar() > x)
10int val = p.doX();
11// ..
12}
13}
14}

Listing 1: First version of example class C under test.

A key observation about this example is that the control flow of the foo method
depends on the outcome of at least one dynamic type check. That is, even if the pro-
grammer would have omitted the (p instanceof J) dynamic type check in line 6, the
subsequent type cast in line 8 would have triggered the virtual machine to perform
an (implicit) dynamic check of the type of parameter p. The virtual machine throws a
runtime exception if the parameter cannot be cast to the given type. If thrown, such
a runtime exception would divert the control flow of the foo method to a code block
dedicated for catching and handling the exception. If there is no such code block, then
the control flow terminates and the application crashes.

To avoid such runtime exceptions (and subsequent program crashes), the program-
mer used line 6 to guard the subsequent type cast with an explicit dynamic type check.
In our example, the programmer guarded the cast to J with if (p instanceof J). A simi-
lar explicit type check can be achieved via reflection as in if (c.isAssignableFrom(p.class)).
The latter checks if the dynamic type of p (the type represented by the Java class
p.class) is a subtype of the type represented by the class variable c, which may refer to
types other than J.

To cover such code, we extend automatic test case generation with reasoning about
explicit and implicit dynamic type checks and solving them together with other con-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:5

straints imposed by the program, such as constraints stemming from how values re-
turned by generated code is used in subsequent control-flow decisions.

1.3. Research Questions and Contributions
In this article we extend automatic test case generation of Java-like programs to sce-
narios in which code that is required for testing is not yet implemented (or otherwise
unavailable for execution). That is, the testee performs dynamic type checks and may
call interface methods, but there is no class yet that implements these interfaces. Be-
fore developing our approach, we first confirm that such scenarios indeed occur in
third-party applications. Specifically, we investigate the following five research ques-
tions (RQ).

RQ1: Do third-party object-oriented applications use complex dynamic type checks, for
example, to check if a method parameter is an instance of two non-compatible
supertypes (RQ2) or if a method parameter has certain annotations (RQ3)?

RQ2: Can automatically generated test cases cover code that (in addition to perform-
ing other computing tasks) type-checks references dynamically, even if this code
cannot be covered with any of the existing classes?

RQ3: Can automatically generated test cases cover code that is coded against annota-
tions, even if none of the existing classes has the required annotations?

RQ4: How does a test case generator that systematically covers the patterns of RQ2
and RQ3 compare with a random test case generator?

RQ5: How does a test case generator that covers the patterns of RQ2 and RQ3 compare
with a state-of-the-art systematic test case generator such as Pex and Moles?

To summarize, this article makes the following contributions to automatic test case
generation.

— We survey dozens of open-source applications with a total size of more than 2 MLOC
and find hundreds of cases of RQ2 and RQ3 patterns, which answers RQ1 with yes.

— To answer RQ2 and RQ3 we design a novel test case generation technique based on
dynamic symbolic execution. Our technique systematically covers code that is coded
against interfaces and annotations. One part of the technique generates custom mock
classes, which we also call dynamic symbolic mock classes.

— We describe an implementation of our test case generation technique for Java and
distribute our implementation as an open source tool.

— We report on our experience of applying our technique on open source applications. To
provide initial answers to RQ4 and RQ5 we compare our implementation to state-of-
the-art test case generators, the dynamic symbolic execution system Pex and Moles
and the random test case generator Randoop. We find that our approach can cover
many pieces of third-party code that existing approaches cannot cover.

We describe our examples, design, implementation, and evaluation in terms of Java
programs, but the ideas and techniques could also be adapted and applied to related
object-oriented languages such as C++ and C#.

2. BACKGROUND
In this section we provide necessary background on our research questions, i.e., on
Java reference types, their sub- and supertype relations, annotations, dynamic type
checks, and reflection. We also provide background information on dynamic symbolic
execution and our Dsc dynamic symbolic execution engine.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:6 M. Islam and C. Csallner

2.1. Sub-/Supertype Relation on Reference Types in Java
Java programs have two kinds of types, primitive types (boolean, int, float, etc.) and
reference types. Reference types are arrays, interfaces, and classes. Like many object-
oriented languages, Java defines on the reference types a binary subtype relation. For
example, if a Husky type declares that it implements or extends the Dog type, then
Dog is a direct supertype of Husky and Husky is a direct subtype of Dog. Reflexive and
transitive closure of these direct relations yields the super- and subtype relations.

In Java, each class has one direct class supertype and arbitrarily many direct inter-
face supertypes. The Object class is special, it has no direct supertype. Another special
type is the null type; it has no direct subtype but is a subtype of every other reference
type. An interface only has interface supertypes, except if it does not explicitly declare
any supertype, then it has an implicit one—the Object class.

Java distinguishes between abstract and non-abstract reference types. Each inter-
face is abstract and a class may declare to be abstract. A non-abstract type may declare
to be final, in which case it has one subtype, the null type. Each reference value is ei-
ther the null value or a pointer to an object. Each object is an array or an instance of a
non-abstract class [Gosling et al. 2005].

2.2. Annotations in Java
A Java programmer can annotate various program elements with custom annotations,
e.g., the public class C with annotation @A as follows: @A public class C {..}. Besides
classes, a programmer can currently also annotate packages, interfaces, enums, anno-
tations themselves, fields, constructors, methods, parameters, and local variables. In
addition to that, Java specification request JSR 308 proposes to allow programmers to
annotate several additional program elements2.

In Java, annotations are implemented via interfaces. That is, each annotation defi-
nition such as public @interface A {..} is interpreted as the definition of reference type A
that is essentially a special interface. Each annotation implicitly is a subtype of the in-
terface java.lang.annotation.Annotation and cannot declare other super-types. However,
an annotation can be the super-type of user-defined classes and interfaces.

Several pre-defined annotations have special semantics. That is, @Target is used
in annotation definitions, for specifying the program elements the annotation can be
applied to. @Retention specifies how long an annotation should be retained, i.e., until
compile-time, in the class’s bytecode, or until runtime. Retaining annotations until
runtime allows accessing them via reflection.

2.3. Dynamic Type Checks and Reflection
Several Java program elements give rise to multiple-inheritance type constraints and
constraints on annotations, including the following. The first two are the Java lan-
guage dynamic type check and cast expressions. The remaining ones are reflection
methods, defined by the java.lang.Class and java.lang.reflect.AnnotatedElement classes.

— e instanceof T
— (T) e
— boolean Class.isAssignableFrom(Class)
— boolean Class.isInstance(Object)
— boolean Class.isAnnotation()
— boolean AnnotatedElement.isAnnotationPresent(Class)
— Annotation AnnotatedElement.getAnnotation(Class)
— Annotation[] AnnotatedElement.getAnnotations()

2JSR 308 is available at http://jcp.org/en/jsr/detail?id=308

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:7

2.4. Dynamic Symbolic Execution and Dsc
Dynamic symbolic execution (DSE), first described by Godefroid et al. [2005], is a rela-
tively new kind of program analysis. As its name suggests, dynamic symbolic execution
executes a program both dynamically (concretely, on a standard interpreter or runtime
system such as a standard Java virtual machine) and symbolically (on a symbolic in-
terpreter). The key aspect is that these two executions are conducted side-by-side. That
is, after a program instruction is executed concretely, the same instruction is evaluated
symbolically. Thus the concrete execution guides the symbolic execution.

As in traditional symbolic execution [King 1976; Clarke 1976], the symbolic inter-
preter in DSE treats each program parameter as a symbolic variable and executes the
program over those symbolic variables. All intermediate values are then represented
as symbolic expressions over the symbolic input variables. For example, when analyz-
ing a method that starts with void foo(int p) { int x = p + 1; if (x>0), first the standard
interpreter of DSE takes the concrete input value passed to foo such as 5, executes the
first statement int x = p + 1 and assigns the resulting value 6 to x. Then the symbolic
interpreter of DSE assigns to parameter p the symbolic variable P and to x the result-
ing symbolic expression P + 1. This allows the symbolic interpreter to record later the
symbolic conditions for which the standard interpreter took an execution branch. For
example, the subsequent if (x>0) leads to a symbolical constraint of P + 1 > 0, which
describes a constraint on the input variables that any future execution has to satisfy
in order to execute the same execution path.

After executing a program path, the branching decisions collected by the symbolic
interpreter are used to craft another concrete program input, by encoding a new path
as a symbolic constraint system over the program parameters, solving the constraint
system, and mapping the constraint solution to a new concrete program input value.
Thereby the symbolic execution guides DSE to the next execution path.

Dsc is a dynamic symbolic execution engine for Java bytecode, in which we have im-
plemented our approach for generating mock-classes3. Dsc uses the high-performance
automated theorem prover Z3 from Microsoft Research [Moura and Bjørner 2008], to
solve constraints generated during symbolic execution.

3. SURVEY OF OPEN-SOURCE SUBJECT APPLICATIONS (RQ1)
Research question 1 asks if applications actually use code that fits the patterns of RQ2
and RQ3. In this section we survey third-party applications, focusing on two example
scenarios. In the first scenario, executing the code under test depends on having a
class that satisfies multiple-inheritance constraints, which is a special case of RQ2.
In the second scenario, executing the code under test depends on having a class that
has certain annotations, which reflects RQ3. We focus on these two scenarios as they
are examples of cases that state-of-the-art test case generation techniques such as Pex
and Moles do not cover. In the surveyed applications these two example scenarios occur
hundreds of times, which answers RQ1 with yes.

For this survey we selected from a wide range of application areas as subjects some
35 small to medium-sized Java applications. Many of our subjects are well-known open
source representatives of their application area, including Apache ActiveMQ (message
brokers), Apache Ant (build tools), Apache Derby (database engines), ArgoUML (UML
editors), JUnit (test automation), Tomcat (web servers), and Xalan (XML processors).
Table I lists the size of each subject in non-commenting source statements (LOC), the
number of classes, interfaces, and methods, and the average cyclomatic complexity of
each method (CC). LOC ranges from 2 to 338 kLOC with a total of over 2 MLOC.

3Dsc is available at http://ranger.uta.edu/∼csallner/dsc/index.html

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:8 M. Islam and C. Csallner

3.1. Multiple-Inheritance Patterns of Table I
We searched the subjects of Table I for several variants of multiple-inheritance from
incompatible super-types. Specifically, patterns p1, p2, and p3 are branch conditions
that use an instanceof dynamic type check to compare two incompatible types. Such
a branch can only be covered with an instance of a class that satisfies multiple-
inheritance constraints.

Table I lists some three hundred occurrences of these patterns. However, p1, p2, and
p3 are just three special cases to show how different patterns can impose multiple
inheritances and our subjects likely contain many more branches that existing tech-
niques also cannot cover. For example, instanceof compares an arbitrary instance with
a fixed type. Table I also lists hundreds of calls to the more flexible type checks in the
isAssignableFrom(Class) and isInstance(Object) reflection methods, which can be invoked
on arbitrary class instances and arbitrary types (RQ2).

The numbers in Table I should not be confused with numbers of test cases or num-
bers of bugs. That is, we did not study how many execution paths pass through each
pattern occurrence. For example, a pattern 1 instance listed in Table I typically acts
as a guard that controls the execution of a chunk of code. In order to fully cover the
thereby guarded statements, a tester or test case generator may need to carefully craft
dozens of distinct test cases. The key observation is that in order to cover any portion of
such guarded application code, we need to either manually write custom mock classes
or generate them.

When ordering the patterns, we placed p1 first, because we expect that it may be
easier for a test case generator to generate test cases that cover p1 than to cover p2
or p3. That is, pattern p1 places type constraints on an object obj that could be set
easily by a test case generator—the object obj is a parameter of the method under test.
Patterns p2 and p3 are more involved, as they require a test case generator to perform
additional solution steps. Specifically, pattern p2 requires such a solution object obj
to be a field of another object. Setting such a field can be very complicated and is an
instance of the well-known object-creation problem [Xiao et al. 2011]. Pattern p3, on
the other hand, requires such a solution object obj to be returned by a method, which
may require reasoning about an existing method or generating a new method that
overrides an existing method to return the new object.

As a proof-of-concept, our implementation and evaluation focuses on pattern p1.
Integrating our solution with solutions for other challenges such as the object-creation
problem is future work. Looking at the numbers in Table I, it is clear that pattern p1,
despite being potentially the simplest among the patterns, is still relatively common.
That is, in the subjects examined, p1 was more common than the other two patterns.

