On the complexity of approximating Euclidean
traveling salesman tours and minimum
spanning trees”

Gautam Das! Sanjiv Kapoor? Michiel Smid?
February 20, 1996

Abstract

We consider the problems of computing r-approximate traveling salesman
tours and r-approximate minimum spanning trees for a set of n points in IR,
where d > 1 is a constant. In the algebraic computation tree model, the com-
plexities of both these problems are shown to be ©(nlogn/r), for all n and r
such that » < n and r is larger than some constant. In the more powerful model
of computation that additionally uses the floor function and random access, both
problems can be solved in O(n) time if » = @(n!~1/%).

1 Introduction

The Traveling Salesman Problem (TSP) is one of the best known combinatorial opti-
mization problems. In the geometric version of this problem, we are given a set S of
n points in IR?, where d > 1 is a constant. A tour is a closed path that visits each
point of S exactly once and returns to its starting point. Each edge of such a tour has
a length that is equal to the Euclidean distance between its endpoints. The length of a
tour is the sum of the lengths of all its edges. The TSP is to compute a tour along the
points of S of minimal length. Since this problem is NP-complete for dimension d > 2
(see [6]), it is natural to consider the weaker problem of designing efficient algorithms
that approximate the optimal tour. We call a tour having length at most r times the
length of an optimal tour an r-approzimate TSP-tour.

It is well known that for d = 2, a 2-approximate TSP-tour can be computed in
O(nlogn) time. (See e.g. [7].) In fact, for any dimension d > 3 and any ¢ > 0, a

*Part of this work was done while the authors were at the Max-Planck-Institut fiir Informatik,
Saarbrucken.

TMath Sciences Dept., The University of Memphis, Memphis, TN 38152, USA. Supported in part
by NSF Grant CCR-9306822. E-mail: dasgénextl.msci.memphis.edu.

{Department of Computer Science, Indian Institute of Technology, Hauz Khas, New Delhi 110016,
India. E-mail: skapoor@cse.iitd.ernet.in.

§Department of Computer Science, King’s College London, Strand, London WC2R, 2LS, United
Kingdom. E-mail: michiel@dcs.kcl.ac.uk.

(2 + ¢)-approximate T'SP-tour can be computed in O(nlogn + n (1/¢)log1/c) time.
(This follows from results in [4, 8, 9] and Lemma 2 below.)

On the other hand, an n-approximate TSP-tour can be computed in O(n) time.
This follows from the fact that any tour is an n-approximate T'SP-tour. (See Lemma 1
below.)

This leads to the question of determining, for any dimension d > 1, the complexity
of computing an r-approximate T'SP-tour for sufficiently large values of n and r. In this
paper, we answer this question for algorithms that belong to the algebraic computation
tree model. In particular, we prove the following result.

Theorem 1 Let d > 1 be an integer constant. In the algebraic computation tree
model, any algorithm that, given a set S of n points in IRY and a sufficiently large real
number r < n, computes an r-approximate TSP-tour for S, takes Q(nlogn/r) time
in the worst case.

Note that this lower bound even holds in dimension d = 1. As mentioned above,
the lower bound is tight for constant values r > 2 and d = 2.

We prove that the lower bound is in fact tight for all values of r. That is, we give
an algorithm that, given a set S of n points in IR? and a real number r, 8 < r < n,
computes an r-approximate TSP-tour for S in O(nlogn/r) time. This algorithm fits
in the algebraic computation tree model. (The constant 8 is somewhat arbitrary here.
We concentrate on “large” values of r, because it is known already how to compute an
r-approximate TSP-tour in O(nlogn) time for values of r that are larger than two.)

We also consider the related problem of approximating the minimum spanning tree
of a set of points. Again, let S be a set of n points in IR?. Consider a graph G having
the points of S as its vertices. The weight of G—denoted by wt(G')—is defined as the
sum of the lengths of all edges of GG. A minimum spanning tree (MST) of S is a tree
of minimum weight having the points of S as its vertices. We denote an MST of the
point set S by MST(S). Its weight is equal to wt(MST(S)).

