
CarFast: Achieving Higher Statement Coverage Faster

Sangmin Park
Georgia Institute of

Technology
Atlanta, Georgia 30332, USA

sangminp@cc.gatech.edu

Ishtiaque Hussain,
Christoph Csallner

University of Texas at Arlington
Arlington, TX 76019, USA

ishtiaque.hussain@
mavs.uta.edu,

csallner@uta.edu

Kunal Taneja
Accenture Technology Labs

and North Carolina State
University

Raleigh, NC 27606, USA

ktaneja@ncsu.edu

B. M. Mainul Hossain
University of Illinois at Chicago

Chicago, IL 60607, USA

bhossa2@uic.edu

Mark Grechanik
University of Illinois and

Accenture Technology Lab
Chicago, IL 60601, USA

drmark@uic.edu

Chen Fu, Qing Xie
Accenture Technology Labs
San Jose, CA 95113, USA

{chen.fu, qing.xie}
@accenture.com

ABSTRACT

Test coverage is an important metric of software quality, since it in-
dicates thoroughness of testing. In industry, test coverage is often
measured as statement coverage. A fundamental problem of soft-
ware testing is how to achieve higher statement coverage faster,
and it is a difficult problem since it requires testers to cleverly find
input data that can steer execution sooner toward sections of appli-
cation code that contain more statements.

We created a novel fully automatic approach for aChieving higher
stAtement coveRage FASTer (CarFast), which we implemented and
evaluated on twelve generated Java applications whose sizes range
from 300 LOC to one million LOC. We compared CarFast with
several popular test case generation techniques, including pure ran-
dom, adaptive random, and Directed Automated Random Testing
(DART). Our results indicate with strong statistical significance
that when execution time is measured in terms of the number of
runs of the application on different input test data, CarFast outper-
forms the evaluated competitive approaches on most subject appli-
cations.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Symbolic

execution, Testing tools

Keywords

Testing, Statement Coverage, Experimentation

1. INTRODUCTION
Test coverage is an important metric of software quality [63],

since it indicates thoroughness of testing. Statement coverage,
which measures the percentage of the executed statements to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

total number of statements in the application under test [63], is
viewed as an important kind of test coverage. Achieving higher
statement coverage is correlated with the probability of detecting
more defects [51, 49, 38, 10] and increasing reliability of software
[44, 11]. Even though it is agreed that statement coverage alone
may not always be a strong indicator of software quality [36, page
181], it is a general consensus that achieving higher statement cov-
erage is desirable for gaining confidence in software quality, and it
serves as an indicator for test completeness and effectiveness [51,
11, 59].

Statement coverage is widely used in industry as a common cri-
terion for thoroughness of software testing. Different standards re-
quire achieving high levels of statement coverage: for example,
avionics industry standard, DO-254, demands that close to 100%
statement coverage be achieved, and avionics industry standard,
DO-178B and automotive industry standard, IEC 61508 detail
different requirements on achieving statement coverage. Many dif-
ferent organizations use statement coverage as the major criterion
for measuring the quality of software testing [18, 39, 52, 58, 7].
Given the importance of statement coverage, how common it is,
and how widely it is used to evaluate the thoroughness of test-
ing, it is not surprising that statement coverage is the one coverage
metric that is supported by almost all coverage-based testing tools,
whereas other coverage measures (e.g., branch coverage, method
coverage, or class coverage) are supported by fewer tools [62, 60].

1.1 Higher Statement Coverage Faster
Achieving higher statement coverage means that testers have to

select test input data with which they can execute larger portions
of application code. Higher statement coverage is always better for
increasing the confidence of stakeholders in the quality of software;
however, 100% statement coverage is rarely achieved, especially
when testing large-scale applications [51, 45, 18]. The faster these
testers achieve higher coverage, the lower is the cost of testing [35],
since testers can concentrate sooner on other aspects of testing with
the selected input data, for example, performance and functional
testing with oracles.

We measure the speed with which a certain level of statement
coverage is achieved both in the number of test runs of the applica-
tion under test (AUT) with different test input data (i.e., iterations
of executing the same application with different input data) and in
the elapsed time of running the AUT. While the elapsed time gives

the absolute value of the time it takes to reach a certain level of cov-
erage; measuring the number of iterations, which essentially means
number of test cases to achieve the coverage goal, is important for
many reasons, e.g., using fewer test cases requires less manual ef-
fort for creating test oracles for these test cases.

Moreover, measuring the number of iterations provides an in-
sight into the potential of a given approach. The elapsed time in-
cludes time for generating or selecting input data, and time to run
the AUT using these data. In many systematic test case generation
or selection approaches, the time spent on generating or selecting
input data is significant. Thus, if an approach achieves a higher
test coverage using fewer iterations, but spends more time on each
iteration, this time can eventually be reduced by improving the ef-
ficiency of the particular approach.

A big and important challenge is to get higher statement cover-
age faster for nontrivial applications that have a very large space of
input parameter values. Many nontrivial applications have com-
plex logic that programmers express by using different control-
flow statements, which are often deeply nested. In addition, these
control-flow statements have branch conditions that contain expres-
sions that use different variables whose values are computed using
some input parameters. In general, it is difficult to choose specific
values of input parameters to direct the execution of these applica-
tions to cover specific statements.

The maximum test coverage is achieved if an application is run
with all allowed combinations of values for its inputs. Unfortu-
nately, this is often infeasible because of the enormous number of
combinations; for example, 20 integer inputs whose values only
range from zero to nine already leave us with 1020 combinations.
Knowing what combinations of test input data to select for different
input parameters to drive the AUT towards the statements nested
inside various branches is very difficult. Thus, a fundamental prob-
lem of software testing is how to achieve higher statement coverage
faster by selecting specific values of input parameters that lead the
executions of applications to cover more statements in a shorter
time period.

1.2 A Novel Approach
We created a novel approach for aChieving higher stAtement

coveRage FASTer (CarFast) using the intuition that higher state-
ment coverage can be achieved faster if input data are selected to
drive the execution of the AUT toward branches that contain more
statements. That is, if the condition of a control-flow statement is
evaluated to true, some code is executed in the scope of this state-
ment. The statements that are contained in the executed code are
said to be controlled by or contained in the corresponding branch of
this control-flow statement. In program analysis, these statements
are said to be control dependent [48] on the control-flow statement.

In CarFast, static analysis is used to estimate how many state-
ments are contained in each branch. Once it is known what branches
contain more statements, CarFast uses a constraint-based selection
approach [41] to select input data that will guide the executions of
the AUT towards these branches. In CarFast, input data are not
generated, but they rather come from external databases as we de-
scribe it in Section 2.5. Comparing to CarFast, many automatic
test data generation techniques use computationally expensive con-
straint solvers [14, 19, 25, 43] to generate test data for achiev-
ing higher test coverage. Using these solvers negatively affects the
scalability of these techniques. By replacing constraint solvers with
selectors, not only does CarFast achieve higher coverage faster, but
also it achieves better scalability (Section 5).

CarFast offers multiple benefits: it is fully automatic since it does
not require any intervention by testers; it is directed since it ex-

plores branches in the control-flow graph (CFG) of the AUT rather
than an enormous space of the combinations of the values for the
input test data; and it is scalable on large-scale applications with up
to 500kLOC as demonstrated by our experiments with twelve Java
applications with up to one million LOC. Even though we built
CarFast to work with Java programs, there are no fundamental lim-
itations to generalizing it to other languages and platforms, such as
C# or C++. This approach may be generalized for other coverages
that can be (1) statically approximated; and (2) dynamically com-
puted. To the best of our knowledge, CarFast is the first approach
that defines and uses static program analysis-based coverage gain
prediction to achieve higher coverage faster, and this work is the
first that evaluated this idea with strong statistical significance on a
large number of subject applications of varying sizes.

1.3 Our Contributions
This paper makes the following contributions:

• We developed a novel algorithm for achieving higher state-
ment coverage faster and we implemented it as part of Car-
Fast.

• We applied CarFast to twelve Java applications whose sizes
range from 300 LOC to one million LOC that we generated
using stochastic parse trees [57, 32]. CarFast, subject Java
applications, and the stochastic application benchmark gen-
erator are available for public use1.

