
The Discrete Basis Problem
Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki Mannila

Abstract—Matrix decomposition methods represent a data matrix as a product of two factor matrices: one containing basis vectors

that represent meaningful concepts in the data and another describing how the observed data can be expressed as combinations of

the basis vectors. Decomposition methods have been studied extensively, but many methods return real-valued matrices. Interpreting

real-valued factor matrices is hard if the original data is Boolean. In this paper, we describe a matrix decomposition formulation for

Boolean data, the Discrete Basis Problem. The problem seeks for a Boolean decomposition of a binary matrix, thus allowing the user to

easily interpret the basis vectors. We also describe a variation of the problem, the Discrete Basis Partitioning Problem. We show that

both problems are NP-hard. For the Discrete Basis Problem, we give a simple greedy algorithm for solving it; for the Discrete Basis

Partitioning Problem, we show how it can be solved using existing methods. We present experimental results for the greedy algorithm

and compare it against other well-known methods. Our algorithm gives intuitive basis vectors, but its reconstruction error is usually

larger than with the real-valued methods. We discuss the reasons for this behavior.

Index Terms—Mining methods and algorithms, clustering, classification, and association rules, text mining.

Ç

1 INTRODUCTION

GIVEN an n�m matrix C and an integer k < m,
classical matrix decomposition methods aim at

finding an n� k matrix S and a k�m matrix B such
that C can be approximately represented as the product
of S and B. The decomposition method represents the
data by using k components: The matrix B tells how the
components are related to the original attributes (col-
umns), and the matrix S indicates how strongly each
component is related to each row.

Singular value decomposition (SVD) [2] and nonnegative
matrix factorization (NMF) [3] are typical examples of
decomposition methods; the difference between the two is
that NMF assumes nonnegative C and requires that S and B

are nonnegative. Other matrix decomposition methods
include latent Dirichlet allocation (LDA) [4] and multi-
nomial PCA [5]; see Section 3 for additional discussion of
related work.

These (and other) matrix decomposition methods allow
the matrices S and B to contain arbitrary real numbers.
However, if the input matrix C is binary, it is natural to
require that S and B are also binary. In this paper, we
consider the matrix decomposition problem created by this
requirement. In this case, the combination operation of

matrices S and B is the Boolean matrix product (i.e., the
matrix product in the semiring of Boolean ^ and _).

The intuition behind using Boolean operations in the
matrix decompositions is that sometimes the counts of the
objects do not matter. For example, consider a course
enrollment data set in a CS Department. Such a data set
indicates which students enroll to which courses. Naturally,
courses are divided into specialization areas. A student X
interested in the Systems specialization needs to take,
among others, courses on Operating Systems and Program-
ming languages, and a student Y interested in the Software
specialization needs to take courses on Compilers and
Programming languages. On the other hand, a student Z
interested in combining both of the above two specializa-
tions should take all courses: Compilers, Operating systems,
and Programming languages (among others). Clearly, the
student Z should be accounted for taking Programming
languages only once. Thus, the set union operation is more
appropriate for describing the actual data from the basis
vectors (specialization areas).

Following the intuition in the previous example, we
formulate the problem of finding a decomposition into
binary matrices that give the best approximation to the input
matrix. We call this problem the Discrete Basis Problem (DBP).

We show that DBP is NP-hard and it cannot be
approximated unless P ¼ NP. We give a simple greedy
algorithm for solving DBP and assess its empirical perfor-
mance. We show that the algorithm produces intuitively
appealing basis vectors. On the other hand, the continuous
decomposition methods often give better reconstruction
accuracies and are also stronger in providing predictive
features for classification. We discuss the reasons for this
behavior.

In addition to DBP, we also define and consider a
variation of it, namely, the Discrete Basis Partitioning Problem
(DBPP). It adds a restriction to the type of feasible answers.
While this restriction makes the answers somewhat less
intuitive, and while the problem is still NP-hard, we show
that, unlike DBP, DBPP can be approximated within a
constant factor.

1348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

. P. Miettinen and H. Mannila are with the Helsinki Institute for
Information Technology, University of Helsinki and Helsinki University
of Technology, PO Box 68 (Gustaf Hällströmin katu 2b), FI-00014
University of Helsinki, Finland.
E-mail: {pamietti, heikki.mannila}@cs.helsinki.fi.

. T. Mielikäinen is with the Palo Alto Systems Research Center, Nokia,
955 Page Mill Road, Palo Alto, CA 94304.
E-mail: taneli.mielikainen@nokia.com.

. A. Gionis is with Yahoo! Research, Barcelona, Ocata 1, 08003 Barcelona,
Spain. E-mail: gionis@yahoo-inc.com.

. G. Das is with the Computer Science and Engineering Department,
University of Texas at Arlington, 416 Yates Street, 302, Nedderman Hall,
Arlington, TX 76019. E-mail: gdas@cse.uta.edu.

Manuscript received 9 May 2007; revised 11 Dec. 2007; accepted 14 Feb.
2008; published online 5 Mar. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2007-05-0205.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

The rest of this paper is organized as follows: In Section 2,

we formally define DBP and DBPP. In Section 3, we review

related work, and in Section 4, we compare continuous and

discrete matrix decomposition approaches. In Section 5, we

discuss issues related to the computational complexity of

DBP and DBPP. In Section 6, we present our greedy

algorithm, and in Section 7, we report experimental results.

Finally, Section 8 is a short conclusion.

2 PROBLEM DEFINITIONS

Consider an n�m binary matrix C. The rows of the matrix

represent observations, and the columns represent the

attributes of the data set. For instance, in a document

corpus data set, rows are documents and columns are

words, and cij ¼ 1 denotes that the ith document contains

the jth word.
A basis vector, intuitively, represents a set of correlated

attributes. In the document corpus example, a basis vector

corresponds to a set of words that constitutes a topic. The

DBP formulation aims at discovering the topics that are

present in the data set and also at discovering how each

observation (document) in the data set can be expressed by

a combination of those topics.
Let S and B be binary matrices of dimensions n� k and

k�m, respectively. Let n�m matrix P ¼ S �B denote the

Boolean product of S and B, i.e., the matrix product with

addition defined by 1þ 1 ¼ 1. The ith row of P is the logical

OR of the rows of B for which the corresponding entry in

the ith row of S is 1. Intuitively, S is the usage matrix, i.e., it

contains information about which topics appear in each

observation, and B is the basis vector matrix, i.e., it contains

information about which attributes appear in each topic.
The goal in the DBP is to find k basis vectors b 2 f0; 1gm

such that the given data vectors c 2 f0; 1gm can be

represented (accurately) by using disjunctions of the basis

vectors. The key aspect of the formulation is that both

decomposition matrices, S and B, are required to be binary

and are thus more easily interpretable than arbitrary real

matrices. Formally, DBP is defined as follows:

Problem 1 (the Discrete Basis Problem). Given a binary n�
m matrix C and a positive integer k, find an n� k binary

matrix S and a k�m binary matrix B that minimize

jC� S �Bj ¼
Xn
i¼1

Xm
j¼1

cij � ðS �BÞij
��� ���: ð1Þ

DBPP differs from DBP by an extra constraint to the

matrix B: it is required to be a partition of the columns. An

n�m binary matrix B is a partition (of the columns), if, for

each column b�j of B, there exists exactly one row bi such

that bij ¼ 1. (Interpreting B as a collection of n sets over a

universe of m elements should clarify the notion.) DBPP is

given as follows:

Problem 2 (the Discrete Basis Partitioning Problem). Given

a binary n�m matrix C and a positive integer k, find an

n� k binary matrix S and a k�m binary matrix B so that B

is a partition, and S and B minimize

Xn
i¼1

Xm
j¼1

cij � ðS �BÞij
��� ���: ð2Þ

The extra constraint introduced by DBPP potentially
makes the decomposition less intuitive. For example, with
corpus data it does not sound very intuitive to require that
all words belong to some basis vector and that none of the
words should belong to two or more basis vectors. Indeed,
in this paper, DBPP has a theoretically oriented role. It will
serve as a link between DBP and other better-known
problems, as we will see in Sections 4 and 5.

3 RELATED WORK

Probably the best-known method to decompose a matrix is
the SVD [2]. It decomposes a matrix A into the form U�VT ,
where U and V are orthonormal matrices and � is a
diagonal matrix with positive entries—the singular values
of A. SVD gives the optimal rank-k approximation of the
matrix A (simply by setting all but the k largest singular
values to 0). Optimality of SVD means that the approxima-
tion produced by SVD is the best with respect to the squared
reconstruction error and using normal matrix multiplication
for real matrices. SVD has been widely used in data mining
for matrix simplification and topic identification.

One problem with SVD is that the factor matrices can also
contain negative values that are difficult to interpret (see
also Section 4). In NMF, the factor matrices are required to
have only nonnegative values. Early formulations of the
NMF problem include those of Paatero and Tapper [6],
where they call it “positive matrix factorization,” and
Cohen and Rothblum [7]. However, probably the most
famous formulation is due to Lee and Seung [3]. Since their
article, the problem has attained a lot of research and many
algorithms are developed for it; for a recent survey, see [8].

In addition to SVD and NMF, many other matrix
decomposition methods have been proposed, many of
which are based on probabilistic models. Such methods
include multinomial PCA [5], probabilistic Latent Seman-
tic Indexing (PLSI) [9], and LDA [4]. All of these methods
are related to a more general model, Gamma-Poisson
model [10].