For d = 2, an MST can be computed in O(nlogn) time, which is known to be
optimal. (See [7].) For dimension d > 3, the problem becomes more difficult. For
example, if d = 3, the fastest algorithm known today constructs an MST in expected
time O(n*/31og®M n). (See [1, 4].)

We call a connected graph on the points of S having weight at most r times
wt(MST(S)) an r-approzimate MST. Note that we only require the graph to be
connected; it need not be a tree. It is known that for any € > 0, a (1 + €)-approximate
MST can be computed in time O(nlogn + n(1/¢)*log1/c). (See [4, 8, 9].)

We consider the problem of constructing an r-approximate MST for large values of
r. Using the relation between an r-approximate MST and a 2r-approximate T'SP-tour
(see Lemma 2 below) we have the following result.

Theorem 2 Let d > 1 be an integer constant. In the algebraic computation tree
model, any algorithm that, given a set S of n points in IRY and a sufficiently large real
number r < n, computes an r-approximate MST for S, takes Q(nlogn/r) time in the
worst case.

Again, this lower bound is tight. That is, for any set S of n points in IR? and any
real number r, 4 < r < n, we can in O(nlogn/r) time compute a connected graph on
S—in fact, a tree—having weight at most r - wt(MST(S)). (Also here, the constant 4
is somewhat arbitrary. We concentrate on “large” values of r.)

Hence, in the algebraic computation tree model, computing an r-approximate T.SP-
tour, or an r-approximate MST takes O(nlogn/r) time. In particular, for r a (suf-
ficiently large) constant, the complexity is ©(nlogn). In fact, if r is a large number
like n'~/4, the complexity is still @(nlogn). To give an algorithm with running time
o(nlogn), we need a very large approximation factor such as r = n/log n.

All results mentioned so far hold for the algebraic computation tree model. In
particular, they hold for algorithms that do not use the non-algebraic floor function
or random access. In the final part of the paper, we consider algorithms that do have
these two operations at their disposal.

Bern et al.[3] show that for any ¢ > 0 and any set of n points in the plane, a
(1 + ¢)-approximate MST can be computed in O((1/€)nloglogn) time in this more
powerful model.

We give an algorithm that, given a set S of n points in IR?, computes a 3v/dn'~1/%-
approximate MST for S in O(n) time. This yields an algorithm that computes a
6v/dn'~"“approximate TSP-tour for S, also in O(n) time.

The rest of this paper is organized as follows. In the next section, we recall some
results that will be used in the rest of the paper. In Section 3, we prove the lower
bounds. Then, in Section 4, we give the algorithm that shows that the lower bounds
are tight in the algebraic computation tree model. In Section 5, we give the algorithm
that operates in the more powerful model of computation. Finally, in Section 6, we
give some concluding remarks.

2 Some preliminary results

We assume that the reader is familiar with the algebraic computation tree model. (See
Ben-Or [2], and Preparata and Shamos [7].) Our lower bound will use the following
important result.

Theorem 3 (Ben-Or [2]) Let W be any set in IR™ and let A be any algorithm that
belongs to the algebraic computation tree model and that accepts W. Let #W denote
the number of connected components of W. Then the worst-case running time of A is

Qlog #W —n).

The following two lemmas are well known. We include their proofs for complete-
ness.

Lemma 1 Let S be a set of n points in IRY. Any tour of S is an n-approzimate
TSP-tour.

Proof: Let T be any tour of S, and let T,,; be an optimal TSP-tour. Let (p,q) be
an edge of T'. Consider one of the two parts of T,, that connects p and ¢. By the
triangle inequality, the distance between p and ¢ is at most equal to the total length

of this part, which in turn is at most equal to the length of T,,,. Since T' contains n
edges, it follows that the length of 7' is at most equal to n times the length of T,,;. B

Lemma 2 Let S be a set of n points in IRY, and let G be a connected graph on S
containing m edges and having weight at most r times the weight of an MST of S.
Then, in O(m) time, we can compute a 2r-approximate TSP-tour for S.

