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Abstract—Exhaustive, automatic testing of dataflow (esp. map-
reduce) programs has emerged as an important challenge. Past
work demonstrated effective ways to generate small example data
sets that exercise operators in the Pig platform, used to generate
Hadoop map-reduce programs. Although such prior techniques
attempt to cover all cases of operator use, in practice they often
fail. Our SEDGE system addresses these completeness problems:
for every dataflow operator, we produce data aiming to cover all
cases that arise in the dataflow program (e.g., both passing and
failing a filter). SEDGE relies on transforming the program into
symbolic constraints, and solving the constraints using a symbolic
reasoning engine (a powerful SMT solver), while using input data
as concrete aids in the solution process. The approach resembles
dynamic-symbolic (a.k.a. “concolic”) execution in a conventional
programming language, adapted to the unique features of the
dataflow domain.

In third-party benchmarks, SEDGE achieves higher coverage
than past techniques for 5 out of 20 PigMix benchmarks and 7
out of 11 SDSS benchmarks and (with equal coverage for the
rest of the benchmarks). We also show that our targeting of the
high-level dataflow language pays off: for complex programs,
state-of-the-art dynamic-symbolic execution at the level of the
generated map-reduce code (instead of the original dataflow
program) requires many more test cases or achieves much lower
coverage than our approach.

I. INTRODUCTION

Dataflow programming has emerged as an important data
processing paradigm in the area of big data analytics. Dataflow
programming consists of specifying a data processing program
as a directed acyclic graph. Internal nodes of the graph
represent operations on the data, for example, using relational
algebra primitives such as filter, project, and join, or functional
programming primitives such as “map” applications of user-
defined local functions and “reduce” operations that collect
values over sets of data. The edges in the graph represent data
tables or files passed between operators (nodes) in the graph.
Many recently proposed data processing languages and sys-
tems, such as Pig Latin [16], DryadLINQ [11], and Hyracks/
Asterix [1] resemble dataflow programming on datasets of
enormous sizes. A user can develop dataflow programs by
either writing the programs directly using the above languages
or compiling queries written in declarative languages such as
SQL and Hive [22].

When a user writes a dataflow program, he/she will typically
employ example data or test cases to validate it. Validating

with large real data is impractical, both for reasons of ef-
ficiency (running on large data sets takes a long time) and
for reasons of ease-of-validation (it is hard to tell whether
the result is what was expected). One alternative is to sample
the real data available. The sample data need to thoroughly
exercise the program, covering all key behavior of each
dataflow operator. This is very hard to achieve via random
sampling, however. For instance, equi-joining two sample data
tables of small size is likely to produce an empty result, if the
values being joined are distributed arbitrarily.

Another alternative is to synthesize representative data. Such
data synthesis is complicated by the complexity of dataflow
language operators as well as by the presence of user-defined
functions. Current state-of-the-art in example data generation
for dataflow programs [16] is of limited help. Such tech-
niques can generate high-coverage data for dataflow programs
with simple constraints. However, for dataflow programs with
complex constraints, e.g., with numerous filters, arithmetic
operations, and user-defined functions, the generated data are
incomplete due to shortcomings in constraint searching and
solving strategies.

In this paper, we address the problem of efficient example
data generation for complex dataflow programs by bringing
symbolic reasoning to bear on the process of sample data
generation. We present the first technique and system for
systematically generating representative example data using
dynamic symbolic execution (DSE) [7], [10], [23] of dataflow
programs. Our concrete setting is the popular Pig Latin
language [17]. Our DSE technique analyzes the program
while executing it using sampled data, determines whether the
sampled input data are complete (i.e., achieve full coverage),
and, if not, attempts to synthesize input tuples that result in the
joint sampled and synthesized data being a complete example
data set for the program.

We have implemented this approach in SEDGE, short for
Symbolic Example Data GEneration. SEDGE is a reimple-
mentation of the example generation part in the Apache
Pig dataflow system, which currently implements the closest
comparable past research, by Olston et al. [16].

Illustration: For a simple demonstration, consider an ap-
plication scenario in computational astrophysics. We surveyed
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11 queries in the Sloan Digital Sky Survey1 for analyzing star
and galaxy observations, and rewrote them using the Pig Latin
language. The most complex query contains 34 filters and 2
joins. For ease of exposition, we show a simple example query
in Listing 1 by combining features from two actual queries and
will use it as a running example in the paper. (For more details
on the real queries, see the evaluation section.)

A = LOAD ’fileA’ using PigStorage()
AS (name:chararray, value:int);

B = LOAD ’fileB’ using PigStorage()
AS (u:double, class:int);

C = FILTER A BY value < 100 AND value >= 0;
D = FILTER B BY math.POW(u,2.0) > 0.25;
E = JOIN C ON value, D ON class;

Listing 1. An example Pig Latin program

The program begins by loading tables A and B from files
containing measurements. Both kinds of measurements need to
be filtered. The first filter keeps only measurements in a certain
value range and the second filter removes low u values. The
tuples that survive the filtering get joined.

Imagine that we execute the program for a small number of
sampled input tuples from fileA and fileB. If we want to
achieve perfect coverage on random sampling of actual data
alone, we are unlikely to be successful if the sample is small.
The data from the two tables need to pass filters and (even
more unlikely) have their value and class fields coincide.
This is a case where targeted test data generation can help.

Past techniques for example data generation cannot handle
this example well. Olston et al.’s technique [16] will synthesize
data by considering operators one-by-one in reverse order in
the Pig Latin program. It will attempt to create data to satisfy
the JOIN first, without concern for the FILTER conditions that
the same data have to satisfy. This will likely fail to satisfy
even the first FILTER operator: the range 0-99 will have to be
hit purely by chance. The problem for the Olston technique is
that value is not a free variable once the JOIN constraint is
satisfied: it is limited to the values that the system arbitrarily
chose in order to have the JOIN operator produce output.