While the aforementioned methods are similar to DBP

in many ways, they all assume non-Boolean data (i.e.,
real- or integer-valued data). Probabilistic methods as-
suming Boolean data include, for example, aspect
Bernoulli models [11], topic models [12], and logistic
PCA (LPCA) [13]. LPCA has similarities with DBP: Given
an n�m data matrix D and an integer k, LPCA finds an
n� k coefficient matrix U and a k�m basis vector matrix
V. However, unlike in DBP, these matrices are not
Boolean. Instead, they are real-valued, and their product
defines an element-wise probability distribution for
Boolean n�m matrices: The probability that dij ¼ 1 given
the product UV ¼ �, Prðdij ¼ 1j�ijÞ, is defined to be
�ð�ijÞ ¼ ð1þ e��ijÞ�1, i.e., the sigmoid (or logistic) func-
tion of �ij.

Semidiscrete decomposition [14] lies between SVD and
DBP. Like SVD, semidiscrete decomposition decomposes a
given matrix into three matrices, U, �, and V, but the
values of U and V are restricted to �1, 0, and 1 only.

MIETTINEN ET AL.: THE DISCRETE BASIS PROBLEM 1349

Semidiscrete decomposition was originally designed for
image compression [14] but has since been used, e.g., in
information retrieval [15].

CUR- and CX-type decompositions have recently attained
some research interests (e.g., [16] and [17]). In a CUR

decomposition, a matrix D is represented as a product of
three matrices, C, U, and R. Matrix C has c columns from
D, matrix R has r rows from D, and matrix U is selected so
that the product CUR is close to D. In a CX decomposition,
D is represented as a product CX, where C again contains a
subset of columns from D, and X is an arbitrary coefficient
matrix selected to minimize the representation error. For
more information, see [18] and references therein.

Likewise, hierarchical descriptions of binary data have
been studied: the Proximus framework constructs a hier-
archical clustering of rows of a given binary matrix [19] and
hierarchical tiles are probabilistic models hierarchically
decomposing a binary matrix into almost monochromatic
0-1 submatrices [20].

Tiling transaction databases (i.e., binary matrices) is
another line of related research [21]. A tiling covers a given
binary matrix with a small number of submatrices full of 1s.
The main difference to DBP is that no 0s can be covered in a
feasible tiling. Methods have been developed for finding
also large approximate tiles, for example fault-tolerant
patterns [22] and conjunctive clusters [23], but obtaining an
accurate description of the whole data set with a small
number of approximate tiles has not been explicitly studied
previously.

Boolean factorization, i.e., factoring Boolean functions
[24], is an important part of logic synthesis. Rectangular
coverings of Boolean matrices are one method used to
obtain good factorizations. However, the weight functions
used and the acceptance of noise are different to those of
our work.

In coclustering (or biclustering), the goal is to cluster
simultaneously both dimensions of a matrix [25]. A
cocluster is thus a pair ðR;CÞ, R giving the indices of rows
and C giving the indices of columns. Decomposing a
Boolean matrix into two matrices can be seen as a
coclustering of binary data where the clusters can overlap.
The idea of coclustering was originally proposed by
Hartigan in 1972 [25], but it has gained a lot of attention
recently, and many new methods have been proposed; see,
for example, [26], [27], and [28].

After the publication of a preliminary version of this
paper [1], Vaidya et al. [29] have shown how the DBP

lends itself to role-based access control framework. Vaidya
et al. show that the DBP as we present it here is exactly the
Minimal Noise Role Mining Problem; the latter problem is
defined by Vaidya et al. and claimed to have pragmatic
implications [29]. In addition, in a recent paper related to
[29], Lu et al. [30] formulate DBP as an integer program-
ming problem with exponential number of variables and
constraints.

4 CONTINUOUS AND DISCRETE DECOMPOSITIONS

In this section, we discuss the properties of continuous and
discrete approaches to matrix decomposition, and in
particular, the properties of SVD as compared to those of

DBP. Most of this section is about matrix ranks. Different
decompositions induce different ranks, and these induced
ranks are an important tool on studying the relationships
between decompositions.

4.1 Matrix Decompositions and Matrix Ranks

Before going to the ranks, let us study a simple example
demonstrating some properties of SVD and DBP. In SVD, the
resulting matrices, U and V, have real-valued and even
negative entries, so they do not necessarily have an intuitive
interpretation. For obtaining intuition from a concrete
example, consider the toy data set representing student
enrollments in university courses, as in the example
mentioned in the Introduction. In particular, let C be a 3
� 3 Boolean matrix, where the rows represent the students
X, Y , and Z, and the columns denote the courses Operating
systems, Programming languages, and Compilers:

C ¼
1 1 0
1 1 1
0 1 1

0
@

1
A:

The rank-2 SVD of C is

U�VT ¼
0:50 0:71
0:71 0
0:50 �0:71

0
@

1
A 2:41 0

0 1

� � 0:50 0:71
0:71 0
0:50 �0:71

0
@

1
AT

:

The basis vectors in V are not easy to interpret. Matrix C

has rank 3, and the approximation to C produced by SVD

with rank-2 decomposition is

U�VT ¼
1:10 0:85 0:10
0:85 1:21 0:85
0:10 0:85 1:10

0
@

1
A:

By the optimality of SVD, this is the best that can be
achieved by looking at real matrices of rank 2 and squared
error.

On the other hand, DBP produces the representation

C ¼
1 1 0
1 1 1
0 1 1

0
@

1
A ¼ 1 0

1 1
0 1

0
@

1
A � 1 1 0

0 1 1

� �
;

which has no error and is easy to understand. In our
example’s framework, the columns of the first factor matrix
assign students to different specialization areas and the
rows of the second factor matrix define the courses required
in each specialization area.

As noted above, SVD produces optimal rank-k represen-
tations of matrices with respect to the Frobenius norm (sum
of squares of elements). It is also relatively fast to compute,
requiring time Oðnmminfn;mgÞ [2].

Optimality for arbitrary matrices is not the whole story,
however. For binary matrices, one can study different types
of ranks. The real rank rRðCÞ of a binary matrix C is simply
the smallest value of k such that C ¼ SB with an n� k
matrix S, a k�m matrix B, and using normal matrix
multiplication. The nonnegative rank rRþðCÞ of C is similar to
the real rank, but the factor matrices are restricted to have
only nonnegative values. The nonnegative integer rank rNðCÞ
of C further restricts the factor matrices S and B: In

1350 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

nonnegative integer rank, matrices S and B can only
contain nonnegative integers. Finally, the Boolean rank rBðCÞ
of C is the smallest k such that C ¼ S �B, where S is an
n� k binary matrix, B is a k�m binary matrix, and the
matrix multiplication is Boolean.

The Boolean rank is thus the smallest k such that we can
solve DBP with zero error, the real rank is the smallest k
such that SVD will give zero error, and the nonnegative rank
is the smallest k such that NMF can give zero error. For
DBPP, it follows from the requirement of the matrix B being
a partition that the normal arithmetic could be used in the
matrix multiplication: all of the summations involved in the
matrix multiplication can have at most one nonzero term.
Thus, the nonnegative integer rank is a lower bound for k
such that we can solve DBPP with zero error. It is, however,
only a lower bound: The requirement that B is a partition is
a sufficient, yet not necessary, condition to make sure that
the product SB is a binary matrix.

The concepts of real and Boolean ranks discuss the exact
representation of the matrix C, and we are more interested
in the approximate representation. One could define the
"-ranks r"RðCÞ, r"RþðCÞ, r"NðCÞ, and r"BðCÞ to be otherwise as
their non-" versions, but instead of an exact decomposition,
they ask for a decomposition that does not cause more than
" error in the reconstruction. For example, the r"BðCÞ of an
n�m binary matrix C is the smallest k such that jC� S �
Bj � " with S 2 f0; 1gn�k and B 2 f0; 1gk�m.

4.2 Relations between Ranks

There has been some study with respect to the relations of
these ranks (cf. [31], [32]). In particular, the following
inequalities hold for the nonnegative rank of a binary
matrix C [32]:

rRðCÞ � rRþðCÞ ð3Þ

and

rBðCÞ � rRþðCÞ: ð4Þ

Similar inequalities hold also for the nonnegative integer
rank of a binary matrix C [32]:

rRðCÞ � rNðCÞ ð5Þ

and

rBðCÞ � rNðCÞ: ð6Þ

Inequality (5) follows because both ranks use the same
arithmetic, and (6) follows because the factor matrices are
binary in both cases.

Between the real and Boolean ranks, there are no clear
relations. It can be shown that there are binary matrices C

for which rRðCÞ < rBðCÞ and vice versa [31]. The comple-
ment of the identity matrix of size n� n is an example
where rBðCÞ ¼ OðlognÞ, but rRðCÞ ¼ n [31]. This shows
that while SVD can use the space of real ranks, DBP can take
advantage of the properties of Boolean operations to
achieve much smaller rank than SVD. Empirical experi-
ments on generated data support this conclusion. Thus, it is
not a priori obvious that SVD will produce more concise
representations than the Boolean methods.

Computing the real rank is easy (excluding the precision
issues) and can be done, e.g., using SVD: The real rank of a
matrix is the number of its nonzero singular values.
Computing the Boolean rank, however, is NP-complete:
identifying a binary matrix as an adjacency matrix of some
bipartite graph G, the Boolean rank of that matrix is exactly
the number of complete bipartite subgraphs needed to
cover all edges of G [31]. This problem, covering by
complete bipartite subgraphs, is well known to be NP-
complete [33, problem GT18].

