
Reverse Engineering Mobile Application
User Interfaces With REMAUI

Tuan Anh Nguyen, Christoph Csallner
Computer Science and Engineering Department

The University of Texas at Arlington
Arlington, TX 76019, USA

Email: tanguyen@mavs.uta.edu, csallner@uta.edu

Abstract—When developing the user interface code of a mobile
application, in practice a big gap exists between the digital
conceptual drawings of graphic artists and working user interface
code. Currently, programmers bridge this gap manually, by
reimplementing the conceptual drawings in code, which is cum-
bersome and expensive. To bridge this gap, we introduce the first
technique to automatically Reverse Engineer Mobile Application
User Interfaces (REMAUI). On a given input bitmap REMAUI
identifies user interface elements such as images, texts, containers,
and lists, via computer vision and optical character recognition
(OCR) techniques. In our experiments on 488 screenshots of
over 100 popular third-party Android and iOS applications,
REMAUI-generated user interfaces were similar to the originals,
both pixel-by-pixel and in terms of their runtime user interface
hierarchies. REMAUI’s average overall runtime on a standard
desktop computer was 9 seconds.

I. INTRODUCTION AND MOTIVATION

Developing the user interface code of mobile applications
is cumbersome and expensive in practice. Due to the early
consumer and entertainment focus of the two major platforms
Android and iOS and the high competitive pressure in the
mobile application market, users have come to expect mobile
user interfaces that are highly customized and optimized for
the task at hand [42], [45]. To satisfy this demand, mobile
user interfaces often deviate from their platforms’ standard
user interface (UI) components and provide their own novel or
customized UI elements such as buttons, dividers, and custom
element positioning and grouping.

To create such optimized user interfaces, the development
process of mobile applications routinely incorporates non-
programmers. User experience (UX) designers and graphic
artists design, customize, and optimize each screen of the user
interface with a mix of prototyping techniques. Common pro-
totyping techniques include paper-and-pencil and pixel-based
concept drawings created in Photoshop or similar graphic
design tools [25], [17], [42], [30].

Our key observation is that there is a gap in the produc-
tion process, as user interface concept drawings have to be
converted into working user interface code. Currently, these
conversions are done manually by programmers, which is
cumbersome, error-prone, and expensive. While modern IDEs
such as Eclipse, Xcode, and Android Studio have powerful in-
teractive builders for graphical user interface (GUI) code [55],
[56], using such a GUI builder to re-create a complex user
interface drawing is a complex task. For example, in an
evaluation of GUI builders on a set of small tasks, subjects

using Apple’s Xcode GUI builder introduced many bugs that
later had to be corrected. Subjects produced these bugs even
though the study’s target layouts were much simpler than those
commonly found in third-party mobile applications [56].

This challenge is compounded in practice. (1) First, custom
layouts are often desired but it is harder to create them with
a stock GUI builder. (2) Second, the conversion from user
interface concept drawing to user interface code is typically
performed many times during an application’s lifespan. The
reason is that many development teams follow an iterative ap-
proach, in which a user interface may undergo many revisions
during both initial software development and maintenance.

This gap in the mobile application development process is
significant as many mobile applications are being developed
and maintained. For example, In the USA over 90% of con-
sumers over 16 years of age use a mobile phone and more than
half of the mobile phones are smartphones, mostly running
Android or iOS [52]. On these smartphones, people use mobile
applications to perform many tasks that have traditionally
been performed on desktop computers [28], [3], [52], [23].
Example tasks include reading and writing emails, listening to
music, watching movies, reading the news, and consuming and
producing social media. To date, more than one million mobile
applications have been released1. Automating the conversion
from user interface design drawings to working user interface
code may therefore save a lot of time and money, which could
be put to better use.

Converting a conceptual drawing of a screen into good user
interface code is hard, as it is essentially a reverse engineering
task. As in other reverse engineering tasks, general principles
have to be inferred from specific instances. For example, a
suitable hierarchy of user interface elements has to be inferred
from a flat set of concrete pixels.

Compared to other reverse engineering tasks such as infer-
ring design documents from code [13], [21], [7], [15], [16],
an unusual additional challenge is that the input, i.e., the
pixels, may originate from scanned handwriting and human
sketches with all their imperfections [53], [43], [6]. This
means that sets of pixels have to be grouped together and
recognized heuristically as images or text. Then groups of
similar images and text have to be recognized heuristically as
example elements of collections. And for the UI of innovative
mobile applications, at each step the recognized elements may
diverge significantly from the platform’s standard UI elements.

1http://www.appbrain.com/stats/number-of-android-apps

http://www.appbrain.com/stats/number-of-android-apps

Reverse	
eng.	

Compile	
Deploy	
&	 Run	

App	 Screenshot	 Source	 Code	 and	 Resources	

Text	 List	 item	

UI	 View	 Hierarchy	

Image	 Container	

Source	 Code	 &	
Layout	 DefiniDon	

…	

Images	 Text	

You:	 Hello,	
how	 are	
you	

Huong	
Nguyen	

Now	
Jing	 Xu	

Export	

iOS	

You:	 Hi	 hi	

Fig. 1. Example REMAUI use: The UI designer provides a conceptual UI drawing (left). REMAUI identifies UI elements such as lists of text and images and
arranges them in a suitable UI hierarchy. REMAUI then exports the inferred UI as source code and resource files, compiles them, and runs them on a phone.

For professional application development, one may wonder
if this reverse engineering step is artificial. That is, why are
meaning and source code hierarchy of screen elements not
explicitly encoded in the conceptual design drawings if these
are done in digital tools such as Photoshop? One reason is that
some UX designers start with pencil on paper, so it would be
desirable to convert such drawings directly into working user
interface code.

More significantly, when UX designers create digital
bitmap images (typically by drawing them in Photoshop), the
digital design tools do not capture the hierarchy information
that is needed by user interface code. More importantly, it is
not clear if UX designers and graphic artists want to think in
terms of source code hierarchies.

While this gap is most apparent in forward engineering,
there may also exist a traditional reverse engineering scenario.
A developer may only have access to screenshots of a mobile
application, maybe after losing all other software artifacts such
as the source code. In such a situation it would be desirable
to automatically infer from the screenshots the user interface
portion of the missing source code.

This paper therefore identifies and addresses three prob-
lems in mobile application development. In reverse engineer-
ing, we address the problem of inferring the user interface
code of a mobile application from screenshots. In forward
engineering, we address the gap between scanned pencil-on-
paper UI sketches and code as well as the gap between pixel-
based UI sketches and code. While these problems occur at
different times in the development process, they share the task
of pixels-to-code inference.

Specifically, this paper introduces the first technique to
automatically Reverse Engineer Mobile Application User In-
terfaces (REMAUI). REMAUI automatically infers the user in-
terface portion of the source code of a mobile application from
screenshots or conceptual drawings of the user interface. On a
given input bitmap REMAUI identifies user interface elements

such as images, text, containers, and lists, via computer vision
and optical character recognition (OCR) techniques. REMAUI
further infers a suitable user interface hierarchy and exports
the results as source code that is ready for compilation and
execution. The generated user interface closely mimics the user
interface of a corresponding real application. To summarize,
the paper makes the following major contributions.

• The paper describes REMAUI, the first technique for
inferring mobile application user interface code from
screenshots or conceptual drawings.

• To evaluate REMAUI, we implemented a prototype tool
that generates the UI portion of Android applications.
This tool is freely available via the REMAUI web site.

