
HDSampler: Revealing Data Behind Web Form Interfaces

Anirban Maiti Arjun Dasgupta
CSE Dept

UT Arlington
Arlington, TX, USA

{anirban.maiti, arjundasgupta}@uta.edu

Nan Zhang ∗

CS Dept
George Wash. Univ.

Washington, DC, USA
nzhang10@gwu.edu

Gautam Das †

CSE Dept
UT Arlington

Arlington, TX, USA
gdas@uta.edu

ABSTRACT
A large number of online databases are hidden behind the web.
Users to these systems can form queries through web forms to
retrieve a small sample of the database. Sampling such hidden
databases is widely desired for understanding the nature and qual-
ity of data stored in them. We have developedHDSampler, which
to the best of our knowledge is the first practical system for sam-
pling structured hidden web databases. It enables efficientsam-
pling of the databases and accurate answering of aggregate queries,
to provide analysts with valuable information for data analytics,
as well as help power a multitude of third-party applications such
as web-mashups and meta-search engines. For the purpose of this
demo, we present an instance ofHDSampler on Google Base - a
content-rich hidden web database maintained by Google. By using
HDSampler, the demo reveals a snapshot of the marginal distri-
bution of various attributes of Google Base in a matter of minutes.

Categories and Subject Descriptors
H.2.8 Database applications

General Terms
Algorithms, Design, Measurement, Performance

Keywords
Hidden databases, sampling, top-k interfaces

1. INTRODUCTION
Form-based web interface has become an increasingly popular

way for online data providers to furnish data to customers and end
users. The objective is to search capabilities of the data tointer-
ested users/customers without publishing the database in its en-
tirety. As an example, consider a large car dealership aiming to

∗Partially supported by NSF grants 0852673, 0852674 and
0845644
†Partially supported by NSF grants 0845644, 0812601 and grants
from Microsoft Research and Nokia Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGMOD’09 Providence, RI, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

enable inquiries to its inventory database. Instead of publishing a
long list of all inventory vehicles, they may instead provide a web
form to which any prospective customer can access using a web
browser. The web form allows a customer to construct a search
query by choosing desired values for a combination of attributes
such as make, model, price range, color, etc., and issue the query
to the (back-end) inventory database by clicking the submitbut-
ton. Then, the web form displays the query answers (e.g., vehicles
satisfying the search conditions) returned from the database after
applying certain restrictions, such as the maximum number of tu-
ples displayed per query. If the customer finds the results tobe too
broad or too narrow, s/he can refine or broaden the query by adding
or dropping attributes, until the desired results are returned. We call
such an interface as theConjunctive Web Form Interface.

The usage of a conjunctive web form interface enables person-
alized access for individual users, but also poses challenges to an-
alytics over hidden databases. Restrictions applied to thedisplay
of query results, especially a commonly used top-k strategy which
limits the results to the top-k tuples according to a ranking function,
makes it impossible to directly retrieve all tuples by issuing (SE-
LECT *)-like queries. As an increasing number of data providers
are adopting the conjunctive web form interface, a great deal of in-
terest has been generated in the research community on bypassing
these interfaces to support analytics over the valuable backend data.
Crawling these databases has been explored in depth by the infor-
mation retrieval community, primarily to facilitate the addition of
these datasets to a search engine’s index. Nonetheless, crawling a
very large hidden database can be extremely expensive, and could
be impossible when data providers limits the maximum numberof
queries that can be issued by an IP address.

We approach this problem from a different angle and speculate
that a tool which provides asneak peakto hidden data statistics
would be much more efficient while remaining useful. A data an-
alyst who desires information on the distribution of the data tuples
and other aggregate information about the data usually prefers fast
but approximate answers over precise answers that require an ex-
pensive crawl of the entire database. In the above example, if one
wants to learn the percentage of Japanese cars in the dealer’s in-
ventory, a very small number of uniform random samples of the
underlying database can provide a quite accurate answer. Finding
a small representative sample rather than a database crawl can thus
be used effectively for numerous analytical and decision-making
tasks. It can also help numerous third-party applications such as
web-mashups and meta-search engines, which often need to decide
on the quality and coverage of the data available at different hidden
web sources.

In [1], we proposed HIDDEN-DB-SAMPLER, an algorithm for
drawing simple random samples from a hidden database. Based

1

!

 a1 a2 a3

t1 0 0 1

t2 0 1 0

t3 0 1 1

t4 1 1 0

t1 t2

!

t3 t4

!

a1

a2

a3

 "

1

1

1

0

0 1 0

0 0 1 1 1 0

Figure 1: Query Tree of a Boolean Database

on the algorithm, this demo presentsHDSampler, a practical sys-
tem for sampling databases hidden behind conjunctive web form
interfaces.HDSampler provides an exploratory tool for data ana-
lysts and domain researchers to quickly draw samples from a hid-
den database to facilitate decision making tasks. It is a generic
tool that can be easily tailored to target various data sources behind
conjunctive web form interfaces. A set of input parameters are pro-
vided for performance tuning, in particular for a user to make a
proper tradeoff between the efficiency of sampling and the skew of
samples being drawn.

