HDSampler: Revealing Data B

ehind Web Form Interfaces

Anirban Maiti Arjun Dasgupta Nan Zhang * Gautam Das 1
CSE Dept CS Dept CSE Dept
UT Arlington George Wash. Univ. UT Arlington
Arlington, TX, USA Washington, DC, USA Arlington, TX, USA
{anirban.maiti, arjundasgupta}@uta.edu nzhanglO0@gwu.edu gdas@uta.edu

ABSTRACT

A large number of online databases are hidden behind the web.
Users to these systems can form queries through web forms to
retrieve a small sample of the database. Sampling such midde
databases is widely desired for understanding the natutejaal-

ity of data stored in them. We have developéaSanpl er , which

to the best of our knowledge is the first practical system &n-s
pling structured hidden web databases. It enables efficiamt:-
pling of the databases and accurate answering of aggregeities),

to provide analysts with valuable information for data sties,

as well as help power a multitude of third-party applicasicuch

as web-mashups and meta-search engines. For the purpdgg of t
demo, we present an instanceHi®Sanpl er on Google Base - a
content-rich hidden web database maintained by Google sBgu
HDSanpl er, the demo reveals a snapshot of the marginal distri-
bution of various attributes of Google Base in a matter ofutes.

Categories and Subject Descriptors
H.2.8 Database applications

General Terms
Algorithms, Design, Measurement, Performance

Keywords

Hidden databases, sampling, top-k interfaces

1. INTRODUCTION

Form-based web interface has become an increasingly popula
way for online data providers to furnish data to customesend
users. The objective is to search capabilities of the datatés-
ested users/customers without publishing the databasts ient
tirety. As an example, consider a large car dealership @rton

“Partially supported by NSF grants 0852673, 0852674 and
0845644

tPartially supported by NSF grants 0845644, 0812601 andgran
from Microsoft Research and Nokia Research

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ACM SIGMOD'09 Providence, RI, USA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

enable inquiries to its inventory database. Instead ofighiblg a
long list of all inventory vehicles, they may instead pravial web
form to which any prospective customer can access using a web
browser. The web form allows a customer to construct a search
query by choosing desired values for a combination of attei
such as make, model, price range, color, etc., and issueutdty q
to the (back-end) inventory database by clicking the sulibmit
ton. Then, the web form displays the query answers (e.gichesh
satisfying the search conditions) returned from the damlzdter
applying certain restrictions, such as the maximum numbéu-o
ples displayed per query. If the customer finds the resubetimo
broad or too narrow, s/he can refine or broaden the query bipgdd
or dropping attributes, until the desired results are regdr We call
such an interface as tl@onjunctive Web Form Interface

The usage of a conjunctive web form interface enables person
alized access for individual users, but also poses chaketmgan-
alytics over hidden databases. Restrictions applied taligay
of query results, especially a commonly used kogirategy which
limits the results to the top-tuples according to a ranking function,
makes it impossible to directly retrieve all tuples by isgu{SE-
LECT *)-like queries. As an increasing number of data prevsl
are adopting the conjunctive web form interface, a gredtafdaa-
terest has been generated in the research community onsliypas
these interfaces to support analytics over the valuablkdpacdata.
Crawling these databases has been explored in depth byftne in
mation retrieval community, primarily to facilitate thedition of
these datasets to a search engine’s index. Nonethelesdingra
very large hidden database can be extremely expensive,cad ¢
be impossible when data providers limits the maximum nunober
queries that can be issued by an IP address.

We approach this problem from a different angle and spesulat
that a tool which provides aneak peako hidden data statistics
would be much more efficient while remaining useful. A data an
alyst who desires information on the distribution of theadafples
and other aggregate information about the data usuallgpédhst
but approximate answers over precise answers that requiex-a
pensive crawl of the entire database. In the above exaniagi
wants to learn the percentage of Japanese cars in the dealer’
ventory, a very small number of uniform random samples of the
underlying database can provide a quite accurate answedingi
a small representative sample rather than a database @awhes
be used effectively for numerous analytical and decisi@hking
tasks. It can also help numerous third-party applicatiarch s
web-mashups and meta-search engines, which often needitede
on the quality and coverage of the data available at diftdrizlien
web sources.