• In an evaluation on 488 screenshots of over 100 popular
third-party mobile applications, REMAUI-generated UIs
were similar to the originals, pixel-by-pixel and in their
runtime UI hierarchy.

II. MOTIVATING EXAMPLE

As a motivating example, assume a UX designer has pro-
duced the screen design bitmap shown in the left of Figure 1.
The top of the screen contains the user’s profile image and an
icon. Below is a list, in which each entry has a person’s image
on the left, the person’s name and text message in the middle,
and the message date on the right. List entries are separated
by horizontal bars. The bottom of the screen has four icons
and their labels.

REMAUI infers from this bitmap working UI code, by
mimicking the steps a programmer would take. REMAUI thus
uses vision and character recognition techniques to reason
about the screen bitmap. REMAUI groups related pixels into
text or images, lines of text into text boxes, related items into
containers, and repeated elements into list elements. REMAUI
thus identifies non-standard user interface components such as
arbitrarily shaped items (e.g., the round images on the left) and
non-standard lists (e.g., using the special horizontal separator).

<RelativeLayout <!−− List Entry ... −−> >
<ImageView <!−− Horizontal Bar ... −−> />
<ImageView android:id=”@+id/ImageView 1”

android:layout width=”59dip”
android:layout height=”61dip”
android:layout marginLeft=”5dip”
android:layout marginTop=”0dip”
android:src=”@drawable/img 9”
android:scaleType=”fitXY”
android:layout alignParentTop=”true”
android:layout alignParentLeft=”true”/>

<RelativeLayout <!−− Nested: Text Block (center) ... −−> >
<TextView <!−− Sender name ... −−> />
<TextView <!−− Message ... −−> />

</RelativeLayout>
<TextView <!−− Message date (right) ... −−> />

</RelativeLayout>

Listing 1. REMAUI-generated layout for each list entry of Figure 1. Details
are only shown for the left part of a list entry.

REMAUI generates several XML files to capture the
screen’s static properties. In our example, the main XML file
declares and positions the elements of the top and bottom rows
including icons and their labels. This file also contains a list
view for the bulk of the screen content. The layout of each
list entry is defined by the Listing 1 XML file. For example, it
positions a contact’s image and aligns it with the top left of its
parent (alignParentTop, alignParentLeft). REMAUI recognizes
aligned text blocks such as the sender’s name and message,
groups them into a (nested) layout container (Listing 1), and
exports the recognized text fragments as an Android resource
file. At application runtime the list entries are added by the
also generated Listing 2 Java source code.

public class MainActivity extends Activity {
//..
private void addListView0() {

ListView v = (ListView) findViewById(R.id.ListView 0);
final ArrayList<ListI> values = new ArrayList<ListI>();
values.add(new ListI(R.drawable.img 4, R.drawable.img 9, R.

string.string 0, R.string.string 1, R.string.string 2));
//..
}
}
//..

Listing 2. REMAUI-generated Android (i.e., Java) source code that populates
Listing 1 list entries at application runtime.

The generated UI code and layout definitions can be
compiled with standard Android development tools. Moreover,
the code is similar to how a professional developer would im-
plement the screen. For example, the generated code uses the
appropriate kinds of layout container such as RelativeLayout
for the list entries. A RelativeLayout can eliminate the need
for some nested containers and thus keep the layout hierar-
chy relatively flat, which improves rendering performance at
application runtime.

III. BACKGROUND

This section contains necessary background information on
GUI programming, modern mobile phone GUIs, and computer
vision and optical character recognition (OCR).

A. GUI View Hierarchy & Declarative GUI Programming

The graphical user interface (GUI) of many modern desk-
top and mobile platforms is structured as a view hierarchy [37],
[2]. Such a hierarchy has two types of nodes, leaf nodes
(images, buttons, text, etc.) and container nodes. The root view
represents an application’s entire space on screen. The root can
have many transitive children. Each child typically occupies a
rectangular sub-region of its parent. Each view can have its
own parameters such as height, width, background color, and
position. A view can be positioned relative to the root or other
views such as its parent or siblings.

Mobile platforms such as Android and iOS render a parent
view before its children on screen. A child view thus hides
parts of its parent. Siblings are drawn in the order they are
defined. A best practice is to minimize rendering time waste
by keeping hierarchies flat and avoiding view overlap.

Given the relatively small mobile phone screen size, mobile
platforms make it easy to hide their default screen elements
such as the iOS title bar or the Android navigation bar.
Applications often use this feature to maximize screen size.

To define basic GUI aspects, modern platforms provide two
alternatives. The traditional desktop approach is construction
through regular program code [37]. The now widely rec-
ommended alternative is declarative [2], [39], [24], e.g., via
XML layout definition files in Android. Advanced GUI aspects
are then defined programmatically, which typically leads to a
combination of code and layout declaration files.

Building an appealing user interface is hard [36], [37].
Besides understanding user needs, the GUI facilities of mod-
ern platforms are complex and offer many similar concepts
to choose from. This challenge is especially significant for
developers new to their target platform. While each platform
provides standard documentation and sample code, these sam-
ples often produce unappealing results.

B. Example GUI Framework: Android

The Android standard libraries define various GUI con-
tainers (“layout containers”) and leaf nodes (“widgets”). Ac-
cording to an August 2012 survey of the 400 most popular
non-game applications in the Google Play app store [47], the
following containers were used most frequently: LinearLay-
out (130 uses per application on average) places its children in
a single row or column; RelativeLayout (47) positions children
relative to itself or each other; FrameLayout (15) typically has
a single child; ScrollView (9) is a scrollable FrameLayout; and
ListView (7) lays out children as a vertical scrollable list.

The following widgets were used most frequently:
TextView (141) is read-only text; ImageView (62) is a bitmap;
Button (37) is a device-specific text button; View (17) is
a generic view; EditText (12) is editable text; and Image-
Button (11) is a device-independent button that shows an
image. Besides the above, the Android library documentation
currently lists some additional two dozen widgets and some
three dozen layout containers.

C. Optical Character Recognition (OCR)

To infer UI code that closely reproduces the input con-
ceptual drawing, REMAUI distinguishes text from images and

Fig. 2. Example OCR performance at various granularity levels. Left to right: UI drawing and Tesseract-detected words, lines, blocks, and paragraphs.

captures the text as precisely as possible. Decades of research
into optical character recognition (OCR) have produced spe-
cialized methods for recognizing various kinds of text such
as text in different sizes, fonts, and orientation, as well as
handwritten text [53], [43]. Generally it is easier to recognize
text online (while it is being written) than offline. Similarly, it
is easier to recognize print than handwriting.

Existing OCR tools perform relatively well if the input
consists of mostly text. A good example is single-column text
with few images. Current OCR tools perform worse if the text
density is lower and text is arranged more freely and combined
with images [27]. A good representative OCR tool is the pow-
erful and widely used open-source OCR engine Tesseract [48],
[50], which, for instance, Mathematica 9 uses to recognize text.
In the closely related task of segmenting pages (for example,
to distinguish images and individual text columns), Tesseract
performs on par with commercial tools [50], [1].