3.1.1. Pattern p1: Method Parameter Check. Pattern 1, shown in Listing 2, matches
branching statements that branch on an instanceof dynamic type check of a method
parameter against a non-compatible type. Such code is frequently used to test if a
method parameter instance is also a subtype of a type that is unrelated to the param-
eter’s formal type. To cover code that matches this pattern, a test case generator must
generate a mock class that is a subtype of both the formal parameter type and the type
used in the dynamic typecheck.
M m(.., T t, ..) { // ..

if (.. (t instanceof X))
// ..
}
Listing 2: Pattern 1 matches branching statements that branch on an instanceof dy-
namic type check of a method parameter t against type X that is not compatible with
the declared type T of t.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:9

Ta
bl

e
I:

M
ul

ti
pl

e-
in

he
ri

ta
nc

e
pa

tt
er

ns
in

Ja
va

ap
pl

ic
at

io
ns

;L
O

C
=

no
n-

co
m

m
en

ti
ng

so
ur

ce
st

at
em

en
ts

;C
la

ss
=

#c
la

ss
es

an
d

en
um

s,
In

tf
=

#i
nt

er
fa

ce
s

an
d

an
no

ta
ti

on
s,

M
=

#m
et

ho
ds

(e
ac

h
in

cl
ud

in
g

pu
bl

ic
,p

ro
te

ct
ed

,p
ac

ka
ge

-p
ri

va
te

,a
nd

pr
iv

at
e,

ab
st

ra
ct

an
d

no
n-

ab
st

ra
ct

,
to

p-
le

ve
l

an
d

ne
st

ed
);

C
C

=
av

er
ag

e
cy

cl
om

at
ic

co
m

pl
ex

it
y

pe
r

m
et

ho
d;

in
st

of
=

#i
ns

ta
nc

eo
f

ex
pr

es
si

on
s;

pa
tt

er
ns

p1
,

p2
,

p3
ar

e
no

t
co

ve
re

d
by

ot
he

r
to

ol
s

su
ch

as
Pe

x
an

d
M

ol
es

.
C

al
ls

to
re

fle
ct

io
n

m
et

ho
ds

iA
F

=
#C

la
ss

.is
A

ss
ig

na
bl

eF
ro

m
(C

la
ss

)a
nd

iI
=

#C
la

ss
.I

sI
ns

ta
nc

e(
O

bj
ec

t)
lik

el
y

co
nt

ai
n

m
or

e
su

ch
m

ul
ti

pl
e-

in
he

ri
ta

nc
e

ca
se

s
th

at
no

ex
is

ti
ng

to
ol

ca
n

co
ve

r
(R

Q
2)

.
A

ct
iv

eM
Q

,
A

nt
,

D
er

by
an

d
To

m
ca

t
ar

e
A

pa
ch

e
pr

oj
ec

ts
;

JS
R

30
8

=
JS

R
30

8
C

he
ck

er
s

F
ra

m
ew

or
k;

A
nd

ro
M

D
A

C
or

e
is

v3
.3

,U
ni

m
od

e
C

or
e

is
v1

.3
.3

9.
1;

L
O

C
an

d
C

C
co

un
te

d
w

it
h

Ja
va

N
C

SS
.

Su
bj

ec
t

kL
O

C
C

la
ss

In
tf

kM
C

C
in

st
of

p1
r

p1
p2

r
p2

p3
r

p3
iA

F
iI

A
ct

iv
eM

Q
5.

5.
0

15
6.

6
2,

04
7

31
6

20
.5

1.
8

38
9

11
11

0
0

0
0

8
8

A
nd

ro
M

D
A

C
or

e
5.

6
11

9
10

0.
9

2.
3

14
0

0
0

0
0

0
7

1
A

nt
1.

8.
2

74
.0

1,
01

3
77

9.
7

2.
8

26
1

1
1

5
5

0
0

36
3

A
rg

oU
M

L
ap

p
0.

32
81

.9
1,

81
0

11
1

11
.2

2.
5

1,
06

9
1

0
5

5
5

5
2

1
A

SM
4.

0
R

C
1

17
.2

15
1

14
1.

5
4.

2
19

3
3

3
0

0
0

0
4

0
B

C
E

L
5.

2
17

.2
34

8
35

2.
9

2.
2

33
7

4
3

0
0

0
0

0
6

C
ob

er
tu

ra
1.

9.
4.

1
44

.0
11

2
10

3.
4

6.
9

7
0

0
0

0
0

0
0

0
C

ol
um

ba
1.

2
16

.4
1,

16
5

13
0

7.
0

1.
9

18
8

0
0

3
1

0
0

1
1

D
er

by
10

.8
.1

.2
14

9.
6

1,
24

0
26

5
18

.6
3.

0
1,

01
3

1
1

41
37

6
4

10
25

D
rJ

av
a

r5
42

5
75

.0
4,

90
8

29
2

40
.7

2.
0

1,
74

4
8

5
3

1
2

2
11

11
D

ro
ol

s
5.

1.
1

61
.0

1,
28

9
22

9
11

.2
1.

9
51

8
7

7
7

7
0

0
20

7
E

as
yM

oc
k

3.
0

2.
9

74
9

0.
6

2.
0

50
0

0
0

0
0

0
5

1
F

in
dB

ug
s

1.
3.

9
74

.8
1,

56
4

17
1

11
.2

3.
4

69
7

0
0

0
0

0
0

14
0

G
ro

ov
y

1.
8.

0
77

.9
3,

04
8

14
1

36
.3

3.
2

1,
81

2
9

5
8

6
0

0
66

15
G

ui
ce

C
or

e
3.

0
9.

9
46

4
10

1
3.

3
1.

8
20

8
3

3
1

1
0

0
16

2
H

ib
er

na
te

C
or

e
3.

6.
0

90
.8

2,
18

3
49

5
20

.3
2.

1
49

6
5

2
4

3
1

1
25

7
22

3
Ja

sm
in

2.
4.

0
2.

9
15

0
2

0.
7

6.
4

13
8

0
0

0
0

0
0

0
0

Ja
va

ss
is

t
3.

11
.0

25
.0

33
0

17
3.

3
3.

0
13

5
0

0
0

0
0

0
0

1
Ja

xL
ib

0.
6.

4
68

.8
53

6
68

11
.0

3.
0

79
4

13
7

35
29

20
0

0
8

3
Jd

ec
2.

0
83

.6
84

4
6

5.
9

5.
4

96
0

0
0

0
0

0
0

0
Je

di
t

4.
3

40
.8

89
2

44
6.

7
3.

3
51

8
0

0
2

2
0

0
4

2
JF

re
eC

ha
rt

1.
0.

13
64

.7
50

8
10

3
8.

0
2.

8
64

0
16

16
0

0
1

1
2

0
Jg

ap
3.

5
18

.9
34

9
92

3.
1

2.
4

30
1

1
2

2
0

0
28

3
JM

on
ke

yE
ng

in
e

3.
0

33
8.

4
85

9
10

3
8.

5
2.

5
34

6
2

2
0

0
0

0
8

1
JS

R
30

8
13

.6
99

9
32

1
9.

5
3.

6
44

8
2

2
1

1
4

3
10

6
5

JU
ni

t
4.

9b
2

4.
5

20
3

45
1.

2
1.

7
30

2
2

0
0

2
2

11
6

Jy
th

on
2.

5.
2

15
8.

4
5,

48
1

36
6

51
.6

3.
7

4,
13

6
24

13
10

7
0

0
22

9
13

0
Po

ly
gl

ot
1.

3.
5

42
.1

36
2

14
0

4.
1

2.
7

43
1

3
3

12
3

1
1

5
1

So
ot

2.
4.

0
11

1.
1

2,
69

8
27

2
31

.4
3.

0
5,

13
6

28
27

4
4

52
48

0
0

Sp
ri

ng
C

or
e

3.
0.

5
10

.7
22

9
67

1.
9

2.
7

19
7

0
0

0
0

0
0

27
10

To
m

ca
t

7.
0.

21
11

9.
6

1,
37

8
11

2
15

.8
3.

1
81

5
0

0
0

0
0

0
39

9
U

m
lG

ra
ph

5.
4

2.
2

30
2

0.
3

2.
9

10
0

0
0

0
0

0
0

0
U

ni
m

od
e

C
or

e
8.

6
17

2
40

1.
3

2.
4

63
0

0
0

0
0

0
4

0
W

el
d

C
or

e
1.

1.
0

16
.9

49
2

34
3.

3
2.

1
21

2
0

0
0

0
0

0
21

0
X

al
an

2.
7.

1
93

.9
70

3
36

6.
4

3.
1

34
2

7
5

24
7

0
0

15
0

To
ta

l
2,

17
9.

4
38

.8
k

4.
3k

37
3.

0
3.

0
23

.5
k

27
5

14
7

16
1

11
2

74
67

96
4

47
5

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:10 M. Islam and C. Csallner

Table
II:C

alls
to

annotation
access

reflection
m

ethods
(R

Q
3),grouped

by
reflection

object
(class,m

ethod,field).E
xisting

test
case

generators
do

not
reason

about
annotations;iA

P
=

isA
nnotationP

resent(C
lass),iA

=
isA

nnotation(),gA
s

=
getA

n-
notations(),gA

=
getA

nnotation(C
lass),gD

A
=

getD
eclaredA

nnotations().
Subject

C
lass

M
ethod

F
ield

iA
P

iA
gA

s
gA

gD
A

iA
P

gA
s

gA
gD

A
iA

P
gA

s
gA

gD
A

Total
A

ctiveM
Q

5.5.0
0

0
0

0
0

0
0

2
0

0
0

0
0

2
A

ndroM
D

A
C

ore
0

0
0

0
0

0
0

0
0

0
0

0
0

0
A

nt
1.8.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
rgoU

M
L

app
0.32

3
0

0
0

0
0

0
0

0
0

0
0

0
3

A
SM

4.0
R

C
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

B
C

E
L

5.2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
C

obertura
1.9.4.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
olum

ba
1.2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

D
erby

10.8.1.2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
D

rJava
r5425

0
2

4
3

0
0

2
6

0
0

1
3

0
21

D
rools

5.1.1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
E

asyM
ock

3.0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
F

indB
ugs

1.3.9
0

0
0

0
0

0
0

0
0

0
0

0
0

0
G

roovy
1.8.0

0
0

2
6

0
0

1
4

0
0

0
0

0
13

G
uice

C
ore

3.0
0

0
2

4
0

2
2

0
0

0
1

0
0

11
H

ibernate
C

ore
3.6.0

0
0

0
4

0
1

0
3

0
0

0
2

0
10

Jasm
in

2.4.0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
Javassist

3.11.0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
JaxL

ib
0.6.4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Jdec
2.0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Jedit
4.3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

JF
reeC

hart
1.0.13

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Jgap
3.5

0
0

0
0

0
0

0
0

0
0

0
0

0
0

JM
onkeyE

ngine
3.0

2
0

0
2

0
0

0
0

0
0

0
1

0
5

JSR
308

2
2

0
14

0
0

0
0

0
0

0
0

0
18

JU
nit

4.9b2
0

0
4

5
0

0
2

6
0

0
1

3
0

21
Jython

2.5.2
0

0
0

4
0

1
1

4
0

0
0

0
0

10
Polyglot

1.3.5
0

0
0

0
0

0
0

0
0

0
0

0
0

0
Soot

2.4.0
0

0
0

2
0

0
0

0
0

0
0

0
0

2
Spring

C
ore

3.0.5
2

0
19

4
1

0
10

2
0

0
2

0
0

40
Tom

cat
7.0.21

4
2

0
7

0
7

0
5

0
5

0
5

0
35

U
m

lG
raph

5.4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
U

nim
ode

C
ore

0
0

0
0

0
0

0
0

0
0

0
0

0
0

W
eld

C
ore

1.1.0
6

2
8

3
3

3
2

0
1

1
1

1
1

32
X

alan
2.7.1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Total
19

8
39

58
4

14
20

32
1

6
6

15
1

223

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:11

Following are the pattern 1 details. Unless noted otherwise, each pattern matches as
broadly as possible. For example, if there is a method definition “M m(..)” as in pattern
1 we mean that M can be any return type including primitive types and void, m can be
static or non-static, m can have any visibility modifier, etc. In the patterns we use an
if-statement as a short-hand for Java’s branch and loop constructs. Due to a limitation
of our pattern matching, Table I does not contain all such instanceof expressions that
occur in branch conditions.

(1) T and X are non-compatible.
(2) m is user-defined.
(3) At least one of {T, X} is an interface.
(4) None of {T, X} is final.
(5) At least one of {T, X} is a user-type.

Condition (1) excludes simple inheritance cases that can be resolved by plainly using
or subclassing T or X. Such simple cases can be covered with some of the existing tools
and techniques. Condition (2) limits our search to the code that is currently under test.
Conditions (3) and (4) exclude cases that are never satisfiable. That is, in Java no class
can be a subtype of two non-compatible classes or be a subtype of a final type. Condition
(5) focuses the search to cases in which there is likely no existing class readily available
in the JDK that is a subtype of both T and X.