• We conducted large-scale experiments using Amazon EC2
to evaluate CarFast and competitive approaches against one
another, specifically, pure random and adaptive random test-
ing, and Directed Automated Random Testing (DART) [26]
using a rigorous experimental evaluation methodology [2].
The results show that when execution time is measured in
terms of iterations, CarFast outperforms evaluated competi-
tive approaches for most subject AUTs with strong statistical
significance.

• Finally, we compared pure random testing to adaptive ran-
dom testing to address an open issue in determining which
approach is better [1, 47]. Adaptive random performs statis-
tically as good as pure random testing when lower coverage
is targeted and time is measured in terms of iterations. When
higher coverage is targeted, pure random beats adaptive ran-
dom testing with strong statistical significance.

2. THE CARFAST APPROACH
In this section, we give an illustrative example of how our ap-

proach works, we formulate our hypothesis upon which we de-
signed our approach, and we give an algorithm of CarFast.

2.1 An Illustrative Example
An illustrative example is shown in Figure 1 using Java-like

pseudo-code. Line numbers to the right should be thought of as la-
bels, as much code is omitted for space reasons. This example has
if-else statements that control three branches, where branch la-
bels are shown in comments along with the numbers of statements
that these branches control. These numbers are given purely for an
illustrative purpose.

Consider executing this code with randomly selected input val-
ues i1 = 3 and i2 = 7, which leads to the else branch 3 in lines
5–8. The number of distinct uncovered statements that are reach-
able from this branch is 100, which is significantly less than the

1All tools and subject applications are available for download at:
http://www.carfast.org

1i f (i 1 == 10) {
2. . / / branch 1: 300 s t a t em e n t s

3} e l s e i f (i 2 == 50) {
4. . / / branch 2: 600 s t a t em e n t s
5} e l s e {
6. . / / branch 3: 100 s t a t em e n t s

7i f (. .) { i f (. .) { . . } . . }
8}

Figure 1: An illustrative example.

numbers of statements contained in the two other branches. We say
that a previously uncovered statement S is contained in a branch
B, if there exists a concrete input that triggers an execution that
evaluates the condition of the branch B and covers S.

Besides the lower number of statements reachable from branch
3, the control flow within branch 3 is also more complex than the
control flow in branch 1 or branch 2 (as denoted by a few example
nested if-else statements). Clearly, this is one of the worst test
inputs since it covers only 10% of this code at best. To achieve
higher coverage faster, we would like to learn from this execution
to select a test input that satisfies i1 6= 10∧ i2 = 50 to steer the
next run toward branch 2, since it contains the biggest number of
distinct reachable uncovered statements (i.e., 600), thus increasing
test coverage up to 70%.

However, none of the existing approaches can systematically
steer the execution towards branch 2, since it is the nature of ran-
domization to select data points independently from one another
from the input space. DART dynamically analyzes program behav-
ior using random testing and generates new test inputs automati-
cally to direct the execution systematically along alternative pro-
gram paths [26]. A problem is that the original DART algorithm
will keep exploring all nested branches in branch 3 using a depth-
first search algorithm. That is, DART keeps exploring the branch
for a while even though the gain in coverage will rather be minus-
cule.

2.2 Our Observation, Preliminary Study, and
Hypothesis

We observe that many applications have a few branches that con-
tain large bodies of statements and many more branches that con-
tain only few statements. This observation is supported by a pre-
liminary study we did on three nontrivial and widely used open-
source Apache applications, log4j2, Ant3, and JMeter4. For
each application, we counted the number of statements in each ba-
sic block. Our results indicate that the number of statements per
basic block approximates the power law [42], i.e., approximately
80% of the statements are in 20% of the basic blocks. Specifically,
20% of the basic blocks contain 73% of the statements in Ant, 65%
in Jmeter, and 66% in log4j. Assuming that this observation
holds for many applications, our intuition is that we can exploit this
skewed size distribution of the basic blocks in test case selection.
I.e., we want to systematically steer AUT execution towards these
large basic blocks, to achieve higher statement coverage faster.

We hypothesize that we can significantly accelerate test selection
techniques by guiding the selection to test input data that covers
those branches that contain more uncovered statements, by esti-
mating the number of distinct statements. This hypothesis is rooted
in the essence of systematic testing, which is a counterpart to ran-

2Version 1.2.16, http://logging.apache.org/log4j
3Version 1.8.2, http://ant.apache.org
4Version 1.0, http://jmeter.apache.org

dom testing where test data inputs are selected without any prior
knowledge [30]. To test our hypothesis, we combine systematic
and random testing approaches in a novel way using the insight
that higher coverage can be achieved faster if it is known which
distinct branches that are still uncovered contain more statements.
Knowing the constraints from branch conditions may enable selec-
tion of test input data that leads to execute the statements within
those branches.

2.3 CarFast by Example
We review how our approach works using our illustrative ex-

ample of Figure 1. Once branch 3 of this code is executed us-
ing input values i1 = 3 and i2 = 7, constraints C1 : i1 6= 10 and
C2 : i2 6= 50 can be learned automatically. Since branch 2 con-
tains the biggest number of statements (i.e., the 600 statements of
line 4), constraint C2 can be negated and the resulting constraint
formula will be C1 ∧¬C2 or i1 6= 10∧ i2 = 50. In the next step,
test input data is obtained that fits this constraint, that is the value
of i1 6= 10 and i2 = 50. This process can be repeated as often as
necessary to achieve higher coverage.

In the worst case, this approach may result in test input data that
leads execution towards already executed branches or branches that
have fewer statements. For example, if the first input data is se-
lected i1 = 10 and branch 1 is executed, no additional useful con-
straint except for i1 6= 10 will be learned during this step to help our
approach to steer execution toward branch 2. However, random se-
lection allows testers to select completely different data, which in
turn will lead to different execution profiles and learning more con-
straints [30, 29, 3]. Our hypothesis is that by learning more of
these constraints with each execution of the AUT, it is possible to
converge to higher coverage faster. Verifying this hypothesis is a
goal of this paper.

2.4 Ranking Branches by Statements
To understand which branches affect statement coverage the most,

we rank each branch (if, loop, etc.) by the number of statements
it contains (the number of statements that are transitively control-
dependent on that branch). Executing higher ranked branches en-
ables achieving higher statement coverage faster. To rank branches,
we construct and traverse a CFG of the AUT, then we count the
(inter-procedural) statements that are control-dependent on each
branch condition. I.e., if in method c, branch b transitively con-
trols a call to method m, then the statements of m are treated as if
they were in-lined into the calling method c, and some statements
of m (and possibly statements of methods called by m) may be in-
cluded in the count of statements that are control-dependent on b.

Specifically, if the method m is virtual, we perform virtual call
resolution using static class hierarchy analysis, and count all the
statements in all the target methods; but use the one with the max-
imum statements to determine the number of statements controlled
by branch b.

2.5 Selecting Existing Test Input Data
We assume that the test input data come from existing reposito-

ries or databases. This is a common practice in industry, we con-
firmed it after interviewing professionals at IBM, Accenture, two
large health insurance companies, a biopharmaceutical company,
two large supermarket chains, and three major banks. For instance,
the Renters Insurance Program designed and built by a major insur-
ance company has a database that contains approximately 78 mil-
lion customer profiles, which are used as the test input data.

As part of CarFast, we translate constraints into SQL queries
against such existing databases [41]. For example, to find values

for input variables i1 and i2 that satisfy the constraint i1 6= 10∧
i2 = 50, the following SQL query is executed: SELECT * FROM

InputTbl WHERE i1 != 10 AND i2 = 50. Some of these SQL
queries include millions of conditions in the WHERE clause, which
caused runtime problems in some commercial strength database
management system such as Microsoft SQL server. To scale Car-
Fast, we developed a lightweight and efficient SQL-based con-
straint evaluator that we describe in Section 3.3.

2.6 The Algorithm
The algorithm CarFast is shown in Algorithm 1. This algo-

rithm takes as its input the set of the input parameter values T , the
AUT P, and the set of accounted AUT branches, B. The total cov-
erage score totalCov is computed and returned in line 31 of the
algorithm.