However, the limitations of such a powerful OCR tool
on complex inputs become apparent when subjecting it to
screenshots or conceptual UI drawings. For example, Figure 2
shows from left to right a conceptual drawing and Tesseract’s
results when detecting text at various granularity levels, i.e.,
words, lines, blocks, and paragraphs. In this example Tesseract
found all words but also classified as words non-words such as
the contacts’ images. In general, for the domain of conceptual
screen drawings and screenshots Tesseract’s precision and
recall are often both below one in all granularity levels. So
even a powerful OCR tool may miss some words and classify
non-text as words.

IV. REMAUI OVERVIEW AND DESIGN

Figure 3 shows REMAUI’s six main processing steps. At
the core is a powerful off-the-shelf optical character recogni-
tion (OCR) engine (step 1). Since OCR produces false positive
candidate words, REMAUI filters the OCR results with its
domain-specific heuristics. Both to further compensate for
OCR’s limitations and to identify non-text elements such as
images, REMAUI combines OCR with a powerful off-the-shelf
computer vision system (step 2).

In two-dimensional images computer vision techniques can
quickly detect features such as corners and edges. Computer
vision has therefore been applied to diverse tasks such as
recognizing faces in two-dimensional images of the world or
to allow self-driving cars to detect the edge of the road [51].

Using computer vision REMAUI approximates the boundaries
of each screen element such as text and images.

In its final steps REMAUI merges OCR and computer
vision results (step 3) and in the merged data identifies
structures such as lists (step 4). REMAUI then exports the
inferred user interface as a combination of layout declarations
and program source code for the given target mobile platform
(step 5), compiles this combination to binaries, and runs the
binaries on an unmodified smartphone (step 6).

Not shown in Figure 3 is a pre-processing step in which
REMAUI removes standard operating system title and navi-
gation bars, if they are present. Since these screen areas are
standardized it is relatively easy to detect and remove them.

A. Optical Character Recognition (Step 1)

First, REMAUI applies on the given input bitmap off-the-
shelf OCR word detection. Since optical character recognition
suffers from false positives, REMAUI post-processes OCR
results to remove candidate words that likely do not reflect
true words in the input. Figure 4 visualizes this process on
the example bitmap from Figure 3. At word-level detection,
REMAUI’s OCR system classifies several UI elements as a
word that are not a word but an image or a part of an image.

To remove likely false positive words, REMAUI encodes
knowledge about its mobile phone UI domain as heuristics,
summarized in Table I. As an example, rule 3 encodes that on
a phone screen a word is likely not cut off and thus does not
extend beyond the border of the screen. This rule is specific
to phone screens and does not apply in all the settings the off-
the-shelf OCR engine may be applied in outside REMAUI.

TABLE I. HEURISTICS FOR ELIMINATING LIKELY FALSE POSITIVE
CANDIDATE WORDS FROM THE OCR RESULTS.

Name Heuristic
1 Zero h = 0 ∨ w = 0
2 Long w/h < 0.05 ∨ h/w < 0.05
3 Cut off x < 0 ∨ y < 0 ∨ x + w > W ∨ y + h > H
4 Conf. c ≤ 0.4

5 Content c ≤ 0.7 ∧ (
|eh/ew−h/w|

max(eh/ew,h/w)
> 0.5 ∨ |a−e|

max(a,e)
> 0.8)

6 No-text [\p{C}\s]* ∨ [ˆ\\x00-\\x7F]*

The heuristics are given in terms of the input data, the OCR
results, and heuristic values computed by REMAUI. Specifi-
cally, from the input UI screen available are its width (W) and
height (H). The OCR system produces for each of its candidate
words the word’s height (h), width (w), area (a = w ∗ h),
font family and size, upper left corner coordinates (x, y), text

Concept:	 	
	 Drawing	 or	 	

	 Screenshot	 or	
Pencil	 on	 Paper	

(1)	 	
OCR	

(2)	
Computer	
Vision	 	

(4)	
IdenAfy	
lists	

Generated	 app	 with	
inferred	 UI	 hierarchy	

running	 on	 an	
unmodified	 phone	

(6)	
Compile,	
Deploy	
&	 Run	

Images,	 Text,	
Source	 Code,	

Layout	
DefiniAon	 Box:	 	

Word	

(3)	
Merge	

	

Box:	 	
Line	

(5)	
Export	

Fig. 3. Overview of REMAUI processing steps: (1) Locate and extract candidate words and lines with OCR; (2) locate and extract candidate UI elements as
a hierarchy of nested bounding boxes using computer vision; (3) merge the results to improve recognition quality; (4) identify repeated items and summarize
them as collections; (5) export the constructed UI as a mobile application for a given platform; (6) compile and execute.

content (t), and confidence level (c). The confidence level
is derived from the distance of the word’s characters from
idealized characters [49].

11

Remove
invalid
words

OCR

Fig. 4. Example results of the Table I heuristics: Input from Figure 3 (left),
candidate words from OCR (framed, middle), and candidates eliminated by
our heuristics (solid rectangles, right).

From the text content and font information produced by
OCR for a given word, REMAUI estimates the width (ew),
height (eh), and area (e) the candidate word should occupy
given the font size and family. Rule 5 uses this information to
remove a word if, within bounds, the text area estimated by
REMAUI does not match the text area reported by OCR. This
rule removed all four candidate words that are removed in the
right side of Figure 4.

The other rules exclude words OCR is not confident about
(rule 4), have a zero dimension (rule 1), or have an odd shape
(rule 2). An odd shape likely does not capture an English-
language word, as they are long and narrow, vertically or
horizontally. Finally, rule 6 removes words that only contain
non-ASCII characters or only consist of control characters and
whitespace.

The heuristics’ constants are derived through trial and error
on a small set of third-party bitmaps. The resulting heuristics
have held up reasonably well on the much larger set of third-
party bitmaps used in the evaluation (Section VI).

B. Computer Vision (Step 2)

In this step REMAUI infers a first candidate view hierarchy.
Two important observations are that (1) many vastly different
view hierarchies can lead to very similar if not identical on-
screen appearances and (2) a programmer will likely find some
of these view hierarchies more valuable than others. REMAUI
therefore follows carefully chosen heuristics to produce desir-
able view hierarchies that balance the following two goals.

The first goal is a minimal hierarchy, i.e., having a min-
imum number of nodes. From the programmer’s perspective
this is important to prevent clutter in the generated code. More
importantly, drawing a large number of views slows down the
application. For example, a programmer would not want a
container that contains one child view for each character of
every word displayed by the container.

However, a competing goal is maximum flexibility of
the inferred view hierarchy. Distinct UI elements should be
represented by distinct views to allow the generated UI to
be well displayed on various combinations of screen size and
resolution. Thus, a programmer would, for instance, not want
to represent the four distinct buttons of the Figure 3 bottom-
screen navigation bar as a single image. However, combining
these four buttons into a single image and a single leaf view
would reduce the number of views.

To infer a good candidate view hierarchy, REMAUI first
tries to identify all atomic visual elements in the input UI. By
atomic we mean a visual element that reasonably should not
be divided further. For example, an icon is atomic but so can
be an entire text paragraph. For each identified atomic visual
element REMAUI then computes its approximate view.

To achieve these tasks, REMAUI leverages off-the-shelf
computer vision. Figure 5 illustrates REMAUI’s key computer
vision steps on the Figure 3 example input bitmap. First we
detect the edges of each image element via Canny’s widely
used algorithm [10], [51]. But these edges themselves are not
good candidates for atomic elements as, for example, each
character or even minor noise would become its own element.