In [1], we proposed HIDDEN-DB-SAMPLER, an algorithm for
drawing simple random samples from a hidden database. Based

Zy
>

i
Of=|R
n

~|o|o|oR
—|=|=|ola

Za

t 1> 13 z

Figure 1: Query Tree of a Boolean Database

on the algorithm, this demo presemt®Sanpl er , a practical sys-
tem for sampling databases hidden behind conjunctive weh fo
interfacesHDSanpl er provides an exploratory tool for data ana-
lysts and domain researchers to quickly draw samples froid-a h
den database to facilitate decision making tasks. It is @men
tool that can be easily tailored to target various data ssioehind
conjunctive web form interfaces. A set of input parameteegao-
vided for performance tuning, in particular for a user to mak
proper tradeoff between the efficiency of sampling and tlesvabdf
samples being drawn.

2. REVIEW OF HIDDEN-DB-SAMPLER

We start our discussion by a brief overview of HIDDEN-DB-
SAMPLER. Note that the main challenge to sample hidden dat
is that the topk restriction prevents broad queries from being prop-
erly answered i.e., if a query is too broad (i.e., selectsentioank
tuples), only the togk tuples will be retrieved according to a rank-
ing function and returned as the query result. The interfaitie
also notify the user that there is axerflow i.e., that not all quali-
fying tuples are returned. Since the ranking function da¢select
tuples randomly, a tuple returned by an overflowing quersg tran-
not be used as a random sample. Suchiteestriction is enforced
by many web search interfaces such as Goagle (1, 000), MSN
Career g = 4,000), Microsoft Solution Finder¥ = 500), MSN
Stock Screener(= 25), and so on.

To address this challenge, the basic idea is to perform amnd
drill-down starting with extremely broad (and thereforeediow-
ing) queries, and iteratively narrowing it down by addingdamly
selected predicates, until a query with fewer thhagualifying tu-
ples is reached. Consider Figure 1 which shows a small Boolea
database and a binary tree with 4 levels, whereiitielevel rep-
resents attribute;; and the left (resp. right) edge leading out of
any internal node is labeled O (resp. 1). Thus, each path foain
to a leaf represents a specific assignment of Boolean vabuas t
tributes, and the leaves represent potential tuples. HIRMDB-
SAMPLER essentially performs a random walk down this treg, b
makes sure that only paths that lead to actual tuples arerexplin
particular, it first executes an under-specified query spaading
to the root node (e.g., “SELECT * FROM) WHERE a; = 0").

If the query overflows, it is extended by adding a new randomly
selected constraint using (either “‘az = 0” or “as = 1"). If it
returns 1 tok tuples without overflow, we randomly choose a re-
turned tuple as a sample. This drill-down process leads agher

a legitimate tuple, or an empty result. If the process retempty,

we restart the random walk.

With HIDDEN-DB-SAMPLER, a tuple in a non-overflowing node
at higher levels of the tree is more likely to be returned tbaa
at lower levels. Thus, the retrieved tuples are processednby
acceptance-rejection sampling module before being usaaras
ples. This module provides a user an opportunity to makedetfé
between the uniformity of samples and the efficiency of samgpl
A highly uniform sample may take a long time (due to more re-
jections). However, a set of samples with moderate skew meay b
obtained quite fast.

HDSampler

5. éollect and refine s}mples

Sample Sample
Processor Generator

4. Get samples from Hidden
Database through web form
4_—_’
3. Pass sgmpling

criteria ag input to Form

2. Map attribute
and values

Web
6. Pass final

samples to the
Output module

Web-based
Front end

7. Show
samples and
marginals to
user/analys

1. Select sample size,
attributes, speed v/s
accuracy metrics

Hidden
Database

Objective: sample
hidden database

Figure 2: Architecture of the HDSampler

3. HDSAMPLER

Figure 2 depicts the architecturetddSanpl er . There are four
modules: web-based front end, sample generator, samptegpro
sor, and output module. In this section, we introduce thé&ggdesf
each module respectively.