In step 2, the algorithm initializes the values for total coverage
totalCov to zero, the set of covered branches Bcov whose state-
ments are covered, and the set of constraints to the empty set. In
step 3, the procedure ComputeBranchFun is called that com-
putes the function BRank that maps each branch of the AUT, P, to
the approximate number of statements that are reachable from this
branch. Next, in step 4, the procedure Sort sorts elements of input
set B in the descending order according to the number of statements
using the function BRank, producing the sorted set Bs. In step 5,
the procedure GetRandomTestInput randomly selects a data
object, t from the set of the input parameter values, that is, Input
Test Data, T , and this data object is removed from the set in step 6.
This algorithm runs the loop between steps 7–30, which terminates
on the condition of the reached time limit or desired coverage (i.e.,
the predefined value covCeiling). In step 8, the AUT, P is executed
using the input data t, resulting in the updated value of totalCov,
added branches that were covered during this execution to the set
of covered branches, Bcov, and added constraints that are learned
during this execution. Then, in the for loop in steps 10–25, each
member branch in the set Bs is examined to check whether it was
covered in the previous run of the AUT. If some branch, bk was cov-
ered, it is removed from the set Bs in line 23, otherwise, the first
occurrence of the corresponding constraint,Ck is inverted (ignoring
the following constraints in the path condition) in line 12.

By treating a constraint as a query to obtain input data that satisfy
the conditional WHERE clause, the subsets of test input data, {tc}
is obtained in line 13 that satisfy this clause, that is the flipped
constraint. If {tc} is empty, then no test input data from our input
database can lead to the desired branch, and this message is issued
in line 20. Otherwise, one input, t is randomly selected from the set
{tc} in line 15 and the control is returned to line 25 and eventually
to line 8, where the AUT is run with this input thereby repeating
the loop.

In some cases, it may not be possible to know the exact con-
straints to reach certain statements, since the set of constraints that
is collected by the concolic engine corresponds to reaching differ-
ent nodes of the CFG, and subsequently different statements. Flip-
ping these constraints and solving these flipped constraints may re-
sult in input data that will lead the AUT toward other uncovered
statements, but not necessarily the desired statements. However,
as more constraints are collected with newly obtained test input
data, these constraints eventually enable CarFast to narrow down
the scope of the executed statements to the ones that are desirable.

This works only if the input test data set contains an input that
can reach such statements. If the application contains a statement
that is not reachable with the inputs from Input Test Data, then Car-
Fast will never cover that statement. However, as the results of the

Algorithm 1 The CarFast algorithm.

1: CarFast(TestInputData T , AUT P, AUT Branches B)
2: totalCov← 0,Bcov← { /0},C← /0{Initialize values of the total

statement coverage, the set of covered branches, and the set of
constraints.}

3: ComputeBranchFun(P) 7→ BRank : {B} ∋ b→ rank

4: Sort(B,BRank) 7→ Bs{Sort elements of the set in the descend-
ing order by their rank using the function BRank}

5: GetRandomTestInput(T) 7→ t ∈ T

6: T 7→ T \ t
7: repeat

8: RunAUT(P, t) 7→ [(totalCov 7→ totalCov + cov′),(Bcov 7→
Bcov∪∆B),(C 7→C∪ (C1 ∧ . . .∧Cn))]

9: foundTest4Branch← false

10: for all bk ∈ Bs do

11: if bk /∈ Bcov andCk ∈C then

12: FlipConstraint(C) 7→ (C 7→C1 ∧ . . .∧¬Ck))
13: GetTestInput(C) 7→ {tc} ∈ T

14: if {tc} 6= /0 then

15: GetRandomTestInput({tc}) 7→ t

16: T 7→ T \ t
17: foundTest4Branch← true

18: break the for loop
19: else

20: print Given constraint C cannot be satisfied
21: end if

22: else

23: Bs 7→ Bs \bk
24: end if

25: end for

26: if foundTest4Branch = false then

27: GetRandomTestInput(T) 7→ t

28: T 7→ T \ t
29: end if

30: until time limit is not reached or totalCov < covCeiling

31: return totalCov

experimental evaluation show in Section 5, CarFast outperforms
other competitive approaches under different conditions.

3. IMPLEMENTATIONANDDEPLOYMENT
In this section, we describe main challenges and the salient fea-

tures of our implementation and deployment including the concolic
engine.

3.1 Main Challenges
Our implementation goal is to demonstrate that CarFast is vi-

able by applying it to large-scale AUTs. There are two main chal-
lenges: it is memory-intensive and it contains CPU-intensive com-
ponents. Extracting constraints by executing AUTs takes time and
most importantly, significant amounts of memory. Typically, con-
colic engines incur more than an order of magnitude overhead from
normal program execution. Memory footprint of concolic engines
increases quickly as the engines must keep track of symbolic rep-
resentations of all aspects of the current program execution (e.g.,
symbolic representations of the static fields of all loaded classes)
as execution traces get longer. In our experiments, one extracted
constraint from a 50KLOC AUT is over five megabytes and its size
grows to 50GB for one million LOC AUT! Moreover, solving such
constraints can take a long period of time, since it involves per-
forming queries on large sets of input test data.

3.2 Concolic Execution Engine
We used Dsc [33], a Java dynamic symbolic execution engine

(i.e., a concolic engine) for Java AUTs in CarFast. Below we de-
scribe its main features and how we adapted it to scale to large
AUTs.

3.2.1 Overview of Dsc

Dsc instruments the bytecode of AUTs automatically by insert-
ing method calls (i.e., callbacks) after each instruction in the code.
During AUT execution, the callbacks enable Dsc to maintain the
symbolic state by mirroring the effects of each user program in-
struction, including the effects of reading and writing heap (i.e.,
array and object field) locations, performing integer and floating
point arithmetic, following the local and inter-procedural control-
flows, and handling exceptions.

Dsc integrates well with the existing Java execution environ-
ments; it does not require any modifications of the user application
code, or the virtual machine. Dsc uses the instrumentation facili-
ties provided by the JVM of Java 5 to instrument the user program
at load-time [15], using the open source bytecode instrumentation
framework ASM [8]. By manipulating programs at the bytecode
level, Dsc extends its analysis from the user code into all libraries
called by these programs. In addition, Dsc allows users to selec-
tively exclude classes from instrumentation.

3.2.2 The Dumper Mode of Dsc

Dsc in its normal mode represents every concrete computation
by a corresponding symbolic expression, caches it in memory and
utilizes it later when the same computation is repeated or is used
in a subexpression. However, nontrivial applications contain large
number of computation steps and caching symbolic expressions
quickly exhaust the available heap memory. Moreover, often com-
putations are done in loops or recursive call chains and when con-
colic engines process these loops or recursive call chains, they pro-
duce long symbolic expressions, which are in turn used in subse-
quent computations adding quickly to the total length of the re-
sulting symbolic expression. As a result, even for moderate size
programs, concolic executions quickly exhaust all memory.

To scale to large applications, we introduced a dumper mode for
Dsc to minimize the memory consumption for the symbolic state
representation. Instead of caching symbolic expressions in heap
memory, this dumper mode introduces local variables (symbols)
for each expression and dumps or writes these expressions to the
disk. Later, a dynamic lookup and replacement technique is used
on the dump file to build the constraints or path condition involving
input parameters.

3.3 Constraint-Based Selector
To improve the scalability of CarFast, we developed a constraint-

based selector rather than using off-the-shelf constraint solvers.
Our motivation is twofold: improving the speed of computation
and better utilizing resources. Specifically, our concolic engine,
Dsc is a 32-bit tool, meaning that it can only use less than four
gigabytes of RAM at a time. Adding a constraint solver to the pro-
cess space of Dsc would significantly reduce available memory. To
address this problem, we implemented the constraint-based selec-
tor as a separate server process that can serve many Dsc clients
simultaneously through socket interfaces.

For the implementation of the constraint solver, at the beginning,
we kept all the data in a relational database. Then, by running a
query, we tried to select the data that satisfy the constraint given as
the WHERE clause of the query. But, the traditional RDBMSs

failed to process a query with such a big constraint part in the
WHERE clause.

As a different approach, we wrote a set of production rules to
define a formal grammar so that every possible constraint can be
recognized by that grammar. We used the ANTLR tool5 for pro-
cessing the grammar and its languages. With the help of ANTLR,
we were able to parse and process much larger constraints.