20	

Original	 Edges	 (via	 Canny)	 Dilated	 Edges	 Contours	 Container	 Hierarchy	

Fig. 5. Computer vision processing steps from left to right: Original input bitmap; Edges detected via Canny’s algorithm as black and white; Dilated or
broadened edges to swallow noise and join adjacent elements; Contours of the joined elements; Output: Hierarchy of the contours’ bounding boxes.

To merge close-by elements with each other and with sur-
rounding noise and to close almost-closed contours REMAUI
dilates its detected edges. REMAUI uses a heuristic to, for
example, allow a word’s characters to merge but keep words
separate. REMAUI then computes the dilated edges’ contours.
Each contour is a candidate atomic element.

Figure 5 also illustrates the heuristic nature of this process.
The last list entry shown in the input screen is cut off by a
horizontal dividing line. Edge detection, dilation, and contour
thus all merge the last list item with the dividing line, reducing
REMAUI’s precision and recall of atomic visual elements.

Finally, REMAUI computes the bounding box of each
candidate atomic element, to approximate the element’s view.
Recall from Section III-A that typically each view is rectangu-
lar and fully contained in its parent. Partially overlapping boxes
are thus merged into a new bounding box. A fully contained
box becomes the child view of the containing box.

C. Merging (Step 3)

In two sub-steps REMAUI merges the results of OCR and
computer vision to heuristically combine the best aspects of
both and to integrate the OCR-inferred text into the vision-
inferred candidate view hierarchy.

First, REMAUI removes OCR-detected words that conflict
with vision-inferred element bounding boxes. This step ad-
dresses common OCR false positives such as classifying part
of an image as a text fragment, classifying bullet points as “o”
or a similar character, and merging lines of text that have too
little spacing. The resulting OCR-extracted text is not useful
and should instead be exported as an image.

Specifically, each OCR word is subjected to the Table II
heuristics. In addition to the OCR word’s width (w) and height
(h), we now also have the computer vision bounding box’s
width (bw) and height (bh). For example, rule (1) checks
if an OCR word overlaps with two vision boxes whose y-
coordinates do not overlap. This happens if OCR merged two
text lines whereas the vision results kept them separate.

REMAUI further removes OCR words that are not con-
tained by an OCR line (using the OCR lines from step 1).
REMAUI then merges OCR words and lines into text blocks.

TABLE II. HEURISTICS FOR ADDITIONAL ELIMINATIONS OF OCR
WORDS, BASED ON COMPUTER VISION RESULTS.

Description
1 Word aligns vertically & overlapped ≥ 70% with ≥ 2 vision boxes that do not

overlap each other
2 Word aligns horizontally & overlapped ≥ 70% with ≥ 2 vision boxes, distance

between each pair of boxes > each box’s size
3 Word contains a non-leaf vision box
4 Word contains only 1 vision box, box size < 0.2 word size
5 Non-overlapped leaf vision box contains only 1 word, word size < 0.2 box size
6 If leaf vision box’s words are > 50% invalidated, invalidate the rest
7 If > 3 words are the same text and size, aligned left, right, top, or bottom, each

has < 0.9 confidence, and are non-dictionary words
8 Leaf vision box contains a word, M < 0.4 ∨ (M < 0.7 ∧ m < 0.4) ∨

(M >= 0.7∧m < 0.2), with m = min(w
bw

, h
bh

), M = max(w
bw

, h
bh

)

OCR lines often blend together into a single line unrelated text
that just happened to be printed on the same line. For example,
the Figure 3 contact names (left) appear on the same line as
message dates (right). However they are conceptually separate.
REMAUI thus splits a line if the word-level OCR indicates that
the distance between two words exceeds a heuristic threshold
(i.e., their height). Figure 6 shows this process for the Figure 3
example. REMAUI adds the resulting text blocks to the view
hierarchy and removes the vision boxes they overlap with.

12

Valid words

OCR lines

Text blocks

Fig. 6. Example: Merging Figure 3 OCR lines with processed OCR words.

REMAUI aims at extracting text contents with high preci-
sion. The employed OCR engine produces better text contents
when treating its input as a single text line. This way the OCR
engine does not have to reason about which parts of the input
are text versus non-text. REMAUI thus invokes OCR on each
text block (in line mode), yielding text that resembles the text
in the input relatively closely. Finally, REMAUI groups close-
by text blocks into a container, if the vertical distance between
text blocks is less than either of their heights.

D. Identify Lists (Step 4)

In this step REMAUI identifies repeated items and sum-
marizes them as collections, for two reasons. First, the final
UI definition is more compact and efficient if each repeated
resource is only represented once. Second, this step allows
REMAUI to generalize from a few instances to a generic
collection. REMAUI can then supply the observed instances
as an example instantiation of the collection.

REMAUI identifies repeated instances by ordering the
views by their relative location and searching them for identical
sub-trees. A sub-tree consists of a view and a subset of its
transitive children. Two sub-trees are identical if each of their
child nodes has a peer in the other sub-tree, such that both
nodes have the same number of children and the same width,
height, type (text or image), and matching location within its
parent (each within a threshold). Neither text contents nor
image bitmaps have to be identical, as a list item may, for
example, contain the face of a user as in Figure 3.

If identical sub-trees are found, REMAUI creates a bound-
ing box around each of them. Each box contained in such a
bounding box that is not part of the sub-tree belongs to the list
item anchored by the sub-tree. However, such an overlapping
box varies across list elements and will be exported as an
optional element of the list entry. The properties of these
optional elements are determined by overlaying all of them
and using the resulting bounding boxes.

E. Export (Step 5)

In this step REMAUI exports all results as an Android
project directory, complete with relevant source code and
resource files. This directory can be compiled with standard
Android IDEs. Specifically, REMAUI crops and extracts each
identified image from the input screenshot, only once for
repeated images. To provide a reasonable background color,
REMAUI uses as the container’s background the dominant
color of each container after extracting all identified images.
REMAUI exports all detected text content and format to
Android strings.xml and styles.xml files. REMAUI exports
layout files to the Android layout directory, for the layout
shared between list entries and for the main screen. Finally,
REMAUI generates Java code to fill lists with the identified
entries at runtime.

V. RESEARCH QUESTIONS

To evaluate REMAUI, we ask (a) if it is currently feasible
to integrate REMAUI into a standard mobile application de-
velopment setup and (b) if REMAUI-generated user interfaces
are useful in the sense that the generated UI is similar to the UI
an expert developer would produce. We therefore investigate
the following three research questions (RQ), expectations (E),
and hypotheses (H).

• RQ1: What is REMAUI’s runtime in a standard develop-
ment setup?
◦ E1: Given its expensive OCR and computer vision tech-

niques, we do not expect REMAUI to run interactively.
◦ H1: REMAUI can run on a standard development

machine in a similar amount of time as a software

installation wizard, which we approximate as up to one
minute.

• RQ2: Is a REMAUI-generated UI visually (pixel by
pixel) similar to a given third-party input UI conceptual
drawing?
◦ E2: Given their wide variety, we do not expect RE-

MAUI to work well for all applications.
◦ H2: REMAUI produces a UI that is visually similar

to an input UI conceptual drawing, when running on
non-game mobile applications.

• RQ3: Is the view hierarchy of a REMAUI-generated UI
similar to the view hierarchy of a given third-party input
application?
◦ E3: Given their wide variety, we do not expect RE-

MAUI to work well for all applications.
◦ H3: REMAUI produces a UI whose view hierarchy is

similar to the view hierarchy of a given handwritten
non-game mobile application.