3.1.2. Patterns p2 and p3: Method Parameter Field and Method Return Value Check. Pattern 2,
shown in Listing 3, is similar to pattern 1, but checks a method parameter’s field value
against an incompatible type.
class P { T t; .. }
class Q {

M m(.., P p, ..) { // ..
if (.. (p.t instanceof X))
// ..
}
}
Listing 3: Pattern 2 matches branching statements that branch on an instanceof dy-
namic type check of a method parameter’s field with a type X, such that X and the
field’s declared type T are not compatible.

Pattern 3, shown in Listing 4, is similar to the previous patterns, except that here
we test against a non-compatible method return-type T.
M m(..) { // ..

if (.. (..).foo() instanceof X)
// ..
}
Listing 4: Pattern 3 matches branching statements that branch on an instanceof dy-
namic type check of a method return value with a type X, such that X and the method’s
declared return type are not compatible.

3.1.3. “Relaxed” Patterns p1r, p2r, p3r. Patterns p1r, p2r, and p3r relax their p1, p2, and
p3 counterparts, by not requiring that the instanceof-expression is part of a branch
condition. We search for these patterns to gauge how often programmers check with
non-compatible types.

p1r: M m(.., T t, ..) {.. (t instanceof X) ..}
p2r: M m(.., P p, ..) {.. (p.t instanceof X) ..}
p3r: M m(..) {.. ((..).foo() instanceof X) ..}

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:12 M. Islam and C. Csallner

3.2. Annotation Patterns of Table II
Table II lists the subjects of Table I and their calls to reflection methods that access
annotations. Similar to the patterns of Table I, applications typically access annota-
tions as part of a branching decision. That is, the code under test checks if some
class has a certain annotation. The entries of Table II have a similar flavor as the
more general cases in the last two columns of Table I, as each annotation access
method can be applied on two arbitrary parameter classes. A representative exam-
ple is discussed in Listing 13 of Section 5.1.3, in which the code under test calls the
Class.isAnnotationPresent(Class) method in an if-condition that guards the bulk of the
method body. Within our sample of 35 open-source Java applications we found 223 in-
stances.

4. SOLUTION (RQ2, RQ3)
In this section we describe our solution, first on an example from the Apache Active
MQ subject, then by providing key details of the algorithm.

4.1. Overview and Example
Apache Active MQ implements the Java Message Service (JMS) standard message-
broker interface [Hapner et al. 2002]. Method transform(Destination) of class Ac-
tiveMQDestination shown in Listing 5 (cut and formatted for space reasons, with
adapted line numbers) takes a parameter of the JMS interface Destination and per-
forms on the parameter several dynamic type checks. Figure 1 shows in UML class
diagram notation [Booch et al. 2005] the types that are relevant for these type checks,
i.e., the Destination subtypes. Execution branches in line 7 to lines 8–15 if the dy-
namic type of the method parameter is not null and a subtype of both Topic and Queue.
Searching the core component’s 1,731 production types, there is no such class.

1public static ActiveMQDestination
2transform(Destination dest) throws JMSException {
3if (dest==null)
4return null;
5if (dest instanceof ActiveMQDestination)
6return (ActiveMQDestination) dest;
7if (dest instanceof Queue && dest instanceof Topic) {
8String queueName = ((Queue) dest).getQueueName();
9String topicName = ((Topic) dest).getTopicName();
10if (queueName!=null && topicName==null)
11return new ActiveMQQueue(queueName);
12else if (queueName==null && topicName!=null)
13return new ActiveMQTopic(topicName);
14throw new JMSException(/∗ [cut] ∗/);
15}
16if (dest instanceof TemporaryQueue)
17return new ActiveMQTempQueue(((TemporaryQueue)dest).getQueueName());
18// [cut] three more if−(dest instanceof ..)−stmts
19throw new JMSException(/∗ [cut] ∗/);
20}

Listing 5: The transform(Destination) method of the ActiveMQDestination class.

The test cases accompanying Apache Active MQ core contain a class that implements
Destination, Queue, and Topic and can therefore reach lines 8–15. It appears as if this
class, CombyDest, has been written in response to the bug report4 it refers to, AMQ-

4The bug report AMQ-2630 is available at https://issues.apache.org/activemq/browse/AMQ-2630

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:13

2630. AMQ-2630 is categorized as bug, major, fixed. AMQ-2630 refers to a third-party
class, AQjmsDestination of the Oracle Streams Advanced Queuing Java API, which
similarly implements Destination, Queue, and Topic and caused a runtime exception in
the transform method. It is not surprising that this bug went undetected, as reaching
the various blocks of the transform method requires very specific kinds of classes and
writing all of them manually may be viewed as tedious and may have therefore been
skipped during manual unit testing.

<<Java Interface>>

Destination

<<Java Class>>

ActiveMQDestination

<<Java Interface>>

Queue

<<Java Interface>>

Topic

<<Java Class>>

ActiveMQQueue

<<Java Class>>

ActiveMQTempDestination

<<Java Class>>

ActiveMQTempQueue

<<Java Class>>

ActiveMQTempTopic

<<Java Class>>

ActiveMQTopic

<<Java Interface>>

TemporaryQueue

<<Java Interface>>

TemporaryTopic

<<Java Class>>

CombyDest

<<Java Class>>

ActiveMQDestinationTest

Fig. 1: Type hierarchy of the Destination interface used in the transform(Destination)
method in Listing 5: Destination and those subtypes that are visible in the Apache Ac-
tive MQ core component and relevant for the transform method; CombyDest is nested
inside a test case.

Our key insight is that we can infer the necessary constraints while executing the
testee. In the transform method example, we start execution with a dest parameter
value of null. This will lead execution to take the (dest==null) branch in line 3 and
return. Using code instrumentation, we can track such branch condition outcomes,
represent them symbolically in terms of the method parameters, and systematically
manipulate resulting path conditions. Similarly, we also encode formal method param-
eter types, the subtype hierarchy of the types involved, and general language rules,
including the meaning of type modifiers such as abstract, final, etc.

In this example, we solve the constraint (dest!=null), construct a corresponding non-
null Destination value, and use it for the next iteration. Continuing in this fashion, we
eventually build a path condition of (dest!=null) && (dest instanceof Queue) && (dest
instanceof Topic). As no such type exists yet, this constraint system is unsatisfiable. At
this point we introduce mock types. Whereas existing types have fixed super types, we
encode the super types of a mock type as a sequence of variables and let the constraint
solver determine if there exists a solution that satisfies the entire constraint system.
This is an elegant solution, as it integrates well with the other constraints collected
during dynamic symbolic execution. That is, we can create a satisfying mock class and
continue exploration with a mock class instance. Now we can continue collecting con-
straints on the mock class, such as constraints on the values returned by its methods,
for example, (queueName!=null) in line 10.

In summary, while on a high level our approach follows the work on Pex, EXE, and
DART, our approach differs in two important ways, which correspond to our research

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:14 M. Islam and C. Csallner

questions RQ2 and RQ3. First, we model precisely the type constraints of an object-
oriented program and can therefore reason about complex type constraints including
ones that stem from dynamic type checks and reflection (RQ2). Second, not part of this
example, we model the constraints that arise from annotations (RQ3).

4.2. Algorithm
At a high level, our approach follows the idea of dynamic symbolic execution
(DSE) [Godefroid et al. 2005; Godefroid 2007; Tillmann and de Halleux 2008; Elka-
rablieh et al. 2009], as illustrated by our main function, Function DSE. Initially, the
program counter pc points to the testee’s first bytecode instruction. The instruction
is executed by a normal Java virtual machine represented by evalDynamic. The in-
struction is then evaluated symbolically by the symbolic evaluator evalSymbolic, which
mirrors the behavior of evalDynamic in a symbolic representation of the program state.

Execution proceeds with the next bytecode (pc’) as determined by the concrete exe-
cution. This means that the symbolic execution follows the control flow decisions of the
concrete execution. Each subsequent bytecode instruction is also executed both con-
cretely and symbolically. This symbolic shadowing of the concrete execution allows us
to build a complete symbolic representation of the program’s runtime state, including
the state of the method invocation stack, the state of each operand stack and all local
variables, and the full state of all heap objects.

Function DSE is the main routine of our dynamic symbolic executor. The symbolic
evaluator evalSymbolic follows the control flow decisions of the regular Java execution
evalDynamic. Symbolic entities are capitalized; pc is the program counter.
pc← first bytecode(testee);
thread← thread executing testee code;
Thread← fresh symbolic Thread;
heap← jvm heap;
Heap← fresh symbolic Heap;
while true do

pc’← evalDynamic(pc, thread, heap);
evalSymbolic(pc, thread, Thread, heap, Heap);
pc← pc’;

The evalSymbolic function may read the concrete program state to get access to the
current, fully evaluated, concrete state. This is important when Java bytecode instruc-
tions are mixed with native code, which occurs frequently in reflection code. That is,
after the execution of a native code fragment, evalSymbolic accesses the concrete pro-
gram state to retrieve the values computed by the native code, represents them as
symbolic literals, and thereby brings the symbolic shadow state back in sync with the
shadowed concrete program state.

Figure 2 illustrates the key steps of our approach. Initially we invoke DSE on the
code under test, providing as input a given or default value such as zero or null, to
collect an initial path condition. Then, in each iteration, we try to cover a new execution
path through the code under test. Following are the key steps taken in each iteration.

(1) Invoke DSE on the given input values, collecting branch outcomes in a path condi-
tion and collecting type and annotation constraints (using evalSymbolic).

(2) Invert one conjunct of one of the collected path conditions to obtain a new path
condition.

(3) Map each encountered reference type to a constraint literal (e.g., using Table IV).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:15

Start

Default input
values (0, null, ...)

Invoke DSE on given input
values and collect path

constraints

More paths?

Invert one of the collected path
constraints

Map each reference type to a
constraint literal and encode

properties of each reference type
to build a constraint system

Constraint
system

satisfiable?

Map the constraint solver model
to new test case (and mock

classes)

Add mock classes and
map each of them to a

constraint literal

Encode properties (e.g.,
subtype relation) of mock
classes in the constraint

system

Constraint
system

satisfiable?

New test case
(and

corresponding
mock classes)

Stop

yes

no

yes

no

yes

no

Fig. 2: High level flow-chart view of the algorithm for generating test cases and mock
classes. Mock classes extend the standard flow-chart of dynamic symbolic execution.
Elements that are not in the standard flow-chart are shown in the red dashed box.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:16 M. Islam and C. Csallner

(4) Encode properties of the encountered reference types (e.g., using Table III), includ-
ing their subtype relation.

(5) If the new path condition (of step 2) plus the type encoding of steps 3 and 4 are not
satisfiable, update the constraint system as follows.
(a) Add mock classes and encode each of them as a constraint literal.
(b) Represent the mock class subtype relation and other properties with constraint

variables.
(6) If the constraint system is satisfiable, map the constraint variables, including the

properties of the mock classes, from the constraint solver model to a concrete new
test case (input values and concrete mock classes).

4.3. Constraint Encoding
In order to solve constraints, we map the symbolic expressions built by our sym-
bolic bytecode interpreter evalSymbolic to the input language of an off-the-shelf SMT-
solver. At a high level, we map each reference type encountered during execution to
a constraint literal, encode their subtype hierarchy as a sparse boolean-valued two-
dimensional array called Supertypes, and encode the super-types of a mock-type as
boolean variables within that array.

Relative to these constructs we can then express the constraints that arise from ex-
ecuting program elements, including dynamic type checks and reflection, i.e., in func-
tion evalSymbolic. For example, when encountering an instanceof bytecode instruction,
evalSymbolic pops the top symbolic expression from the symbolic operand stack of the
current method. This symbolic expression represents the reference that instanceof
checks for being an instance of a given type. Then evalSymbolic retrieves this type from
the bytecode. We then build a symbolic Subtype expression that represents that the
dynamic type of the retrieved symbolic expression is indeed a subtype of the given
type. To match the semantics of the Java bytecode instanceof instruction, we finally
build a symbolic if-then-else expression (Ite) that returns 1 if the symbolic reference is
non-null and of the given type and else returns 0.

Besides encoding constraints arising during program execution, we use the symbolic
functions of Table III to encode the properties of the encountered reference types. That
is, we assert type properties such as a type being abstract, an interface, an array,
and final. Having these basic facts and the subtype relation asserted, we can encode
the desired properties of variables such as the method parameters. For example, we
encode the rule that the dynamic type of a method parameter has to be an array or
non-abstract subtype of the parameter’s declared type.