When the server process (constraint solver) receives a query
from a client, the server builds the abstract syntax tree for the condi-
tion part (WHERE clause) of the query. Then, it evaluates the tree,
in a bottom-up fashion, against all possible input data in the reposi-
tory. Finally, as test input data, the server process returns values for
the parameters that satisfy all the conditions in the condition-part
of the query.

3.4 Miscellaneous
We implemented branch ranking using Java static analysis and

transformation engine called Soot [54]. All conditional branch
statements in the AUTs are ranked using the approach described
in Section 2.4. At runtime, we used EMMA6 to compute and re-
port statement coverages. Also, we modified callback functions in
Dsc to keep track of the covered branches during the test execution
to reset rankings of the already executed branches to zero to avoid
repeatedly executing already covered statements.

4. EXPERIMENTS
To determine how effective CarFast is in achieving higher state-

ment coverage faster, we conducted an experiment with competi-
tive approaches such as random testing, adaptive random testing,
and DART on twelve Java applications (i.e., AUTs) whose sizes
range from 300 LOC to one million LOC. In this section, we briefly
describe these competitive approaches, provide the methodology of
our experimental design, explain our choice of subject AUTs, and
discuss threats to validity.

4.1 Variables
Main independent variables are the subject AUTs, the value of

test coverage that should be achieved for AUTs in each experiment,
and approaches with which we experiment (i.e., random, adaptive
random testing, DART, and CarFast). A dependent variable is the
execution time that it takes to achieve a given test coverage. We
measure the execution time both in terms of elapsed time, E and
as a number of iterations of AUT executions with different input
values, I. The effects of other variables (the structure of AUT and
the types and semantics of input parameters) are minimized by the
design of this experiment.

4.1.1 Random Testing

Random testing approach, as the name suggests, involves ran-
dom selection of test input data for input parameter values, and
in that it showed remarkably effective and efficient for exploratory
testing and bug finding [4, 24]. A seemingly “stupid” idea of ran-
dom testing proved often more effective than systematic sophisti-
cated testing approaches [30, 29]. To prove our claims in this paper,
our goal is to show under what conditions CarFast outperforms ran-
dom testing with strong statistical significance.

4.1.2 Adaptive Random Testing

Adaptive random testing (ART) is a controversial refinement of
the baseline random testing where randomly selected data are dis-

5http://www.antlr.org/
6http://emma.sourceforge.net

tributed evenly across the input data space [12]. In that, ART in-
troduces a certain level of control over how input data is selected
when compared with the baseline random testing. A recent imple-
mentation of ART for object-oriented languages is ARTOO, which
we use as a competitive approach to CarFast in our experiments
[13]. Prior to our experiment, ARTOO was evaluated on eight
classes from the EiffelBase library, and the sizes of these classes
ranged from 779LOC to 2,980LOC. Recently, Arcuri and Briand
presented statistically significant results of experiments that ques-
tion the effectiveness of ARTOO with respect to bug detection for
programs with seeded faults [1]. Meyer pointed out in his response
[47] that the programs with seeded faults behave much differently
from programs with real faults. Moreover, Arcuri and Briand mea-
sured the time to find the first fault as a testing metric, which may
not be a rigorous metric [50]. Therefore, we performed an exper-
iment comparing random testing and ARTOO with a set of small
to large programs with statement coverage as a testing metric. In
this paper, we also address a research question of how effective
ARTOO is in achieving higher coverage faster against competitive
approaches including random testing.

4.1.3 DART

Directed Automated Random Testing (DART) is an approach
that uses a concolic engine to generate test inputs that explore dif-
ferent execution paths of a program [26]. In the original DART al-
gorithm, path exploration is conducted inDepth-First-Order (DFO)
or Breath-First-Order (BFO) of navigating the CFG of the AUT.
We faithfully re-implemented DART using Dsc, so that we can
evaluate it in an unbiased fashion against CarFast. In the origi-
nal paper [26], DART was previously evaluated only on three C
applications whose sizes range from a dozen LOC to 30kLOC.
Even though there are many implemented variations of DART,
(e.g., jCUTE, KLEE, Pex), DART has never been evaluated with
strong statistical significance on benchmark AUTs.

4.2 Methodology
Our goal is to determine which approach achieves higher state-

ment coverage faster. Given the complexity of the subject AUTs,
it is not clear what is the highest coverage that can be achieved for
these AUTs, and given a large space of input data, it is not feasible
to run the AUTs on all inputs to obtain the highest statement cover-
age. These limitations dictate the methodology of our experimental
design, specifically for choosing the threshold for the desired test
coverage, which is AUT-specific and in general less than 100% for
a number of reasons, not the least of which is the presence of un-
reachable code in AUTs. Before conducting experiments, we run
each benchmark AUT against pairwise test input data, and use the
resulting achieved coverage as the coverage threshold for it. Each
experiment run is halted when either it hits the coverage threshold,
or the execution time limit (24 hours) is reached. The time limit is
determined experimentally. See Section 5.2 for details.

We aligned our methodology with the guidelines for statistical
tests to assess randomized algorithms in software engineering [2].
Our goal is to collect highly representative samples of data when
applying different approaches, perform statistical tests on these
samples, and draw conclusions from these tests. Since our ex-
periments involve random selection of input data, it is important
to conduct the experiments multiple times to pick the average to
avoid skewed results. For each subject application, we ran each
experiment 30 times with each approach on the same AUT to con-
sider collected data a good representative sample. It means that
for a total of 12 AUTs we ran 30 experiments for each of the four

approaches, resulting in a total of 12×4×30 = 1,440 experiment
runs.

To evaluate our hypotheses, we ran statistical tests based on the
assumption that the population is normally distributed. The law
of large numbers states that if the population sample is sufficiently
large (between 30 to 50 samples), then the central limit theorem
applies even if the population is not normally distributed [56, page
244-245]. Since we have 30 sample runs for each AUT for each
configuration, the central limit theorem applies, and the above-
mentioned tests have statistical significance.

Experiments are carried out in Amazon EC27 virtual machine
large instances with the following configuration: 7.5 GB RAM, 4
EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units
each), 35 GB instance storage. We set a 24-hour time limit for each
experiment run. So the estimated total runtime is 1,440× 24 =
34,560 hours. With the cost of USD 0.48 per large instance per
hour as of September, 2011, the estimated cost of this experiment
was around USD 16,500. However, we underestimated the cost
of building, testing and fixing the experiment environment itself,
which resulted in a total cost of around USD 30,000.

4.3 Hypotheses
We introduce the following null and alternative hypotheses to

evaluate how close the means are for the Es and Is for control and
treatment groups. Unless we specify otherwise, CarFast is applied
to AUTs in the treatment group, and other competitive approaches
are applied to AUTs in the control group. We seek to evaluate the
following hypotheses at a 0.05 level of significance.

H0 The primary null hypothesis is that there is no difference in the
values of test coverage that AUTs can achieve in a given time
interval.

H1 An alternative hypothesis to H0 is that there is statistically sig-
nificant difference in the values of test coverage that AUTs
can achieve in a given time interval.

Once we test the null hypothesis H0, we are interested in the
directionality of means, µ, of the results of control and treatment
groups, where S is either I or E. In particular, the studies are de-
signed to examine the following null hypotheses:

H1: CarFast versus Random. The effective null hypothesis is that
µCarFastS = µRandS , while the true null hypothesis is that
µCarFastS ≥ µRandS . Conversely, the alternative hypothesis is
µCarFastS < µRandS .

H2: CarFast versus ARTOO. The effective null hypothesis is that
µCarFastS = µARTOOS , while the true null hypothesis is that
µCarFastS ≥ µARTOOS . Conversely, the alternative hypothesis is
µCarFastS < µARTOOS .

H3: CarFast versus DART. The effective null hypothesis is that
µCarFastS = µDARTS , while the true null hypothesis is that
µCarFastS ≥ µDARTS . Conversely, the alternative hypothesis is
µCarFastS < µDARTS .

H4: ARTOO versus Random. The effective null hypothesis is that
µARTOOS = µRandS , while the true null hypothesis is that
µARTOOS ≤ µRandS . Conversely, the alternative hypothesis is
µARTOOS > µRandS .