VI. EVALUATION

To explore our research questions we implemented RE-
MAUI for Android. Our prototype generates Android code
and resource files that are ready to be compiled and executed.
Our prototype supports, among others, Android’s three most
popular layout containers and three most popular widgets
(Section III-B). For off-the-shelf OCR, REMAUI uses the
open source engine Tesseract [48] and Tesseract’s default
version 3.0.2 English language data trained model. This means
that REMAUI currently does not use Tesseract’s options
for training its classifiers. Step 1 uses Tesseract’s fastest
mode2 with fully automatic page segmentation. For off-the-
shelf computer vision, REMAUI uses the open source engine
OpenCV [6] in its default configuration, without training.

A REMAUI-generated application’s aspect ratio (between
output screen width and height) is the same as the one of its
input screenshot. With this aspect ratio, a REMAUI-generated
application supports many screen resolutions, via Android’s
standard density-independent pixel (dp) scheme. The Android
runtime thereby scales a REMAUI-generated application’s dp
units based on a device’s actual screen density.

The high-level workflow of our experiment is as follows.
We first ran a subject Android or iOS application on a
corresponding phone. At some point we took a screenshot and
at the same time captured the current UI hierarchy. We (only)
handed the captured screenshot to REMAUI and thus obtained
a generated application. We then ran the generated application
on an Android phone and, at the same time, took a screenshot
and captured the runtime hierarchy. To clarify, no UI hierarchy
information was provided to REMAUI.

Obtaining the UI hierarchy at runtime required low-level
OS access. We thus used a rooted Google Nexus 5 phone
for Android (2 GB RAM, Android 4.4.4) and a jail-broken
iPhone 5 (1 GB RAM, iOS 7.1.2). To obtain the view hierarchy
on Android we used Android’s uiautomator3 via the Android
Debug Bridge [41] (adb shell uiautomator dump). For iOS,
we used cycript [26] recursively starting from the root view.

2TESSERACT ONLY, PSM AUTO
3http://developer.android.com/tools/help/uiautomator

http://developer.android.com/tools/help/uiautomator

For the evaluation REMAUI ran on a 16 GB RAM 2.6 GHz
Core i7 MacBook Pro running OS X 10.10.2.

A. Subjects

Using existing third-party applications to explore our re-
search questions is a good fit for several reasons. (1) First,
it is straightforward to capture a screenshot of a running
application and hand such a screenshot to REMAUI. It is
also straightforward to compare such screenshots pixel by
pixel with REMAUI-generated screenshots (RQ2). (2) More
importantly, having a running application enables inspecting
the application’s UI hierarchy. We can then compare this hi-
erarchy with the corresponding UI hierarchy of the REMAUI-
generated application (RQ3).

Since our REMAUI prototype is implemented for Android,
our first group of subjects consists of third-party non-game
Android applications. To sample popular applications, we
downloaded the top-100 free Android applications from the
Google Play store as of November 9, 2014. From these we
excluded games, as most games do not provide GUIs through
a view hierarchy but through the native OpenGL library. This
left us with 46 top-100 applications, covering (except games)
all application categories present in the top-100, such as e-
commerce, email, maps, media players, productivity tools,
translation software, and social media. The REMAUI web
site lists name and version of each subject application used
in the evaluation. From each application, we captured the
application’s main screen (in the form it appears after starting
the application). We refer to these subjects as group C.

To broaden our set of subjects, and since many developers
first target iOS, we added iOS applications. We downloaded
on August 12, 2014 the top 100 free iOS applications from
the Apple App Store. The resulting 66 non-game top-100
applications cover a range of categories similar to group C.
We took a screenshot of every screen we could reach, yielding
302 screenshots (group A). For each application we took
another screenshot showing the main screen with different data
contents, yielding 66 subjects (group B). Since iOS 7 defined
a new design language and Google and Apple are major
application developers, we included from them 58 screenshots
of iOS 7 applications outside the top-100 (group D).

There may also be a use case of manually drawing designs
and scanning them. Since such third-party drawings are hard to
obtain, we created sketches of 16 screenshots (group E). These
screenshots are our manual renderings of the main screen of
the alphabetically first 16 of the top 100 iOS applications in
the Apple app store as of August 12, 2014.

B. RQ1: REMAUI Runtime

Figure 7 shows the runtime of REMAUI’s seven major pro-
cessing steps, i.e., (1) OCR, (2) computer vision, (3a) merging
OCR text with vision boxes, (3b) splitting text lines, (3c) creat-
ing the view hierarchy, (4) identifying lists, (5) export, and total
runtime. Each step shows the runtimes of groups A–E from left
to right. Not surprisingly, steps 1, 2, and 3b took longest, as
these are the only steps that call REMAUI’s computer vision
and OCR engines. The cost of step 3b varied widely, as the
number of OCR calls depends on the number of identified text
blocks. Step 5 includes extracting a bitmap for each image

Fig. 7. Runtime of REMAUI’s seven main processing steps on the 488 sub-
jects, shown by group, from left (A) to right (E).

view, which also takes time. On a modern desktop computer
total runtime was well within the one minute time frame, with a
52 second maximum and an average total runtime of 9 seconds.

C. RQ2: Pixel-by-Pixel Similarity

Fig. 8. Normalized pixel-by-pixel screenshot similarity between REMAUI
input and generated application on the 488 subjects, shown by group A–E
from left to right. Higher values are better.

Since REMAUI currently removes all standard OS status
and navigation bars from input screenshots, we do the same to
the screenshots of REMAUI-generated applications. To ensure
that input and generated screenshots have the same dimensions,
we set the target application screen dimensions to account for
subtracting the OS navigation bar.

We used the open source Photohawk4 library to measure
two widely used picture similarity metrics [51]. Specifically,
following are the mean absolute error (MAE) and the mean
squared error (MSE) over a screenshot’s n pixels; ei,j is the
delta of one of the three color channels RGB of a given pixel
in the original vs. the corresponding pixel in the REMAUI-
generated screenshot.

MAE =
1

3n

n∑
i=1

3∑
j=1

|ei,j | MSE =
1

3n

n∑
i=1

3∑
j=1

e2i,j

Figure 8 shows the normalized (to [0, 1]) similarity mea-
sures for our 488 subjects, arranged by our five groups. The
results indicate that REMAUI-generated applications achieved
high average pixel-by-pixel similarity with the respective in-
puts on both metrics.

4http://datascience.github.io/photohawk

http://datascience.github.io/photohawk

D. RQ3: UI Hierarchy Similarity

Achieving high pixel-by-pixel similarity is not sufficient, as
it is trivially achieved by a UI that consists of a single bitmap
(i.e., the input screenshot). So in this section we also evaluate
how closely the generated view hierarchy resembles the view
hierarchy that produced REMAUI’s input screenshot.

Evaluating the quality of a given UI hierarchy is hard.
First, there are often several different hierarchies of similar
overall quality. Not having the application’s specification, it
is not clear which alternative REMAUI should target. Second,
unlike for RQ2, the input application’s UI hierarchy is often
not an obvious gold standard. Many of the subjects contained
redundant intermediate containers that have the same dimen-
sion as their immediate parent and do not seem to serve a
clear purpose. Other container hierarchies could have been
refactored into fewer layers to speed up rendering.