2. REVIEW OF HIDDEN-DB-SAMPLER
We start our discussion by a brief overview of HIDDEN-DB-

SAMPLER. Note that the main challenge to sample hidden databases
is that the top-k restriction prevents broad queries from being prop-
erly answered i.e., if a query is too broad (i.e., selects more thank

tuples), only the top-k tuples will be retrieved according to a rank-
ing function and returned as the query result. The interfacewill
also notify the user that there is anoverflow, i.e., that not all quali-
fying tuples are returned. Since the ranking function does not select
tuples randomly, a tuple returned by an overflowing query thus can-
not be used as a random sample. Such top-k restriction is enforced
by many web search interfaces such as Google (k = 1, 000), MSN
Career (k = 4, 000), Microsoft Solution Finder (k = 500), MSN
Stock Screener (k = 25), and so on.

To address this challenge, the basic idea is to perform a random
drill-down starting with extremely broad (and therefore overflow-
ing) queries, and iteratively narrowing it down by adding randomly
selected predicates, until a query with fewer thank qualifying tu-
ples is reached. Consider Figure 1 which shows a small Boolean
database and a binary tree with 4 levels, where thei-th level rep-
resents attributeai and the left (resp. right) edge leading out of
any internal node is labeled 0 (resp. 1). Thus, each path fromroot
to a leaf represents a specific assignment of Boolean values to at-
tributes, and the leaves represent potential tuples. HIDDEN-DB-
SAMPLER essentially performs a random walk down this tree, but
makes sure that only paths that lead to actual tuples are explored. In
particular, it first executes an under-specified query corresponding
to the root node (e.g., “SELECT * FROMD WHEREa1 = 0”).
If the query overflows, it is extended by adding a new randomly
selected constraint usinga2 (either “a2 = 0” or “ a2 = 1”). If it
returns 1 tok tuples without overflow, we randomly choose a re-
turned tuple as a sample. This drill-down process leads us toeither
a legitimate tuple, or an empty result. If the process returns empty,
we restart the random walk.

With HIDDEN-DB-SAMPLER, a tuple in a non-overflowing node
at higher levels of the tree is more likely to be returned thanone
at lower levels. Thus, the retrieved tuples are processed byan
acceptance-rejection sampling module before being used assam-
ples. This module provides a user an opportunity to make a tradeoff
between the uniformity of samples and the efficiency of sampling.
A highly uniform sample may take a long time (due to more re-
jections). However, a set of samples with moderate skew may be
obtained quite fast.

!"#$#%&"'(

)*+,-(",'(

.%/01"(

2","*%-+*(

.%/01"(

3*+4"&&+*(

56''",(

7%-%#%&"(

89-09-(:+'91"(

.%/01"&(

9- :

!"#(

)+*/(

1. Select sample size,

attributes, speed v/s

accuracy metrics

Objective: sample

hidden database

2. Map attribute

and values

3. Pass sampling

criteria as input to

Sample Generator

4. Get samples from Hidden

Database through web form
5. Collect and refine samples

6. Pass final

samples to the

Output module

7. Show

samples and

marginals to

user/analyst

!"#$%&'()

Figure 2: Architecture of the HDSampler

3. HDSAMPLER
Figure 2 depicts the architecture ofHDSampler. There are four

modules: web-based front end, sample generator, sample proces-
sor, and output module. In this section, we introduce the design of
each module respectively.

3.1 Web-based Front End
We remind the readers thatHDSampler is a generic tool which

can be applied to any hidden database with a conjunctive web form
interface. To customizeHDSampler to a specific data source, one
needs to specify the attributes and their domain values required for
forming queries.

Demo data source: In the demo, to demonstrate the power of
HDSampler on a popularly used system, we customize it toGoogle
BaseVehicles database1, a large online database formed and main-
tained by Google by integrating numerous vehicle-market data sources
and also inputs from individual data providers. The web interface
and API for Google Base is a typical conjunctive web form in-
terface which allows a user to retrieve tuples by forming queries
on any combination of attributes. The top-k restriction is applied
with k = 1000. We also bring to attention that the query counts
provided by the Google Base interface are approximate estimates
generated by some proprietary algorithm and are ignored forthe
purpose of this system.

Initializing the system: HDSampler allows a variety of settings
for users to specify their individual requirements. To begin with,
the users have the leeway to add and remove attribute and their
value bindings and pointHDSampler to either the whole dataset
or to a specific selection of attributes. The required numberof sam-
ples can also be specified. Figure 3 is a screenshot of this feature.

Performance v/s accuracy tradeoffs:Data analysts and users have
varying needs. Some want the sampling process to produce results
in a matter of minutes in order to make instant decisions. Others
may place more importance on obtaining skewless samples with
lower emphasis on time. Our system can be configured to meet ei-
ther need. We provide a slider with one end having the highestef-
ficiency and the other having the lowest skew. The inherent nature
of HDSampler dictates a balance between these two parameters
and we provides end users the flexibility to make a proper tradeoff
according to their needs.