Approximating Boolean rank is also hard. In [34], it is
shown to be as hard to approximate as the problem of
partitioning a graph into cliques [33, problem GT15]
(equivalently, as hard to approximate as the minimum
chromatic number). Yet, there exist some upper and lower
bounds for the Boolean rank, and the relation between the
Boolean and real ranks is known in some special cases; see
[31] and references therein. Finally, the problem “Given C
and k, is rBðCÞ � k?” is fixed-parameter tractable, i.e., it can be
solved in time polynomial to the size of C, assuming that k
is fixed [35], [36].

In the case of "-ranks, inequality (4) does not hold, but
inequality (3) does hold. For nonnegative integer rank, the
upper bound property of course carries over in both cases:

r"RðCÞ � r"NðCÞ ð7Þ

and

r"BðCÞ � r"NðCÞ: ð8Þ

In other words, knowing that one can solve DBPP with
parameter k and error ", one knows that the same error is
attainable in DBP with parameter k0 � k, or with the same
parameter, the error "0 � " can be achieved. Similar results
also hold for the real-valued decompositions.

Otherwise, even less seems to be known about "-ranks
than about exact ranks. One goal of this paper is to
investigate empirically and theoretically whether the
Boolean decompositions are feasible alternatives of the
continuous methods.

5 COMPUTATIONAL COMPLEXITY

In this section, we study the computational complexity of
DBP and DBPP. We show that both of the problems are NP-
hard to solve exactly and prove that DBP is NP-hard to
approximate within any factor, while DBPP can be approxi-
mated within a constant factor. Especially, we show how
DBPP is related to the well-known Metric k-Median Problem;
our results concerning DBPP then follow from this relation.

5.1 The Discrete Basis Problem

The DBP is an optimization problem: Find the matrix
decomposition into k basis vectors that minimizes the
representation error according to the definition of Pro-
blem 1. To put the problem in the perspective of complexity
theory, we formulate the decision version of the problem.
This is defined as in Problem 1, but additionally, we are
given a target cost t and the task is to decide whether there
is a decomposition of the input binary matrix C into binary
matrices S and B that yields an error at most equal to t.

MIETTINEN ET AL.: THE DISCRETE BASIS PROBLEM 1351

The NP-completeness of the decision version of DBP

could be proved by a reduction from the problem of
computing the Boolean rank. However, we will give a
reduction from a different NP-complete problem, the Set
Basis Problem (SBP) [33, problem SP7].

Problem 3 (SBP). Given a collection C of subsets of a finite
universe U and a positive integer k, decide whether or not there
is a collection B � 2U of at most k sets ðjBj � kÞ such that for
every set C 2 C there is a subcollection BC � B withS
B2BC B ¼ C.

We will show that SBP is a special case of DBP, and that
the decision version of DBP is in NP.

Theorem 1. The decision version of DBP is NP-complete.

Proof. For any instance of SBP, there is an equivalent instance
of DBP with t ¼ 0, even when only the matrix B is
requested. Since the exact decomposition is requested, if
we are given matrix B, we can construct S row by row in
polynomial time simply by selecting greedily all those
rows of B that do not cover any 0s in input data. If B is
indeed a part of an exact decomposition, then this greedy
procedure will result in correct S. Hence, DBP is NP-hard.

Finally, it is immediate that the decision version of
DBP is in NP, because the sizes of B and S are
polynomial in the size of C. tu

The reduction from SBP to DBP with t ¼ 0 implies also
the following inapproximability result:

Theorem 2. DBP cannot be approximated within any factor in
polynomial time, unless P ¼ NP.

Note that solving SBP is equivalent to computing the
Boolean rank: The result of SBP with parameter k is “yes”
if and only if the Boolean rank of the matrix is at most k.
Likewise, finding the set basis is (polynomial-time)
equivalent to finding the exact Boolean decomposition:
set basis is exactly the matrix B, and given B, the matrix
S can be solved in polynomial time if we want an exact
decomposition.

The problem of solving the whole approximate decom-
position of the matrix for given basis vectors, i.e., finding
the matrix S for given B and C, can be solved by a
straightforward algorithm in time Oð2kmnÞ, where k is the
number of basis vectors (i.e., the number of rows in B): each
of the n rows in C can be decomposed independently and
there are only 2k different ways to choose a subset of basis
vectors. Thus, the problem of finding the optimal decom-
position, given that a basis vector matrix is known, is also
fixed-parameter tractable (see [35] and [36]).

5.2 The Discrete Basis Partitioning Problem

A main source of difficulties in DBP seems to be in the
overlapping basis vectors. Hence, it is natural to ask
whether the problem becomes easier if the basis vectors
do not overlap. Such a variant of DBP is the DBPP. To see
that DBPP can indeed be easier than DBP, consider the case
where no error is allowed. Then, DBP is NP-hard, but DBPP

can be solved in time linear in the number of ones in the
input matrix since the basis vectors are exactly the maximal
sets of identical columns.

First, we express DBPP as a clustering problem: the
Binary k-Median Problem (BKMP). We will show that DBPP

and BKMP are equivalent problems, in the sense that all
results regarding the computational complexity and ap-
proximation of one of these problems carry over to the
other. We can then consider only the complexity and
approximation of BKMP, obtaining simultaneously the same
answers for DBPP.

Problem 4 (BKMP). Given a set C of Boolean m-dimensional

vectors with jCj ¼ n and a positive integer k, find a set M ¼
f��1; . . . ; ��kg of Boolean m-dimensional vectors (the med-

ians), and a partition D ¼ fD1; . . . ; Dkg of C such that M

and D minimize

Xk
j¼1

X
c2Dj

k�j � ck1; ð9Þ

where k � k1 is the Hamming norm.

Note that in the above definition, the vectors ��j are
allowed to be arbitrary Boolean vectors, i.e., M does not
have to be a subset of C. If this is not the case, i.e., M � C is
required, the problem is known as the (Binary) Metric
k-Median Problem. The Metric k-Median Problem will be
our starting point for studying the complexity of BKMP.
However, before that, we prove the aforementioned
connection between DBPP and BKMP.

We show that DBPP and BKMP are equivalent, that is,
given an instance of one of the two problems we can
transform it to an instance of the other problem having a
solution of the same cost.

Theorem 3. DBPP and BKMP are equivalent problems.

Proof. We show that given an instance of each of the
problems we can transform it to an instance of the other
problem having a solution of the same cost.

First, we define the mapping for the inputs. Given an
input matrix C and an integer k, the mapping simply
transposes C and keeps k intact. It can be used to
transform an instance of DBPP to an instance of BKMP

and vice versa.
Second, we consider how to map the solutions from

one problem to the other. Let S and B be two matrices
defining a solution for the given instance of DBPP.
Identify set M as a k�m matrix M. We define M to be
the transpose of S, and the sets of the partition D to be
such that the vector c0j belongs into the set Di 2 D if and
only if ðBÞij ¼ 1.

Hence, the idea is that the instances and feasible
solutions of BKMP are the transposes of those of DBPP.
The costs of solutions are equal since the cost of BKMP is
just

Xm
i¼1

Xn
j¼1

ðCT Þij � ðBT � ST Þij
��� ���; ð10Þ

due to the definitions of the mappings. tu
We approach the computational complexity of DBPP by

studying the computational complexity of BKMP. Again, we
need to consider the decision version of BKMP: we are given

1352 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

an instance of BKMP and a target cost t, and the question is,
is there a solution to the BKMP instance with cost at most t?

Lemma 1. The decision version of the BKMP is NP-complete.

Proof. First, notice that BKMP belongs in NP.
As a notational convention, we use ½N � to denote the

set f0; 1; . . . ; Ng throughout this proof. To prove the NP-
hardness, we show a reduction to BKMP from the
following problem:

Problem 5. Let k and t be positive integers and let A be a set of n

2D points so that if ða1; a2Þ, ða01; a02Þ 2 A, then

jai � a0ij : i ¼ 1; 2
� �

� ½N �; ð11Þ

where N is polynomially bounded by n. Is there a set B ¼
fb1; . . . ;bkg of 2D points and a partition E ¼ fE1; . . . ; Ekg of

A such that

Xk
j¼1

X
a2Ej
kbj � ak1 � t? ð12Þ

Problem 5 was used by Megiddo and Supowit [37] to
prove the NP-hardness of the 2D k-median problem.
Even though Megiddo and Supowit do not explicitly
state Problem 5, they prove that it is NP-complete.

We now show how to reduce an instance ðA; k; tÞ of
Problem 5 to an instance ðC; k; tÞ of the decision version
of BKMP so that the answer to ðC; k; tÞ is “yes” if and only
if the answer to ðA; k; tÞ is “yes.”

Consider an instance of Problem 5, i.e., a triplet
ðA; k; tÞ. Without loss of generality, we may assume that
the points in A are in the nonnegative quadrant of the
real plane. Furthermore, due to restriction (11), we may
assume that A � ½N � � ½N�.

We note that the sum of the Hamming distances is
minimized by the coordinate-wise median of the points
in the sum. That is, for any solution ðB; EÞ minimizing
(12), we may assume that B � ½N � � ½N�.