7http://aws.amazon.com/ec2/instance-types as of March 10, 2012

The rationale behind the alternative hypotheses to H1, H2, and
H3 is that Carfast achieves certain test coverage faster than other
approaches. The rationale behind the alternative hypothesis to H4
is that the random approach outperforms ARTOO as suggested by
Arcuri and Briand [1].

4.4 Input Test Data Repository
Recall that instead of generating test data, CarFast selects test

input data from existing repositories. Most nontrivial applications
have enormous spaces of test input data objects that are constructed
by combining values of different input parameters. Even though it
is infeasible to create a test data repository that contains the entire
input space, it is possible to create combinations of values that will
result in a smaller space of input data objects using combinatorial
design algorithms, which are frequently used by testing practition-
ers [28, 16, 40]. Most prominent are algorithms for t–wise combi-
natorial testing, which requires every possible combination of in-
teresting values of t parameters be included in some test case in the
test suite [28]. Pairwise testing is when t = 2, and every unique
pair of values for each pair of input parameters is included in at
least one test case in the test suite. To construct a test data repos-
itory for evaluating CarFast, we used the ACTS8 tool (previously
known as FireEye) to generate data for our experiments using pair-
wise testing from the range of input data [−50,50] that was chosen
experimentally. Since pairwise selection significantly reduces the
number of test input data, we added up to one million combinations
of test input data values using an unbiased random selection.

4.5 Subject AUTs
Given that we claim significant improvements in CarFast when

compared with competitive approaches, it is important to select ap-
plication benchmarks that are not biased, nontrivial, and enable re-
producibility of results among other things. In general, a bench-
mark is a point of reference from which measurements can be made
in order to evaluate and predict the performance of hardware or
software or both [46]. Benchmarks are very important for evalu-
ating program analysis and testing algorithms and tools [5, 6, 20,
53].

4.5.1 Challenges With Benchmark Applications

Different benchmarks exist to evaluate different aspects such
as how scalable program analysis and testing tools are, how fast
they can reach high test coverage, and how effective these tools
are in executing applications symbolically or concolically. Cur-
rently, a strong preference is towards selecting benchmarks that
have much richer code complexity (e.g., nested if-then-else
statements), class structures, and class hierarchies [5, 6]. Unfor-
tunately, complex benchmark applications are very costly to de-
velop [37, page 3], and it is equally difficult to find real-world ap-
plications of wide variety of sizes and software metrics that can
serve as unbiased benchmarks for evaluating program analysis and
testing approaches.

Consider our situation where different test input data selection
and generation approaches are evaluated to determine which ap-
proach enables users to achieve higher statement coverage faster.
On one extreme, “real-world” applications of low complexity with
very few control-flow statements are poor candidate benchmarks,
since most test input data generation approaches will perform very
well, especially if AUTs take as input parameters only primitive
types. On the other extreme, it may take significant effort to ad-
just these approaches to work with a real-world distributed appli-
cation whose components are written in different languages and

8http://csrc.nist.gov/groups/SNS/acts/index.html

A kLOC Cl Meth NBD MCC WMC

1 0.3 4 3 2.5/6 6.3/20 23.5/36
2 0.6 5 5 2.3/5 10.4/30 33.4/56
3 1.2 14 19 2.0/5 6.9/26 24.2/44
4 1.3 18 61 2.2/9 3.8/14 22.4/47
5 2.1 24 49 2.0/5 4.5/13 24.5/36
6 5.2 37 184 2.0/8 5.2/23 42.9/86
7 7.8 38 469 2.2/8 4.3/19 63.4/137
8 24.2 111 765 2.4/8 4.7/23 66.4/102
9 46.7 61 428 4.2/12 22.3/56 249.2/347
10 98.4 96 1,576 3.4/8 10.7/27 325.3/447
11 470.8 311 2,244 4/7 34.1/93 464.3/640
12 1,157.2 781 17,449 3.8/13 13/47 486/631

Table 1: Subject AUT (A) characteristics. Cl = #classes (NOC),

Meth = #methods (NOM), NBD = nested block depth, MCC

= McCabe cyclomatic complexity, WMC = weighted methods

per class. The last three columns show average and maximum

values as Avg/Max.

run on different platforms. In addition, current limitations of con-
colic engines (e.g., manipulating arrays, different types) make it
very difficult to select nontrivial application benchmarks to satisfy
these limitations. Ideally, a large number of different benchmark
applications are required with different levels of code complexity
to appropriately evaluate test input data generation tools.

One way to address the problem is to write benchmark applica-
tions that satisfy the requirements. However, writing benchmark
application from scratch is laborious, not to mention that a signifi-
cant bias and human error can be introduced [34]. In addition, se-
lecting commercial applications as benchmarks negatively affects
reproducibility of results, which is a cornerstone of the scientific
method [55, 23], since commercial benchmarks cannot be easily
shared among organizations and companies for legal reasons and
trade-secret protection. For example, Accenture Human Resource
Policy item 69 states that source code constitutes confidential in-
formation, and other companies have similar policies. Finally, In
addition, more than one benchmark is often required to determine
the sensitivity of program analysis and testing approaches based on
the variability of results for applications that have different proper-
ties [2], making it a very laborious exercise.

Ideally, users should be able to easily generate benchmark ap-
plications with desired properties that are similar to real-world ap-
plications. This idea has been already successfully used in testing
relational database engines, where complex Structured Query Lan-

guage (SQL) statements are generated using a random SQL state-
ment generator [57]. Suppose that a claim is made that a relational
database engine performs better at certain aspects of SQL optimiza-
tion than some other engine. The best way to evaluate this claim is
to create complex SQL statements as benchmarks for this evalua-
tion in a way that these statements stress properties that are specific
to these aspects of SQL optimization. Since the meaning of SQL
statements does not matter for performance evaluation, this genera-
tor creates semantically meaningless but syntactically correct SQL
statements thereby enabling users to automatically create low-cost
benchmarks with reduced bias. In addition, synthetic programs and
data have been used widely in computer vision and image process-
ing [22, 31].

4.5.2 Random Benchmark Applications

We define a random program by construction. Every program is
an instance of the grammar of the language in which this program
is written. We use the grammar to generate branches of a parse
tree for different production rules, where each rule is assigned the

probability with which it is instantiated in a program. Starting with
the top production rules of the grammar, each nonterminal is recur-
sively replaced with its corresponding production rule. Terminals
are replaced with randomly generated identifiers and values, and
they are used in expression with certain probability distributions,
leading to a syntactically correct program. This approach is widely
used in natural language processing, speech recognition, informa-
tion retrieval [17], and also in generating SQL statements for testing
database engines [57].

4.5.3 Subject AUTs For Experimentation

We generated twelve subject AUTs whose sizes range from 303
LOC to over one million LOC using our program generator [32].
To minimize the effect of using different libraries and data types on
our experimental design, we allowed only integer data types and
standard Java language constructs. Each AUT takes 15 input pa-
rameters, this number is chosen experimentally. Table 1 contains
characteristics of the subject programs, with the first column show-
ing the names followed by other columns with different charac-
teristics of these AUTs as specified in the caption. We used the
generated programs without any tweak, and they are available at
the website given in Footnote 1.

4.6 Threats to Validity
The main threat for our experimental design is the selection of

subject AUTs and their characteristics. Due to limitations of con-
colic engines, which requires finite number of values for each input,
we had to synthesize the subject AUTs, and these AUTs have high
cyclomatic complexity, which makes it difficult to choose values
for input parameters to achieve high coverage faster. The results
may vary for AUTs that have very simple logic or different source
code structures.

The other threat to validity comes from evaluating approaches
based on statement coverage rather than using some fault detection
metric. In general, even though a connection exists between state-
ment coverage and fault detection capability, the latter is a more
robust metric since it goes into the heart of a main goal of testing –
bug detection. However, existing approaches for applying fault de-
tection metric use generated mutants, which are not always equiv-
alent to applications with bugs that are introduced by programmers
[50]. Finally, statement coverage is also an important metric for
stakeholders to obtain confidence from testing applications, and we
evaluate this important testing metric.