Even more importantly, the second FILTER operator is hard
to process. It contains a user-defined function, math.POW.
Although this function is simple, it will still befuddle an au-
tomatic test data generation system. Furthermore, an essential
part of dataflow programming is the ability to use user-defined
functions freely, however complex these functions may be. The
large volume of work on automatic data generation in other
settings (e.g., SQL databases [3]) does not address user-defined
functions.

Our approach overcomes such problems by modeling the
entire program in a powerful reasoning engine, handling
complex conditions, and dealing with user-defined functions
with the aid of concrete values observed over sample data. We
process the program using a domain with (symbolic) variables,
such as value, class, etc. A symbolic variable “columnname”
represents the value of one column of an input table for a set

1http://skyserver.sdss.org/public/en/help/docs/realquery.asp

of tuples. We start with a concrete execution of the program
using small samples of real input data. During such concrete
execution we observe, first, which program cases are covered,
and, second, what are the values of user-defined functions for
real data. E.g., a tuple (3.3, 32) of table B will register the
value pair (u : 3.3,math.POW(u,2.0) : 10.89) for the user-
defined function. This value will later help when trying to
solve symbolic constraints.

After the concrete execution, our approach uses symbolic
reasoning to cover program cases that were not already
covered by the concrete execution. The approach performs a
symbolic execution of the program, gathering constraints along
each path to the sources.

We use the Z3 SMT solver [8] to solve the constraints.
Concrete values for user-defined functions are supplied to the
solver. That is, the user-defined function is treated as a black-
box and the solver is supplied extra constraints of the form
u = 3.3 ⇒ math.POW(u, 2.0) = 10.89. These can aid the
solver in producing satisfying assignments. Essentially, we try
to make an educated guess: Whenever we do not know how
to generate example data for a constraint that depends on a
user defined function, we can always simplify this constraint
by replacing the symbolic representation of the user-defined
function with concrete values.

Contributions: In brief, the contributions of our work are
as follows:
• We detail a translation of dataflow operators into symbolic
constraints. These constraints are subsequently solved using
an SMT solver.
• We adapt the technique of dynamic-symbolic execution
to the domain of dataflow languages. By doing so, we
exploit the unique features of this domain, thus enabling high
coverage. Specifically, we exploit the absence of side-effects
in order to perform a multiple-path analysis: observations on
the values of a user-defined function on different execution
paths can help solve constraints involving the user-defined
function.
• As a result of the above, we produce an example data
generation technique that achieves higher coverage than past
literature, managing to produce data that exercise all opera-
tors of all programs that we examined. We show extensive
measurements to confirm our approach’s advantage. Our
technique achieves full coverage in all benchmark programs
with a boost in performance for most benchmarks.

II. BACKGROUND AND CONTEXT

We next discuss some pertinent background on dataflow
programming as well as on concepts and mechanisms intro-
duced in closely related past work.

A. Dataflow Program

A dataflow program is a directed bipartite graph, separating
computations (i.e., operators) in one partition and compu-
tational intermediate results (i.e., data tables) in the other
partition. In other words, it is a graph in which data tables
flow into operators, and operators flow into data tables. A
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data table is a collection of tuples with possible duplicates. A
tuple is typically a sequence of atomic values (integer, long,
float, chararray, etc.) or complex types (tuple, bag, map). An
operator usually has some input tables and one output table.
We say that a data table is an input table of an operator in
a dataflow program if the data table flows into the operator.
Similarly, we say that a data table is an output table of an
operator in a dataflow program if the operator flows into the
data table. If operator A’s output table is one of operator B’s
input tables, A is said to be an upstream neighbor of B and
B is said to be a downstream neighbor of A. An operator
without any upstream neighbor is called a leaf operator, and
an operator without any downstream neighbor is called a root
operator—the root operator generates the final output.

B. Pig Latin

Pig Latin is a well-known dataflow programming language
and the language front-end of the Apache Pig infrastructure
for analyzing large data sets. The Pig compiler translates Pig
Latin programs into sequences of map-reduce programs for
Hadoop. A Pig Latin program is a sequence of statements
where each statement represents a data transformation. In a
Pig Latin statement, an operator processes a set of input tables
and produces an output table. Following are the core operators
of Pig Latin [17].

1) LOAD: Read the contents of input data files.
2) FILTER: Discard data that do not satisfy a built-in logic

predicate or a user-defined boolean function.
3) COGROUP: Divide one or more sets (more accurately

“bags”, but we use the term “set” informally) of input
tuples into different groups according to some specifi-
cation. Each resultant output tuple consists of a group
identifier and a nested table containing a set of input
tuples satisfying the specification.

4) GROUP: A special case of COGROUP when only one
set of input tuples is involved.

5) TRANSFORM: Apply a transformation function to input
tuples. Transformation functions include projection, built-
in arithmetic functions (e.g., incrementing a numeric
value), user-defined functions, and aggregation. An ag-
gregation is implemented by first invoking COGROUP or
GROUP, and then doing transformation group by group.
For example, Average (·) is an aggregation that averages
the values in each group of input tuples.

6) JOIN: Equijoin tuples from two input tables.
7) UNION: Vertically glue together the contents of two input

tables into one output table.
8) FOREACH: Apply some processing to every tuple of

the input data set. FOREACH is often followed by a
GENERATE clause to pick a subset of all available fields.

9) DISTINCT: Remove duplicate tuples from the input data
set.

10) SPLIT: Split out the input data set into two or more output
data sets. A condition argument determines the partition
that each tuple of the input data goes into.

11) STORE: Write the output data set to a file.