Fig. 9. Part of a screenshot of Google Hangout (top), its UI hierarchy
(middle), and the REMAUI-generated hierarchy (bottom). Each element is
annotated at its center with its level in the UI hierarchy, with root=1. Each
number’s color matches the color of its element’s boundary.

Figure 9 shows an example of this challenge. The original
UI hierarchy and the REMAUI-generated one differ in several
aspects. For example, REMAUI puts the contact’s name and
message into two relatively small level-7 text boxes. The orig-
inal application puts the same strings into much larger level-8
text boxes. Similarly, REMAUI groups name and message into
a level-6 container. The original application groups them with
the date into a level-7 container. This container is nested into a
level-6 container, which is nested into a level-5 container of the
same dimensions. The latter container thus seems redundant.
Despite these differences, screenshots of the two hierarchies
are very similar pixel-by-pixel.

In our evaluation we side-step these challenges by compar-
ing UI hierarchies at the leaf level. While this comparison does
not capture the entire hierarchy, it still captures parts of the
UI’s structure. For example, the boundary of each intermediate
(container) node is represented by the leaf nodes it contains.

Specifically, for this experiment we analyzed each pixel in
a REMAUI-generated screenshot. If a pixel belongs to a text
box in both the original and the generated application, then
we consider the pixel correct. Similarly, the pixel is correct
if it belongs to an image view in both the original and in
the generated application. Given these criteria, we can define
precision p and recall r as follows, separately for images, text,
and overall, given the pixels i in an image view in the original
application and in the generated application (i′) as well as the

pixels t in a text view in the original application and in the
generated application (t′).

pi =
|i ∩ i′|
|i′|

pt =
|t ∩ t′|
|t′|

ri =
|i ∩ i′|
|i|

rt =
|t ∩ t′|
|t|

p =
|i ∩ i′|+ |t ∩ t′|
|i′|+ |t′|

r =
|i ∩ i′|+ |t ∩ t′|
|i|+ |t|

Since in our setup this experiment required manual steps
for capturing the UI hierarchies we restricted the scope of
the experiment to our core group of Android subjects (group
C) and the relatively small group of iOS subjects (group B).
Figure 10 shows the experiment’s results. We found a moderate
to high structural match (in terms of the leaf nodes) between
original and REMAUI-generated UI hierarchies.

Fig. 10. Image, text, and overall UI element precision (p) and recall (r) for
groups B (left) and C (right). Higher values are better.

The low recall in Figure 10 does not fully capture how RE-
MAUI reproduced text or images. On the contrary, REMAUI’s
pixel-by-pixel similarity was high (Figure 8). We suspect a
culprit of low recall was white-space. REMAUI computes tight
bounding boxes, but a corresponding original text or image
view may contain much additional white-space and fill its
parent container (as the much larger text boxes in Figure 9).

To explore this issue on the example of text, we measured
the Levenshtein distance (edit distance) [33] of text box
strings between original and generated applications. For the
2.4k string pairs of group C, on average, an original text was
18.8 characters, a generated text 14.6, and the edit distance 4.7.
So on average it took only 4.7 single-character additions,
removals, or substitutions to convert a string in the generated
application back to the corresponding string in the original
application. For the 2.9k group B string pairs, on average, an
original text was 14.6 characters, a generated text 15.0, and
the edit distance was only 2.9. These results indicate a higher
text recall than the pixel-based recall of Figure 10.

The following two trends emerged on manual inspection.
First, precision suffered if a subject contains a bitmap that con-
tained both text and non-text imagery. This is not surprising,
as for OCR it is hard to distinguish if a given text is plain text
or belongs to a bitmap of text and other elements. REMAUI
typically decomposed such bitmaps into text and image views.
The resulting UI hierarchy should be relatively easy to fix
manually. A developer would just replace a generated container
(containing both text and images) with a single bitmap. Overall
these incorrectly detected views were small. In Figure 10, their
average area was less than 0.25% of the input screen area.

The second observation is that low image recall occurred
when images overlapped that were of similar color or where

the top image is somewhat transparent. These scenarios are
challenging for edge detection. Similarly, text recall was low
if the text color was similar to the background color. On the
flip-side, with high contrast we observed high recall.

VII. RELATED WORK

The gap between early prototyping and formal layout
definition also exists in the related domain of web site de-
velopment. A study of 11 designers at 5 companies showed
that all designers started with sketching the layout, hierarchy,
and flow of web pages with pencil on paper and in graphical
design tools such as Photoshop [40].

A similar design process has been reported for desktop
applications. At Apple, user interface sketches were first
created with a fat marker (to prevent premature focus on
details) and later scanned [54]. Separate studies of hundreds
of professionals involved in UI design in various companies
indicated heavy use of paper-based sketches [31], [9]. One
of the reasons was that sketching on paper is familiar due to
designers’ graphic design background.

Despite much progress in tools for creating user interfaces
that combine the unique talents of graphic designers and
programmers [38], [12], much conceptual user interface design
work is still being done by graphic designers with pencil on
paper and digitally, e.g., in Photoshop. Previous work has
produced fundamentally different approaches to inferring user
interface code, as it was based on different assumptions. Fol-
lowing are the main changed assumptions for mobile applica-
tion UI development and reverse engineering that motivate our
work. (1) First, many UX designers and graphic artists do not
construct their conceptual drawings using a predefined visual
language we could parse [32], [8], [14], [46]. (2) Second,
while this was largely true for desktop development, mobile
application screens are not only composed of the platform’s
standard UI framework widgets [19], [20]. (3) Finally, we
cannot apply runtime inspection [11], [35] as REMAUI runs
early in the development cycle.

Specifically, the closest related work is MobiDev [46],
which recognizes instances of a predefined visual language
of standard UI elements. For example, a crossed-out box is
recognized as a text box. But unlike REMAUI, MobiDev does
not integrate well with a professional mobile application de-
velopment process. It would require UX designers and graphic
artists to change the style of their paper and pencil prototypes,
for example, to replace real text with crossed-out boxes. Such
changes may reduce the utility of the prototypes for other
tasks such as eliciting feedback from project stakeholders.
In a traditional reverse engineering setting, MobiDev cannot
convert screenshots into UI code.

SILK and similar systems bridge the gap between pen-
based GUI sketching and programming of desktop-based
GUIs [32], [8], [14]. Designers use a mouse or stylus to sketch
directly in the tool, which recognizes certain stroke gestures as
UI elements. But these tools do not integrate well with current
professional development processes as they do not work on
paper-on-pencil scans or screenshots. These tools also do not
recognize handwritten text or arbitrary shapes.

UI reverse engineering techniques such as Prefab [19]
depend on a predefined model of UI components. The work

assumes that the pixels that make up a particular widget are
typically identical across applications. However, this is not
true for a mobile application UI. Mobile applications often
have their own unique, non-standard identity, style, and theme.
For Prefab to work, all possible widget styles and themes of
millions of current and future mobile applications would need
to be modeled.

PAX [11] heavily relies on the system accessibility API
at program runtime. At runtime PAX queries the accessibility
API to determine the location of text boxes. The accessibility
API also gives PAX the text contents of the text box. PAX then
applies computer vision techniques to determine the location of
words in the text. If a view does not provide accessibility, PAX
falls back to a basic template matching approach. PAX thus
cannot reverse engineer the UI structure of mobile applications
from their screenshots or application design images alone.