Finally, a threat to validity is our method for selecting ranges of
input data. Since our AUTs are generated, it is unclear what ranges
of input values should be chosen and how the number of combina-
tions of input values can be minimized effectively. In our experi-
mental design we used standard practices used by test engineers at
different Fortune 500 companies, specifically to apply combinato-
rial pairwise testing to create sufficiently diverse sets of input test
data.

5. RESULTS
In this section, we provide and explain results of experiments

and statistical tests to address our hypotheses.

5.1 Testing the Null Hypothesis
We used ANOVA to evaluate the null hypothesis H0 that the vari-

ation in an experiment is no greater than that due to normal varia-
tion of individuals’ characteristics and error in their measurement.
The results of ANOVA confirm that there are large differences be-
tween the approaches for coverage for both measures of execution
time. As the result shows, all p-values are less than 0.05. Hence, we

reject the null hypothesis H0 and accept the alternative hypothesis
H1.

Statistical results for execution times are shown in Table 2. DART
ran out of memory for AUTs A6–A12 and CarFast ran out of mem-
ory for AUT A12 (over 1Mil LOC). Based on t-tests for paired two
sample for means for two-tail distribution, we reject hypotheses
H1–H2 for time measured as iterations, and we reject hypotheses
H3–H4 for both measures of time, i.e., iterations and elapsed time.
We can summarize these results as following.

• When only iterations are counted, CarFast achieves higher
statement coverage faster when compared with the random
and ARTOO approaches for all AUTs with strong statistical
significance. CarFast also outperforms DART for all AUTs
but A5, since both approaches reach the desired coverage in
one iteration for A5.

• When only elapsed execution times are counted, random and
ARTOO achieve higher statement coverage faster when com-
pared with CarFast for all AUTs, with strong statistical sig-
nificance. However, when comparing CarFast with DART,
CarFast outperforms DART for all AUTs but A5 for the same
reason mentioned above.

• When only iterations are counted, the random approach achieves
higher statement coverage faster when compared with the
ARTOO approach for all AUTs with strong statistical signif-
icance.

• When only elapsed execution times are counted, the random
approach achieves higher statement coverage faster when
compared with the ARTOO approach for all AUTs with strong
statistical significance. But when lower coverage is specified,
for small programs (e.g., A1, A2, A4 and A5) the random ap-
proach does not outperform ARTOO.

5.2 Investigation of Corner Cases
We investigated the corner cases. First, we found that in A5

the maximum coverage, 46%, is achieved in one iteration using all
approaches. Since the obtained test coverage with DART is signif-
icantly lower when compared with other approaches, we run statis-
tical tests with results for DART excluded, so that we verify that
the results of testing hypotheses still hold. We chose 78% (i.e., the
minimum coverage of all approaches but DART) as the coverage
level for which we extracted execution times for these approaches.
The results are consistent with our previous conclusion. We had
similar treatment for A1–A4, i.e., we excluded the results that we
obtained from DART from data analysis, and got consistent results.

Second, we found that the execution time of CarFast increases at
a much faster rate when compared to that of random and ARTOO
approaches as program size increases. We analyzed the execution
time of CarFast for each benchmark AUT, and we found out that the
dumper mode of Dsc takes the most of time for large applications
when compared with other components of CarFast. For A11, it
takes 22.4 minutes on average per one iteration of an execution,
and it takes 75% of entire CarFast execution time. For A12, Dsc
ran out of memory. That is, the dumper mode of Dsc should be
improved to make CarFast scalable to large programs.

Finally, we found that the accumulated test coverage for Car-
Fast after running for 24 hours is comparable with that of random
and ARTOO approaches for A1–A8. As mentioned above, it takes
much longer for CarFast to run on larger applications (A9–A12),
which results in much fewer iterations (or out of memory) within
24 hours and in achieving less test coverage.

A Cov App Imed Imean Imin Imax SDI Emed Emean Emin Emax SDE Cmin Cmax Cmed

1

65%

Rand 27 29.6 13 56 12.1 88 97.2 51 174 37.7 86% 88% 88%
ART 28 28.7 12 62 11.3 83 84.1 36 185 32.7 84% 88% 88%
DART 504 973.5 126 3911 1003 1410 2784.0 338 11307 2918 65% 81% 74%
CF 14 13.8 8 19 2.7 495 473.7 183 718 106.8 84% 88% 86%

84%
Rand 1187 1299.2 282 2859 736 3539 3886.0 817 8613 2218.9 86% 88% 88%
ART 1730 1903.3 570 5057 1205.3 5108 5847.3 1669 16216 3844.5 84% 88% 88%
CF 254 314.1 133 680 156.7 4605 5140.3 3150 8771 1623.3 84% 88% 86%

2

58%

Rand 9 9.3 4 16 2.9 35 34.8 19 53 8.6 87% 88% 88%
ART 11 11.1 5 22 4.6 32 32.8 15 64 13.5 86% 88% 88%
DART 428 481.3 100 1578 297.3 886 1020.4 6 4085 800.6 58% 70% 64%
CF 8 7.8 4 10 1.5 405.4 400.5 171 606 107.5 86% 88% 87%

86%
Rand 1428 1607.8 508 3996 736 4253 4815.5 1501 12364 2270.7 87% 88% 88%
ART 1748 1963.1 758 5797 1031.7 5308 6019.5 2280 18325 3305.5 86% 88% 88%
CF 877 906.7 379 2017 394.3 20600 20980.0 13477 35228 4961.3 86% 88% 87%

3

45%

Rand 16.5 17.1 9 32 5.7 48.5 52.2 27 146 23 61% 62% 61%
ART 17.5 17.8 8 30 6.3 62 59.8 29 103 18.9 60% 62% 61%
DART 737 693.5 1 1041 255.7 1559 1477.0 5 2571 601 45% 50% 48%
CF 6 5.9 4 7 0.5 443 571.0 261 4247 698 55% 61% 60%

55%
Rand 333 339.8 213 622 86.6 976 999.3 623 1832 258 61% 62% 61%
ART 432 438.4 205 1035 148.9 1312 1324.7 619 3174 458.5 60% 62% 61%
CF 124 133.3 82 206 29.8 10143 12314 8724 76003 12060.5 55% 61% 60%

4

50%

Rand 2 2.2 2 3 0.43 11 11.3 7 18 3.2 75% 77% 76%
ART 2 2.3 2 3 0.46 6 7.2 6 10 1.6 75% 77% 76%
DART 224 222.5 106 579 111.5 332 307.2 6 1362 333.7 50% 53% 52%
CF 2 2.4 2 4 0.56 43.5 57.1 39 182 28.9 76% 78% 77%

75%
Rand 1498 1636.7 637 3470 704.9 4518 5057.9 2188 11154 2257.1 75% 77% 76%
ART 2230 2629.8 802 5215 2629.8 7072 8511.6 2469 17730 4564 75% 77% 76%
CF 259 266.0 189 356 46.5 10751 10565.9 6726 13797 1941.4 76% 78% 77%

5

46%

Rand 1 1 1 1 0 11 11.7 8 27 3.5 80% 81% 80%
ART 1 1 1 1 0 3 3.7 3 4 0.2 79% 80% 80%
DART 1 1 1 1 0 3 3.4 3 4 0.5 46% 51% 48%
CF 1 1 1 1 0 7 7.7 5 17 2.7 78% 79% 79%

78%
Rand 986 1023.2 610 1558 261.8 3021 3162.5 1867 4913 842.4 80% 81% 80%
ART 1556 1615.6 855 2717 492.4 4915 5157.7 2656 8916 1646.8 79% 80% 80%
CF 459 463.9 312 557 54.6 19926 20040.9 13320 24408 2481.8 78% 79% 79%

6 76%
Rand 860 867.0 699 1118 113.7 2709 2721.0 2182 3562 363 78% 79% 79%
ART 1209 1220.0 945 1522 152.5 3945 3940.0 3001 5038 524 78% 79% 78%
CF 405 405.7 359 452 19.1 23097 22793.0 17936 25691 1754 76% 77% 77%

7 79%
Rand 526 543.1 457 714 60.6 1678 1736.8 1472 2329 207.3 82% 83% 83%
ART 671 684.1 521 914 86.3 2167 2217.6 1675 3028 299.4 82% 83% 82%
CF 370 380.0 311 464 41.7 18187 18829 15567 22914 1991 79% 81% 80%