C. Equivalence Class Model

Our work tries to maximize branch coverage in Pig Latin
programs. An interesting question is what constitutes full
coverage of a Pig Latin operator. In some cases the answer is
clear: the FILTER operator, for instance, is well-covered when
its input contains tuples that satisfy the filter condition and
tuples that fail the filter condition. In other cases, the definition
of coverage is not as simple. For instance, do we consider a
UNION operator sufficiently covered if all its output tuples
come from a single input table (i.e., if one of its input tables
is empty)? The choice is arbitrary but the more reasonable
option seems to be to require that both inputs of a UNION
operator be non-empty. Furthermore, whether an operator is
covered may be more convenient to discern in some cases
by observing its input and in others by observing its output.
For instance, a JOIN is well-covered when its output is non-
empty, while a UNION is well-covered when its inputs are
both non-empty.

To specify the coverage of operators we inherit the definition
of equivalence classes from Olston et al. [16]—the research
work that has formed the basis of the example generation
functionality in Apache Pig. Each Pig Latin operator yields
a set of equivalence classes for either its input or its output
tuples. Equivalence classes partition the actual set of tuples—
each tuple can belong to at most one equivalence class per
operator. To generate example data with 100% coverage, the
input or output table of each operator (when the program is
evaluated with the example data) must contain at least one
tuple belonging to each of the operator’s equivalence classes.

We summarize the equivalence class definitions for the
operators of Pig Latin below. The definitions are from Olston
et al.’s publication [16] and the implementation in Apache
Pig.2

• LOAD/STORE/FOREACH/TRANSFORM: Every input
tuple is assigned to the same class E1. (I.e., the operator
is always covered, as long as its input is non-empty.)
• FILTER: Every input tuple that passes the filter is assigned
to a class E1; all others are assigned to a class E2. (The
intention is to show at least one record that passes the filter,
and one that does not pass.)
• GROUP/COGROUP: Every output tuple is assigned to the
same class E1. For every output tuple, the nested table for
every group identifier must contain at least two tuples. (The
purpose of E1 is to illustrate a case where multiple input
records are combined into a single output record.)
• JOIN: Every output tuple is assigned to the same class
E1. (The intention is to illustrate a case of two input records
being joined.)
• UNION: Every input tuple from one input table is assigned
to E1, tuples from the other input table are assigned to E2.
(The aim is to show at least one record from each input table
being placed into the unioned output.)
• DISTINCT: Every input tuple is assigned to the same class
E1. For at least one input tuple to DISTINCT, there must

2http://pig.apache.org/
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be a duplicate, to show that at least one duplicate record is
removed.
• SPLIT: Every input tuple that passes condition i is assigned
to class Ei1; input tuples that do not pass i are assigned to
a class Ei2. The number of equivalence classes of a SPLIT
depends on how many conditions the SPLIT has. If a SPLIT
has n conditions, it yields 2n equivalence classes. (The aim
is to show, for each split condition, at least one record that
passes the condition, and one that does not pass.)

D. Quantitative Objectives

We use two metrics to describe the quality of example data
and follow earlier terminology [16]:

1) Completeness: The average of per-operator completeness
values. The completeness of an operator is the fraction
of the equivalence classes of the operator for which at
least one example tuple exists. An ideal algorithm should
find example data for every equivalence class of every
operator in a Pig Latin program.

2) Conciseness: The average of per-operator conciseness
values. The conciseness of an operator is the ratio of
the number of operator equivalence classes to the total
number of different example tuples for the operator (with
a ceiling of 1). An ideal algorithm should use as few
example tuples as possible to illustrate the semantics of
an operator.

The completeness metric is clearly a metric of cover-
age, as defined earlier. Specifically, it corresponds to branch
coverage in the program analysis and software engineering
literature. Branch coverage counts the percentage of control-
flow branches that get tested.

III. SEDGE DESIGN

Our system, SEDGE, uses a three-step algorithm to generate
example data in Pig Latin programs.
(1) Downstream Propagation: execute programs using sam-

pled real data, record values of user-defined functions—
see Section III-B;

(2) Pruning Pass: eliminate redundant data so that each cov-
ered equivalence class only contains a single member;

(3) Upstream Pass: generate constraints and synthesize data
for equivalence classes that the sampled test data do not
explore by performing DSE.

The last pass (upstream pass) is the key new element of our
approach and is described next.

A. Constraint Generation

The essence of our approach is to represent equivalence
classes symbolically and to produce symbolic constraints that
describe the data tuples that belong in each equivalence class.
Solving the constraints (i.e., producing data that satisfy them)
yields our test inputs. Our constraint generator steps through
the dataflow graph to compute all equivalence classes for each
Pig Latin operation, starting at root (i.e., final) operators. We
assume that each root operator is of the form STORE W ,
without loss of generality (the analysis enters dummy nodes

of this form when they are implicit). Similarly we assume that
all variable names in our program are unique.

We represent the set of constraints (one for each equivalence
class) of a statement V = . . . as C(V ). We consider two kinds
of equivalence classes: terminating equivalence classes, which
represent paths of tuples that end at a given operator (e.g.,
filtered out), and binding equivalence classes, which represent
paths through which tuples continue downstream.

For illustration, consider our running example, reproduced
here for ease of reference.

A = LOAD ’fileA’ using PigStorage()
AS (name:chararray, value:int);

B = LOAD ’fileB’ using PigStorage()
AS (u:double, class:int);

C = FILTER A BY value < 100 AND value >= 0;
D = FILTER B BY math.POW(u,2.0) > 0.25;
E = JOIN C ON value, D ON class;

Here, our root node consumes variable E. Our analysis
considers E as if it were flowing upstream from a STORE
operation. We invent a symbolic name, P , for the (single)
constraint induced by the STORE. Its constraint is satisfied
by all tuples:

C(E) ⊇ {P},where ∀t : P (t)

Note the use of ⊇. A dataflow node could receive constraints
from several downstream neighbors so our constraint inference
is using subset reasoning: we know that C(E) includes at
least P , but it could include other constraints as well. (In this
example it does not.)
C(E) is then propagated to the JOIN statement that con-

structs E. Throughout this section, given a statement Q and
its downstream neighbor with constraints P , P ′ denotes the
refined constraints by conjoining P and the new constraints
needed to flow a tuple upstream out of the downstream
neighbor. JOINs require tuples to agree on particular fields
(value and class, here), so we enforce this property by
encoding it via P ′ in our constraints:

for all P ∈ C(E) : ∃ex.
C(C) ⊇ {P ′

value}
C(D) ⊇ {P ′

class}
where P ′

value(t) ≡ P (t) ∧ t.value = ex
and P ′

class(t) ≡ P (t) ∧ t.class = ex

(“for all P ∈ C(E) : CS” here means that we iterate over
all P in C(E) and generate constraints CS for each such P .)