3.1 Web-based Front End

We remind the readers thelbSanpl er is a generic tool which
can be applied to any hidden database with a conjunctive orei f
interface. To customizelDSanpl er to a specific data source, one
needs to specify the attributes and their domain valuesnestjtor
forming queries.

Demo data source: In the demo, to demonstrate the power of
HDSanpl er on a popularly used system, we customize Btmgle
BaseVehicles databasea large online database formed and main-
tained by Google by integrating numerous vehicle-market saurces
and also inputs from individual data providers. The webrfate
and API for Google Base is a typical conjunctive web form in-
terface which allows a user to retrieve tuples by formingrigase
on any combination of attributes. The téprestriction is applied
with £ = 1000. We also bring to attention that the query counts
provided by the Google Base interface are approximate ettsn
generated by some proprietary algorithm and are ignoredhfor
purpose of this system.

Initializing the system: HDSanpl er allows a variety of settings
for users to specify their individual requirements. To begith,

the users have the leeway to add and remove attribute armd thei
value bindings and poirtiDSanpl er to either the whole dataset
or to a specific selection of attributes. The required nurobsam-

ples can also be specified. Figure 3 is a screenshot of thigéea

Performance v/s accuracy tradeoffsData analysts and users have
varying needs. Some want the sampling process to produgksres

in a matter of minutes in order to make instant decisions.e@th
may place more importance on obtaining skewless samplds wit
lower emphasis on time. Our system can be configured to meet ei
ther need. We provide a slider with one end having the higkfest
ficiency and the other having the lowest skew. The inheretiraa

of HDSanpl er dictates a balance between these two parameters
and we provides end users the flexibility to make a propeettid
according to their needs.

3.2 Sample Generator

The sample generator module forms one part of the core engine
of HDSanpl er with the Sample processor forming the other part.
This module is responsible for generating and executingaeee
of random queries according to the HIDDEN-DB-SAMPLER al-
gorithm. It leverages user inputs along with the attribated their
bindings to form queries and submits them to the form interfa

'ht t p: / / www. googl e. com base/ ht nf ?a_n0=
vehi cl es&a_y0=9&hl =ené&gl =us

Requred Samples: (1,000 (9] Database: | Google Base - Venicii | (Start Sampler) Stop Sampler Sham adsscsse ssians. Sstioss

Required Samples: | 1,000 %) Database: | Google Base - Vehicle $] Show sdvenced

options Settings or Overfow Count: Undertow Count:
v 7013 157

Attributes. Settings: Configure Values for Attribute mileage Add New Attribute Add NewValue Delete Attribute Close
make
model Attribute Type: | Rangom '#] Value DataType: | Integer %] Link Attribute: | mileage 1%
condition
Atiribute Value Value Type MinValue MaxValue Actual Count
vehicle type
S Under 10 (miles) range 0 9 1574 Delete
transmission | 101020,000 (miles) range 10 19999 3318 elet
R i RN . ange 20000 39999 3661 Delete
price 40,000t080,000 .00 40000 79000 5040 Delete
(mills)
mileage Above 80,000(miles)range 80000 500000 5640 Delete
Figure 3: HDSampler attribute settings Figure 4: HDSampler showing histograms on the samples

of the data source being sampled. This module returns a set of3.5 Implementation Platform

candidate sample tuples which are then passed on to the Sampl HDSanpl er has been implemented and hosted on a Xeon Quad
Processor. Following an optimization proposed in [2], thisdule Core 2.4 GHz machine running Ubuntu. To enable web access to
also keeps track of the query history and results to ensatetlie this system, we used an Apache web server. The front end was
random query generation process accumulates savings ligsoet designed using a combination of HTML with Javascript (AJAX)
ing the same query twice, or queries whose results can beedfe AjaX enables the system to give the users a real time feel @y pr
from the query history. senting seamless updates to the sampling procedure. PHE alo
33 Sample Processor with MySQL was used to create the backend engine (Sample Gen-

erator and Sample Processor) behind this system.
The candidate samples obtained through the Sample Generato

module do not produce the best results in terms of minimizing 4 DEMO PLAN
skew. The sample processor module takes charge of the eaadid
samples and refines them by applying an acceptance-rejeszin-
pling technique based on the user specified requirementfdomp
mance and accuracy. Only a subset of the candidate samples wi
be included in the output of Sample Processor, while thersie
discarded. The final set of samples are stored in this modue a
are presented to the output module.