4.4. Dealing with Annotations
An annotation definition public @interface A {..} in Java essentially defines a special
interface named A. Programs can use this annotation type A in ways similar to using
any other interface. For example, programs can use A in instanceof expressions such
as if (p instanceof A) {..} or in .class expressions and reflective method invocations such
as if (p.getClass().isAnnotationPresent(A.class)) {..}. Given that an annotation can be used
like any other interface, we treat annotations like interfaces. That is, we treat each
annotation as a type and encode it in the subtype relation together with all other class
and interface types.

In addition to behaving like an interface, there are a few additional opera-
tions a program can perform that are exclusive to annotations. For example, the
isAnnotationPresent(Class a) reflection method determines if the receiver instance is an-
notated with annotation a.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:17

Function evalSymbolic(pc, thread, Thread, heap, Heap) is our symbolic bytecode in-
terpreter. Symbolic functions are capitalized and summarized in Table III. By default
we push, pop, and read operands from the top method invocation frame of thread;
dyntype and subtype return the dynamic type of a reference and determine if two types
are in a subtype relation; imd = immediate operand of a bytecode instruction; Ite(E,A,B)
= if(E) A else B; cp = runtime constant pool of the current class; switch cases do not fall
through.
bytecode, imd← bytecode(pc);
switch bytecode do

case aload // read reference from local var.
Push(Locals[imd]); // and push on operand stack

case checkcast // type cast
Ref← Topoperand();
Type← Reftype(type(cp[imd])); // literal type
TypeConstraint← Subtype(Dyntype(Ref),Type);
if subtype(dyntype(ref),type) then

Path← Path+TypeConstraint;
else

Path← Path+Not(TypeConstraint);

case instanceof // reference instanceof type
Ref← Pop();
Type← Reftype(type(imd)); // literal type
TypeCnstr← Subtype(Dyntype(Ref),Type);
Push(Ite (And(Not(Null(Ref)), TypeCnstr), Bv32(1), Bv32(0))); // JVM bool is int

case ldc // ”.class” expression such as X.class
switch cp[imd] do // type of constant to be loaded

case ”reference to a class” // Class constant
Type← Reftype(type(cp[imd]));
Push(Classref(Type));

case .. // .. int, String, etc. constants

case invokevirtual // method call
switch cp[imd]) do // signature of called method

case ”Object.getClass()”
Obj← Pop();
Push(Classref(Dyntype(Obj));

case ”Class.isAssignableFrom(Class)”
Param← Type(Pop());
Receiver← Type(Pop());
Push(Ite(Subtype(Param,Receiver), Bv32(1), Bv32(0))); // literal ints

case ”Class.isAnnotationPresent(Class)”
Param← Type(Pop());
Receiver← Type(Pop());
Push(Ite(Annotated(Receiver,Param), Bv32(1), Bv32(0)))

case .. // .. other methods

case .. // .. other bytecode instructions

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:18 M. Islam and C. Csallner

Table III: Functions we use in evalSymbolic to encode program and type constraints in
the input language of an SMT-solver. Supertypes is a two-dimensional symbolic array,
which has RefType index types and Bool values. Subtype is a convenience access with
Subtype(A,B) = (Supertypes[A])[B]. The unary functions are uninterpreted functions,
i.e., the SMT-solver can define them freely except that a solution has to satisfy the
constraints collected during dynamic symbolic execution. Although both DynType and
Type have the same signature, i.e., they both map a symbolic reference to a symbolic
type, they capture different concepts. DynType maps a reference to its dynamic type,
whereas Type maps a reference to a java.lang.Class Java reflection class object to the
symbolic type it represents.

Function Type signature
Null Ref
Null Type Reftype
Dyntype Ref→ Reftype
Classref Reftype→ Ref
Type Ref→ Reftype
Supertypes Array: Reftype→ (Reftype→ Bool)
Subtype (Reftype, Reftype)→ Bool
Annotated (Reftype, Reftype)→ Bool
Abstract Reftype→ Bool
Array Reftype→ Bool
Final Reftype→ Bool
Interface Reftype→ Bool

The concept of an entity E having an arbitrary number of annotations has much in
common with the concept of a type E having an arbitrary number of super-interfaces.
That is, both concepts can be modeled as a sequence of simple E-has-X constraints
that can be captured in a boolean-valued matrix. The straight-forward approach is
therefore to create another large boolean-valued matrix in the constraint solver to
encode the annotations that individual code elements have. However, we found that
in practice subtype constraints rarely conflict with annotation constraints. That is,
programs rarely check if a type is a subtype of A and is not annotated with A (or vice
versa). That is, as part of our survey of the 35 open-source applications of Section 3, we
did not encounter such code. To keep constraints compact, we therefore encode subtype
and annotation constraints in the same matrix.

4.5. Generating Mock Class Method Bodies
In several cases the mock class generator has to generate meaningful method bodies.
For example, the code under test may have an abstract type such as an interface as
the formal type of a parameter, may call instance methods on the parameter value, and
may use values returned from such calls in subsequent branching decisions. If no class
exists that implements such an interface, we have to generate mock classes that con-
tain meaningful method bodies that can satisfy such subsequent branching decisions.
To generate such method bodies, at a high-level, we use the following algorithm.

(1) Initially, for each abstract method of each super-type, generate a method body that
just returns a default value, i.e., null or zero.

(2) During execution, in the i-th invocation of a mock class method, in the symbolic
state, replace the literal return value with a fresh symbolic variable that is labeled
with the current invocation count i. If a mock method is called N times the mock
method will have N associated symbolic variables labeled 1 to N.

(3) Build new constraints relative to the new variables and issue them to the con-
straint solver.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:19

(4) If the constraint solver finds a solution (model), map the model back to correspond-
ing test input values and generate corresponding new mock classes.
(a) For each mock method, create a list of the model’s solutions of the N symbolic

variables associated with the mock method, ordered by their invocation label.
(b) Generate a mock method body that returns in the i-th method invocation the

i-th list value.
(c) After N invocations, the method body returns the default zero or null value.

4.6. Implementation in Dsc
Dsc is a dynamic symbolic execution engine for Java bytecode. Dsc encodes the con-
structs of the Java programming language as constructs of an underlying SMT-solver.
Table IV summarizes how we encode the types of the Java programming language and
the boolean constraint type in the input language of an SMT-solver. Currently missing
is support for floating point numbers.

Table IV: Encoding of the core elements of a Java program, used in Table III as well
as in the evalSymbolic function. In braces are the concrete encoding we use for the
underlying SMT-solver; integral = one of {int, boolean, short, byte, char}; the array
notation “Array: A → B” is for a symbolic array of index type A and value type B.

Java program element Encoding
integral Bv32 (32-bit bit-vector)
long Bv64 (64-bit bit-vector)
reference Ref (30-bit bit-vector)
array of integral Array: Bv32→ Bv32
array of long Array: Bv32→ Bv64
array of reference Array: Bv32→ Ref
instance field: integral Array: Ref→ Bv32
instance field: long Array: Ref→ Bv64
instance field: reference Array: Ref→ Ref
reference type Reftype (nat. number)
constraint, e.g.: on control Bool (boolean)

As most dynamic symbolic execution systems, Dsc supports loops. For example,
the Xalan subject method dispatchNodeData of Listing 6 contains a loop. With mock
classes Dsc achieves a higher code coverage of this code than Pex or the random test
case generator Randoop (see Tables VI and VII).

Compared to Pex, the strategy for handling loops is currently weak in Dsc. Specif-
ically, for some loops, Dsc may spend a lot of time on exploring many different paths
through these loops. The reason of this sub-optimal performance on loops is that Dsc
currently implements a fixed strategy (i.e., depth-first search) for deciding which exe-
cution path to explore next. This decision takes place in the “Invert one of the collected
path constraints” node of Figure 2 and determines the order in which DSE explores
the reachable execution paths through the code under test.

Xie et al. [2009] pioneered a flexible, fitness-function guided strategy for picking the
next execution path and implemented it in Pex. This strategy can minimize the time
spent on a single loop, to quickly also explore other parts of the code under test. Re-
implementing this fitness-function guided strategy in Dsc is part of future work. We
view adding this strategy as orthogonal to mock classes, as it does affect the way in
which we build complex type constraints, solve them with a constraint solver, or map
constraint solver solutions back to test case and mock classes.

Our dynamic symbolic execution system implements a few standard optimiza-
tions [Cadar et al. 2008], to minimize the size of the symbolic expressions before send-
ing them to the SMT-solver. For example, we hash-cons, normalize, and rewrite sym-

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:20 M. Islam and C. Csallner

bolic expressions, and treat the path constraint as an ordered set, to add each symbolic
constraint only once.

1public static void dispatchNodeData(Node node, ContentHandler ch, int depth)
2throws org.xml.sax.SAXException
3{
4switch (node.getNodeType()) {
5case Node.DOCUMENT FRAGMENT NODE :
6case Node.DOCUMENT NODE :
7case Node.ELEMENT NODE :
8for (Node child = node.getFirstChild(); null != child; child = child.getNextSibling()) {
9dispatchNodeData(child, ch, depth+1);
10}
11break;
12/∗ [cut 4 cases] ∗/
13case Node.ATTRIBUTE NODE :
14String str = node.getNodeValue();
15if (ch instanceof CharacterNodeHandler)
16((CharacterNodeHandler)ch).characters(node);
17else
18ch.characters(str.toCharArray(), 0, str.length());
19break;
20default : // ignore
21break;
22}
23}

Listing 6: The dispatchNodeData method under test from the Xalan project (cut and
formatted for space reasons). The method contains a for loop and requires a mock class
with a certain type to achieve high coverage.

4.7. Implementation Details by Example
To illustrate the mechanics of our approach, we use the example foo method of List-
ing 7.

1public @interface A { /∗ .. ∗/ }
2public interface I { public int m1(); /∗ .. ∗/ }
3public interface J { public int m2(); /∗ .. ∗/ }
4public class C {
5public static void foo(I i) {
6i.m1();
7if (i instanceof J) {
8J j = (J) i;
9int x = j.m2();
10if (i.getClass().isAnnotationPresent(A.class)) {
11m3();
12if (x==10)
13m4();
14// ..
15}
16}
17}
18}

Listing 7: To reach or cover the m3 method call in line 11 we need an instance of a
class that implements interfaces I and J and has annotation A. To cover line 13, such
a class also has to have a method m2 that returns value 10 when called in foo line 9.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:21

Besides the basic mock class algorithm, this example allows us to highlight the ad-
ditional solution components of (a) dealing with annotations (Section 4.4) and (b) gen-
erating mock class method bodies (Section 4.5). The Listing 7 foo code is a variation
of our motivating example of Section 1.2. New is the annotation processing in line 10.
The second change is the if-statement of line 12, which branches based on the value
returned by the m2 method that is called on foo parameter i. Covering the former re-
quires reasoning about annotations. Covering the latter requires generating a mock
class that contains a custom method body.

Object

Annotation

C I J A

null

Object Annotation

C I J A

M

null

Fig. 3: Direct subtype relation for the Listing 7 method foo under test (left) and a
desired solution for covering the method call in line 9 (right).

4.7.1. Generating a Mock Class. The method under test in Listing 7, foo, uses two inter-
faces, I and J, as well as annotation A. The foo method declares parameter i of type I,
calls the m1 method on it in line 6 and later possibly the m2 method in line 9. To call
m2, as m2 is defined by J, foo casts i to J. To reach the m2 method call in line 9, we
therefore need an instance of I that is also an instance of J.

Let’s assume we are executing our main algorithm of Section 4.2. At the end of the
previous iteration we have created a simple mock class that only implements I. In
the first step of the current iteration we instantiate this class. Recall that in this step
our algorithm executes the code under test both dynamically and symbolically (using
evalSymbolic). Executing the foo method on this instance leads to taking the false
branch of the (i instanceof J) branch condition. This foo execution yields constraints
including the following.

— Dyntype(i) != Null Type
— Subtype(Dyntype(i),I))
— Not(Subtype(Dyntype(i),J)))

After inverting the last constraint in step 2 we encode the type constraints with
steps 3 and 4. We number Java reference types (classes, interfaces, arrays, enums) in
the order we discover them, from zero to N. We discover types during dynamic symbolic
execution of a program path in one of several events, for example, when symbolically
executing a static field access of a previously undiscovered class. The first two num-
bers, 0 and 1, represent the null type and java.lang.Object, respectively.