Continuing the propagation process, we pass the above
constraints on to the FILTER operators of our example. For
instance, consider the statement D = FILTER . . ., which elim-
inates all elements for which math.POW(u,2.0) > 0.25 does
not hold. This statement first introduces a binding equivalence
class for the constraints flowing upstream via C(D). The
statement also introduces a single terminating equivalence
class (P¬) to capture the case of tuples that do not pass the
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Pig Latin code Equivalence class constraints Cardinality constraints
STORE A C(A) ⊇ {P},where ∀t : P (t) #T (P ) ≥ 1
A = FILTER B BY Q C(B) ⊇ {P¬}, where P¬(t) ≡ ¬[Q]b(t).

for all P ∈ C(A) : C(B) ⊇ {P ′}
where P ′(t) ≡ P (t) ∧ [Q]b(t)

#T (P ′
¬) ≥ 1

#T (P ′) ≥ #T (P )

A = UNION B, C for all P ∈ C(A) : C(B) ⊇ {P} and C(C) ⊇ {P}

A = JOIN B BY x, C BY y
for all P ∈ C(A) : ∃Af .C(B) ⊇ {P ′

x} and C(C) ⊇ {P ′
y}

where P ′
x(t) ≡ P (t) ∧ t.x = Af

and P ′
y(t) ≡ P (t) ∧ t.y = Af

#T (P ′
x) ≥ #T (P )

#T (P ′
y) ≥ #T (P )

A = DISTINCT B for all P ∈ C(A) : ∃At.C(B) ⊇ {P ′}
where P ′(t) ≡ P (t) ∧ t ≈ At

#T (P ′) ≥ 1 + #T (P )

A = GROUP B BY x for all P ∈ C(A) : ∃Af .C(B) ⊇ {P ′}
where P ′(t) ≡ P (t) ∧ t.x = Af

#T (P ′) ≥ 1 + #T (P )

Fig. 1. Summary of representative translations from Pig Latin statements into equivalence classes, manifested as constraints. The above constraints are all
binding constraints, except for the terminating P¬ in FILTER, and for P ′ in DISTINCT which is both terminating and binding. In the above, [·]b translates
boolean Pig expressions into our term language, and T (P ) is the set of sample tuples for constraint P . Every rule introduces fresh symbolic names for
equivalence classes, we use fresh variables Af to refer to individual values, and At to refer to tuples.

filter:
C(B) ⊇ {P¬}

where P¬(t) ≡ ¬(math.POW(t.u ,2.0) > 0.25)
and for all P ∈ C(D)
C(B) ⊇ {P ′}
where P ′(t) ≡ P (t) ∧math.POW(t.u ,2.0) > 0.25

In our representation, we have preserved the user-defined
function math.POW as an example of a function that the
theorem prover cannot handle directly (see Section III-B).

We handle the other FILTER statement similarly and reach
the LOAD statement which completes the analysis. The result-
ing C sets contain symbolic names for all equivalence classes
and our symbolic constraints can be used to define members
of these classes.

Figure 1 gives the general form of our reasoning for repre-
sentative constructs (also including DISTINCT statements and
cardinality constraints, discussed below). For all operators for
which our first two analysis passes observed insufficient cover-
age, we collect constraints using the above scheme to generate
the constraints P that represent each insufficiently covered
equivalence class. For each P we attempt to add elements to
its corresponding set of samples T (P ). We synthesize such
tuples t as follows:

1) Pass P to the theorem prover and query for witnesses for
the existentially qualified fields. If there are no witnesses,
abort; either the equivalence class is empty/not satisfiable
due to conflicting requirements, or the theorem prover
lacks the power to synthesize a representative tuple.

2) Otherwise, extract the witnesses into tuple t′.
3) For any field f required by the type constraints over t in P ,

extract t2.f from randomly chosen t2 from our observed
samples. Combine t′ with all the t2.f into t′′.

4) For any still-missing fields (i.e., if no matching t2 exists),
fill the field with randomly synthesized data, yielding t.

5) If t ∈ T (P ) already, repeat the previous two steps as
needed, otherwise insert t into T (P ).

As the last steps (and Table 1) show, there is another
dimension in our sample generation, namely generating the

right amount of sample data. Specifically, recall that our
binding equivalence class for

F = GROUP B BY x

requires at least two tuples. To capture this constraint, we
permit constraints on the cardinality of our sets of witness
tuples, notation #T (P ′) ≥ 2, where predicate P ′ represents
the binding equivalence class in the above. All such constraints
are greater-than-or-equal constraints, and we always pick the
minimum cardinality that satisfies all constraints.

Another subtlety of our constraint notation comes from the
DISTINCT statement, as in

G = DISTINCT B

This statement eliminates duplicate tuples. Since set semantics
have no notion of duplicates, we extend all of our tuples with
a unique identity field that does not occur in the Pig program.
We write t1 ≈ t2 iff the tuples t1 and t2 have the same fields,
ignoring the identity field.

To support aggregation operations in sample synthesis,
we further permit reasoning about our sampled tuples. For
example, Pig Latin allows us to write

A = LOAD ...
sum = SUM(A.x)
B = FILTER A BY count == sum

We translate aggregations such as sum = SUM(A.x) into ag-
gregations over our sets of samples. Whenever we synthesize
samples for one of A’s binding equivalence classes, e.g.,
represented by P , we simply set sum =

∑
t∈T (P ) t.x. The

translation is analogous for other aggregators (AVG, MAX,
etc.). Aggregators enforce #T (P ) ≥ 2.