8 61%
Rand 101 99.6 86 111 8 326.5 330.4 282 477 37.7 61% 61% 61%
ART 105 107.1 90 122 8.7 353.5 358.1 301 411 28.7 61% 61% 61%
CF 100 100.2 95 109 3.3 7804 7760.7 6982 8649 385.5 61% 61% 61%

9 64%
Rand 325 327.3 297 367 19.4 1158 1162.0 1039 1307 75.1 71% 71% 71%
ART 406 398.9 362 440 21.6 1486 1462.0 1308 1820 107.3 71% 72% 71%
CF 206 210.8 197 240 11.9 43685 42322.0 32908 51949 4860.6 64% 65% 65%

10 61%
Rand 372 375.4 338 423 19.1 1605 1633.6 1414 1884 112.6 65% 65% 65%
ART 466 464.7 402 575 33.2 2099 2112.1 1781 2694 190.6 64% 65% 64%
CF 241 241.9 222 258 9.5 66866 66837.7 55228 79976 6870.7 61% 61% 61%

11
54%

Rand 32 32.2 28 38 2.8 195 197.7 171 233 16.7 74% 74% 74%
ART 34 33.6 29 37 2 207.5 204.3 177 277 12.5 73% 74% 74%
CF 26 26.5 24 29 1.2 43173 41832.4 30755 47864 4399.2 54% 58% 56%

73%
Rand 1621 1620.4 1554 1718 37.2 25530 25491.7 23465 28092 1074 74% 74% 74%
ART 2106 2114.5 1968 2215 57.3 39045 38946.2 35005 41677 1680.5 73% 74% 74%

12 69%
Rand 1060 1067.1 954 1198 55.9 29439 29421.7 23968 36642 2549.9 70% 70% 70%
ART 1504 1488.4 1392 1594 56.5 48050 48896.2 42367 58034 4365.1 69% 69% 69%

Table 2: Results of experiments on subject applications under test (AUTs A1–A12) with approaches (App): CarFast (CF), Random

(Rand), ARTOO (ART) and DART. Columns Cmin, Cmax, and Cmed give the minimum, maximum and median values of statement

coverage after running the AUTs for 24 hours. We define the minimum value ofCmin as the target coverage (Cov). We then determine

how long each approach takes to reach this target. Execution times are measured in the number of iterations (I) and elapsed time (E,

in seconds). For each, we report the Median, Mean, Min, Max. and the standard deviation (SD). AUTs A1–A5 report measurements

with and without including the DART approach, but AUTs A6–A12 do not include the DART approach. For details please see

Sections 4.2 and 5.2.

5.3 Our Interpretation of Results
We can summarize and interpret the results of our experiments

as follows.

1. We strongly suggest that CarFast has high potential in achiev-
ing higher statement coverage faster and becoming practical
especially if its execution overhead per iteration can be fur-
ther reduced. We expect to reduce the overhead in the future
since we found the bottlenecks of CarFast from our experi-
ments.

2. When it comes to comparing the random approach with AR-
TOO, the random approach is still better when higher state-
ment coverage is targeted. ARTOO performs as good as the
random approach only when lower statement coverage is tar-
geted. We suggest that it is likely that results depend on cer-
tain characteristics of the AUTs, finding which is a subject of
future work.

6. RELATED WORK
Our approach is a test case prioritization technique: choosing an

ordering of some existing test suite in order to increase the like-
lihood of revealing faults earlier. Elbaum et. al. [21] surveyed
several approaches that effectively prioritize test cases in regres-
sion testing. These techniques use greedy algorithm to compute
an order that achieves higher coverage sooner or higher fault detec-
tion rate. Thus, test coverage or fault detection rate of each test case
must be known. In the context of regression testing, each test case’s
coverage or fault detection rate on previous versions of the AUT is
used to predict their future performance. Our approach does not
require prior knowledge of test cases and thus it is not restricted in
the context of regression testing.

Dynamic symbolic (or “concolic”) execution engines such as
DART [26] generate test inputs that explore different execution
paths of a program. In early work, the exploration strategy is usu-
ally depth-first or breath-first, which is the basis for many test case
generation techniques, including ours.

Majumdar et. al. [43] interleave random testing and concolic
exploration to improve test coverage. Their approach starts with
random testing, changes to concolic exploration when random test-
ing fails to increase coverage, and changes back to random as soon
as some coverage is gained. In contrast, CarFast uses a systematic
approach based on a static program analysis-based branch cover-
age gain predictor, and we evaluated CarFast with statistical signif-
icance on a large number of subject applications.

Concolic tools use different search strategies to decide how to
pick branches where constrains are negated. Xie et. al. [61] use a
branch’s distance to the target path as the fitness function in their
work. Here distance means the number of conditional control flow
transfers between a branch and the target path. Branches near the
target path are more likely to be picked for negation. Similarly,
Burnim and Sen pick a branch when its distance to some uncovered
path is small [9]. To increase coverage, Sage [27], by Godefroid
et al., tries to negate not one, but as many constraints in a path
condition as possible.

Our approach differs from search-based approaches in the fit-
ness function—to the best of our knowledge, CarFast is the first
tool that defines and uses a static program analysis based coverage
gain predictor to guide path exploration. However, genetic-based
approaches are not shown to be scalable, and they usually work
on generating test data for expressions with less than 100 boolean
variables. Ours is the first approach that works for large-scale appli-
cations, it is scalable, and it does not require any machine-learning

algorithms, which are usually computationally intensive. In the fu-
ture, once scalable genetic algorithms are developed for generating
test input data for achieving higher coverage faster, we will com-
pare CarFast with these algorithms.

7. CONCLUSION AND FUTURE WORK
We created a novel fully automatic approach for aChieving higher

stAtement coveRage FASTer (CarFast), by combining random test-
ing with static program analysis, concolic execution, and constraint-
based input data selection. We implemented CarFast and applied
it to twelve Java applications whose sizes range from 300 LOC to
one million LOC. We compared CarFast, pure random, adaptive
random, and Directed Automated Random Testing (DART) against
one another. The results show with strong statistical significance
that when execution time is measured in terms of the number of
runs of the application on different input test data, CarFast largely
outperforms the evaluated competitive approaches with most sub-
ject applications.

Our experimental results are promising, and there are several ar-
eas that will improve our work. First, we plan to adapt CarFast
to other test coverage metrics, such as branch coverage and basic
block coverage, to study if CarFast can generalize to other metrics.
Next, we plan to investigate the relationship between high coverage
and fault-detection abilities with CarFast. Since there is a body of
research that shows a strong correlation [51, 49, 38, 10], we expect
that using CarFast increases the probability of finding faults. Fi-
nally, we plan to improve the implementation of CarFast to reduce
the total elapsed time. We identified several bottlenecks from our
experiments, i.e., in Dsc’s current dumper mode. With more en-
gineering on the bottlenecks, we expect CarFast to run faster and
outperform random techniques with respect to both iteration and
elapsed time.

8. ACKNOWLEDGMENTS
We warmly thank the anonymous reviewers for their comments

and suggestions that helped us in improving the quality of this
paper. This material is based upon work supported by the Na-
tional Science Foundation under Grants No. 0916139, 1017633,
1217928, 1017305, and 1117369. We also acknowledge the sup-
port of Accenture, since it financed the cloud computing experi-
ment and provided the internship opportunity for the student co-
authors to work on this project.

9. REFERENCES
[1] A. Arcuri and L. Briand. Adaptive random testing: An illusion of

effectiveness? In ISSTA, pages 265–275, 2011.
[2] A. Arcuri and L. C. Briand. A practical guide for using statistical

tests to assess randomized algorithms in software engineering. In
ICSE, pages 1–10, 2011.

[3] A. Arcuri, M. Z. Iqbal, and L. Briand. Formal analysis of the
effectiveness and predictability of random testing. In ISSTA ’10,
pages 219–230, 2010.

[4] D. L. Bird and C. U. Munoz. Automatic generation of random
self-checking test cases. IBM Syst. J., 22:229–245, September 1983.

[5] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proc. 21st OOPSLA, pages 169–190,
Oct. 2006.

[6] S. M. Blackburn et al. Wake up and smell the coffee: Evaluation
methodology for the 21st century. Commun. ACM, 51(8):83–89,
Aug. 2008.