We encode the subtype hierarchy in a two-dimensional Bool-valued symbolic array,
Supertypes[0..N][0..N]. We use arrays, because the Z3 constraint solver we use [Moura
and Bjørner 2008] allows us to create arrays that have a default element, such as false.
This is convenient, as subtype relations are typically sparse, which means a default
value of false allows us to encode the subtype relation as a compact constraint.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:22 M. Islam and C. Csallner

Table V: Subtype relation matrix of Listing 7: Encoding of the reference types (left
column); Obj = Object; An = Annotation; Mx are boolean variables; t in (row A, column
B) = A is a subtype of B.

null Obj C M I J An A
0 null t t t t t t t t
1 Obj t
2 C t t
3 M t MC t MI MJ MAn MA
4 I t t
5 J t t
6 An t t
7 A t t t

Step 5 attempts to solve the constraints with the existing types. The left part of
Figure 3 shows the direct subtype relation of the types involved in Listing 7 as a graph.
However no existing type satisfies the constraints we collected in this iteration. We
thus introduce mock class M, which yields the subtype relation matrix of Table V.
public void test1() throws Exception {

MockClass local1 = new MockClass();
C.foo(local1);
}
Listing 8: Unit test case generated by Dsc for the foo method of Listing 7. Together
with the mock class of Listing 9, this test case can take the true branch of the if-
statement of foo line 7.

By assigning the boolean variables MC, MI, MJ, MAn, and MA, the constraint solver
chooses where in the subtype lattice to place the mock class. As the new constraint
system is satisfiable, step 6 generates a new test case (Listing 8) and a concrete mock
class (Listing 9) that implements interfaces I and J. Together, generated test case and
mock class will allow our algorithm in its next iteration to cover the m2 method call in
line 9, which is guarded by the (i instanceof J) expression.
public class MockClass implements I, J {

public MockClass() {}
public int m1() { return 0; }
public int m2() { return 0; }
// ..
}

Listing 9: Mock class generated for the Listing 8 test case.

Our prototype tool implementation generates JUnit test cases [Beck and Gamma
1998]. JUnit is one of the main test execution frameworks for Java [Beust and
Suleiman 2007]. Listing 8 shows the generated JUnit test case for the example of
Listing 7.

4.7.2. Dealing With Annotations. The if-condition in line 10 checks if the dynamic type of
the method parameter i is annotated with annotation A. To reach the block that starts
in line 11, we therefore need an instance of I and J that is annotated with A.

Let’s assume we are executing our main algorithm of Section 4.2. At the end of the
previous iteration we have created a mock class that implements I and J. In the first
step of the current iteration we instantiate this class and use it while executing the
foo method both dynamically and symbolically. Executing foo on this instance leads to
taking the false branch of the branch condition in line 10. This foo execution yields
constraints including the following.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:23

— Dyntype(i) != Null Type
— Subtype(Dyntype(i),I))
— Not(Subtype(Dyntype(i),J)))
— Not(Annotated(Type(Classref(Dyntype(i))),A))

The remaining steps are similar to Section 4.7.1, except for the treatment of the last
constraint. The last constraint captures that the class of i was not annotated with A.
Since in our implementation we encode annotation constraints in the same matrix as
subtype constraints, Annotated is essentially an alias of the Subtype constraint.

As in Section 4.7.1, the constraint system is not satisfiable with the existing types.
Adding mock classes, the system becomes satisfiable. In the constraint solver solution,
MA is true, since we share the matrix between sub-typing and annotations. Since A
is an annotation type we interpret the solution to mean that M must have annotation
A. Dsc generates a test case and mock class that are very similar to Listings 8 and 9,
except that the generated mock class also has annotation A.

4.7.3. Generating a Mock Class Method Body. The deepest nested if-statement shown in
Listing 7, line 12, branches based on the value returned by the m2 method called on i
in line 9. To cover line 13, we therefore have the additional requirement that i also has
to be an instance of a class whose method m2 returns value 10 in line 9.

Let’s assume we are executing our main algorithm of Section 4.2. At the end of the
previous iteration we have created a mock class that implements I and J and has
annotation A. In the first step of the current iteration we instantiate this class and use
it while executing the foo method both dynamically and symbolically.

In this execution of the foo method, foo calls m2 on the generated mock class in
line 9. Method m2 returns immediately, returning 0 (as shown in Listing 9). The sym-
bolic evaluator replaces the corresponding symbolic zero literal with the fresh symbolic
variable M m2 1. The name M m2 1 encodes that this value was returned by the first
invocation of mock class M method m2.

This execution of foo ultimately triggers the false branch of the branch condition in
line 12 and yields constraints including the following.

— Dyntype(i) != Null Type
— Subtype(Dyntype(i),I))
— Not(Subtype(Dyntype(i),J)))
— Not(Annotated(Type(Classref(Dyntype(i))),A))
— M m2 1 != 10

The remaining steps are similar to Section 4.7.2. The last constraint captures the
fact that the value returned from the first invocation of mock class M method m2 was
not 10. However inverting this constraint results in a constraint system that can be
solved similarly to the one of Section 4.7.2. Hence Dsc generates a test case such as
Listings 8 with the mock class of Listing 10.

@A public class MockClass implements I, J {
public MockClass() {}
public int m1() { return 0; }
public int m2() { return 10; }
// ..
}

Listing 10: The generated mock class to cover the method call m4 in Listing 7.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:24 M. Islam and C. Csallner

5. EXPERIENCE (RQ4, RQ5)
In this section we explore research questions RQ4 and RQ5 and compare a prototype
implementation of our mock class generation technique with related approaches. First
we evaluate the impact of adding mock class generation to an existing dynamic sym-
bolic execution system (RQ5). Then we also compare our implementation with a base-
line technique, random test case generation (RQ4).

For random test case generation (RQ4) we use the Randoop [Pacheco et al. 2007]
random test case generator for Java. Compared with our Dsc tool, Randoop is more
mature and has been used widely in the research literature.

For dynamic symbolic execution we use our own Dsc tool, as we have full access to
the tool’s source code and can therefore implement mock class generation in a straight-
forward fashion. The closest related dynamic symbolic execution system is Pex with
its recent Moles extension [Tillmann and de Halleux 2008; de Halleux and Tillmann
2010]. Pex is more mature than Dsc and supports a wider range of programming lan-
guage features. As we do not have source code access to Pex we compare our tool with
and without mock class generation with a recent Pex release.

As subjects we used a subset of the Table I subject methods that both contain pat-
terns we are interested in and could be analyzed with the current version of Dsc. Since
efficient handling of loops was not a focus of the study and the current version of Dsc
is not optimized for handling loops, we excluded code from the experiment if for the
piece of code Dsc did not terminate normally within 60 seconds. This timeout lead us
to exclude several pieces of code that contain loops.

We thereby selected sample code from 10 subject applications and also included the
motivating example from Listing 7. The number of subject methods together with their
lines of code and number of branches are summarized in Table VII. In these subjects
we only had to do small modifications, i.e., we only changed some of the subject method
modifiers to allow analysis with the current version of Dsc.

The prototype status of Dsc also dictated the way we counted coverage. That is, we
only counted the coverage in the methods under test and not the coverage of the meth-
ods called by the methods under test. However this is not a fundamental limitation
of the approach. Dynamic symbolic approaches such as Dsc and Pex by design capa-
ble of inter-procedural analysis and can cover deep call chains, given a certain level of
engineering maturity.

Pex targets .Net languages such as C#. To compare Dsc with Pex, we manually trans-
lated the subject code from Java to C# and explored it with a recent version of Pex5.
Such a translation is difficult for two reasons. First, the semantics of Java and C# lan-
guage constructs are similar but different. This requires us to carefully consider these
semantics and compensate for semantic differences in the translated code.

The second difficulty is that our subjects are part of large third-party applications.
Such code typically has many dependencies. Since it is not feasible to translate entire
applications for our experiments, we had to simplify the subject code significantly, to
remove these dependencies. Specifically, we removed many method calls and removed
much surrounding code.

Our simplified subjects are summarized in Table VI. Compared to the original sub-
ject code of Table VII, for example, we removed about every third line of code. The
simplified versions of both the Java and C# code samples are available on our project
web site6. To count lines and branches in Java and C# code we used the eCobertura7

5v0.94.51006.1, available at http://research.microsoft.com/projects/pex/
6http://cseweb.uta.edu/∼mainul/MockClass/
7v0.9.8, available at http://ecobertura.johoop.de/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:25

and NCover8 (along with TestDriven.net9) coverage tools; eCobertura is an Eclipse
plugin for Cobertura10.

To collect measurements we mainly used a 2.26GHz Core2 Duo processor machine
with 3GB RAM on a 32bit OS. Randoop measurements are an exception. As Randoop
frequently ran out of memory, we took all Randoop measurements on a machine that
has more memory, a 2.33GHz Xeon processor machine with 32GB RAM on a 64bit
OS. Beyond enabling different amounts of heap memory, these two machines perform
similarly. That is, for small subjects, Randoop performed similarly on both machines.

5.1. Higher Coverage Than Basic Dynamic Symbolic Execution (RQ5)
Table VI shows the run times of Dsc+Mock, Dsc, Pex, and Randoop. The dynamic sym-
bolic approaches (Dsc+Mock, Dsc, and Pex) ran until they either reached their default
exploration limits (such as the number of branches explored) or exhausted all exe-
cution paths they could cover. Dynamic symbolic execution approaches rely on third-
party constraint solvers which may find more or better solutions if run longer. To give
the dynamic symbolic approaches ample time to find solutions, we used for each of
them the same time-out setting of 100 seconds. This was a conservative choice, as
none of these approaches needed as much time for any of its constraint systems.

A random test case generator such as Randoop does not keep track of all possible ex-
ecution paths but builds a set of those program values it can feed to the methods under
test as input parameters. A random generator then runs until it exhausts all possible
combinations of those method input values or until a timeout. In these experiments
we aimed to be conservative and gave Randoop enough time to maximize its coverage.
That is, we picked one subject randomly and first ran Randoop on the subject with a
high time-out value, which resulted in a large set of randomly generated test cases.
Then we reduced the timeout value, yielding a smaller set of test cases. We kept re-
ducing the timeout value as long as the (shrinking) set of test cases achieved the same
line and branch coverage of the subject methods. For the experiments in Table VI this
let us to a timeout of 60 seconds, which we then adopted for the remaining subjects.

We have not performed further efforts on minimizing the timeout value (while keep-
ing the coverage constant). So it is possible that for several subjects, Randoop may
produce the same coverage with lower timeout values. However, we feel that our con-
servative approach is a good model of how people would use a random test case gener-
ator in practice. We assume a real-world test engineer would also pick a timeout value
that appears reasonable based on the size of the subject and avoid lengthy timeout
value minimizations.

Table VI shows that the runtime of Dsc+Mock was about three times higher than the
runtime of Pex+Moles and some nine times higher than (plain) Dsc. One key insight
here is that in most of the subject methods a large portion of the code is guarded by
branch conditions similar to the patterns described in Section 3. As Dsc+Mock usually
covers such branch conditions, whereas the other techniques do not, Dsc+Mock ex-
plores a significantly higher number of lines and branches and therefore takes longer.
However given the difference in engineering maturity between Dsc and Pex, we expect
these runtime differences to change significantly with future versions of Dsc and Pex.

Table VI also shows that among the dynamic symbolic approaches, Dsc achieved the
lowest code coverage. This is not surprising, as basic Dsc lacks the mock classes of
Dsc+Mock and the higher engineering maturity and Moles extension of Pex+Moles.
Pex both spent more time, generated more test cases, and achieved a higher code cov-

8v1.5.8 beta, available at http://downloads.ncover.com/NCover-1.5.8.zip
9v3.4.2803 personal beta3, available at http://www.testdriven.net/download.aspx
10Available at http://cobertura.sourceforge.net/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:26 M. Islam and C. Csallner

Table
V

I:D
sc

w
ith

m
ock

class
generation

(D
sc+M

ock)
vs.plain

D
sc,Pex+M

oles,and
R

andoop
on

sim
plified

code
sam

ples.
D

sc+M
ock

covered
the

highest
percentage

of
code

lines
(%

L
)

and
code

branches
(%

B
).