Overview: To facilitate the demo we poiriDSanpl er to two
data sources: (1) Google Base Vehicles database, and (2) a lo
cally simulated hidden database. Google Base illustrategge of
this system on a candidate real-world hidden databasensy3tee
HDSanpl er for Google Base can be started and analyzed over the
web using an Internet browser.
Audience Interactions: Our demo allows the audience to use a
3.4 Output Module web interface as shown in Figure 3 to specify the attributes a
value bindings of their interest, and adjust various sgtirelated
to the efficiency and skewness of sampling. Then, they cacifgpe
the number of samples to be collected and start the sampher. T
audience can also request the display of attribute histagthey
are interested in, as shown in Figure 4. They can also obseeve
recently collected samples, and stop the sampler at anytime

A demonstration video is included as a supplemental méateria
Backup Plan: In case of low connectivity at the demonstration
venue, we have also created a local implementation of thersys
on a simulated hidden data source. This can be run on a stanel-a
system. The local hidden database also allows us to deratastr
the effectiveness of the sampler since this time around rttiece
dataset can be accessed for validation.

The final set of samples found BDSanpl er can be used for
a variety of purposes by users and analysts. The output modul
presents the end users with a set of these final samples. gt tar
data analysts who wish to gain a quick understanding of the sa
pled datasetHDSanpl er generates histograms on the marginal
distributions of the attributes and their associated \&lughis is
just one method of representing the sampled dataset withed fix
set of users in mind. The set of samples can be used in a naeltitu
of ways (for example, to execute approximate aggregateagien
a resultant data cube). We provide an interface that all@gssuo
pose aggregate queries (count, sum and average) on a coioina
of attributes as an example application. This is a simplecase
and we encourage users of this system and domain expertsi® co
up with innovative techniques for making sense of the sasniple
their own settings. 5. SUMMARY

The entire system works in an incremental fashion where the In this demo, we presertiDSanpl er, a practical system for
Sample Generator, Sample Processor and Output moduleagener the efficient sampling of structured hidden web databasetheir
samples and updates the final sample set and histogramisetill t proprietary front-end search interfaces. Such samplebearery
desired number of samples are obtained. A kill switch hasbee effective for answering of aggregate queries, to providalyests
included to facilitate stopping the sampling proceduredsecthe with valuable information for data analytics, as well aghabwer
user is satisfied with the samples extracted thus far. a multitude of third-party applications such as web-mashapd

A screenshot of the interface of this module is shown in Fégur meta-search engines. We demonstrate a custorki@Sdnpl er

Results Validation: In the absence of access to the database being for G00gle Base, and evaluate its effectiveness in termsai-a
sampled, we resort to verifying our results on Google Baserby racy of estimating marginal distribution and efficiency ofwing
ploying the services of the BRUTE-FORCE-SAMPLER [1] which andom samples.

is proved to produce uniform random samples. However, BRUTE

FORCE-SAMPLER is extremely slow and thus cannot be used in 6. REFERENCES]

practice for efficient sampling. As proof of concept, we irte the [1] A. Dasgupta, G. Das, and H. Mannila. A random walk
marginal counts obtained by a long run of the Brute Force Sam- approach to sampling hidden databas#&MOD, 2007.

pler on Google Base for comparison with the histogram obthin ~ [2] A. Dasgupta, N. Zhang, and G. Das. Leveraging count
by HDSanpl er . information in sampling hidden databasksDE, 2009.