Proof: Using depth first search, compute a spanning tree G’ of GG. Then, double each
edge of G', compute an Fuler tour of the resulting graph, and, finally, by short-cutting
this Euler tour, make it into a tour T'. By the triangle inequality, T has length at most
twice the weight of . This, in turn, implies that 7" has length at most 2r-wt (MST(5)).

Let T,,, denote an optimal T'SP-tour for the set S. By deleting any edge of T,
we get a spanning tree of S. Hence, the length of T, is at least equal to wt(MST(9)).
This proves that the tour T'is a 2r-approximate T'SP-tour for S. It is clear that T' can
be computed from G in O(m) time. (Note that m > n — 1, because (¢ is connected.)

|
Corollary 1 The lower bound of Theorem 1 implies the lower bound of Theorem 2.

Proof: Let A be an algorithm that, given a set S of n points in IR? and a sufficiently
large real number r < n, computes a connected graph on S having weight at most
r-wt(MST(S)). If such a graph contains Q(nlogn/r) edges, then A clearly takes
Q(nlogn/r) time. So assume that any such graph constructed by A has o(nlogn/r)
edges. Then, Lemma 2 and Theorem 1 imply that A has running time Q(nlogn/r). B

3 The lower bound proof

In this section, we prove Theorem 1. By Corollary 1, this will also prove Theorem 2.

We prove Theorem 1 for algorithms that solve the r-approximate TSP problem
for one-dimensional point sets. Clearly, this will prove the theorem for any dimension
d>1.

Throughout the rest of this section, A denotes any algorithm that, given a set S of
n real numbers and a sufficiently large real number r < n, computes an r-approximate
TSP-tour for S. We will show that the worst-case running time of A is Q(nlogn/r).
In fact, we prove this lower bound for even values of n. It is easy to see that this
implies the lower bound for odd values of n as well.

Hence from now on, we only consider even values of n and values of r that are
larger than some appropriate constant and less than n.

Here is an outline of our proof. First, we define an algorithm B that, when given
n + 1 real numbers xy,xy,...,2,,r as input, runs algorithm A and constructs from
A’s output two lists SL and LL, the so-called source and length lists. B outputs
the pair (SL,LL). Its running time is roughly the same as that of A. Then, we
consider the outputs of B on all inputs 7(1),7(2),...,7(n),r, where 7 ranges over all
n! permutations of 1,2,...,n, and choose the one that occurs most frequent. Next,
we define a set W C IR", consisting of all points (1, 22,...,2,) € IR" such that B
computes this special output when given zq,x3,...,2,,7 as input. We show that the

4

logarithm of the number of connected components of W is Q(nlogn/r). Finally, we
define an algorithm C that accepts W and whose running time is roughly the same as
that of B and, hence, of A. Theorem 3 implies that algorithm C and, hence, also A
have Q(nlogn/r) running time.

Algorithm B does the following on an input consisting of n 4+ 1 real numbers
L1y3T2ye e Ty, T.

Step B1: Run algorithm A on the input a1, x9,...,2,,r. Let
(1}2'1,1}2'2, B P T l’il)

be the r-approximate TSP-tour that is computed by A.
Step B2: For j, 1 < j <n/2, let

€; = {xi2]—1) 1}2'2]}.

Give each e; a direction, from the smaller to the larger element, breaking ties arbi-
trarily, and denote the resulting edge by €;. Hence,

6_} = (min(xi2]—1) 1}2'2]), max(xi2]—1) 1}2'2]))-

We call the two components of €] its source and sink, respectively. The weight of the
edge is defined as the difference of its sink and its source.

Step B3: Compute a source list SL of length n. For 1 < 7 < n, the j-th element of
this list is equal to z;, if x; is the source of some edge €, and equal to a special symbol
*, if x; is the sink of some edge €;.

Step B4: Compute a length list LL of length n. For 1 < 57 < n, the j-th element
of this list is equal to the weight of the edge €; having x; as its source, provided this
edge exists. Otherwise, if x; is the sink of some edge €7, the special symbol x occurs
at position j.

Step B5: Output the pair of lists (SL, LL).