M
,

L
,

B
are

the
num

ber
of

subject
m

ethods,their
lines

ofcode,and
their

num
ber

ofbranches;t[s]is
the

runtim
e

in
seconds

and
T

is
the

num
ber

oftest
cases

generated
by

the
respective

tool.O
verall,the

dynam
ic

sym
bolic

approaches
(D

sc,D
sc+M

ock,and
Pex+M

oles)spentless
tim

e
and

few
er

test
cases

but
achieved

higher
code

coverage
than

the
random

approach
(R

andoop).
Subject

R
andoop

Pex+M
oles

D
sc

D
sc+M

ock
M

L
B

T
t[s]

%
L

%
B

T
t[s]

%
L

%
B

T
t[s]

%
L

%
B

T
t[s]

%
L

%
B

L
isting

7
1

7
4

1
60

14
25

2
1.1

28
25

1
0.4

14
25

4
1.4

100
100

A
ctiveM

Q
4

28
10

15
60

14
40

8
4.5

29
60

4
1.4

14
40

9
10.0

71
80

A
SM

2
18

6
2

60
33

50
6

2.0
33

50
2

0.8
33

50
6

4.0
100

100
B

C
E

L
2

15
6

2
60

20
50

9
2.0

20
50

2
1.2

20
50

15
9.4

100
100

D
rools

3
51

16
530

60
8

31
14

4.8
47

50
3

1.5
8

25
20

11.0
90

88
G

uice
2

20
7

6
60

40
43

6
3.0

50
57

2
1.2

30
57

10
14.8

90
86

JaxL
ib

5
30

12
6

60
23

42
15

6.0
33

50
5

1.5
27

42
21

18.0
100

100
JF

reeC
hart

4
40

12
520

60
20

33
15

4.0
65

50
4

1.5
20

33
12

10.5
100

100
JM

onkeyE
ngine

2
17

8
460

60
47

38
4

1.5
47

38
2

0.8
47

38
4

2.7
82

75
Soot

6
46

18
440

60
41

33
14

6.6
54

44
6

2.0
48

44
20

14.2
100

100
X

alan
3

48
23

3
60

17
26

18
4.0

25
35

3
1.2

17
26

40
23.5

88
91

Total
34

320
122

1,985
660

24
35

111
39.5

42
46

34
13.5

24
37

161
119.5

92
93

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:27

erage than Dsc. Pex benefits from its Moles extension, which provides a limited form of
class generation and can therefore cover additional branches and code lines. Dsc+Mock
in turn spent more time and test cases than Pex and achieved the highest code cov-
erage of all approaches. In summary, Dsc+Mock achieved some 50% higher coverage
than Pex+Moles and some 60% higher coverage than basic Dsc and Randoop. These re-
sults show that Randoop, Dsc, and Pex+Moles cannot generate the mock classes that
are needed to cover code that uses multiple-inheritance constraints, reflection, and
annotations.

In the following we describe some of the subjects of Table VI in more detail. The
subject source code is abbreviated and reformatted for space.

5.1.1. Listing 7 Example Method. Listing 11 shows our manual Java to C# translation
for the Listing 7 motivating example. The resulting C# code differs from the original
Java version in lines 1, 8, and 12, due to the different naming of operators in Java and
C# (for example, instanceof in Java versus is in C#) and built-in classes and reflection
methods. However the semantics are very similar, as we picked C# constructs that are
very similar to (and often behave exactly the same as) their Java counterparts.

Without mock classes, (basic) Dsc can only cover the first statement, which corre-
sponds to line 6 in Listing 11. That is, Dsc only generates a test case that invokes the
testee with the default parameter value of null. Line 6 invokes a method on this pa-
rameter, which triggers a null pointer exception. As the method does not contain an
exception handler, this exception abruptly terminates the execution of this method.

Pex+Moles covers the first two statements in lines 7 and 8. That is, Pex first also
just generates an initial value of null. Beyond that, Pex also generates a class that is
a subtype of interface I, which is the formal parameter type of the method foo under
test. Using an instance of this custom subtype of I in the second generated test case,
the test execution reaches the branch decision in line 8. Covering additional parts of
this method requires a mock class that is a subtype of both I and J. To cover the entire
method, this mock class also has to have an annotation of type A.

1public class A: System.Attribute { /∗ .. ∗/ }
2public interface I { public int m1(); /∗ .. ∗/ }
3public interface J { public int m2(); /∗ .. ∗/ }
4public class C {
5public static void foo(I i)
6{
7i.m1();
8if (i is J)
9{
10J j = (J) i;
11j.m2();
12if (i.GetType().GetCustomAttributes(true)[0] is A)
13{
14m3();
15// ..
16}
17}
18}
19}

Listing 11: C# version of the Listing 7 motivating example.

As described in Section 4.7, Dsc+Mock can reason about such multiple-inheritance
constraints, as well as constraints imposed by reflection and annotations. Dsc+Mock
thereby creates 4 test cases and 3 mock classes, and covers all lines of the foo method.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:28 M. Islam and C. Csallner

5.1.2. Multiple-Inheritance Mock Classes for JaXLib. The JaXLib core library provides ef-
ficient data structures, I/O streams, etc. Listing 12 shows the readfully(..) method
of the JaXLib class jaxlib.io.stream.IOStreams. The method uses the abstract class
java.io.InputStream as a formal parameter type. Line 4 checks if the parameter is also
an instance of the DataInput interface. This check may return false, as InputStream
is not a subtype of DataInput. To cover this method, if we do not want to use an exist-
ing class because of the potential for unintended I/O side-effects, we need to generate
an InputStream that is also a DataInput. Indeed, our generator covers this code with
mock classes, but cannot cover it without. Pex+Moles does not generate a class that is
a subtype of both InputStream and DataInput, and therefore cannot cover line 5.

1public static void readFully(InputStream in, byte[] dest, int off, int len)
2throws IOException
3{
4if (in instanceof DataInput)
5((DataInput) in).readFully(dest, off, len);
6// ..
7}

Listing 12: Covering the readFully method requires a parameter that is a subtype of
two incompatible types, InputStream and DataInput.

5.1.3. Annotated Mock Classes for a 3D Game Engine. jMonkeyEngine11 is a 3D game en-
gine that has been used by game studios and university classes. This game engine
has an abstract class named Serializer, which serializes objects such that they can be
transferred over a network. One of its methods is the registerClass method under test
shown in Listing 13.

One of the inputs of the registerClass method is the cls parameter of type Class. Class
is a Java reflection type that can only be instantiated by the Java virtual machine.
Each instance of the Class class represents a corresponding Java type. For example,
at program runtime there will be one instance of Class that represents the Serializer
class.

1public static SerializerRegistration registerClass(Class cls, boolean failOnMiss) {
2if (cls.isAnnotationPresent(Serializable.class))
3{
4Serializable serializable = (Serializable) cls.getAnnotation(Serializable.class);
5short classId = serializable.id();
6/∗ [cut] − bulk of the method ∗/
7}
8if (failOnMiss)
9throw new IllegalArgumentException(”Class is not marked @Serializable:” + cls);
10return null;
11}

Listing 13: A jMonkeyEngine method under test that requires a mock class with a
certain annotation.

To cover the bulk of the registerClass method, we need to pass as input an argu-
ment Class instance such that the underlying Java type has a certain annotation.
That is, registerClass checks in line 2 if the underlying type has an annotation of type
@Serializable. Listing 14 shows this annotation type. If the underlying type does not
have such an annotation, the method call in line 2 returns null, which is dereferenced

11v3.0, build 2011-08-29, available at http://jmonkeyengine.com/nightly/

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:29

in the subsequent statement, yielding a null pointer exception, which terminates the
method execution.

Without mock classes, Dsc can only cover the first statement, i.e., line 2. With mock
classes enabled, Dsc generates 5 test cases and 4 mock classes with the required an-
notation, along with values for the second parameter failOnMiss, and covers all lines.
Pex+Moles does not reason about annotations (which are called attributes in C#) and
therefore cannot cover the bulk of this method.

public @interface Serializable {
Class serializer() default FieldSerializer.class;
short id() default 0;
}

Listing 14: The @Serializable annotation type used in Listing 13.

5.2. Higher Coverage and Fewer Dangerous Code Executions Than Randoop (RQ4)
Table VII summarizes our comparison with the random test case generator Randoop
by Pacheco et al. [2007]. For this experiment we used the same subjects as in our Pex
comparison in Table VI, with the important difference that the Table VI subjects were
strongly simplified versions of the Table VII subjects.

The results of Randoop are affected significantly by the way a test engineer uses
Randoop for test case generation. The first option is running Randoop only on those
classes that contain the methods under test. However, since a project typically contains
many more classes that may call the methods under test, another option is to run Ran-
doop on all classes of the project. As our goal was to be conservative and give Randoop a
higher chance of covering the methods under test, we included these additional classes,
to allow such calls from the additional classes to cover the methods under test. We also
increased the runtime, starting with a long runtime and then decreasing the runtime
as long as the test coverage remained constant, yielding a runtime of 10 minutes each.
Table VII contains the results of these experiments.

Even though Randoop ran only for up to 10 minutes, in the search for suitable in-
stances Randoop randomly called many methods that changed the state of our system.
That is, Randoop created several UI elements and placed them on our screen. Ran-
doop also called methods that wrote into our file system, which, for example, created
259 new top-level directories.

We also ran this experiment using the other Randoop option and ran Randoop only
on those classes that contained the methods under test, using the same 60 second
timeout as in Table VI. This experiment yielded a total of 7,410 randomly generated
test cases. We did not include the results of this experiment in Table VII, as Ran-
doop achieved the same coverage as shown in Table VII, but without producing any
side-effects. Our interpretation of these results is that for some subjects, running Ran-
doop on the subject classes only is advantageous over running Randoop on all project
classes, as running on additional project classes does not necessarily increase the cov-
erage of the subject methods.

In both options Randoop covered significantly smaller portions of code than our ap-
proach, even though our approach finished in around 10 seconds, allowing close to
interactive test case generation. Our approach also did not have to resort to calling
random methods and thereby avoided the unwanted side-effects of these methods.

6. RELATED WORK
In this section we briefly review representative pieces of related work from both re-
search and development practice.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:30 M. Islam and C. Csallner

Table
V

II:D
sc

w
ith

m
ock

class
generation

(D
sc+M

ock)vs.basic
D

sc
and

R
andoop

on
real-w

orld
code

sam
ples.T

hese
code

sam
ples

are
not

strongly
sim

plified
as

their
counterparts

in
Table

V
I

and
w

e
observe

severalside-effects
(E

)w
hen

analyzing
them

w
ith

a
random

test
case

generator
such

as
R

andoop.T
he

dynam
ic

sym
bolic

approaches
D

sc
and

D
sc+M

ock
are

m
ore

directed,
do

not
call

random
m

ethods,
and

did
thereby

not
exhibit

any
side-effects.

For
R

andoop
w

e
observed

side-effects
on

both
the

U
I

(dialog
boxes

appearing
on

the
screen)as

w
ellas

w
riting

new
files

and
directories

into
the

file
system

(F
S).

D
ir

is
the

num
ber

of
new

directories
created,w

hich
w

e
om

itted
for

D
sc

and
D

sc+M
ock

as
the

values
w

ere
all

zero.A
s

in
Table

V
I,D

sc+M
ock

covered
the

highest
percentage

of
code

lines
(%

L
)

and
code

branches
(%

B
).M

,L
,B

are
the

num
ber

of
subject

m
ethods,their

lines
ofcode,and

their
num

ber
ofbranches;t[s]is

the
runtim

e
in

seconds
and

T
is

the
num

ber
oftest

cases
generated

by
the

respective
tool.R

andoop
achieved

a
slightly

higher
code

coverage
than

basic
D

sc
but

a
significantly

low
er

code
coverage

than
D

sc+M
ock.

Subject
R

andoop
D

sc
D

sc+M
ock

M
L

B
T

t[s]
%

L
%

B
E

D
ir

T
t[s]

%
L

%
B

E
T

t[s]
%

L
%

B
E

L
isting

7
1

7
4

1
604

14
25

0
0

1
0.4

14
25

0
4

1.4
100

100
0

A
ctiveM

Q
4

60
26

13,850
481

13
15

0
0

4
2.2

13
15

0
14

29.2
60

42
0

A
SM

2
18

6
14,359

609
33

50
0

0
2

1.0
33

50
0

6
4.0

100
100

0
B

C
E

L
2

40
19

14,568
610

28
42

0
0

2
1.6

20
32

0
24

12.4
82

84
0

D
rools

3
62

20
14,774

488
16

25
0

0
3

2.0
16

25
0

20
11.0

74
70

0
G

uice
2

20
7

9,615
607

45
43

0
0

2
1.5

30
29

0
10

14.8
90

86
0

JaxL
ib

5
68

24
1,707

119
38

42
F

S
35

5
3.0

32
42

0
30

20.0
88

92
0

JF
reeC

hart
4

56
16

15,882
611

21
25

0
0

4
2.0

21
25

0
16

12.2
86

75
0

JM
onkeyE

ngine
2

17
8

8,801
607

47
50

U
I+F

S
42

2
1.0

41
38

0
4

2.7
82

75
0

Soot
6

110
30

6,306
455

25
40

F
S

118
6

2.4
27

33
0

56
31.3

72
67

0
X

alan
3

48
23

13,673
600

17
26

F
S

64
3

1.8
17

26
0

40
23.5

88
91

0
Total

34
506

183
113,536

5,791
25

33
U

I+F
S

259
34

18.9
23

30
0

224
162.5

79
75

0

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:31

As discussed throughout this article, closest to our work is the Pex system with its
Moles extension [Tillmann and de Halleux 2008; de Halleux and Tillmann 2010]. Till-
mann and Schulte [2006a] described earlier how their system can generate a limited
form of mock classes. When a method under test has a parameter of abstract type
then their system generates a mock class subtype. However, their system cannot han-
dle complex type constraints such as multiple-inheritance constraints, annotations, or
reflection. See Section 5.1 for an empirical comparison. Since the dynamic symbolic ex-
ecution system (Dsc) on which our techniques are built is conceptually similar to Pex,
it should be relatively easy to re-implement our techniques for Pex and Moles.