For the reduction, we need to embed the points of A
into a Boolean space. To obtain such an embedding,
notice that

ka� a0k1 : a; a0 2 A
� �

� ½2N �:

We can use the standard technique of writing the
coordinates of points of A in unary in order to embed
A into an 8N-dimensional Boolean space. It is straightfor-
ward to see that this embedding does not change the
Hamming distance between the points. Furthermore,
since N is polynomially bounded in n, the reduction is
polynomial.

Finally, consider a solution ðM;DÞ of instance ðC; kÞ
so that (9) evaluates to at most t. Because points in C
represent two integers written in unary, and because we
can assume that the points in M are coordinate-wise
medians of subsets of points in C, we see that also points
in M represent two integers written in unary. Thus,
using the reverse of the above reduction, we can have a
solution ðB; EÞ of the original instance ðA; kÞ so that (12)
evaluates to at most t. tu
The following two corollaries are immediate implications

of Theorem 3 and Lemma 1.

Corollary 1. DBPP is NP-hard.

Corollary 2. If we can approximate BKMP within a factor r, then
we can approximate DBPP within the same approximation
factor and vice versa.

The BKMP can be approximated within a factor of at most
10. To see this, recall that in the (Binary) Metric k-Median
Problem, set M is required to be a subset of set C. An
answer to the Binary Metric k-Median Problem is clearly a
valid answer to BKMP, too, and—due to the triangle
inequality—the error of an optimal answer to it is at most
twice as large as the error of the optimal answer to BKMP.

Thus, an approximation algorithm for the Metric
k-Median Problem with an approximation factor r is an
approximation algorithm for BKMP with an approximation
factor 2r. The claim now follows, because for example Arya
et al. [38] have proposed an approximation algorithm for
the Metric k-Median Problem with an approximation ratio
of at most 5.

6 THE ALGORITHMS

In this section, we give an algorithm for DBP. We will not
give an algorithm for DBPP, since, as Corollary 2 stated, we
can use any of the existing algorithms for the Metric
k-Median Problem to solve it. Section 6.1 describes the basic
version of the algorithm, and Section 6.2 introduces some
simple improvements to it.

6.1 The Basic Algorithm

We will now give a simple greedy algorithm for DBP. The
basic idea of the algorithm is to exploit the correlations
between the columns: First, the associations between every
two columns are computed. Second, the associations are
used to form candidate basis vectors. Third, a small set of
candidate basis vectors is selected in a greedy way to form
the basis. The algorithm is described in pseudocode in
Algorithm 1 below.

In the rest of the section, we denote a row vector of a
matrix M by mi, a column vector by m�i, and a matrix entry
by mij. Furthermore, if M has n rows and I � f1; . . . ; ng,
then MI is the submatrix of M that contains the rows mi,
i 2 I. The indicator function 1ðP Þ takes a value of 1 if
proposition P is true and 0 otherwise.

The confidence of an association between the ith and jth
columns of matrix C is defined as in association rule mining
[39], i.e., cði) j;CÞ ¼ hc�i; c�ji=hc�i; c�ii, where h�; �i is the
vector inner product operation. An association between
columns i and j is �-strong if cði) j;CÞ 	 � .

Algorithm 1 An algorithm for the DBP (ASSO).

Input: A matrix C 2 f0; 1gn�m for data, a positive integer k,

a threshold value � 2�0; 1�, and real-valued weights wþ

and w�.
Output: Matrices B 2 f0; 1gk�m and S 2 f0; 1gn�k.

1: function ASSO ðC; k; �; wþ; w�Þ
2: for i ¼ 1; . . . ;m do . Construct matrix A row by

row.

3: ai 1ðcði) j;CÞ 	 �Þð Þmj¼1

4: B ½ �, S ½ � . B and S are empty matrices.

MIETTINEN ET AL.: THE DISCRETE BASIS PROBLEM 1353

5: for l ¼ 1; . . . ; k do . Select the k basis vectors
from A.

6: ðai; sÞ arg maxai;s2f0;1gn�1

cover B
ai

h i
; ½S s�;C; wþ; w�

� �
7: B B

ai

h i
, S ½S s�

8: return B and S

We construct an association matrix A where row ai
consists of 1’s in columns j such that cði) j;CÞ 	 � . Each
row of A is considered as a candidate for being a basis
vector. The threshold � controls the level of confidence
required to include an attribute to the basis vector
candidate, and it is assumed that � is a parameter of the
algorithm.

The DBP objective function (1) penalizes equally for both
types of errors: for 0 becoming 1 in the approximation, and
for 1 becoming 0. We have found that in practice, the results
of our algorithm can be improved if we distinguish between
these two types of error. Thus, we introduce weights wþ

and w� that are used to reward for covering 1s and penalize
for covering 0s, respectively. Clearly, without loss of
generality, we can assume that w� ¼ 1.

The basis vectors are selected from the matrix A and the
columns of the usage matrix S are fixed in a greedy manner
as follows: Initially, S and B are empty matrices. The basis
B is updated in the iteration l by adding the lth row bl, and
matrix S is updated by adding the lth column s�l. The row bl
is a row ai from A and the column s�l is an arbitrary
n-dimensional binary column vector. The selection of bl and
s�l is done so to maximize coverðB;S;C; wþ; w�Þ, which is
defined to be equal to

wþ ði; jÞ : cij ¼ 1; ðS �BÞij ¼ 1
n o��� ���

� w� ði; jÞ : cij ¼ 0; ðS �BÞij ¼ 1
n o��� ���:

The value of function cover can be considered as the
“profit” of describing C using matrices B and S.

The association matrix can be constructed in time
Oðnm2Þ, and a single discrete basis vector can be obtained
in time Oðnm2Þ. Thus, Algorithm 1 has time complexity
Oðknm2Þ.

The algorithm has two parameters that control the
quality of results: the threshold � and weight wþ (again
assuming that w� ¼ 1). The straightforward way to set the
parameters is to try several different possibilities and take
the one that minimizes the reconstruction error. Alterna-
tively, the weight wþ can be used to express different
valuations for covering 1s and 0s.

Why association confidences, i.e., why do we consider
the rows of the matrix A as candidate basis vectors? To
see the intuition, consider a Boolean matrix C that has an
exact decomposition S �B. Let bp be the pth row of B
with bpi ¼ 1 and bpj ¼ 1 for some i and j. Let q be such
that sqp ¼ 1. Then, we know that cqi ¼ cqj ¼ 1 for all such
q. If no other row of B has 1 in positions i and j, then
cði) j;CÞ ¼ cðj) i;CÞ ¼ 1. Then, consider a more com-
plex case when there is another row of B, say r, that has
brj ¼ 1, but still bri ¼ 0. If there is also a row q of S with

sqp ¼ 0 and sqr ¼ 1, then the confidence of the rule j) i
is no longer 1. However, it still holds that cði) j;CÞ ¼ 1.
Thus, in a case with no noise the row bp of B is a row of
the matrix A, given that there is i so that bpi ¼ 1 and
bqi ¼ 0 for all q 6¼ p.

Unfortunately, that is the best we can do: If for all i so
that bpi ¼ 1 there is q so that also bqi ¼ 1, then we cannot find
row bp from A. A concrete example of this is given by the
complement of the n� n identity matrix, �In. The Boolean
rank of �In is OðlognÞ and its real rank is n [31] (see also
Section 4). However, with k < n, no value of � will give a
perfect decomposition with that input, as the association
confidence matrix A0 used by Algorithm 1 is

A0 ¼

1 n�2
n�1

n�2
n�1

n�2
n�1 1 n�2

n�1 � � �

n�2
n�1

n�2
n�1 1

..

. . .
.

0
BBBBBBB@

1
CCCCCCCA
:

Notice that Algorithm 1 produces matrix A from A0 by
letting aij ¼ 1ða0ij 	 �Þ, i.e., it will produce either a matrix
full of 1’s or an identity matrix, depending on the value of � .

6.2 Improving the Algorithm

Though Algorithm 1 is very simple, it gives results that are
comparable to those of more complex methods, as we will
see in Section 7. In this section, we discuss four ideas that
further improve the solutions obtained by Algorithm 1. The
first two of the ideas rely on preprocessing the data before
using Algorithm 1, while the last two ideas modify the
algorithm itself. Henceforth, Algorithm 1 is referred to as
the ASSO algorithm.

Our first improvement relies on the observation that for
the decomposition D ¼ S �B we have DT ¼ BT � ST . In
other words, in a discrete basis decomposition of the
transpose DT of the data matrix, the usage matrix of the
decomposition gives the basis vectors for the matrix D.
Since the ASSO algorithm is heuristic, it is possible that
when applied on the transpose matrix DT it gives a better
solution. Running the ASSO algorithm on DT is denoted as
ASSO þ trans, and it is presented in Algorithm 2. In
practice, one should of course run both ASSO and ASSO þ
trans and select the result that yields a smaller reconstruc-
tion error.

Algorithm 2 An algorithm for transposed DBP

(ASSO þ trans).

Input: A matrix C 2 f0; 1gn�m for data, a positive integer k,

a threshold value � 2�0; 1�, and real-valued weights

wþ and w�.

Output: Matrices B 2 f0; 1gk�m and S 2 f0; 1gn�k.
1: function ASSOTRANS ðC; k; �; wþ; w�Þ
2: C CT

3: return ASSO ðC; k; �; wþ; w�Þ
Our second modification of the basic algorithm stems

from the observation that for data that are easily clustered,
the basis vectors should be different among the different
clusters. To take advantage of this fact, we propose to first
cluster the data and then solve DBP within each cluster. The

1354 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

basis vectors can be searched for each cluster independently.
However, there can be some structure shared between the
clusters. For example, in the course enrollment data, one
expects to find also some study modules shared among the
computer science, mathematics, and physics students.