Note that the edges €; form a perfect matching of zy,z2,...,7,. As an example,
let n =4, 35 < x4 < 21 < 22, and assume A computes the tour (xy,xs, x4, 2, 21).
Then we have €; = (x3,21) and €3 = (x4, x2). The output of algorithm B consists of
the lists SL = (%, %, 23, x4) and LL = (%, %, &1 — &3, 22 — T4).

Lemma 3 Let Ta(n,r) and Tg(n,r) denote the worst-case running times of algorithms
A and B, respectively. Then there is a constant ¢ independent of n and r, such that

Te(n,r) < Ta(n,r)+ en.

Proof: We assume that the input sequence xy,x,,...,x,,r is stored in a linked list.
Moreover, we adapt algorithm A such that when it computes an edge (;, ;) of the
r-approximate TSP-tour, we give the occurrences of x; and x; in the input list pointers
to this edge. Then, by walking along the input list, we can compute the lists SL and

LL in O(n) time, within the algebraic computation tree model. In particular, random
access is not used. H

We now fix an even integer n and a real number r. Let m be any permutation
of 1,2,...,n. Let (SL.,LL;) be the output of algorithm B when given as input
7(1),m(2),...,m(n),r. Among all these n! pairs (SL,, LL;), let (S,,,L,,) be one
that occurs most frequent.

As an example, we may have S,,, = (2,x,%,1) and L, , = (1,x,%,3). Then the
inputs 2,3.4,1,r and 2,4,3,1,r may produce these lists.

Define W as the set of all points (1,22, ..., 2,) € IR” such that algorithm B, when
given xy, &g, ..., %,,r as its input, outputs the pair (S, ., L.,).

Lemma 4 Let my, 7y, ..., 7 be the permutations of 1,2, ..., n such that (SLy,, LL;,) =
(SnrsLnr), 1 <t < k. Then W has at least k connected components.

Proof: Assume w.l.o.g. that S, , has the form
Snp = (1,02, ..., Qo %%, ..o, %),

where {ay,as,...,a,/2} is a subset of {1,2,...,n} of size n/2. Let L, , be given by
Loy = (li,la, .o by *x, .o %).

Note that all non-« elements of §,,, and £, , are integers.

Let 1 <¢ < j < k. We show that the permutations m; and 7; belong to different
connected components of W. (Note that both these permutations are elements of W)
This will prove the lemma.

Since (SLr,, LLy,) = (SLx,, LL;,) = (Sn, Ln,), We can write the permutations m;
and m; as

m, = (Cll, ag, ... ,Cln/z, bl, bg, ceey bn/g)
and
T = (a1, a2, .., G2, C1,Co5 e ooy Crya),s

where

{b1,bay . byya} = e cay ooy cnpaf = {12, onf \{ar, az, ..., a0}

Let ¢ be an index such that by, # ¢;.
Consider any continuous curve in IR" that connects m; and 7;. Let

P = (p17p27 --+sPn/2,91,92, - - '7qn/2)

be a point on this curve such that ¢, is not an integer. Note that point P exists,
because b, and ¢, are distinct integers. Let us look what happens when algorithm B
is run on input pr, pa, ...y Puj2s GrsGas- -+ Gnj2, T

In Step B1, an r-approximate TSP-tour T' is computed. In the rest of algorithm
B, a source list

SL=(ay,09,...,0)

and a length list
LL = (617627 s 7671)

is computed. We distinguish two cases.

Case 1: (ay,qz,...,0,)2) 7 (1,02, ..., 0y)2).
In this case, SL # S, .. Hence, point P does not belong to our set W.
Case 2: (a1, Qz,...,0,2) = (a1,az,...,0,)2).

Since SL contains exactly n/2 *’s, we must have SL = S, .. Consider the perfect
matching of the r-approximate TSP-tour T that is computed in Step B2. Let € be the
edge that contains g,. The source of this edge is contained in the source list SL, which
is equal to S, ,, and which contains only integers and «’s. It follows that ¢, must be a
sink, and the weight of € is not an integer. Since this non-integer weight occurs in the
length list LL, we must have LL # L, ,. As a result, also in this case point P does
not belong to the set W.