B. User-defined Function Concretization

In earlier sections, we classified our approach as dynamic-
symbolic, following other similar work in different settings
[7], [10], [19], [23]. The important aspect of a dynamic-
symbolic execution approach to test generation is that dynamic
(i.e., concrete) observations are used to help the symbolic
solving process. The foremost aspect where this benefit is
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public class HASH extends EvalFunc<Integer>
{

public Integer exec(Tuple input) {
if (input == null || input.size() == 0)

return null;
Integer y = (Integer) input.get(0);
int hash = y*(y+3);
return hash % 60;

} // ..
}

Fig. 2. The implementation of function HASH.

apparent in our setting is when dealing with user-defined
functions (UDFs). A user-defined function is any side-effect-
free operator that has a definition external to the language. In
the Pig Latin world, this typically means a Java function used
to process values, e.g., in a FILTER. What a dynamic-symbolic
execution engine can do is to treat a UDF as a black-box
function. Inside a constraint, a use of a UDF is replaced by a
set of function values from the concrete semantics, under the
assumption that some invocations of UDFs (and return values
thereof) have already been observed.

Consider the example Pig Latin program shown in Listing 2.
Our objective is to generate complete example data with one
tuple passing and one tuple not passing the FILTER. This
program’s key step is the application of the UDF HASH to
perform filtering, which takes an integer as argument and
returns its hash value.

A = LOAD ’fileA’ using PigStorage()
AS (x:int, y:int);

B = FILTER A BY x == HASH(y) AND x > 50;

Listing 2. Example Pig Latin program calling user-defined function HASH.

A simplified implementation of HASH is shown in Figure 2.
In this implementation, HASH extends the EvalFunc class
(which is required by Pig Latin to construct Java user-defined
functions3).

Assume that we run the program with two input tu-
ples (33, 42) and (47, 19) that do not pass the FILTER
(since 33 and 47 are not the hash values of 42 and
19, respectively). On these two executions, we obtain
two evaluations of HASH: y = 42, HASH(y) = 30 and
y = 19, HASH(y) = 58. For our technique to have 100%
completeness, we need to generate example data for A(x,y)
such that x == HASH(y) && x > 50. Using the two eval-
uations of HASH, we construct two simplified versions
of the constraint: x == 30 && y == 42 && x > 50 and
x == 58 && y == 19 && x > 50. In the simplified con-
straints the function call HASH(y) has been concretized to
the observed values (30 and 58, respectively). The second
simplified constraint is satisfiable while the first is not. Using
the satisfying assignment, we derive a new example input
(58, 19) for A(x,y).

Thus, our approach records concrete values for UDFs during
the downstream pass, concretizes constraints using recorded

3See Pig’s implementation guide for user-defined functions at http://pig.
apache.org/docs/r0.9.2/udf.html

concrete data, and solves them via automatic constraint
solvers, in the upstream pass. We use uninterpreted functions
to encode a concretized constraint. An uninterpreted function
(UF) [5], [6] is a black box with no semantic assumptions
other than the obligation that it behave functionally: equal
parameters yield equal function values. To encode UDFs as
uninterpreted functions for our constraint solver, we supply
concrete observations as implications, using the if-then-else
operator (ite) over boolean formulas and concrete values.

Consider the example of Listing 2 again, in which we
need to find assignments to (x,y) to satisfy the constraint
x == HASH(y) && x > 50. We supply the constraint solver
Z3 with concrete observations on the HASH UDF via the
following commands:

(declare-const x Int)
(declare-const y Int)
(define-fun HASH ((x!1 Int)) Int

(ite (= x!1 42) 30
(ite (= x!1 19) 58
0)))

(assert (not (= (HASH y) 0)))
(assert (= (HASH y) x))
(assert (> x 50))

The first two declare-const commands declare two
integer variables. The define-fun command creates a UF
that takes a parameter representing an integer and returns a
constant value. x1! is the argument of the UF. We have ob-
served two invocations of the function HASH, HASH applied
to y == 42 yields 30, and HASH applied to y == 19 yields
58. To complete the definition of the UF, we need to relate
unknown parameter values with a default return value, which
in this case we arbitrarily choose to be zero. Still, we assert that
HASH(y) is not zero to avoid accidental satisfaction. Finally
we provide the constraint x == HASH(y) && x > 50 that we
want to solve. Using three assert commands, the system
pushes three formulas into Z3’s internal constraint stack. We
solve the concretized constraints by asking Z3 to produce a
satisfying assignment for variables in the constraints.

Of course, when the observations of the UDF are not
sufficient to obtain the desired coverage, Z3 will deem a con-
cretized constraint to be unsatisfiable or unknown. To increase
the chance of finding a satisfying assignment for an abstract
constraint, we also try a second constraint solver, CORAL [4],
when Z3 returns unsatisfiable or unknown for a concretized
constraint. The distinction between Z3 and CORAL concerns
the kind of formulas that they can solve: Z3 can derive models
and check satisfiability of formulas in decidable theories, while
CORAL can deal with numerical constraints involving unde-
cidable theories. As a consequence of supporting undecidable
theories, CORAL can solve constraints involving UDFs in
the form of common math functions (e.g., power function)
directly without concretization. If neither concretization-and-
employing-Z3 nor calling CORAL can solve a constraint,
SEDGE will be unable to obtain perfect coverage.

Note that our approach to solving UDFs reasons about
all observed values of the UDF in parallel. These UDF
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observations may be produced in different paths through the
program, including executions of different test cases. Still, the
observations can be used together (i.e., we can assume that all
of them hold) because of the lack of side-effects in a dataflow
program. In contrast, in dynamic-symbolic execution of an
imperative program, only values (of user-defined functions)
observed during the current dynamic execution can be lever-
aged at a given constraint solving point.