Our technique of generating mock class method bodies in Section 4.5 replaces some
symbolic literals with symbolic variables. Recall that we want to track how values re-
turned by generated methods are being used during execution. To achieve this goal, we
replace the values returned by such methods in the symbolic evaluator with symbolic
variables. This concept of replacing symbolic literals returned by certain methods with
symbolic variables has been used in a different context, i.e., by Xiao et al. [2011], to
track if values returned by native methods cause the Pex dynamic symbolic execution
engine to not cover parts of the code. The paper by Xiao et al. [2011] uses this infor-
mation to direct developer attention to such less covered parts of the code, to facilitate
interactive solving of such cases.

An alternative to dynamic symbolic execution is bounded exhaustive test case gen-
eration as pioneered by the Korat tool [Boyapati et al. 2002]. Similar to dynamic sym-
bolic execution, Korat monitors how the code executes generated input values. Korat
systematically generates new variants of the input value based on which value fields
are accessed by the code during execution. It would be interesting to extend bounded
exhaustive test case generation with techniques for generating mock classes, to allow
tools such as Korat to cover code that requires classes that do not yet exist.

In the following we discuss the use of mock classes in other related work. We group
the approaches by the following three key data sources from which the respective tech-
niques infer mock classes. (1) The first group generates mock classes from a specifica-
tion, such as a programmer-provided design-by-contract specification. (2) The second
group infers mock classes from static analysis or static symbolic program execution.
(3) The final group of approaches infers mock classes from existing test executions.

6.1. Mock Classes Inferred from Programmer-Written Specifications
SynthiaMock by Galler et al. [2010] generates mock classes that satisfy a given design-
by-contract specification. SynthiaMock is a black-box technique as it derives mock
classes not from code internals but from external design-by-contract specifications.
If the method under test has a parameter of reference type, SynthiaMock generates
for the parameter type a mock subclass, instantiates it, and sets its fields to values
that satisfy the design-by-contract preconditions of the method under test. Each call
to a mock class method triggers a constraint solver call to synthesize a value that satis-
fies the called method’s design-by-contract postconditions. In contrast to SynthiaMock,
dynamic symbolic mock classes do not require design-by-contract specifications. Syn-
thiaMock is orthogonal to dynamic symbolic mock classes as dynamic symbolic mock
classes could use SynthiaMock to reason about and satisfy existing design-by-contract
specifications.

In recent years the software development community has created several practi-
cal mock frameworks including EasyMock12, jMock13, and Mockito14 for Java pro-

12Available at http://www.easymock.org
13Available at http://www.jmock.org
14Available at http://www.mockito.org

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:32 M. Islam and C. Csallner

grams, NMock15 for .Net programs, and the Google C++ Mocking Framework16 Google
Mock [Freeman et al. 2004b; 2004a; Freeman and Pryce 2006]. The main focus of these
frameworks is to generate mock classes according to a user-provided specification.
These frameworks are similar in the features they offer and have in common that they
aim to be user-friendly by allowing the programmer to write down specifications in
the form of method calls. That means the programmer does not have to learn a formal
specification language (beyond learning the API of the respective mock framework).

We now illustrate how such a mock framework is typically used, by describing how
a programmer may test our C.foo example method of Listing 7 with the popular Easy-
Mock mock framework. To explore the true branch originating from line 7 in Listing 7
using EasyMock we have (manually) written the test case shown in Listing 15. In line 1
we introduce interface K, which extends both of the interfaces I and J. Line 5 creates a
mock object for interface K. We then set the expected method calls on the mock object
and the return values expected from these method calls in lines 6 and 7. (The verify
method called in line 10 checks if the testee has met the expectations we set in lines 6
and 7.)

1public interface K extends I, J {}
2public class Test {
3public void testFooIsInstanceOfJ()
4{
5K mock = createMock(K.class);
6expect(mock.m1()).andReturn(0);
7expect(mock.m2()).andReturn(0);
8replay(mock);
9C.foo(mock);
10verify(mock);
11}
12}

Listing 15: A unit test case we wrote manually using the EasyMock framework. This
test case triggers the same program execution path as the automatically inferred test
case shown in Listing 8.

While this test case triggers the program path we had in mind, we had to devise
and write down this new interface and test case manually. More user intervention will
be required to cover other parts of the C.foo method under test. For example, to cover
the true branch originating at Listing 7 line 10, we need to devise and write down a
new type, one that implements both interfaces I and J and has an annotation of type
A. In contrast, with our mock class generation technique, Dsc automatically generates
appropriate mock classes and test cases that cover these execution paths.

6.2. Mock Classes Inferred by Static Analysis
At a high level, static analyses provide a different trade-off for reasoning about testee
code. Given the undecidability of the halting problem, any program analysis—be it
static, dynamic, or a hybrid—by definition suffers from at least one of the following
fundamental program analysis problems.

(1) Incomplete coverage: An analysis may miss some program behaviors and may
therefore not fully cover the analyzed code.

15Available at http://www.nmock.org
16Available at http://code.google.com/p/googlemock

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:33

(2) Over-approximating the code’s behavior: An analysis may attribute to the code
behaviors that in fact cannot occur. The latter leads to the analysis generating
false warnings or spurious test cases.

(3) Non-termination: For some inputs an analysis may not terminate.

Practical program analysis tools typically avoid non-termination (problem 3). If for
a given input an analysis tool cannot produce a perfect answer within a reasonable
amount of time, the tool typically times out such a run, returns whatever partial re-
sults may be available, and terminates. Such timeouts are common in symbolic anal-
ysis (e.g., during static analysis or during dynamic symbolic execution), for example
in the form of constraint-solver timeouts or limits placed on the number of execution
paths explored.

Incomplete coverage (problem 1) is typically associated with dynamic analyses such
as ours, as a dynamic analysis only covers a subset of all execution behaviors. On the
positive side, dynamic analyses such as ours do not suffer from over-approximation
(problem 2).

Over-approximating the code’s execution behavior (problem 2) is typically associated
with static analyses, as static analyses approximate execution semantics to remain
feasible. These approximations are often most pronounced for advanced language fea-
tures such as native code, reflection, and aliasing, which leads to static analyses having
many imprecisions and producing many false warnings [Hind 2001; Zitser et al. 2004;
Wagner et al. 2005; Bessey et al. 2010; Brauer and Simon 2012]).

Besides typically suffering from over-approximation (problem 2), in practice static
analyses sometimes also suffer from incomplete coverage (problem 1). That is, static
analyses are sometimes neither sound nor complete [Flanagan et al. 2002]. We illus-
trate this phenomenon on a well-known static analysis, ESC/Java by Flanagan et al.
[2002]. When searching for a certain kind of problem in the code, ESC/Java may (1) fail
to find some of the problems that are in the code and (2) may produce false warnings,
e.g., warn about a runtime exception that can never occur in the code under any cir-
cumstances. There are several potential explanations of this phenomenon, including
ESC/Java’s limited reasoning about complex constraint types, its inability to reason
about external code such as native code, and its limited handling of loops.

ESC/Java performs a relatively deep static analysis, by calculating the weakest
precondition of each testee method. By default, without user-provided specifications,
ESC/Java searches for potential runtime exceptions such as division-by-zero excep-
tions. This feature is valuable as such runtime exceptions often reveal programming
errors or bugs. ESC/Java2, an extension of ESC/Java, can reason about the type con-
straints that are imposed by the dynamic type checks that are triggered by the Java
instanceof operator and by type casts [Cok and Kiniry 2004; Kiniry 2004].

For example, when analyzing the Testee.foo method in Listing 16, ESC/Java2 suffers
from both incompleteness and unsoundness and both misses a legitimate warning and
produces a false warning. Both problematic locations are guarded by the if-condition
of line 12. This condition can be satisfied with an instance of a sub-class of C that
implements interface I.

ESC/Java2 produces a false warning for line 16 about a potential division-by-zero
exception. This warning is a false warning because the native method Testee.bar, im-
plemented in the C code of Listing 17, never returns zero. The reason behind this false
warning is that ESC/Java cannot reason about external code and thus assumes that
the code may return any value allowed by the method’s return type (int), which in-
cludes the value zero. For exposition we kept the native example code in Listing 17
extremely simple. However, in practice, such native code is typically only available in
binary form, for example, as a dynamically linked library (dll) and thus it is very hard

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:34 M. Islam and C. Csallner

to reason about such code statically. A dynamic technique such as ours does not suffer
from such false warnings, as it only produces a warning about an execution path after
executing it.

1public class C { /∗ .. ∗/ }
2public interface I { /∗ .. ∗/ }
3public class Testee {
4public static native int bar(int x);
5
6static {
7System.loadLibrary (”testee”);
8}
9
10public static int foo(final C c, int n, int d) {
11int count = −1;
12if (c instanceof I) {
13count = 0;
14for (int i=1; i<=n && i<=100; i++) {
15if (i < 10)
16count += i/Testee.bar(d);
17else
18count += i/d;
19}
20}
21return count;
22}
23}

Listing 16: An example in which ESC/Java2 fails to produce valid warnings.

As an example of a missed warning, ESC/Java2 does not generate a warning for
line 18. But this line may produce a division-by-zero exception when the method is
invoked with a parameter value of d==0. ESC/Java2 misses this problem because it
only considers scenarios in which the loop body is executed less than a configurable
but fixed number of times. That is, by default ESC/Java2 only considers cases in which
the loop body is either not executed at all or only once. However this problem is only
found when executing the loop body at least 10 times.

1int bar (int x) {
2return (x==0) ? 1 : x;
3}

Listing 17: C-language version of the native method declared at line 4 in Listing 16.

Our (dynamic) technique of test case generation with mock-classes finds the division-
by-zero exception at line 18 of Listing 16 and does not produce any (false) warning for
line 16. On a side note, existing dynamic test case generators such as Pex also do not
cover and therefore cannot detect the exception at line 18 because, as we discussed
before, these earlier dynamic tools cannot reason about the type constraint at line 12.

In earlier work on Check ‘n’ Crash and DSD-Crasher [Csallner and Smaragdakis
2005; Csallner et al. 2008] we combined the static checking of ESC/Java with a dy-
namic test case generator. I.e., the dynamic analysis acts as a filter of the output of
the static analysis. On the positive side, in such a static-dynamic analysis hybrid, the
dynamic analysis acts as a filter of the results produced by the static analysis and can
thereby remove the false warnings produced by ESC/Java. On the other hand, the dy-
namic analysis is not a precise filter and, besides filtering out many false warnings it
also filters out true warnings. That means that such a static-dynamic hybrid suffers
from problem (1) even more than the underlying static analysis ESC/Java.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:35

As an example, Check ‘n’ Crash and DSD-Crasher cannot detect the problem in
line 18 of Listing 16, as the underlying static analysis does not report it either. In
addition, for code not shown in the example, Check ‘n’ Crash may filter out many true
warnings that ESC/Java may produce.

Tamiflex by Bodden et al. [2010; Bodden et al. [2011] provides a way for static analy-
sis to reason about reflection. That is, Tamiflex collects execution traces and performs
static analysis on those collected traces. However, this limits the scope of the static
analysis to the observed executions, which essentially turns the static analysis into
a form of dynamic analysis. That means that an analysis in the style of Tamiflex is
no longer complete in the sense that it no longer reasons about all possible execution
behaviors.

6.3. Mock Classes Inferred from Test Executions: Test Carving, Capture & Replay
Saff and Ernst [2004] and Saff et al. [2005] generate mock classes during test factoring.
The goal of test factoring is to simplify an existing long-running system test, by replac-
ing a call to a long-running component with a call to an automatically generated mock
class. The generated mock class then simulates the earlier recorded behavior of the
long-running component. Whereas test factoring takes as input an existing test suite,
dynamic symbolic mock classes are used in test case generation and do not require an
existing test suite.

The paper by Thummalapenta et al. [2010] applies the trace capturing technique
of Saff et al. [2005] to infer from existing traces parameterized unit test cases (PUTs).
That is, for a method call in the execution trace, the technique can generate a pa-
rameterized unit test that invokes the method on parameters supplied by a dynamic
symbolic execution engine. While related, this technique is orthogonal to our work and
could be integrated into our approach in future work.