Recent work applies the ideas of SILK and DENIM to
mobile applications [18], allowing the user to take a picture
of a paper-and-pencil prototype. The tool allows the user to
place arbitrary rectangles on the scanned image and connect
them with interaction events. This idea is also implemented by
commercial applications such as Pop for iOS. As SILK and
DENIM, this approach is orthogonal to REMAUI.

VIII. CONCLUSIONS AND FUTURE WORK

When developing the UI code of a mobile application, a
big gap exists between graphic artists’ conceptual drawings
and working UI code. Programmers typically bridge this gap
manually, by reimplementing the conceptual drawings in code,
which is cumbersome and expensive. To bridge this gap,
we introduced the first technique to automatically Reverse
Engineer Mobile Application User Interfaces (REMAUI). On
a given input bitmap REMAUI identifies UI elements via
computer vision and OCR techniques. In our experiments on
488 screenshots of over 100 popular third-party applications,
REMAUI-generated UIs were similar to the originals, both
pixel-by-pixel and in terms of their runtime UI hierarchies.

We plan to (1) generalize the export step to additional
platforms such as iOS and cross-platform JavaScript-based
frameworks. (2) REMAUI currently converts each input screen
to a separate application. We plan to provide a graphical nota-
tion to allow users to connect several input screens drawings,
which REMAUI could use to generate a single application
with various screens and corresponding screen transitions.
(3) We plan to integrate REMAUI with tools that generate
mobile application functionality either via keyword-based code
search [44] or from high-level models [34], [5], [22] or
DSLs [29], [4]. (4) We plan to index a screenshot corpus by
running REMAUI on it and storing REMAUI’s intermediate
results. Exposing this index via a query interface would allow
a user to search for screenshots by their structure and features.

The REMAUI prototype for Android used in the evaluation
is freely available at: http://cseweb.uta.edu/∼tuan/REMAUI/

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. 1117369.

http://cseweb.uta.edu/~tuan/REMAUI/

REFERENCES

[1] A. Antonacopoulos, S. Pletschacher, D. Bridson, and C. Papadopoulos,
“ICDAR 2009 page segmentation competition,” in Proc. 10th Inter-
national Conference on Document Analysis and Recognition (ICDAR).
IEEE, Jul. 2009, pp. 1370–1374.

[2] Apple Inc., “View programming guide for iOS,”
https://developer.apple.com/library/ios/documentation/windowsviews/
conceptual/viewpg iphoneos/ViewPG iPhoneOS.pdf, Oct. 2013,
accessed May 2015.

[3] P. Bao, J. S. Pierce, S. Whittaker, and S. Zhai, “Smart phone use by non-
mobile business users,” in Proc. 13th Conference on Human-Computer
Interaction with Mobile Devices and Services (Mobile HCI). ACM,
Aug. 2011, pp. 445–454.

[4] S. Barnett, R. Vasa, and J. Grundy, “Bootstrapping mobile app develop-
ment,” in Proc. 37th ACM/IEEE International Conference on Software
Engineering (ICSE). IEEE, May 2015.

[5] M. Book and V. Gruhn, “Modeling web-based dialog flows for auto-
matic dialog control,” in Proc. 19th IEEE International Conference on
Automated Software Engineering (ASE). IEEE, Sep. 2004, pp. 100–
109.

[6] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with
the OpenCV Library, 1st ed. O’Reilly, Oct. 2008.

[7] Y. Brun and M. D. Ernst, “Finding latent code errors via machine learn-
ing over program executions,” in Proc. 26th ACM/IEEE International
Conference on Software Engineering (ICSE). IEEE, May 2004, pp.
480–490.

[8] A. Caetano, N. Goulart, M. Fonseca, and J. Jorge, “JavaSketchIt:
Issues in sketching the look of user interfaces,” in Proc. AAAI Spring
Symposium on Sketch Understanding. AAAI, Mar. 2002, pp. 9–14.

[9] P. F. Campos and N. J. Nunes, “Practitioner tools and workstyles for
user-interface design.” IEEE Software, vol. 24, no. 1, pp. 73–80, Jan.
2007.

[10] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp.
679–698, Nov. 1986.

[11] T.-H. Chang, T. Yeh, and R. C. Miller, “Associating the visual repre-
sentation of user interfaces with their internal structures and metadata,”
in Proc. 24th Annual ACM Symposium on User Interface Software and
Technology (UIST). ACM, Oct. 2011, pp. 245–256.

[12] S. Chatty, S. Sire, J.-L. Vinot, P. Lecoanet, A. Lemort, and C. P.
Mertz, “Revisiting visual interface programming: creating GUI tools for
designers and programmers,” in Proc. 17th Annual ACM Symposium on
User Interface Software and Technology (UIST). ACM, Oct. 2004, pp.
267–276.

[13] E. J. Chikofsky and J. H. C. II, “Reverse engineering and design
recovery: A taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13–17, Jan.
1990.

[14] A. Coyette, S. Kieffer, and J. Vanderdonckt, “Multi-fidelity prototyping
of user interfaces.” in Proc. 11th IFIP TC 13 International Conference
on Human-Computer Interaction (INTERACT). Springer, Sep. 2007,
pp. 150–164.

[15] C. Csallner and Y. Smaragdakis, “Dynamically discovering likely in-
terface invariants,” in Proc. 28th ACM/IEEE International Conference
on Software Engineering (ICSE), Emerging Results Track. ACM, May
2006, pp. 861–864.

[16] C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy: Dynamic
symbolic execution for invariant inference,” in Proc. 30th ACM/IEEE
International Conference on Software Engineering (ICSE). ACM, May
2008, pp. 281–290.

[17] T. S. da Silva, A. Martin, F. Maurer, and M. S. Silveira, “User-
centered design and agile methods: A systematic review,” in Proc. Agile
Conference (AGILE). IEEE, Aug. 2011, pp. 77–86.

[18] M. de Sà, L. Carriço, L. Duarte, and T. Reis, “A mixed-fidelity
prototyping tool for mobile devices,” in Proc. Working Conference on
Advanced Visual Interfaces (AVI). ACM, May 2008, pp. 225–232.

[19] M. Dixon and J. Fogarty, “Prefab: Implementing advanced behaviors
using pixel-based reverse engineering of interface structure,” in Proc.
ACM SIGCHI Conference on Human Factors in Computing Systems
(CHI). ACM, Apr. 2010, pp. 1525–1534.

[20] M. Dixon, D. Leventhal, and J. Fogarty, “Content and hierarchy in pixel-
based methods for reverse engineering interface structure,” in Proc.
ACM SIGCHI Conference on Human Factors in Computing Systems
(CHI). ACM, May 2011, pp. 969–978.

[21] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Transactions on Software Engineering (TSE), vol. 27, no. 2, pp.
99–123, Feb. 2001.

[22] J. Falb, T. Röck, and E. Arnautovic, “Using communicative acts in
interaction design specifications for automated synthesis of user inter-
faces,” in Proc. 21st ACM/IEEE International Conference on Automated
Software Engineering (ASE). IEEE, 2006, pp. 261–264.

[23] L. Fortunati and S. Taipale, “The advanced use of mobile phones in five
European countries,” The British Journal of Sociology, vol. 65, no. 2,
pp. 317–337, Jun. 2014.

[24] M. Gargenta and M. Nakamura, Learning Android: Develop Mobile
Apps Using Java and Eclipse, 2nd ed. O’Reilly, Jan. 2014.