IV. IMPLEMENTATION

The SEDGE system has required non-trivial implementation
effort, in the support of different data types, the interfacing
with the Z3 constraint solver, and the integration of string
generation capabilities.

A. Symbolic Representation of Values

SEDGE maintains an intermediate level of abstract syntax
trees for communication between Z3 and Pig Latin constraints.
Each node of the tree denotes a symbolic variable occurring
in the Pig Latin constraints. The high-level idea is that SEDGE
maps an execution path to a conjunction of arithmetic or
string constraints over symbolic variables and constants. Each
symbolic variable has a name and a data type, such as int
and long, mapping to a field of a table in a Pig Latin script
with the same name and data type. SEDGE then invokes Z3
to find a solution to that constraint system. If the constraint
solver finds a solution, SEDGE maps it back to input tuples
(tuples from LOAD). SEDGE supports mapping all Pig Latin
data types into a symbolic variable, with support for overflow
and underflow checked arithmetic.

1) int: Integers are represented as 32-bit signed bit-
vectors, since the Z3 constraint solver has better support for
bit-vector arithmetic than for integer arithmetic. Arithmetic
calculations over integers are thus simulated with arithmetic
calculations over 32-bit-vectors. The simulation is accurate
and takes into account the Java (Apache Pig is written in
Java) representation of values of type int as 32-bit-vectors.
Additional constraints are created to check that the bit-wise
computation does not overflow and underflow. Standard library
conversion functions (e.g., java.lang.Long.parseLong(String))
are used to translate back from 32-bit-vectors into integers.

2) long: Similar to int, long integers are represented by
64-bit signed bit-vectors, since Z3 has no builtin support for
long integers.

3) float/double: Floating point numbers are represented
by real numbers in the form of fractions of long integers. No
current constraint solvers have good support for floating-point
arithmetic. Calculations with floating point numbers are thus
approximated by real-valued calculations. A real number in
the form of fractions of long integers can be translated to a
floating point number by first representing the fraction using
BigFraction from Apache Common Math Library,4 and invok-
ing BigFraction.floatValue() (or BigFraction.doubleValue()) to
get the fraction as a float (or double, respectively).

4http://commons.apache.org/math/

4) chararray: A character array is represented by
java.lang.String, which is also the inner representation of a
character array in Pig Latin.

5) bytearray: We do not support byte arrays directly. We
try to identify the type that the byte array can convert to at
runtime and cast it.

6) boolean: A boolean variable is represented by an
integer with 3 values: −1 for FALSE; 0 for UNDEF; 1 for
TRUE.

Arithmetic and string constraints are typically expressed
over fields of simple types as listed above. Therefore, we
do not define complex types (tuple, bag, map) for symbolic
variables.

B. Arithmetic and String Constraint Solving

As mentioned earlier, SEDGE uses Z3 [8] to solve arithmetic
constraints. Since Z3 provides a C interface and SEDGE is im-
plemented using Java, to have access to Z3’s C API from Java,
we employ SWIG.5 We wrap Z3’s C API using Java proxy
classes and generate JNI [14] wrapper code automatically. A
problem in wrapping C programs for Java is that values may
be returned in function parameters in C, but in Java values are
typically returned in the return value of a function. SEDGE uses
typemaps in SWIG, a code generation rule that is attached to a
specific C data type, to overcome the problem. Given the data
type D of a value returned in function parameters, SEDGE
constructs a structure S containing a member variable of type
D. It also registers a typemap such that 1) any occurrence of
a function parameter of type D in a function call in Z3 is
converted into S, 2) the return parameter S’s value can be read
after returning from the function in Java.

For string constraints, the main new element of our im-
plementation concerns reasoning about string constraints con-
taining regular expressions. Our approach is based on Xeger6

a Java library for generating a sample string for a regular
expression. Xeger builds a deterministic finite automaton
(DFA) for a string constraint in the form of a regular ex-
pression, and follows the edges of the DFA probabilistically,
until it arrives at an accepting state of the DFA. Xeger is
suboptimal for two reasons: first, it may keep visiting the
same state until a “stack overflow” error happens; second, it
does not support union, concatenated repetition, intersection,
concatenation, or complement of regular expressions. To avoid
the ”stack overflow” error, our approach keeps a map from
state ID to the number of times a state has been entered and
reduces the probability of re-entering that state proportionally.
To support operations such as union and intersection, we add
an intermediate step between building the DFA and following
DFA edges to return a new deterministic automaton for the
appropriate regular expression. For example, when generating
a satisfying assignment that maps a string to a value so that
the constraint matches ’.*apache.*’ and ’.*commons.*’, we
intersect the automata representing the strings.

5http://www.swig.org/
6http://code.google.com/p/xeger/
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V. EVALUATION

In this section, we evaluate the implementation of SEDGE
by running a wide spectrum of actual Pig Latin programs.
We measured both the completeness of generated example
tuples and the run-time of example generation for SEDGE and
for the current state-of-the-art: the original Pig example data
generator (abbreviated to “Olston’s system” in our discussion).
Compared to Olston’s system, our experiments confirm that
SEDGE achieves higher completeness. In most experiments,
SEDGE also incurs a lower running time.

A. Benchmark Programs

To evaluate our system, we applied it to two benchmark
suites:
• We use the entirety of the PigMix benchmark suite, con-
sisting of 20 Pig programs designed to model practical Pig
problems.
• We use eleven sample SQL queries (the first ten in the
list and an 11-th selected for being complex) from the
Sloan Digital Sky Survey (SDSS) set7 and hand-translated
them directly into Pig code. The complex query contains 34
FILTER operations and 2 JOIN operations.
The PigMix benchmark provides Pig Latin programs for

testing a set of features such as “data with many fields, but
only a few are used” and “merge join”. The SDSS sample
queries typically search for an astronomical object based on
some criteria. For example, Program 5 of the SDSS set is
below:

A = LOAD Galaxy3 using PigStorage()
AS (colc_g : float, colc_r : float,

cx : float, cy : float);
B = FILTER A BY

(-0.642788 * cx + 0.766044 * cy >=0.0)
AND (-0.984808 * cx - 0.173648 * cy <0.0);

Listing 3. SDSS program 5

The program finds galaxies in a given area of the sky, using
a coordinate cut in the unit vector cx, cy, cz. As can be seen,
these benchmark programs are typically short, with only a
handful of them exhibiting interesting complexity.