GenUTest by Pasternak et al. [2009] generates mock aspects to capture and replay
how the code under test interacts with external components. Interactions that can be
captured and replayed include the code under test calling a method of an external
component or the code under test accessing a field of such a component. To replay such
captured interactions, GenUTest generates mock aspects, which use aspect-oriented
programming techniques [Kiczales et al. 1997] to intercept and redirect new interac-
tion attempts between the code under test and these external components.

While GenUTest uses mock aspects for capture and replay, we could also use mock
aspects as an alternative implementation technique for a test class and mock code gen-
erator such as our dynamic symbolic mock classes. That is, once we have collected and
manipulated a path condition and found a satisfying solution, we could map that sat-
isfying solution to a test case plus mock aspect combination (instead of a test case plus
mock class combination). This may be useful in an environment that prefers generated
aspects over generated classes.

7. CONCLUSIONS
We surveyed 35 third-party open-source applications and found hundreds of branches
that branch on multiple incompatible super-types, reflection, and annotations, which
current test case generation techniques do not cover. We described a technique that
can cover such code, implemented it for Java, and showed that it can cover real code
that existing techniques cannot cover.

Our implementation and instructions on how to replicate our experiments are freely
available via our web site (http://cseweb.uta.edu/∼mainul/MockClass/).

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:36 M. Islam and C. Csallner

REFERENCES
Saswat Anand, Alessandro Orso, and Mary Jean Harrold. 2007. Type-Dependence Analysis and Program

Transformation for Symbolic Execution. In Proc. 13th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). Springer, 117–133.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. 2004. The Spec# programming system: An
overview. In Proc. International Workshop on the Construction and Analysis of Safe, Secure, and In-
teroperable Smart Devices (CASSIS). Springer, 49–69.

Kent Beck and Erich Gamma. 1998. Test infected: Programmers love writing tests. Java Report 3, 7 (July
1998), 37–50.

Boris Beizer. 1990. Software testing techniques (second ed.). Van Nostrand Reinhold.
Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros, Asya Kam-

sky, Scott McPeak, and Dawson Engler. 2010. A few billion lines of code later: Using static analysis to
find bugs in the real world. Communications of the ACM (CACM) 53, 2 (Feb. 2010), 66–75.

Cédric Beust and Hani Suleiman. 2007. Next Generation Java Testing: TestNG and Advanced Concepts.
Addison-Wesley.

Eric Bodden, Andreas Sewe, Jan Sinschek, and Mira Mezini. 2010. Taming Reflection (Extended version).
Technical Report TUD-CS-2010-0066. TU Darmstadt. http://www.bodden.de/pubs/tr-tamiflex.pdf

Eric Bodden, Andreas Sewe, Jan Sinschek, and Mira Mezini. 2011. Taming Reflection: Aiding Static Anal-
ysis in the Presence of Reflection and Custom Class Loaders. In Proc. 33rd ACM/IEEE International
Conference on Software Engineering (ICSE). ACM, 241–250.

Grady Booch, James Rumbaugh, and Ivar Jacobson. 2005. The Unified Modeling Language User Guide
(second ed.). Addison-Wesley.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat: Automated testing based on
Java predicates. In Proc. ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). ACM, 123–133. DOI:http://dx.doi.org/10.1145/566172.566191

Jörg Brauer and Axel Simon. 2012. Inferring Definite Counterexamples through Under-Approximation. In
Proc. 4th International NASA Formal Methods Symposium (NFM). Springer, 54–69.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and Automatic Generation
of High-Coverage Tests for Complex Systems Programs. In Proc. 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). USENIX, 209–224.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. 2006. EXE: Auto-
matically generating inputs of death. In Proc. 13th ACM Conference on Computer and Communications
Security (CCS). ACM, 322–335. DOI:http://dx.doi.org/10.1145/1180405.1180445

Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snugglebug: A powerful approach to weakest
preconditions. In Proc. ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). ACM, 363–374.

Lori A. Clarke. 1976. A system to generate test data and symbolically execute programs. IEEE Transactions
on Software Engineering (TSE) 2, 3 (1976), 215–222.

David R. Cok and Joseph R. Kiniry. 2004. ESC/Java2: Uniting ESC/Java and JML: Progress and issues in
building and using ESC/Java2. Technical Report NIII-R0413. Nijmegen Institute for Computing and
Information Science.

Christian Collberg, Ginger Myles, and Michael Stepp. 2007. An empirical study of Java bytecode programs.
Software—Practice & Experience (SPE) 37, 6 (May 2007), 581–641.

Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: An automatic robustness tester for Java.
Software—Practice & Experience (SPE) 34, 11 (Sept. 2004), 1025–1050.

Christoph Csallner and Yannis Smaragdakis. 2005. Check ’n’ Crash: Combining static checking and testing.
In Proc. 27th ACM/IEEE International Conference on Software Engineering (ICSE). ACM, 422–431.

Christoph Csallner, Yannis Smaragdakis, and Tao Xie. 2008. DSD-Crasher: A hybrid analysis tool for bug
finding. ACM Transactions on Software Engineering and Methodology (TOSEM) 17, 2 (April 2008), 1–
37.

Jonathan de Halleux and Nikolai Tillmann. 2010. Moles: Tool-Assisted Environment Isolation with Clo-
sures. In Proc. 48th International Conference on Objects, Models, Components, Patterns (TOOLS).
Springer, 253–270.

Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005. Supporting controlled experimentation
with testing techniques: An infrastructure and its potential impact. Empirical Software Engineering
10, 4 (Oct. 2005), 405–435.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

Generating Test Cases for Programs that Are Coded Against Interfaces and Annotations A:37

Bassem Elkarablieh, Patrice Godefroid, and Michael Y. Levin. 2009. Precise pointer reasoning for dynamic
test generation. In Proc. 18th ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis (ISSTA). ACM, 129–140.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata.
2002. Extended static checking for Java. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM, 234–245.

Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe Walnes. 2004a. jMock: Supporting responsibility-based
design with mock objects. In Companion to the 19th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). ACM, 4–5.

Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe Walnes. 2004b. Mock roles, not objects. In Compan-
ion to the 19th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM, 236–246.

Steve Freeman and Nat Pryce. 2006. Evolving an embedded domain-specific language in Java. In Compan-
ion to the 21th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM, 855–865.

Stefan J. Galler, Martin Weiglhofer, and Franz Wotawa. 2010. Synthesize It: From Design by Contract to
Meaningful Test Input Data. In Proc. 8th IEEE International Conference on Software Engineering and
Formal Methods (SEFM). IEEE, 286–295.

Patrice Godefroid. 2007. Compositional dynamic test generation. In Proc. 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). ACM, 47–54.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In
Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). ACM,
213–223. DOI:http://dx.doi.org/10.1145/1065010.1065036

Patrice Godefroid, Michael Y Levin, and David Molnar. 2008. Automated whitebox fuzz testing. In Proc.
Network and Distributed System Security Symposium (NDSS). The Internet Society.

James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. 2005. The Java Language Specification (third ed.).
Prentice Hall.

Mark Hapner, Rich Burridge, Rahul Sharma, and Joseph Fialli. 2002. Java Message Service: Version 1.1.
Sun Microsystems.

Michael Hind. 2001. Pointer analysis: Haven’t we solved this problem yet?. In Proc. ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE). ACM, 54–61.

Mainul Islam and Christoph Csallner. 2010. Dsc+Mock: A test case + mock class generator in support of
coding against interfaces. In Proc. 8th International Workshop on Dynamic Analysis (WODA). ACM,
26–31.

Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K. Chang. 2010. OCAT: Object capture-based automated
testing. In Proc. ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
ACM, 159–170.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier, and John Irwin. 1997. Aspect-Oriented Programming. In Proc. 11th European Conference on
Object-Oriented Programming (ECOOP). 220–242.

James C. King. 1976. Symbolic execution and program testing. Communications of the ACM (CACM) 19, 7
(1976), 385–394.

Joseph R. Kiniry. 2004. The Logics and Calculi of ESC/Java2.
Mika Mäntylä, Juha Itkonen, and Joonas Iivonen. 2012. Who tested my software? Testing as an organiza-

tionally cross-cutting activity. Software Quality Journal 20, 1 (March 2012), 145–172.
Madhuri R. Marri, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009. An Em-

pirical Study of Testing File-System-Dependent Software with Mock Objects. In Proc. 4th International
Workshop on Automation of Software Test (AST). IEEE, 149–153.

Steve McConnell. 2004. Code Complete (second ed.). Microsoft Press.
Gerard Meszaros. 2007. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley.
Audris Mockus, Roy T. Fielding, and James D. Herbsleb. 2002. Two case studies of open source soft-

ware development: Apache and Mozilla. ACM Transactions on Software Engineering and Methodology
(TOSEM) 11, 3 (July 2002), 309–346. DOI:http://dx.doi.org/10.1145/567793.567795

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proc. 14th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Springer,
337–340. DOI:http://dx.doi.org/content/60hx121083823548

National Institute of Standards and Technology (NIST). 2002. The economic impacts of inadequate infras-
tructure for software testing: Planning report 02-3.

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

A:38 M. Islam and C. Csallner

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007. Feedback-Directed Random
Test Generation. In Proc. 29th ACM/IEEE International Conference on Software Engineering (ICSE).
IEEE, 75–84.

Benny Pasternak, Shmuel S. Tyszberowicz, and Amiram Yehudai. 2009. GenUTest: A unit test and mock
aspect generation tool. International Journal on Software Tools for Technology Transfer (STTT) 11, 4
(Oct. 2009), 273–290.

Mauro Pezzè and Michal Young. 2007. Software Testing and Analysis: Process, Principles and Techniques.
Wiley.

David Saff, Shay Artzi, Jeff H. Perkins, and Michael D. Ernst. 2005. Automatic test factoring for Java.
In Proc. 20th IEEE/ACM International Conference on Automated Software Engineering (ASE). ACM,
114–123.

David Saff and Michael D. Ernst. 2004. Mock object creation for test factoring. In Proc. ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE). ACM, 49–51.

Suresh Thummalapenta, Jonathan De Halleux, Nikolai Tillmann, and Scott Wadsworth. 2010. DyGen: Au-
tomatic generation of high-coverage tests via mining Gigabytes of dynamic traces. In Proc. 4th Interna-
tional Conference on Tests and Proofs (TAP). Springer, 77–93.

Nikolai Tillmann and Jonathan de Halleux. 2008. Pex - White Box Test Generation for .Net. In Proc. 2nd
International Conference on Tests And Proofs (TAP). Springer, 134–153.

Nikolai Tillmann and Wolfram Schulte. 2006a. Mock-object generation with behavior. In Proc. 21st
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 365–368.

Nikolai Tillmann and Wolfram Schulte. 2006b. Unit Tests Reloaded: Parameterized Unit Testing with Sym-
bolic Execution. IEEE Software 23, 4 (July 2006), 38–47.

Gina D. Venolia, Robert DeLine, and Thomas LaToza. 2005. Software development at Microsoft observed.
Technical Report MSR-TR-2005-140. Microsoft Research.

Stefan Wagner, Jan Jürjens, Claudia Koller, and Peter Trischberger. 2005. Comparing Bug Finding Tools
with Reviews and Tests. In Proc. 17th IFIP TC6/WG 6.1 International Conference on Testing of Com-
municating Systems (TestCom). Springer, 40–55.

Laurie Williams, Gabe Brown, Adam Meltzer, and Nachiappan Nagappan. 2011. Scrum + Engineering Prac-
tices: Experiences of Three Microsoft Teams. In Proc. 5th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM). IEEE, 463–471.

Laurie Williams, Gunnar Kudrjavets, and Nachiappan Nagappan. 2009. On the Effectiveness of Unit Test
Automation at Microsoft. In Proc. 20th IEEE International Symposium on Software Reliability Engi-
neering (ISSRE). IEEE, 81–89.

Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan de Halleux. 2011. Precise identification of problems
for structural test generation. In Proc. 33rd ACM/IEEE International Conference on Software Engineer-
ing (ICSE). ACM, 611–620.

Tao Xie, Nikolai Tillmann, Peli de Halleux, and Wolfram Schulte. 2009. Fitness-Guided Path Exploration in
Dynamic Symbolic Execution. In Proc. International Conference on Dependable Systems and Networks
(DSN). IEEE, 359–368.

Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. 2011. Studying the co-evolution
of production and test code in open source and industrial developer test processes through repository
mining. Empirical Software Engineering 16, 3 (June 2011), 325–364.

Misha Zitser, Richard Lippmann, and Tim Leek. 2004. Testing static analysis tools using exploitable buffer
overflows from open source code. In Proc. 12th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE). ACM, 97–106. DOI:http://dx.doi.org/10.1145/1029894.1029911

ACM Transactions on Software Engineering and Methodology, Vol. V, No. N, Article A, Pub. date: January YYYY.