In order to take the intra- and intercluster structure into
account, we propose the following approach. We compose
the set of candidate basis vectors from association rules
within each cluster. Note that this is different to computing
the association rules over the whole data, as the association
strengths can vary considerably. We then select the final
basis vectors from these candidates one by one. To select a
basis vector, we first select the cluster that has the most
uncovered 1s. The basis vector selected is the vector that
maximizes the function cover within the selected cluster.
Finally, we use that basis vector to cover the rest of the data.

In general, we do not fix the clustering method used in
line 2 of Algorithm 3. It should be selected by the user
according to her needs. Algorithm 3 finds the basis vector
candidates for the clusters in the same way as in ASSO.

Algorithm 3 A DBP algorithm using clustering

(ASSO þ clust).

Input: A matrix C 2 f0; 1gn�m for data, a positive integer p
for the number of clusters, a positive integer k 	 p, a

threshold value � 2�0; 1�, and real-valued weights wþ

and w�.

Output: Matrices B 2 f0; 1gk�m and S 2 f0; 1gn�k, and row

indices for each cluster.

1: function ASSOCLUST ðC; p; k; �; wþ; w�Þ
2: ðI1; . . . ; IpÞ CLUSTERðC; pÞ . Ih’s contain

indices for C’s rows.
3: A ½ �;B ½ �;S ½ �
4: for h ¼ 1; . . . ; p do

5: for i ¼ 1; . . . ;m do . Construct the basis

vector candidate matrix AðhÞ for each cluster h.

6: a
ðhÞ
i 1ðcði) j;CIhÞ 	 �Þð Þmj¼1

7: A A
AðhÞ

	

8: for l ¼ 1; . . . ; k do

9: h arg maxh¼1;...;p jfði; jÞ : ðCIhÞij ¼ 1,

ðSIh �BÞij ¼ 0gj
10: ðai; sÞ arg maxai;s

cover B
ai

h i
½SIh s�;CIh ; w

þ; w�
� �

11: B B
ai

h i
, SIh ½SIh s�

12: J f1; . . . ; ng n Ih
13: s arg maxs coverðB; ½SJ s�;CJ ; w

þ; w�Þ
14: SJ ½SJ s�
15: return B, S, and ðI1; . . . ; IpÞ

The aforementioned ideas, ASSO þ trans and ASSO þ
clust, are based on preprocessing the data. We now discuss
two ideas that modify the way that the algorithm constructs
the matrix S. Our first method, ASSO þ opt, solves this
problem in an optimal manner. Recall from Section 5.1 that
given C and B, finding S such that jC� S �Bj is

minimized can be done in time exponential only with
respect to k, the number of rows in B. The algorithm,
presented in Algorithm 4, performs such an exhaustive
search: for each row in a data matrix, it tries all possible
combinations of basis vectors, yielding a time complexity of
Oð2knmÞ.

Algorithm 4 A DBP algorithm using exhaustive search

(ASSO þ opt).

Input: A matrix C 2 f0; 1gn�m for data, a positive integer k,
a threshold value � 2�0; 1�, and real-valued weights wþ

and w�.

Output: Matrices B 2 f0; 1gk�m and S 2 f0; 1gn�k.
1: function ASSOOPT ðC; k; �; wþ; w�Þ
2: B ASSOðC; k; �; wþ; w�Þ
3: for i ¼ 1; . . . ; n do

4: si arg mins2f0;1gk
Pm

j¼1 jcij � ðs �BÞjj
5: return B and S

Notice that there is a considerable difference in the
computational complexity between finding a single column
of matrix S and finding a single row of S. Assume first that
we want to find a single column of S, keeping other
columns fixed. Each row of data matrix C can be considered
independently and thus finding a single column of S
maximizing cover is relatively easy. This is done, e.g., in the
ASSO algorithm. However, no efficient algorithm is known
to find a single row of S maximizing cover (equivalently,
minimizing reconstruction error), and so ASSO þ opt has to
try all possibilities.

The final method, ASSO þ iter, uses an iterative method
to improve S. It starts by calling the standard ASSO
algorithm for a matrix B and an initial matrix S. It then
changes the columns of S so that the overall error decreases
and continues until the error does not decrease anymore,
i.e., until the algorithm has converged to a local optimum.
Pseudocode is provided in Algorithm 5. If there are many
possibilities for changing a column in S that yield the same
error, the algorithm selects the one with the least number of
1s, thus achieving a sparser matrix. Another detail is that
when selecting new columns for S in line 5, Algorithm 5
sets both weights wþ and w� to 1. In this case, the weights
are used only to find better basis vectors, but the error is
still considered to be symmetric, i.e., not weighted. If a
weighted error function is used, then 1s should be replaced
by wþ and w� when computing cover in line 5 of
Algorithm 5.

Algorithm 5 A DBP algorithm using iterative search

(ASSO þ iter).
Input: A matrix C 2 f0; 1gn�m for data, a positive integer k,

a threshold value � 2�0; 1�, and real-valued weights wþ

and w�.

Output: Matrices B 2 f0; 1gk�m and S 2 f0; 1gn�k.
1: function ASSOITER ðC; k; �; wþ; w�Þ
2: fB;Sg ASSOðC; k; �; wþ; w�Þ
3: repeat

4: for l ¼ 1; . . . ; k do

5: s�l arg maxs�l2f0;1gn coverðB;S;C; 1; 1Þ
6: until error jC� S �Bj does not decrease

7: return B and S

MIETTINEN ET AL.: THE DISCRETE BASIS PROBLEM 1355

7 EXPERIMENTAL RESULTS

We have performed tests using Algorithm 1 and its
variations (i.e., Algorithms 2–5) on generated and real-
world data sets. The goals of the experiments are to verify
whether ASSO produces intuitive basis vectors, to check
whether ASSO can reconstruct the basis vectors used to
generate artificial data, and to compare the reconstruction
accuracy of ASSO and its variations against other well-
known methods for both real and generated data.

This section is organized as follows: Section 7.1 presents
the data and error measures used, Section 7.2 explains the
methods used, and Section 7.3 gives the results.

7.1 Data and Error Measures

We used both generated and real-world data sets in our
experiments. With the generated data sets, we were able to
concentrate on a few characteristics of the data, while the
real-world data sets represent a wide variety of different
Boolean data sets, ranging from small and dense to large
and sparse data sets.

7.1.1 Generated Data

We generated three sets of data to test the effects of 1) noise,
2) overlap between basis vectors, and 3) input size. First, a
set of basis vectors was generated. Then, random subsets of
these basis vectors were used to generate the data rows.
Finally, random uniform noise was added. Details on the
parameters used to generate the three sets of data are
shown in Table 1.

7.1.2 Real Data

The real data consist of the following data sets: NSF
Abstracts, 20 Newsgroups, Digits, Courses, Paleo, and
Votes. The basic properties of the data sets are given in
Table 2.

NSF Abstracts1 contains document-word information on
a collection of project abstracts submitted for funding by

NSF. 20 Newsgroups2 is a collection of approximately

20,000 newsgroup documents across 20 different news-

groups [40]. Digits3 is a collection of 1,000 binary images of

handwritten digits [41]. Paleo4 contains information of

species’ fossils found in specific paleontological sites in

Europe [42]. Courses is a student-course data set of courses

completed by the CS students of the University of Helsinki.

Votes5 is a plenary voting data in the Finnish Parliament

during years 1999–2001 [43]. It contains voting behaviors in

the plenary votes for each Member of Parliament (MP).
NSF Abstracts, 20 Newsgroups, and Votes were pre-

processed before using them. The words in NSF Abstracts

and 20 Newsgroups were at first stemmed using Porter

stemmer. For NSF Abstracts, we made a random sample of

the data. We then removed the least and the most frequent

stemmed words. For NSF Abstracts, we removed all words

that occurred in less than 10 (sampled) abstracts or in more

than 9,999 (sampled) abstracts; the figures for 20 News-

groups were 36 and 9,999, respectively. A random sample

of 20 Newsgroups was used for comparisons between

different algorithms due to memory constraints of SVD and

NMF implementations; to study the quality of the basis

vectors, we used the full data. In Votes data set, we

removed all MPs having unknown voting behaviors (due to

not being an MP the whole time 1999-2001). In addition,

since an MP can cast four different types of votes, namely,

“Yea,” “Nay,” “Abstain,” and “Absent,” we made two data

sets: VotesYes identifies “Yea” as a 1 and everything else as

a 0, and VotesNo identifies “Nay” as a 1 and everything else

as a 0.

1356 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

TABLE 1
Details on Generated Data Sets; D ¼ S �B

TABLE 2
Real-World Data Sets

1. http://kdd.ics.uci.edu/databases/nsfabs/nsfawards.html.

2. http://people.csail.mit.edu/jrennie/20Newsgroups/.
3. http://archive.ics.uci.edu/ml/machine-learning-databases/mfeat/.
4. NOW public release 030717, available from http://www.helsinki.fi/

science/now/.
5. http://www.fsd.uta.fi/english/data/catalogue/FSD2117/me

F2117e.html.