[7] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of
synchronization coverage. In Proc. 10th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP), pages
206–212. ACM, 2005.

[8] É. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code
manipulation tool to implement adaptable systems. In ACM SIGOPS

France (Adaptable and extensible component systems), Nov. 2002.
[9] J. Burnim and K. Sen. Heuristics for scalable dynamic test

generation. In ASE ’08, pages 443–446, 2008.
[10] X. Cai and M. R. Lyu. The effect of code coverage on fault detection

under different testing. In A-MOST, pages 1–7, 2005.
[11] M.-H. Chen, M. R. Lyu, and W. E. Wong. An empirical study of the

correlation between code coverage and reliability estimation. In 3rd

IEEE Int. Soft. Metrics Sym., pages 133–141, 1996.
[12] T. Y. Chen, R. Merkel, G. Eddy, and P. K. Wong. Adaptive random

testing through dynamic partitioning. In QSIC ’04, pages 79–86,
2004.

[13] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Artoo: Adaptive
random testing for object-oriented software. In ICSE ’08, pages
71–80, 2008.

[14] L. A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Trans. Softw. Eng., 2(3):215–222, 1976.

[15] G. A. Cohen, J. S. Chase, and D. L. Kaminsky. Automatic program
transformation with JOIE. In USENIX Annual Technical Symposium,
June 1998.

[16] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn.
Constructing test suites for interaction testing. In ICSE, pages 38–48,
2003.

[17] S. Cohen and B. Kimelfeld. Querying parse trees of stochastic
context-free grammars. In Proc. 13th ICDT, pages 62–75, Mar. 2010.

[18] S. Cornett. Minimum acceptable code coverage. Bullseye Testing
Technology, http://www.bullseye.com/minimum.html, 2011.

[19] R. A. DeMillo and A. J. Offutt. Constraint-based automatic test data
generation. IEEE Trans. Softw. Eng., 17(9):900–910, 1991.

[20] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic
metrics for Java. In Proc. 18th OOPSLA, pages 149–168, Oct. 2003.

[21] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. IEEE Trans. Softw.

Eng., 28(2):159–182, 2002.
[22] M. A. Fischler and R. C. Bolles. Random sample consensus: a

paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395, 1981.

[23] S. Fomel and J. F. Claerbout. Guest editors’ introduction:
Reproducible research. Computing in Science and Engineering,
11(1):5–7, Jan. 2009.

[24] J. E. Forrester and B. P. Miller. An empirical study of the robustness
of Windows NT applications using random testing. In USENIX

Windows Systems Symposium - Volume 4, 2000.
[25] P. Godefroid. Compositional dynamic test generation. In POPL ’07,

pages 47–54, 2007.
[26] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated

random testing. In PLDI ’05, pages 213–223, 2005.
[27] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated whitebox

fuzz testing. In Network Distributed Security Symposium (NDSS).
Internet Society, 2008.

[28] M. Grindal, J. Offutt, and S. F. Andler. Combination testing
strategies: A survey. Softw. Test., Verif. Reliab., 15(3):167–199, 2005.

[29] D. Hamlet. When only random testing will do. In RT ’06, pages 1–9,
2006.

[30] R. Hamlet. Random testing. In Encyclopedia of Software
Engineering, pages 970–978, 1994.

[31] P. Husbands, C. Iancu, and K. Yelick. A performance analysis of the
Berkeley UPC compiler. In ICS ’03, pages 63–73, 2003.

[32] I. Hussain, C. Csallner, M. Grechanik, C. Fu, Q. Xie, S. Park,
K. Taneja, and B. M. M. Hossain. Evaluating program analysis and
testing tools with the RUGRAT random benchmark application
generator. In WODA, July 2012.

[33] M. Islam and C. Csallner. Dsc+mock: A test case + mock class
generator in support of coding against interfaces. In WODA, pages
26–31, July 2010.

[34] A. Joshi, L. Eeckhout, R. H. Bell, Jr., and L. K. John. Distilling the

essence of proprietary workloads into miniature benchmarks. ACM
TACO, 5(2):10:1–10:33, Sept. 2008.

[35] C. Kaner. Software negligence & testing coverage. In STAR ’96,
1996.

[36] C. Kaner, J. Bach, and B. Pettichord. Lessons Learned in Software

Testing. Wiley, Dec. 2001.
[37] K. Kanoun and L. Spainhower. Dependability Benchmarking for

Computer Systems. Wiley, July 2008.
[38] Y. W. Kim. Efficient use of code coverage in large-scale software

development. In CASCON ’03, pages 145–155, 2003.
[39] K. Koster and D. C. Kao. State coverage: A structural test adequacy

criterion for behavior checking. In Proc. 15th FSE, Companion

Papers, pages 541–544. ACM, Sept. 2007.
[40] R. Kuhn, Y. Lei, and R. Kacker. Practical combinatorial testing:

Beyond pairwise. IT Professional, 10(3):19–23, 2008.
[41] C. Li and C. Csallner. Dynamic symbolic database application

testing. In Proc. 3rd DBTest, June 2010.
[42] M. Maierhofer and M. A. Ertl. Local stack allocation. In Proc. 7th

International Conference on Compiler Construction (CC), pages
189–203. Springer, Apr. 1998.

[43] R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE ’07,
pages 416–426, 2007.

[44] Y. K. Malaiya, M. N. Li, J. M. Bieman, and R. Karcich. Software
reliability growth with test coverage. IEEE Trans. on Reliability,
51:420–426, 2002.

[45] B. Marick. How to misuse code coverage. In Proc. of the 16th Intl.

Conf. on Testing Comp. Soft., pages 16–18, 1999.
[46] G. McDaniel. IBM Dictionary of Computing. Dec. 1994.
[47] B. Meyer. Testing insights. Bertrand Meyer’s technology blog,

http://bertrandmeyer.com/2011/07/11/testing-insights, 2011.
[48] S. S. Muchnick. Advanced compiler design and implementation.

Morgan Kaufmann, 1997.
[49] A. S. Namin and J. H. Andrews. The influence of size and coverage

on test suite effectiveness. In ISSTA ’09, pages 57–68, 2009.
[50] A. S. Namin and S. Kakarla. The use of mutation in testing

experiments and its sensitivity to external threats. In ISSTA, pages
342–352, 2011.

[51] P. Piwowarski, M. Ohba, and J. Caruso. Coverage measurement
experience during function test. In ICSE, pages 287–301, May 1993.

[52] P. Runeson. A survey of unit testing practices. IEEE Softw.,
23:22–29, July 2006.

[53] R. H. Saavedra and A. J. Smith. Analysis of benchmark
characteristics and benchmark performance prediction. ACM Trans.

Comput. Syst., 14(4):344–384, Nov. 1996.
[54] Sable Reserch Group. Soot: A java optimization framework.

http://www.sable.mcgill.ca/soot/.
[55] M. Schwab, M. Karrenbach, and J. Claerbout. Making scientific

computations reproducible. Computing in Science and Engineering,
2(6):61–67, Nov. 2000.

[56] R. M. Sirkin. Statistics for the Social Sciences. Sage Publications,
third edition, Aug. 2005.

[57] D. R. Slutz. Massive stochastic testing of SQL. In VLDB ’98, pages
618–622, 1998.

[58] R. Torkar and S. Mankefors. A survey on testing and reuse. In Proc.

IEEE International Conference on Software - Science, Technology &

Engineering. IEEE, 2003.
[59] Y. L. Traon, T. Mouelhi, and B. Baudry. Testing security policies:

Going beyond functional testing. In ISSRE, pages 93–102, 2007.
[60] S. Ur and A. Ziv. Off-the-shelf vs. custom made coverage models,

which is the one for you? In STAR ’98, May 1998.
[61] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte. Fitness-guided

path exploration in dynamic symbolic execution. In DSN, pages
359–368. IEEE, June 2009.

[62] Q. Yang, J. J. Li, and D. Weiss. A survey of coverage based testing
tools. In Proc. International Workshop on Automation of Software

Test (AST), pages 99–103. ACM, 2006.
[63] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage

and adequacy. ACM Comput. Surv., 29(4):366–427, 1997.