[25] Z. Hussain, M. Lechner, H. Milchrahm, S. Shahzad, W. Slany,
M. Umgeher, T. Vlk, and P. Wolkerstorfer, “User interface design for
a mobile multimedia application: An iterative approach,” in Proc. 1st
International Conference on Advances in Computer-Human Interaction
(ACHI). IEEE, Feb. 2008, pp. 189–194.

[26] Jay Freeman, “Cycript,” http://www.cycript.org/, 2014, accessed May
2015.

[27] D. Karatzas, F. Shafait, S. Uchida, M. Iwamura, L. G. i Bigorda,
S. R. Mestre, J. Mas, D. F. Mota, J. Almazàn, and L. de las Heras,
“ICDAR 2013 robust reading competition,” in Proc. 12th International
Conference on Document Analysis and Recognition (ICDAR). IEEE,
Aug. 2013, pp. 1484–1493.

[28] A. K. Karlson, B. Meyers, A. Jacobs, P. Johns, and S. K. Kane,
“Working overtime: Patterns of smartphone and PC usage in the day
of an information worker,” in Proc. 7th International Conference on
Pervasive Computing (Pervasive). Springer, May 2009, pp. 398–405.

[29] A. Khambati, J. C. Grundy, J. Warren, and J. G. Hosking, “Model-
driven development of mobile personal health care applications,” in
Proc. 23rd ACM/IEEE International Conference on Automated Software
Engineering (ASE). IEEE, Sep. 2008, pp. 467–470.

[30] K. Kuusinen and T. Mikkonen, “Designing user experience for mobile
apps: Long-term product owner perspective,” in Proc. 20th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, Dec. 2013, pp.
535–540.

[31] J. A. Landay and B. A. Myers, “Interactive sketching for the early
stages of user interface design,” in Proc. ACM SIGCHI Conference on
Human Factors in Computing Systems (CHI). ACM, May 1995, pp.
43–50.

[32] ——, “Sketching interfaces: Toward more human interface design,”
IEEE Computer, vol. 34, no. 3, pp. 56–64, Mar. 2001.

[33] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710,
Feb. 1966.

[34] A. Martı́nez, H. Estrada, J. Sánchez, and O. Pastor, “From early
requirements to user interface prototyping: A methodological approach,”
in Proc. 17th IEEE International Conference on Automated Software
Engineering (ASE). IEEE, Sep. 2002, pp. 257–260.

[35] X. Meng, S. Zhao, Y. Huang, Z. Zhang, J. Eagan, and R. Subramanian,
“WADE: simplified GUI add-on development for third-party software,”
in Proc. ACM SIGCHI Conference on Human Factors in Computing
Systems (CHI). ACM, Apr. 2014, pp. 2221–2230.

[36] B. A. Myers, “Challenges of HCI design and implementation,” Inter-
actions, vol. 1, no. 1, pp. 73–83, Jan. 1994.

[37] ——, “Graphical user interface programming,” in Computer Science
Handbook, 2nd ed., A. B. Tucker, Ed. CRC Press, May 2012.

[38] B. A. Myers, S. E. Hudson, and R. F. Pausch, “Past, present, and future
of user interface software tools,” ACM Transactions on Computer-
Human Interaction (TOCHI), vol. 7, no. 1, pp. 3–28, Mar. 2000.

[39] V. Nahavandipoor, iOS 7 Programming Cookbook, 1st ed. O’Reilly,
Nov. 2013.

[40] M. W. Newman and J. A. Landay, “Sitemaps, storyboards, and speci-
fications: A sketch of Web site design practice as manifested through

artifacts,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/CSD-99-1062, 1999.

[41] T. A. Nguyen, C. Csallner, and N. Tillmann, “GROPG: A graphical on-
phone debugger,” in Proc. 35th ACM/IEEE International Conference on
Software Engineering (ICSE), New Ideas and Emerging Results (NIER)
track. IEEE, May 2013, pp. 1189–1192.

[42] G. Nudelman, Android Design Patterns: Interaction Design Solutions
for Developers. Wiley, Mar. 2013.

[43] R. Plamondon and S. Srihari, “Online and off-line handwriting recogni-
tion: A comprehensive survey,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, no. 1, pp. 63–84, Jan. 2000.

[44] S. P. Reiss, “Seeking the user interface,” in Proc. 29th ACM/IEEE
International Conference on Automated Software Engineering (ASE).
ACM, Sep. 2014, pp. 103–114.

[45] S. E. Salamati Taba, I. Keivanloo, Y. Zou, J. Ng, and T. Ng, “An
exploratory study on the relation between user interface complexity
and the perceived quality of Android applications,” in Proc. 14th
International Conference on Web Engineering (ICWE). Springer, Jul.
2014.

[46] J. Seifert, B. Pfleging, E. del Carmen Valderrama Bahamóndez, M. Her-
mes, E. Rukzio, and A. Schmidt, “Mobidev: A tool for creating apps
on mobile phones,” in Proc. 13th Conference on Human-Computer
Interaction with Mobile Devices and Services (Mobile HCI). ACM,
Aug. 2011, pp. 109–112.

[47] A. S. Shirazi, N. Henze, A. Schmidt, R. Goldberg, B. Schmidt, and
H. Schmauder, “Insights into layout patterns of mobile user interfaces
by an automatic analysis of Android apps,” in Proc. ACM SIGCHI
Symposium on Engineering Interactive Computing Systems (EICS).
ACM, Jun. 2013, pp. 275–284.

[48] R. Smith, “An overview of the Tesseract OCR engine,” in Proc.

9th International Conference on Document Analysis and Recognition
(ICDAR). IEEE, Sep. 2007, pp. 629–633.

[49] ——, “An overview of the tesseract ocr engine,” in ICDAR ’07:
Proceedings of the Ninth International Conference on Document
Analysis and Recognition. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 629–633. [Online]. Available: http://www.google.de/
research/pubs/archive/33418.pdf

[50] R. W. Smith, “Hybrid page layout analysis via tab-stop detection.”
in Proc. 10th International Conference on Document Analysis and
Recognition (ICDAR). IEEE, Jul. 2009, pp. 241–245.

[51] R. Szeliski, Computer Vision: Algorithms and Applications. Springer,
Nov. 2010.

[52] The Nielsen Company, “The mobile consumer: A global snapshot,”
http://www.nielsen.com/us/en/insights/reports/2013/mobile-consumer-
report-february-2013.html, Feb. 2013.

[53] Ø. D. Trier, A. K. Jain, and T. Taxt, “Feature extraction methods for
character recognition—a survey,” Pattern Recognition, vol. 29, no. 4,
pp. 641–662, Apr. 1996.

[54] Y. Y. Wong, “Rough and ready prototypes: Lessons from graphic
design,” in Proc. ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI), Posters and Short Talks. ACM, 1992, pp.
83–84.

[55] C. Zeidler, C. Lutteroth, W. Stürzlinger, and G. Weber, “The Auckland
layout editor: An improved GUI layout specification process,” in
Proc. 26th Annual ACM Symposium on User Interface Software and
Technology (UIST). ACM, Oct. 2013, pp. 343–352.

[56] ——, “Evaluating direct manipulation operations for constraint-based
layout,” in Proc. 14th IFIP TC 13 International Conference on Human-

Computer Interaction (INTERACT). Springer, Sep. 2013, pp. 513–529.

http://www.google.de/research/pubs/archive/33418.pdf
http://www.google.de/research/pubs/archive/33418.pdf