7.1.3 Error Measures

We used two measures to quantify the error of the
approximation: sum-of-absolute-values distance d1, de-
fined as

d1ðA;BÞ ¼
X
i

X
j

jaij � bijj;

and Frobenius distance d2, defined as

d2ðA;BÞ ¼
ffiX
i

X
j

ðaij � bijÞ2
s

:

Note that if both A and B are Boolean, then
Frobenius distance is the square root of d1 distance,
i.e., d2ðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1ðA;BÞ

p
. Thus, d1 is our primary

distance function.

7.2 Methods

The algorithm for DBP was that from Section 6, i.e.,
Algorithm 1. For synthetic data, weights wþ and w� were
both set to 1 (i.e., no weighting), and the threshold value �
was selected to be three percentage units smaller than the
actual noise. For real data sets, several different values for �
and weights were tried and the best combination was
selected. Selecting wþ ¼ w� ¼ 1 usually gave the least-error
answer, but on few cases, best answer was given by wþ ¼ 2.
However, we find the weights useful in order to get more
intuitive results, as reported in Section 7.3.4.

Similar selection of the parameters was also used for the
variations of ASSO, that is, for ASSO þ trans, ASSO þ clust,
ASSO þ opt, and ASSO þ iter. For the clustering algorithm
in ASSO þ clust, we used k-Means algorithm from SOM
Toolbox.6 The core of all these methods, the ASSO
algorithm, was implemented using C in GNU/Linux
operating system. In addition, ASSO þ opt and ASSO þ
iter are purely C programs. The other methods, ASSO þ
trans and ASSO þ clust, were implemented using Matlab
for data preprocessing step.7

We did not use ASSO þ trans or ASSO þ clust for
synthetic data sets, as both of these methods assume such
properties of the data that we know were not existent in the
data. In addition, we did not use ASSO þ opt for real data
sets, as its exponential computational time would have
easily become infeasible with larger data sets and more
basis vectors.

The results of the aforementioned algorithms were
compared against the results given by SVD, NMF, LPCA,
and their variations. None of these methods solves DBP

exactly as the resulting decompositions are real-valued.
Thus, the results from these methods are not directly
comparable to the results from our methods. In order to
ease the comparison, we also used some variations of SVD

and NMF. The NMF algorithm we used was described in
[44]. All of these methods were implemented using Matlab.

Rounded SVD and rounded NMF are like SVD and NMF,
but before computing the reconstruction error, we rounded
the representation matrix to a Boolean one. That is, the

factor matrices were still real-valued, but we rounded their
product. The rounding was done in a simple fashion by
setting all values less than 0.5 to 0 and all others to 1.

Rounded versions of SVD and NMF still have real-valued
factor matrices. As DBP requires Boolean factor matrices, we
also used variations of SVD and NMF, where the factor
matrices were rounded and the representation was con-
structed using Boolean matrix multiplication. We call these
methods 0-1 SVD and 0-1 NMF. Here, we rounded the factor
matrices by trying many different thresholds, separately for
each factor matrix, and selecting those thresholds that gave
the lowest error. These methods were used only for real
data sets.

The results reported for the LPCA are somewhat different
from the other results because LPCA returns a probability
distribution. The results reported for LPCA are obtained by
first running the LPCA algorithm 13 times and then
selecting the distribution with the highest log-likelihood.
The result LPCA gave was a distribution matrix P, where
pij 2 ½0; 1�. To obtain a binary matrix, we rounded P from
0.5 (i.e., normal rounding). Rounding was selected as it gave
smaller reconstruction error than the expected or empirical
(sampling from distribution) error.

We also give a brief study of the performance of the DBPP

algorithm. For that, we used the k-median algorithm by
Arya et al. [38] with one simultaneous local swap.

7.3 Results

7.3.1 Reconstructing the Basis Vectors from

Generated Data

We studied the effects of noise and overlap between basis
vectors to the reconstruction error. The main measure was
the d1 distance.

The effects of noise are illustrated in Fig. 1a. Lines for
plain SVD and NMF coincide at the top of the figure, partly
because of the logarithmic scale. Likewise, the lines for
ASSO þ opt and ASSO þ iter coincide, i.e., ASSO þ iter
converged to global optima almost every time. Rounded
SVD is the best of the other methods when data has noise,
being the best of all methods from 20 percent of noise
onward. Rounded NMF has a peak in 10 percent of noise
because it failed to converge even near to a global optimum
with one data set. The quality of LPCA’s result has a
dramatic change between nonnoised and noised data sets,
but increasing the noise level reduces the quality only
moderately.

Fig. 1b illustrates the effects of basis vectors’ overlap. The
expected overlap of two random vectors is uniquely
defined by the number of 1s in basis vectors, i.e., the values
in x-axis in Fig. 1b. If basis vectors have high overlap, it
becomes harder to distinguish the basis vectors using
association confidences. Thus, a higher overlap degrades
the quality of ASSO results, as one can clearly see from
Fig. 1b. For ASSO þ opt, the curve is not so sharp with small
values, and indeed, ASSO þ opt is the second best method
in all cases except the last, again sharing its place with
ASSO þ iter. The increase of the overlap seems to have
similar, yet not so strong, effects to the rounded SVD and
NMF, too. When the overlap increases, rounded SVD and
NMF have better reconstruction accuracy than the DBP

algorithms; they are better than even ASSO þ opt in the last

MIETTINEN ET AL.: THE DISCRETE BASIS PROBLEM 1357

6. Available from http://www.cis.hut.fi/projects/somtoolbox/.
7. Implementations are freely available from the corresponding author’s

homepage at http://www.cs.helsinki.fi/Pauli.Miettinen/.

case. On the other hand, LPCA shows very different
behavior: its results differ from the optimum only in the
case of 100 1s in basis vectors, thus making it the best
method in every case.

In both figures, ASSO þ opt seems to start with
considerably better results than the vanilla ASSO algo-
rithm, but this difference is almost lost in the last points of
both plots. This indicates that while ASSO can find good
basis vectors, it has problems in using them. As the
quality of basis vectors decrease (due to the noise or
overlapping), the exponential-time optimization looses its
significance. Furthermore, ASSO þ iter seems to be able to
avoid local optima, attaining the quality of ASSO þ opt in
almost every case.

7.3.2 Reconstruction Errors for Real Data

Reconstruction errors for the real data sets are given in three
tables. Tables 3 and 4 compare the vanilla ASSO algorithm

against other methods using d1 and d2 distances, respec-
tively. Table 5 compares different variations of the ASSO
algorithm, namely, ASSO þ trans, ASSO þ clust, and ASSO
þ iter, against the plain ASSO algorithm. Table 5 does not
contain results with NSF Abstracts or 20 Newsgroups as
some of the variations were not able to handle such big data
sets. Note also that all algorithms in Table 5 return binary
data, i.e., in that case d2 distance is the square root of d1.
Thus, only d1 distance is reported.

Overall, LPCA is the best method with real data.
Excluding the big and sparse data sets (NSF Abstracts
and 20 Newsgroups), it is always the best method with
d1 distance, and often the best even with the d2 distance.
With NSF Abstracts and 20 Newsgroups, the results are not
so clear; for example, Table 3 shows that in NSF Abstracts
with k ¼ 5, ASSO is the best method in d1 distance. The
quality of LPCA’s results with 20 Newsgroups decrease
dramatically when k is increased from 10 to 20. However,

1358 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

Fig. 1. Reconstruction errors using d1 as a function of (a) noise (data set 1) and (b) 1s in basis vector (data set 2). Points in plots represent the mean

error over 20 random data matrices with the same attributes. Logarithmic scale on y-axis of both plots, and values less than 1 are displayed as 1.

TABLE 3
Reconstruction Error of Real-World Data Sets Using d1 Distance

this phenomenon could be caused by some issues that are
not directly related to the LPCA algorithm (numerical
instability, for example).

While ASSO is not always a match for SVD or LPCA, it is
always better than the other two methods that have Boolean
factor matrices, namely, 0-1 SVD and 0-1 NMF.

Results in Table 5 show that ASSO þ iter can always
improve the result given by the plain ASSO algorithm. The
results from the other variations, ASSO þ trans and ASSO þ
clust, do not have any simple relation with the results of
ASSO. This agrees with the intuition that the usefulness of
ASSO þ trans and ASSO þ clust is highly data-dependent.

7.3.3 Empirical Time Complexity

Set 3 was used to verify the empirical time complexity of the
algorithm. We only studied the empirical time complexity
of the plain ASSO algorithm, as it is the backbone of the
other methods. The results obtained agreed with the
theoretical complexity results perfectly, i.e., the running
time of Algorithm 1 increased linearly with the number of
rows in data and with the size of the basis, and
quadratically with the number of columns in data.

7.3.4 Quality of Basis Vectors for Real Data

We used the NSF Abstracts and 20 Newsgroups data sets to
examine the quality of the ASSO basis vectors. As the words
in the data were stemmed, so were the words in the results.
To increase the readability, we have returned the words to
their original singular form whenever that form has been
clear. For some basis vectors, we only report a subset of
words. Three dots at the end of a basis vector indicate this.

For NSF Abstracts, we used � ¼ 0:3 and wþ ¼ 6 as the set
of parameters that gave the most intuitive results. Examples
of basis vectors and representative words are given as
follows:

1. fund, NSF, year;
2. cell, gene, molecular, protein, . . . ;

3. gopher, Internet, network, world, wide, web, . . . ;
4. behavior, effect, estim, impact, measure, model,

overestimate, predict, test, . . . ;
5. course, education, enroll, faculty, institute, school,

student, undergraduate, . . . ; and
6. abstract, don, set.