We have shown that any curve connecting m; and 7; passes through a point outside
W. Hence, m; and 7; are contained in different connected components of W. I

Lemma 5 The number of permutations w of 1,2,...,n such that

(SLy, LLy) = (Sns Lony)

o () (7027)),

Proof: Consider again the output (SL,, LL;) of B when given n(1),7(2),...,7(n),r
as input. We give an upper bound on the total number of different outputs if 7 ranges

s at least

over all permutations of 1,2,...,n.
A source list contains n/2 distinct integers from {1,2,...,n}, and n/2 special
symbols . Hence, the total number of different source lists is at most equal to

Consider one fixed source list SL. How many different length lists LI are there such
that (SL, LL) is an output of algorithm B? Such a list LL contains n/2 x’s, and n/2
non-x elements. Since we have fixed SL, the positions in LL that contain these non-x’s
are also fixed. Every non-x is an integer. Recall that the length list represents the edge
weights of a perfect matching of the r-approximate TSP-tour computed in Step Bl.
Since the input is a permutation of 1,2,...,n, we know that the optimal T'SP-tour
has length 2(n — 1) < 2n. Hence, the tour computed in Step Bl has length at most
2rn. This, in turn, implies that the sum of the non-x symbols in the length list LL is
at most equal to 2rn. It follows that for this fixed source list SL, the total number of
different corresponding length lists LL is at most equal to the number of solutions of
the inequality
Tyt rot ot ay < 2rn

in non-negative integers x;. It is well known (see [5, pages 103-104]) that the latter

quantity is equal to
2rn +n/2
n/2 '

We have shown that by running B on all n! different permutations of 1,2,...

we get at most
[n! 2rn +n/2
ts (n/z) o2 ("2)

different outputs (SL, LL). Therefore, by the pigeon-hole principle, one of these out-
puts is computed on at least n!/X inputs.

Now we can complete the proof of Theorem 1. First, we show that

Y:=1In (%) = Q(nlogn/r).
() (70")

Lemma 6 Let 0 < b < a be integers. Then

a < a®
b) = b(a— b)“—b'
Proof: We have

= (b4 (a—b) =3 (“) bi(a — b)=i > (Z) ba— b, m

=0 t

Applying Lemma 6, and the inequalities (n72) < 2" and a! > (a/e)* for a« = n/2,
we get

@) e
() Crota®y = 22t 2yl

n/2 n/2

n" (2rn)*™

22n gnf2 (27"71 + n/2)2rn—|—n/2)

Taking logarithms gives
Y > nlnn+42rmnn(2rn) — (2rn +n/2)In(2rn +n/2) — 2nln2 — n/2

2
= nlm#—l—%nlmL —2nIn2 —n/2

\/2rn +n/2 2rn 4n/2

2r

= —nln—— +nl " onine /2
- "My e T M\ r 12 nALe T RyL.

We have

o 27’_ 1 1/2 27’_ 1 1/2 2r41/2 1 1/2 —-1/2
(2r—|—1/2) _(_2r—|—1/2) _(_2r—|—1/2) (_2r—|—1/2) '

The quantity on the right-hand side converges to e~'/2

2r
2r
In|——— > —1
2 +1/2

for all sufficiently large r. Also, since 2r + 1/2 < 3r, we have In(n/(2r + 1/2)) >
In(n/(3r)) = Inn/r —In3. It follows that

if r — oco. Therefore,

1 1
YZ§nlnﬁ—§nln3—n—2nln2—n/2:Q(nlnn/r), (1)
r
which is exactly what we wanted to prove. Note that the constant factor in the -
bound in (1) does not depend on n and r.

Recall that we denote the number of connected components of the set W by #W.
Lemmas 4 and 5, and inequality (1) imply that, for our fixed values of n and r, we
have

log #W > conlogn/r,

where ¢ 1s a constant that does not depend on n and r.
Consider the following algorithm C. It only accepts inputs of our fixed length n.
On input zy, x3,...,x,, algorithm C does the following.

Step C1: Run algorithm B on the input x;,x,,...,x,,r. Let the output be the pair
(SL, LL).