For each query set, we used the input data that accompany
the relevant queries. PigMix ships with a tuple synthesizer that
generates such data. The SDSS benchmark suite is designed
for the digital sky survey data from the SDSS data release 7.
We selected a random sampling of tuples from the database
of this benchmark, in which the total amount of data is 818
GB, and the total number of rows exceeds 3.4 billion.

B. Methodology and Setup

Since the importance of tuple synthesis varies not only by
benchmark but also by the size of the tuples supplied to the
first analysis pass (in the ideal case, tuple synthesis is entirely
unnecessary), we ran our benchmarks for sample input tuple
sizes of 10, 30, 100, 300, and 1000 tuples using our system and
Olston’s system. For each sample input tuple size, we executed

7http://skyserver.sdss.org/public/en/help/docs/realquery.asp

each benchmark program 10 times with different randomly
sampled input tuples. All experiments were performed on a
four core 2.4 GHz machine with 6 GB of RAM.

We configured our system to compare directly to Olston’s
system, which is implemented as the “illustrate” command
in Pig Latin. Unfortunately, the current implementation of
Olston’s system has some limitations not mentioned in the
published paper. We wanted to evaluate against the approach
and not against the implementation. To that end, we addressed
such limitations or tweaked the benchmark programs so that
the problems do not manifest themselves. The first issue is that
the downstream pass would discard all sample input containing
null fields. In the upstream pass, if all input tuples happen to
contain null fields and thus all of them are discarded, there
would be a NullPointerException. We sidestep the null field is-
sue by ensuring that at least one sample input does not contain
null fields. In addition, the system can only handle 32 FILTER
conditions at most, as it encodes pertinent equivalence classes
for FILTER conditions as individual bits in a (32-bit) integer
index variable. This problem affects one PigMix benchmark
program intended for scalability testing. The benchmark has a
very large set (500+) of FILTER conditions. We sidestepped
the problem by making changes to the PigMix program so
that the resulting program has only 31 FILTER conditions.
Also, when reasoning about a JOIN in the upstream pass, a
NullPointerException is thrown if no data are observed in the
input side of a JOIN (typically because one of its upstream
neighbors is a highly selective operator). We address this issue
by skipping the JOIN if its input has no data and then attempt
to continue upstream propagation. Moreover, by mistakenly
setting a non-tuple field to a tuple in a method involved
in upstream propagation, a type casting error arises, which
impedes the ability of Olston’s system to reason over the JOIN
and FOREACH operations if their downstream neighbor is a
FILTER operator. We disallow assigning the non-tuple field to
a tuple in the problematic method.

C. Results

We ran each experiment 10 times and averaged the com-
pleteness of 10 runs (since the completeness may theoretically
vary due to different random choice of initial samples). The
size of the input data has little effect. The results are almost
the same for all sample input sizes.

Figures 3 and Figure 4 show the average completeness
for each Pig Latin program in the PigMix and SDSS sets,
respectively, for a sample input size of 100 tuples. Every bar
corresponds to one program (with the exception of program
L12 in Figure 3, in which there are three subprograms and
example data were generated for three different root operators
corresponding to the three subprograms) for a total of 20
programs.

As can be seen, we improve on completeness for 5 out of 20
PigMix benchmark programs and 7 out of 11 SDSS benchmark
programs. Although the benchmark programs are small and
much of their coverage is achieved with random sampling
of real inputs, they demonstrate clearly the benefits of our
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Fig. 3. Completeness of sample data generation for the PigMix benchmarks
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Fig. 4. Completeness of sample data generation for the SDSS benchmarks

approach. Practically every program in the two benchmark sets
that has any kind of complexity (either more than one operator
in the same path, or a user-defined function, or complex
filter conditions) is not fully covered by Olston’s approach.
For example, Olston’s system cannot generate data that fail
the FILTER in the presence of grouping, projecting, UDF
invocation in the following program (program S1 in Figure 3).

A = LOAD ’$widerow’ using PigStorage()
AS (name: chararray, c0: int, c1: int,

..., c31: int);
B = GROUP A BY name;
C = FOREACH B GENERATE group, SUM(A.c0) as

c0, SUM(A.c1) as c1, ..., SUM(A.c31) as
c500;

D = FILTER C BY c0 > 100 AND c1 > 100 AND c2
> 100 ... AND c31 > 100;

Listing 4. PigMix program S1

In fact, SEDGE achieves perfect coverage (i.e., full com-
pleteness) for all benchmark programs. Compared to Olston’s
approach our improved coverage is due to stronger constraint
solving ability (for programs 4,5,6,7 in Figure 4), to UDF
handling ability (for programs 9,10 in Figure 4) and also to
inter-related constraints and global reasoning (for programs
S1,L5,L12-1,L12-2,L12-3 in Figure 3 and programs 3,11 in
Figure 4).

We also recorded how long it took SEDGE and Olston’s
system to finish example generation. We include the infrastruc-
ture bootstrap time on each benchmark program. Both SEDGE
and Olston’s system need to prepare the Hadoop execution

environment for new executions. SEDGE needs to load its
constraint solver Z3 and CORAL as well.