Many of the basis vectors found consisted of words
typical to a specific field of science. Examples 2 and 3 are of
this type. Some basis vectors were of more general type of
words, e.g., words used in science in general (example 4), or
words referring to education (example 5). Due to the nature
of the data, words related to money and funding were also
found in basis vectors (example 1). Despite the fact that
most of the resulting basis vectors were very natural, also
less natural ones were found. Example 6 illustrates this
behavior.

MIETTINEN ET AL.: THE DISCRETE BASIS PROBLEM 1359

TABLE 4
Rounded Reconstruction Error of Real-World Data Sets Using d2 Distance

TABLE 5
Differences between Variations of the ASSO Algorithm,

d1 Distance

For 20 Newsgroups, no specific pair of parameters was
better than the other, as most of the results were very
intuitive. The examples given here are obtained setting � ¼
0:4 and wþ ¼ 4, leading to somewhat wordy basis vectors.
Example basis vectors are:

1. disk, FAQ, FTP, newsgroup, server, UNIX, Usenet,
. . . ;

2. bible, Christ, church, faith, Jesus, Lord, Paul, . . . ;
3. playoff, team, win;
4. agent, BATF, cult, FBI, fire, Koresh, Waco, . . . ;
5. Arab, Israel, Jew, land, Palestinian, war, . . . ;
6. American, announce, campaign, crime, federal,

fund, office, policy, president, . . . ;
7. Armenia, Azerbaijan, border, defend, military, so-

viet, war, . . . ; and
8. earth, orbit, space.

The first example is clearly computer-related, second
contains religious words, specific for Christianity, and third
is about sports. Finding such basis vectors could hardly be
regarded as a surprise, as the 20 Newsgroups data contains
many newsgroups in each of these subjects.

To understand the fourth example, one needs to have
some knowledge of the recent history of the United States.
All words are related to the so-called Waco siege in 1993,
where FBI and BATF raided a religious group led by David
Koresh in Waco, Texas.

Examples 5 and 7 are partly overlapping; word “war”
appears in both of them. However, the wars are different
ones. Example 5 clearly points to Israel-Palestinian conflicts,
while example 7 is about Armenia and Azerbaijan,
neighbors and former soviet republics.

Example 6 includes words usually seen in political
contexts while the last example is from a space-related
newsgroup.

In summary, our algorithm was able to find basis vectors
that were intuitive and informative. For example, there was
no prior information to tell that the Waco siege was
discussed in some newsgroup. Yet, it came out very
strongly in the results, indicating that it had been a “hot
topic” for some time, at least. Among the informative and
intuitive basis vectors, there were also less intuitive and less
informative ones. Careful selection of algorithm’s para-
meters helps reduce their number, but they cannot be
totally avoided. However, we do not find that as a problem,
as there are always meaningful and interesting basis vectors
present in the answers, too.

7.3.5 The DBPP Algorithm

Finally, we briefly report results on applying an algorithm
for DBPP. Recall from Section 5.2 that we can solve DBPP

using any existing algorithm for BKMP. Here, we used Arya
et al.’s local-search heuristic [38]. As the algorithm is well
known and as the results are not directly comparable to
other results in this section, we only report results from a
single domain, namely, 20 Newsgroups.

The reconstruction errors (in d1 distance) were 497,768,
494,511, and 489,562 for k equal to 5, 10, and 20,
respectively. Comparing these values to those in Table 3
shows that the ASSO algorithm can produce better results.
This is not surprising, as DBPP has more restrictions on
feasible solutions than DBP. Yet, the results show that ASSO
is able to take advantage on this freedom.

The empirical quality of the basis vectors produced by
Arya et al.’s algorithm was not that good, either. Most basis
vectors contained many words from distinct fields making
them hard to interpret. Not all of the results were
completely unintuitive, though. A basis vector containing
words “George,” “Bush,” “Jimmy,” “Carter,” “president,”
“Arab,” “Jew,” and “Israel” was an example of a good
answer.

8 DISCUSSION AND CONCLUSIONS

We have described the DBP, investigated its computational
complexity, given a simple algorithm for it, and shown
empirical results on the behavior of the algorithm. The
results indicate that the algorithm discovers intuitively
useful basis vectors. In generated data, the method can
reconstruct the basis vectors that were used to generate the
data; this holds even with high amounts of noise. While the
normal ASSO algorithm has some problems on using the
basis vectors, simple iterative update can greatly improve
the results.

Yet, in many cases, SVD has lower reconstruction error
than ASSO (or even ASSO þ iter). There are several possible
reasons for this. The first possibility is that SVD is in some
sense inherently more powerful than DBP. This is of course
vaguely expressed. While we know that SVD is optimal with
respect to the Frobenius norm, we also know that the
Boolean rank of a matrix can be much smaller than its real
rank. On one hand, SVD in some ways has more power than
DBP, as SVD works on the continuous values; on the other
hand, DBP can take advantage of the Boolean semiring on
which it operates. This suggests that the relative perfor-
mance of DBP algorithms against SVD should improve as
the overlap between basis vectors increases.

The second alternative reason for the good performance
of SVD is that the ASSO algorithm is suboptimal. This
suboptimality certainly degrades the results: For example,
overlap between the basis vectors makes them harder to be
discovered, making the algorithm unable to take advantage
of the possibly smaller Boolean rank. However, for our
generated data, in many cases, the ASSO algorithm
reconstructs the original basis vectors perfectly. Thus, at
least for those data sets the algorithm is sufficiently good.
The results from ASSO þ opt indicate that using the basis
vectors is a major source of difficulties for the ASSO
algorithm: it does find correct basis vectors, but it is unable
to use them correctly.

We have shown that Boolean approaches to matrix
decomposition form a viable alternative for traditional
methods. For further work, it would be of interest to
understand the relationship between the approximate
Boolean and real ranks of binary matrices better. In
addition, investigating the complexity of using basis vectors
and improving the algorithm in that respect would be
useful.

ACKNOWLEDGMENTS

The authors are grateful to Ella Bingham, Jouni Seppänen,
and Ata Kabán for providing us with the Matlab imple-
mentations of NMF and LPCA, and to Aleks Jakulin for
informing us about the Votes data set. A preliminary
verision of this paper appeared in PKDD ’06 [1].

1360 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

REFERENCES

[1] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila,
“The Discrete Basis Problem,” Proc. 10th European Conf. Principles
and Practice of Knowledge Discovery in Databases (PKDD ’06),
pp. 335-346, 2006.

[2] G. Golub and C. van Loan, Matrix Computations. Johns Hopkins
Univ. Press, 1996.

[3] D. Lee and H. Seung, “Learning the Parts of Objects by Non-
Negative Matrix Factorization,” Nature, vol. 401, pp. 788-791, 1999.

[4] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet Allocation,”
J. Machine Learning Research, vol. 3, pp. 993-1022, 2003.

[5] W. Buntine, “Variational Extensions to EM and Multinomial
PCA,” Proc. 13th European Conf. Machine Learning (ECML ’02),
pp. 23-34, Aug. 2002.

[6] P. Paatero and U. Tapper, “Positive Matrix Factorization: A Non-
Negative Factor Model with Optimal Utilization of Error
Estimates of Data Values,” Environmetrics, vol. 5, pp. 111-126,
1994.

[7] J.E. Cohen and U.G. Rothblum, “Nonnegative Ranks, Decomposi-
tions, and Factorizations of Nonnegative Matrices,” Linear Algebra
and Its Applications, vol. 190, pp. 149-168, 1993.

[8] M.W. Berry, M. Browne, A.N. Langville, V.P. Pauca, and R.J.
Plemmons, “Algorithms and Applications for Approximate
Nonnegative Matrix Factorization,” Computational Statistics and
Data Analysis, vol. 52, pp. 155-173, 2007.

[9] T. Hofmann, “Probabilistic Latent Semantic Indexing,” Proc. 22nd
Ann. Int’l ACM Conf. Research and Development in Information
Retrieval (SIGIR ’99), pp. 50-57, Aug. 1999.

[10] W. Buntine and A. Jakulin, “Discrete Component Analysis,” Proc.
Subspace, Latent Structure and Feature Selection, Statistical and
Optimization, Perspectives Workshop (SLSFS ’05), pp. 1-33, 2006.

[11] E. Bingham, A. Kabán, and M. Fortelius, “The Aspect Bernoulli
Model: Multiple Causes of Presences and Absences,” to be
published in Pattern Analysis and Applications, 2008.

[12] J. Seppänen, E. Bingham, and H. Mannila, “A Simple Algorithm
for Topic Identification in 0-1 Data,” Proc. Seventh European Conf.
Principles and Practice of Knowledge Discovery in Databases (PKDD
’03), pp. 423-434, 2003.

[13] A.I. Schein, L.K. Saul, and L.H. Ungar, “A Generalized Linear
Model for Principal Component Analysis of Binary Data,” Proc.
Ninth Int’l Workshop Artificial Intelligence and Statistics (AI &
Statistics), 2003.

[14] D.P. O’Leary and S. Peleg, “Digital Image Compression by Outer
Product Expansion,” IEEE Trans. Comm., vol. 31, no. 3, pp. 441-
444, 1983.