Step C2: Output YES if SL=35,,, and LL = L,,,. Otherwise, output NO.

Since algorithm C only accepts inputs of our fixed length n, and since we also fixed
r, we may assume that it “knows” the two lists S, , and £, .. Algorithm C exsts,
although we have not explicitly computed these lists. The following lemma is clear.

Lemma 7 Let Tg(n,r) and Te(n,r) denote the worst-case running times of algorithms
B and C, respectively. Then there is a constant ¢’ independent of n and r, such that

Te(n,r) < Tg(n,r) + cn.

Algorithm C accepts exactly our set W. Hence, by Theorem 3, there is an input on
which this algorithm takes time at least ¢;nlog n/r, for some constant ¢; that does not
depend on n and r. Then, by Lemmas 3 and 7, there is an input on which algorithm
A takes time at least canlogn/r, for some constant ¢;. Since ¢; does not depend on n
and r, this implies that the lower bound holds for all values of n and r. This completes
the proof of Theorem 1.

4 Proving the matching upper bound

In this section, we show that the lower bounds of Theorems 1 and 2 are tight. By
Lemma 2, it suffices to give an O(nlogn/r)-time algorithm that computes an r-
approximate MST for any set of n points in IR, and any 4 < r < n.

Let S be a set of n points in IRY, and let 4 < r < n. The algorithm does the
following.

Step 1: Compute the smallest axes-parallel d-dimensional cube that contains all
points of S. Let £ be the side length of this cube. Translate the set S such that it is
contained in the cube [0, (]%.

Step 2: Let b:= (r —2)£/(5nv/d). Note that

£ 5”\/3§ 10vd 2 < 3nVd.
b r—2 r

Compute the integer [¢/b] by making a scan along the integers 1,2,...,3ny/d. Build
a balanced binary search tree BT, storing the integers 0,1,2,...,|//b] in its leaves.

For each point p = (p1, p2,...,pa) of S, and each index i, 1 < i < d, use this tree
to find the integer

¢ := [pi/b].
Hence, considering the grid over [0, /] with mesh size b, point p is contained in the
cP-th slab along the i-th dimension. We call

Cpi=(cd,chy ...,)

the grid vector of p.

Sort the n grid vectors lexicographically, by inserting them one after another into
an initially empty balanced binary search tree BT'. With each leaf of this tree, store
all points p with the same grid vector.

Step 3: For each grid vector C' that occurs in BT’, do the following. Let Sc be the
set of points p of S for which €, = €. Pick an arbitrary point ¢c of S¢, and call it
the representative of S¢. Then connect each point of S¢ \ {gc} to this representative.
This gives a tree T on S¢.

Step 4: Let R be the set of all representatives. Compute a 2-approximate MST
T for the points of R, using any one of the (algebraic computation tree) algorithms
of [4, 8, 9]. (In fact, if d = 2, we can even compute an exact MST for R, using the
algorithm given in [7].)

Step 5: Let T be the tree obtained by taking the union of all trees T and the tree
TR, Output 7.

Lemma 8 The running time of this algorithm is bounded by O(nlogn/r).

Proof: Steps 1, 3 and 5 take O(n) time. Consider Step 2. The tree BT can be built
in O(n) time. Given this tree, the grid vectors can be computed in time O(n log {/b) =
O(nlogn/r). Since the tree BT’ contains at most (//b)? elements, its height is bounded
by O(log(¢/b)?) = O(logn/r). Hence, all n grid vectors can be inserted into BT' in
time O(nlog n/r). This proves that Step 2 takes time O(nlogn/r). Step 4 takes time
O(|R|log |R|). Since R is a subset of S, we have |R| < n. Also, the size of R is at
most equal to the number of cells in our grid, i.e., |R| < (£/b)%. Therefore, Step 4
takes time O(nlog((/b)?) = O(nlogn/r). This completes the proof. B

10

It remains to show that the tree T' computed by the algorithm is an r-approximate
MST. Consider the minimum spanning tree MST(S) for the set S. Then we have to
show that wt(T) < r- wt(MST(S5)).