3.2 Sample Generator
The sample generator module forms one part of the core engine

of HDSampler with the Sample processor forming the other part.
This module is responsible for generating and executing a sequence
of random queries according to the HIDDEN-DB-SAMPLER al-
gorithm. It leverages user inputs along with the attributesand their
bindings to form queries and submits them to the form interface

1http://www.google.com/base/html?a_n0=
vehicles&a_y0=9&hl=en&gl=us

2

Figure 3: HDSampler attribute settings Figure 4: HDSampler showing histograms on the samples

of the data source being sampled. This module returns a set of
candidate sample tuples which are then passed on to the Sample
Processor. Following an optimization proposed in [2], thismodule
also keeps track of the query history and results to ensure that the
random query generation process accumulates savings by notissu-
ing the same query twice, or queries whose results can be inferred
from the query history.

3.3 Sample Processor
The candidate samples obtained through the Sample Generator

module do not produce the best results in terms of minimizing
skew. The sample processor module takes charge of the candidate
samples and refines them by applying an acceptance-rejection sam-
pling technique based on the user specified requirement for perfor-
mance and accuracy. Only a subset of the candidate samples will
be included in the output of Sample Processor, while the others are
discarded. The final set of samples are stored in this module and
are presented to the output module.

3.4 Output Module
The final set of samples found byHDSampler can be used for

a variety of purposes by users and analysts. The output module
presents the end users with a set of these final samples. To target
data analysts who wish to gain a quick understanding of the sam-
pled dataset,HDSampler generates histograms on the marginal
distributions of the attributes and their associated values. This is
just one method of representing the sampled dataset with a fixed
set of users in mind. The set of samples can be used in a multitude
of ways (for example, to execute approximate aggregate queries on
a resultant data cube). We provide an interface that allows users to
pose aggregate queries (count, sum and average) on a combination
of attributes as an example application. This is a simple usecase
and we encourage users of this system and domain experts to come
up with innovative techniques for making sense of the samples in
their own settings.

The entire system works in an incremental fashion where the
Sample Generator, Sample Processor and Output module generate
samples and updates the final sample set and histograms till the
desired number of samples are obtained. A kill switch has been
included to facilitate stopping the sampling procedure in case the
user is satisfied with the samples extracted thus far.

A screenshot of the interface of this module is shown in Figure 4.

Results Validation: In the absence of access to the database being
sampled, we resort to verifying our results on Google Base byem-
ploying the services of the BRUTE-FORCE-SAMPLER [1] which
is proved to produce uniform random samples. However, BRUTE-
FORCE-SAMPLER is extremely slow and thus cannot be used in
practice for efficient sampling. As proof of concept, we include the
marginal counts obtained by a long run of the Brute Force Sam-
pler on Google Base for comparison with the histogram obtained
by HDSampler.

3.5 Implementation Platform
HDSampler has been implemented and hosted on a Xeon Quad

Core 2.4 GHz machine running Ubuntu. To enable web access to
this system, we used an Apache web server. The front end was
designed using a combination of HTML with Javascript (AJAX).
AJAX enables the system to give the users a real time feel by pre-
senting seamless updates to the sampling procedure. PHP along
with MySQL was used to create the backend engine (Sample Gen-
erator and Sample Processor) behind this system.

4. DEMO PLAN
Overview: To facilitate the demo we pointHDSampler to two
data sources: (1) Google Base Vehicles database, and (2) a lo-
cally simulated hidden database. Google Base illustrates the use of
this system on a candidate real-world hidden database system. The
HDSampler for Google Base can be started and analyzed over the
web using an Internet browser.
Audience Interactions: Our demo allows the audience to use a
web interface as shown in Figure 3 to specify the attributes and
value bindings of their interest, and adjust various settings related
to the efficiency and skewness of sampling. Then, they can specify
the number of samples to be collected and start the sampler. The
audience can also request the display of attribute histograms they
are interested in, as shown in Figure 4. They can also observethe
recently collected samples, and stop the sampler at anytime.

A demonstration video is included as a supplemental material.
Backup Plan: In case of low connectivity at the demonstration
venue, we have also created a local implementation of the system
on a simulated hidden data source. This can be run on a stand-alone
system. The local hidden database also allows us to demonstrate
the effectiveness of the sampler since this time around the entire
dataset can be accessed for validation.

5. SUMMARY
In this demo, we presentHDSampler, a practical system for

the efficient sampling of structured hidden web databases via their
proprietary front-end search interfaces. Such samples canbe very
effective for answering of aggregate queries, to provide analysts
with valuable information for data analytics, as well as help power
a multitude of third-party applications such as web-mashups and
meta-search engines. We demonstrate a customizedHDSampler
for Google Base, and evaluate its effectiveness in terms of accu-
racy of estimating marginal distribution and efficiency of drawing
random samples.

6. REFERENCES
[1] A. Dasgupta, G. Das, and H. Mannila. A random walk

approach to sampling hidden databases.SIGMOD, 2007.
[2] A. Dasgupta, N. Zhang, and G. Das. Leveraging count

information in sampling hidden databases.ICDE, 2009.

3