[15] T.G. Kolda and D.P. O’Leary, “A Semidiscrete Matrix Decom-
position for Latent Semantic Indexing in Information Retrieval,”
ACM Trans. Information Systems, vol. 16, no. 4, pp. 322-346, 1998.

[16] M.W. Berry, S.A. Pulatova, and G.W. Stewart, “Algorithm 844:
Computing Sparce Reduced-Rank Approximations to Sparce
Matrices,” ACM Trans. Math. Software, vol. 31, no. 2, pp. 252-269,
2005.

[17] P. Drineas, R. Kannan, and M.W. Mahoney, “Fast Monte Carlo
Algorithms for Matrices III: Computing a Compressed Approx-
imate Matrix Decomposition,” SIAM J. Computing, vol. 36, no. 1,
pp. 184-206, 2006.

[18] P. Drineas, M.W. Mahoney, and S. Muthukrishnan, Relative-Error
CUR Matrix Decompositions, arXiv:0708.3696v1 [cs.DS], http://
arxiv.org/abs/0708.3696, Aug. 2007.

[19] M. Koyutürk, A. Grama, and N. Ramakrsihnan, “Compression,
Clustering, and Pattern Discovery in Very-High-Dimensional
Discrete-Attribute Data Sets,” IEEE Trans. Knowledge Data Eng.,
vol. 17, pp. 447-461, 2005.

[20] A. Gionis, H. Mannila, and J.K. Seppänen, “Geometric and
Combinatorial Tiles in 0-1 Data,” Proc. Eighth European Conf.
Principles and Practice of Knowledge Discovery in Databases (PKDD
’04), pp. 173-184, 2004.

[21] F. Geerts, B. Goethals, and T. Mielikäinen, “Tiling Databases,”
Proc. Seventh Int’l Conf. Discovery Science (DS ’04), pp. 278-289,
2004.

[22] J. Besson, R. Pensa, C. Robardet, and J.-F. Boulicaut, “Constraint-
Based Mining of Fault-Tolerant Patterns from Boolean Data,” Proc.
Fourth Int’l Workshop Knowledge Discovery in Inductive Databases
(KDID ’06), pp. 55-71, 2006.

[23] N. Mishra, D. Ron, and R. Swaminathan, “A New Conceptual
Clustering Framework,” Machine Learning, vol. 56, pp. 115-151,
2004.

[24] R.K. Brayton, G.D. Hachtel, and A.L. Sangiovanni-Vincentelli,
“Multilevel Logic Synthesis,” Proc. IEEE, vol. 78, no. 2, pp. 264-
300, 1990.

[25] J.A. Hartigan, “Direct Clustering of a Data Matrix,” J. Am.
Statistical Assoc., vol. 67, no. 337, pp. 123-129, 1972.

[26] A. Banerjee, I.S. Dhillon, J. Ghosh, S. Merugu, and D.S. Modha, “A
Generalized Maximum Entropy Approach to Bregman Co-
Clustering and Matrix Approximations,” Proc. 10th ACM SIGKDD
Int’l Conf. Knowledge Discovery and Data Mining (KDD ’04), pp. 509-
514, 2004.

[27] S. Madeira and A. Oliveira, “Biclustering Algorithms for
Biological Data Analysis: A Survey,” IEEE/ACM Trans. Computa-
tional Biology and Bioinformatics, vol. 1, no. 1, pp. 24-45, Jan.-Mar.
2004.

[28] C. Robardet and F. Feschet, “Efficient Local Search in Conceptual
Clustering,” Proc. Fourth Int’l Conf. Discovery Science (DS ’01),
pp. 323-335, 2001.

[29] J. Vaidya, V. Atluri, and Q. Guo, “The Role Mining Problem:
Finding a Minimal Descriptive Set of Roles,” Proc. ACM Symp.
Access Control Models and Technologies (SACMAT ’07), pp. 175-184,
2007.

[30] H. Lu, J. Vaidya, and V. Atluri, “Optimal Boolean Matrix
Decomposition: Application to Role Engineering,” Proc. IEEE Int’l
Conf. Data Eng. (ICDE ’08), pp. 297-306, Apr. 2008.

[31] S.D. Monson, N.J. Pullman, and R. Rees, “A Survey of Clique and
Biclique Coverings and Factorizations of (0, 1)-Matrices,” Bull.
Inst. Combinatorics and Its Applications, vol. 14, pp. 17-86, 1995.

[32] D.A. Gregory and N.J. Pullman, “Semiring Rank: Boolean Rank
and Nonnegative Rank Factorizations,” J. Combinatorics, Informa-
tion and System Sciences, vol. 8, no. 3, pp. 223-233, 1983.

[33] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

[34] H.U. Simon, “On Approximate Solutions for Combinatorial
Optimization Problems,” SIAM J. Discrete Math., vol. 3, no. 2,
pp. 294-310, 1990.

[35] R.G. Downey and M.R. Fellows, “Parameterized Complexity,”
Monographs in Computer Science. Springer-Verlag, 1999.

[36] J. Flum and M. Grohe, Parameterized Complexity Theory. Springer,
2006.

[37] N. Megiddo and K. Supowit, “On the Complexity of Some
Common Geometric Location Problems,” SIAM J. Computing,
vol. 13, no. 1, pp. 182-196, 1984.

[38] V. Arya, N. Garg, R. Kjandekar, A. Meyerson, K. Munagala, and
V. Pandit, “Local Search Heuristics for k-Median and Facility
Location Problems,” SIAM J. Computing, vol. 33, no. 3, pp. 544-562,
2004.

[39] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” Proc. ACM
SIGMOD ’93, pp. 207-216, May 1993.

[40] K. Lang, “Newsweeder: Learning to Filter Netnews,” Proc. 12th
Int’l Conf. Machine Learning (ICML ’95), pp. 331-339, 1995.

[41] D. Newman, S. Hettich, C. Blake, and C. Merz, “UCI Repository of
Machine Learning Databases,” http://www.ics.uci.edu/
~mlearn/MLRepository.html, 1998.

[42] M. Fortelius, Neogene of the Old World Database of Fossil Mammals
(NOW ’05), http://www.helsinki.fi/science/now/, 2005.

[43] A. Pajala and A. Jakulin, “Plenary Votes in the Finnish Parliament
during 1991-2005,” Tampere: Finnish Social Science Data Archive,
http://www.fsd.uta.fi/english/, 2006.

[44] D. Lee and H. Seung, “Algorithms for Non-Negative Matrix
Factorization,” Advances in Neural Information Processing Systems,
vol. 13, pp. 556-562, 2001.

Pauli Miettinen received the MSc degree in computer science from the
University of Helsinki in 2006. He is a graduate student at Helsinki
Institute for Information Technology, University of Helsinki. His research
interests include data mining, theoretical computer science, and
algorithmic data analysis.

MIETTINEN ET AL.: THE DISCRETE BASIS PROBLEM 1361

Taneli Mielikäinen received the PhD degree from the University of
Helsinki in 2005. He is a senior research scientist at the Palo Alto
Systems Research Center of Nokia and an adjunct professor of
computer science at the University of Helsinki. His research interests
include algorithmic data analysis, combinatorial optimization, and
computational privacy preservation. He has been serving in the program
committees of many international conferences.

Aristides Gionis received the PhD degree from Stanford University in
2003. He is currently a senior research scientist at Yahoo! Research,
Barcelona. His research interests include data mining, Web mining, and
algorithmic data analysis. He has been serving in the program
committees of many international conferences.

Gautam Das received the PhD degree in computer science from the
University of Wisconsin, Madison, in 1990. He has been an associate
professor in the Computer Science and Engineering Department,
University of Texas, Arlington, since 2004. He has held positions at
the University of Memphis, Compaq, and most recently at Microsoft
Research. In addition, he has held visiting positions at the Max-Planck-
Institute for Informatics, Saarbrücken, Germany, University of Helsinki,
and the Indian Institute of Science, Bangalore, India. His research
interests include data mining and knowledge discovery, databases,
algorithms, and computational geometry. His research has been
supported by the US National Science Foundation (NSF), US Office of
Naval Research (ONR), Microsoft, Cadence Design Systems, and
Apollo Data Technologies. He has served in numerous program
committees, as a PC cochair in the First International Workshop on
Ranking in Databases (DBRank 2007) and Ninth ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge
Discovery (DMKD 2004), and as a guest editor for the ACM
Transactions on Knowledge Discovery from Data (TKDD).

Heikki Mannila received the PhD degree in computer science from the
University of Helsinki in 1985. After some time at the University of
Tampere and various researcher positions, in 1989 he was appointed as
a professor of computer science at the University of Helsinki. He was a
visiting professor at the Technical University of Vienna in 1993 and a
visiting researcher at Max Planck Institute for Computer Science,
Saarbrücken, Germany, in 1995-1996. He moved to Microsoft Re-
search, Redmond, Washington, in 1998, and then came back to Finland
to Nokia Research in 1999, where he stayed until the end of 2001. After
that, he was the research director of the basic research unit of Helsinki
Institute for Information Technology in 2002-2004. Since 1999, he has
been a professor of computer science at Helsinki University of
Technology. He is currently an academy professor (2004-2009). His
research group is located partly in Helsinki University of Technology and
partly in the University of Helsinki. He received the ACM SIGKDD
Innovation Award in 2003. He is the author of two books and more than
150 refereed articles in computer science and related areas. The book
Principles of Data Mining, with David Hand and Padhraic Smyth, is
available also in Chinese and in Polish.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1362 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 10, OCTOBER 2008