The following argument is due to Bern et al.[3]. Imagine “moving” each point of
S to the representative of the cell it is contained in. Then the tree MST(S) “moves”
to a graph, say T, possibly containing multiple edges and loops.

Lemma 9 wt(7T") < 2v/dbn + wi(MST(S)).

Proof: Consider any edge (p/,¢') of T’. Then there is a unique edge (p, q) in MST(S)
that was “moved” to (p',¢’). Denoting the Euclidean distance between two points x
and y by |zy|, and using the triangle inequality, we have

p'd'| < 1p'pl + Ipal + laq/|.

Since p and p’ are contained in the same grid cell, we have |p'p| < v/db. Similarly,
lqq'| < V/db. Hence,

[P'd/| < 2vdb + [pgl.
Doing this for all n — 1 edges of T” proves the claim. B

Lemma 10 The tree T' is an r-approzimate MST for the set S.

Proof: Let To]Zt be the exact MST for the points of R. Then the graph 7% computed
in Step 4 satisfies wt(TH) < 2- wi(TE,).
Since T" is a spanning graph of R, we have wt(TOIZt) < wt(T"). This, together with
Lemma 9, implies that
wt(TH) < 4V/dbn + 2 - wt(MST(S)).

Now, consider the total weight of the edges in the trees Ty that are computed in
Step 3. Clearly, each such edge has weight at most v/db. It follows that

wt(T) = wt(TF) + 3" wt(To) < 5Vdbn + 2 - wt(MST(S)).

Our choice of £ in Step 1 of the algorithm guarantees that there are two points of S
having distance at least /. Hence,

B 5v/d bn

r—2"

wl(MST(S)) > ¢

This implies that
wt(T) < (r—=2)0+2- wt(MST(S)) < r-wt(MST(5)).
This completes the proof. B

We summarize our result.

11

Theorem 4 Let d > 1 be an integer constant. There is an algorithm that, given a
set S of n points in IR? and a real number 4 < r < n, computes an r-approximate
MST for S in O(nlogn/r) time. This algorithm fits in the algebraic computation tree
model. Hence, the lower bound of Theorem 2 is tight.

Corollary 2 Let d > 1 be an integer constant. There is an algorithm that, given a
set S of n points in IR and a real number 8 < r < n, computes an r-approximate
TSP-tour for S in O(nlogn/r) time. This algorithm fits in the algebraic computation
tree model. Hence, the lower bound of Theorem 1 is tight.

5 A non-algebraic computation tree algorithm

The results of the previous sections imply that in the algebraic computation tree model
a very large approximation factor is needed in order to get a running time of o(n log n).
In this section, we consider algorithms from a more powerful model of computation.
More precisely, we assume that besides the operations of the algebraic computation
tree model, we have the non-algebraic floor function and random access available. We
will prove the following result.

Theorem 5 Let d > 1 be an integer constant.

1. There is an algorithm that, given a set S of n points in IR, computes an r-

approximate MST for S in O(n) time, where r = 3Vdnt-Y4,

2. There is an algorithm that, given a set S of n points in IR?, computes an r-
approzimate TSP-tour for S in O(n) time, where r = 63/dn'~1/?,

Besides the operations of the algebraic computation tree model, these algorithms use
the non-algebraic floor function and random access.

Let S be a set of n points in IRY. The following algorithm computes an approximate

MST for S.

Step 1: Let r := 3v/dn'~"/?. Compute the smallest axes-parallel d-dimensional cube
that contains all points of S. Let ¢ be the side length of this cube. Translate the set
S such that it is contained in the cube [0, ¢]%.

Step 2: Let b:=¢/n'/? Initialize a d-dimensional array
110..1¢/b],0..1¢/b],...,0..[£/b]].

Initialize an empty list with each array entry. Then store each point p = (p1, p2, ..., pa)
of S in the list stored with

[{lps/0]; [p2/b), -5 [pa/b]]-

Step 3: For each array entry C, let S¢ be the set of points of S that are stored in the
list corresponding to this entry. If S¢ is non-empty, pick an arbitrary point go in this

12

set and call it the representative. Let Tx be the tree on S¢ obtained by connecting
each point of S¢ \ {gc¢} to the representative.