As can be seen in Figure 5 and Figure 6, SEDGE is faster
on average than Olston’s system in 18 out of 20 PigMix
benchmark programs and 9 out of 11 SDSS benchmark
programs. For the rest of benchmark programs, SEDGE incurs
a little higher running time than Olston’s system. From these
numbers we can infer that, although we have to conduct path
exploration and constraint solving, there are even time savings
in most cases due to avoiding the step of pruning redundant
tuples after the upstream pass (because our approach does not
generate redundant data).
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 Fig. 5. Running time of sample data generation for the PigMix benchmarks
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Fig. 6. Running time of sample data generation for the SDSS benchmarks

VI. DISCUSSION: WHY HIGH-LEVEL DSE

A natural qualitative comparison is between a Dynamic
Symbolic Execution (DSE) engine at the level of the Pig Latin
language and DSE engines for imperative languages, since Pig
Latin code is eventually compiled into imperative code that
uses a map-reduce library. The expected benefits from our
approach are a) simplicity; b) conciseness of the generated
test cases (i.e., the same coverage with fewer tests); and c)
completeness: an imperative DSE engine may have trouble
solving constraints over the logically more complex generated
code, rather than the original Pig Latin code. Furthermore, an
imperative DSE engine cannot take advantage of the lack of
side-effects in order to better concretize user-defined functions,
as discussed in Section III-B.

We compared SEDGE with the Pex [23] state-of-the-art DSE
engine in a limit study. Pex accepts C# input, hence we hand-
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translated Pig Latin programs into C# programs.8 The resulting
C# programs are single-threaded without any call to the map-
reduce API, in order to test the applicability of Pex in the ideal
case. (The inclusion of the map-reduce library complicates
the control-flow of the imperative program even more and
can easily cause the DSE engine to miss a targeted branch
of test execution, leading to low coverage of generated test
cases [26].)

For our translation, we inspected the Java code generated
by the Pig compiler and made a best-effort attempt to replicate
it in C#, without map-reduce calls. We translated 13 programs
from our Pig Latin benchmark suites. Since Pex has no
knowledge of the original input (it accepts concrete values
only when passed into the test method as parameters with
primitive types) we enable just the 3rd pass (upstream pass)
of SEDGE, for a fair comparison (i.e., SEDGE also does
not benefit from sampled real data—this also disadvantages
SEDGE as it removes the advantage of better UDF handling).

The results confirm our expectation. The conciseness of
the test suite generated by Pex is low since Pex needs to
examine a lot of irrelevant low-level branches or constraints
that are not necessary for equivalence class coverage of the
high-level Pig Latin control flow. For example, for step A
in the Pig Latin program in Listing 3, Pex generates 30
tuples within 11 tables, of which 3 tuples pass the filter
in step B, while SEDGE generates 2 tuples within exactly
1 table, of which 1 tuple passes the filter in step B. The
conciseness of the test suite generated by Pex is 0.05, while
the conciseness of the test suite generated by SEDGE is 0.75.
Furthermore, for specific complex constructs we also get much
higher completeness, although quite often Pex also gets perfect
coverage. In our experience, for Pig Latin programs containing
FILTER statements after (CO)GROUP or JOIN statements, the
test suites yielded by Pex lack in completeness. For instance,
in the SDSS program with 34 FILTER operations and 2 JOIN
operations, the Pex completeness is only 0.09.

VII. RELATED WORK

Dataflow languages such as Pig can been seen as a com-
promise between declarative languages, such as SQL, and im-
perative languages, such as C and Java. That is, Pig combines
the declarative feature of straightforward parallel computation
with the imperative feature of explicit intermediate results.
There is little work (discussed in earlier sections) that ad-
dresses test data generation for dataflow languages. Instead, the
related work from various research communities has focused
on the extreme ends of this spectrum, i.e., either on SQL or
on Java-like programming languages.

Specifically, related work in the software engineering com-
munity has focused on traditional procedural and object-
oriented database-centric programs, tested via combinations
of static and dynamic reasoning [20]. The main approaches

8Although there are DSE engines for Java—e.g., Dsc [12]—they do not
match the industrial-strength nature of Pex. Dsc, for instance, does not support
programs with floating point numbers, which are common in Pig Latin.

use static symbolic execution [15] or dynamic symbolic ex-
ecution [9], [13], [18]. While our work is inspired by such
earlier dynamic symbolic execution approaches, we adapted
this work to dataflow programs and their execution semantics.
At the other end, there is work that automatically generates
database data that satisfy external constraints [21] but there is
no coverage or conciseness goal and no application to dataflow
languages. Other work [24] has introduced the idea of code
coverage to SQL queries. For our purposes, we reused the
concept of coverage for Pig Latin as defined by Olston et al.
[16].

In the formal methods community, Qex is generating test
inputs for SQL queries [25]. Similar to our work, Qex maps
a SQL query to SMT and uses the Z3 constraint solver to
infer data tables. However Qex differs from our work in that
Qex does not have a dynamic program analysis component and
therefore cannot observe how a query processes existing exam-
ple data. Earlier work in the software engineering community
on dynamic symbolic execution has shown that dynamic
analysis can make such program analysis more efficient and
enable it to reason about user-defined functions, which we
leverage in our work.

In the database community, a common methodology for
testing a database management system or a database appli-
cation is to generate a set of test databases given target query
workloads. Overall our problem differs in that, instead of a
whole database, we aim to generate a small (or minimum if
desired) set of tuples that have perfect path coverage of a
given dataflow program. The recent work on reverse query
processing [2] takes an application query and a result set
as input, and generates a corresponding input database by
exploiting reverse relational algebra. In comparison, our work
focuses on dataflow programs for big data applications, where
many operators are non-relational, e.g., map(), reduce(), and
arbitrary user-defined functions, and hence a “reverse algebra”
may not exist. The QAGen system [3] further takes into
account a set of constraints, usually cardinality and data
distribution in input and operator output tables, and aims to
generate a database that satisfies these constraints. Analo-
gously to earlier work in the formal methods community, this
work performs a static symbolic analysis and does not obtain
additional information from a dynamic analysis.
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