Step 4: Walk along the (//b)? entries of the array I in lexicographical order. This
defines an ordering on the representatives. Connect these representatives into a tree
TR —in fact, a path—according to this ordering.

Step 5: Let T be the tree obtained by taking the union of all trees T and the tree
TR, Output 7.

Lemma 11 The running time of this algorithm is bounded by O(n).

Proof: It is easy to see that the running time is bounded by O(n + (£/b)%). By our
choice of b, this is bounded by O(n). B

Lemma 12 Let r := 3vdn'"Y¢. Consider the minimum spanning tree MST(S) of
the set S. Then we have wt(T) < r - wt(MST(S)), i.e., T is an r-approximate MST .

Proof: First consider the path 7'%. This path has a vertex in each grid cell that
contains at least one point of 5. We take an arbitrary point from each grid cell that
does not contain any points of S. Let T be the path on the representatives plus these
extra points that is defined by the ordering of Step 4. Then, the representatives occur
in TF and 7" in the same order. By the triangle inequality, the weight of 7% is at
most equal to that of T”. It is easy to see that for each grid cell there are at most two
edges of T’ that intersect this cell. Hence, since there are (£/b)? cells, each one having

diameter \/d b, the weight of 1" is bounded above by 2 (£/b)?\/db. This implies that
wt(TH) < 2(0/b)*Vdb = 2nV/db.
It is also clear that each edge of any tree T¢: has weight at most v/db. It follows that
wt(T) < nvVdb+ 2nVdb = 3n/db.

We know that wt(MST(S)) > (. Hence, it suffices to show that 3nv/db < r{, which
simplifies to 3nv/d < rn'/?. But this holds with equality, by our choice of . B

Lemmas 11 and 12 prove the first claim of Theorem 5. The second claim follows
from Lemma 2.

6 Concluding remarks

We have shown that in the algebraic computation tree model, the complexities of the
r-approximate TSP and MST problems are O(nlogn/r), for large values of r and n
such that r < n. We have also shown that in a model that additionally uses the floor
function and random access, it is possible to solve both problems in linear time for
r = cn'~Y¢ for some constant c.

We mention the following three open problems. First, in this more powerful model,
can these problems be solved in linear time for values of r that are smaller than

13

nl~

1/47 Second, is it possible in this model to solve the planar version of the problems

in o(nloglogn) time for a constant value of r (thereby improving the result of [3])?

Finally, for dimension d > 3, can these problems be solved in o(nlogn) time in this
model for a constant value of r?

References

1]

3]

[9]

P.K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Fuclidean minimum
spanning trees and bichromatic closest pairs. Discrete & Computational Geometry

6 (1991), pp. 407-422.

M. Ben-Or. Lower bounds for algebraic computation trees. Proceedings 15th Annual
ACM Symposium on the Theory of Computing, 1983, pp. 80-86.

M.W. Bern, H.J. Karloff, P. Raghavan, and B. Schieber. Fust geometric approxima-
tion techniques and geometric embedding problems. Proceedings 5th Annual ACM
Symposium on Computational Geometry, 1989, pp. 292-301.

P.B. Callahan and S.R. Kosaraju. Faster algorithms for some geometric graph prob-
lems in higher dimensions. Proceedings 4th Annual Symposium on Discrete Algo-

rithms, 1993, pp. 291-300.

J.H. van Lint and R.M. Wilson. A Course in Combinatorics. Cambridge University
Press, 1992.

C.H. Papadimitriou. The Fuclidean traveling salesman problem is NP-complete.
Theoretical Computer Science 4 (1977), pp. 237-244.

F.P. Preparata and M.I. Shamos. Computational Geometry, an Introduction.
Springer-Verlag, New York, 1985.

J.S. Salowe. Constructing multidimensional spanner graphs. International Journal
of Computational Geometry and Applications 1 (1991), pp. 99-107.

P.M. Vaidya. Minimum spanning trees in k-dimensional space. STAM Journal on

Computing 17 (1988), pp. 572-582.

14

