
On the complexity of approximating Euclideantraveling salesman tours and minimumspanning trees�Gautam Dasy Sanjiv Kapoorz Michiel SmidxFebruary 20, 1996AbstractWe consider the problems of computing r-approximate traveling salesmantours and r-approximate minimum spanning trees for a set of n points in IRd,where d � 1 is a constant. In the algebraic computation tree model, the com-plexities of both these problems are shown to be �(n log n=r), for all n and rsuch that r < n and r is larger than some constant. In the more powerful modelof computation that additionally uses the
oor function and random access, bothproblems can be solved in O(n) time if r = �(n1�1=d).1 IntroductionThe Traveling Salesman Problem (TSP) is one of the best known combinatorial opti-mization problems. In the geometric version of this problem, we are given a set S ofn points in IRd, where d � 1 is a constant. A tour is a closed path that visits eachpoint of S exactly once and returns to its starting point. Each edge of such a tour hasa length that is equal to the Euclidean distance between its endpoints. The length of atour is the sum of the lengths of all its edges. The TSP is to compute a tour along thepoints of S of minimal length. Since this problem is NP-complete for dimension d � 2(see [6]), it is natural to consider the weaker problem of designing e�cient algorithmsthat approximate the optimal tour. We call a tour having length at most r times thelength of an optimal tour an r-approximate TSP -tour.It is well known that for d = 2, a 2-approximate TSP -tour can be computed inO(n log n) time. (See e.g. [7].) In fact, for any dimension d � 3 and any � > 0, a�Part of this work was done while the authors were at the Max-Planck-Institut f�ur Informatik,Saarbr�ucken.yMath Sciences Dept., The University of Memphis, Memphis, TN 38152, USA. Supported in partby NSF Grant CCR-9306822. E-mail: dasg@next1.msci.memphis.edu.zDepartment of Computer Science, Indian Institute of Technology, Hauz Khas, New Delhi 110016,India. E-mail: skapoor@cse.iitd.ernet.in.xDepartment of Computer Science, King's College London, Strand, London WC2R 2LS, UnitedKingdom. E-mail: michiel@dcs.kcl.ac.uk. 1

(2 + �)-approximate TSP -tour can be computed in O(n log n+ n (1=�)d log 1=�) time.(This follows from results in [4, 8, 9] and Lemma 2 below.)On the other hand, an n-approximate TSP -tour can be computed in O(n) time.This follows from the fact that any tour is an n-approximate TSP -tour. (See Lemma 1below.)This leads to the question of determining, for any dimension d � 1, the complexityof computing an r-approximateTSP -tour for su�ciently large values of n and r. In thispaper, we answer this question for algorithms that belong to the algebraic computationtree model. In particular, we prove the following result.Theorem 1 Let d � 1 be an integer constant. In the algebraic computation treemodel, any algorithm that, given a set S of n points in IRd and a su�ciently large realnumber r < n, computes an r-approximate TSP-tour for S, takes
(n log n=r) timein the worst case.Note that this lower bound even holds in dimension d = 1. As mentioned above,the lower bound is tight for constant values r � 2 and d = 2.We prove that the lower bound is in fact tight for all values of r. That is, we givean algorithm that, given a set S of n points in IRd and a real number r, 8 < r < n,computes an r-approximate TSP -tour for S in O(n log n=r) time. This algorithm �tsin the algebraic computation tree model. (The constant 8 is somewhat arbitrary here.We concentrate on \large" values of r, because it is known already how to compute anr-approximate TSP -tour in O(n log n) time for values of r that are larger than two.)We also consider the related problem of approximating the minimum spanning treeof a set of points. Again, let S be a set of n points in IRd. Consider a graph G havingthe points of S as its vertices. The weight of G|denoted by wt(G)|is de�ned as thesum of the lengths of all edges of G. A minimum spanning tree (MST) of S is a treeof minimum weight having the points of S as its vertices. We denote an MST of thepoint set S by MST (S). Its weight is equal to wt (MST (S)).For d = 2, an MST can be computed in O(n log n) time, which is known to beoptimal. (See [7].) For dimension d � 3, the problem becomes more di�cult. Forexample, if d = 3, the fastest algorithm known today constructs an MST in expectedtime O(n4=3 logO(1) n). (See [1, 4].)We call a connected graph on the points of S having weight at most r timeswt (MST (S)) an r-approximate MST . Note that we only require the graph to beconnected; it need not be a tree. It is known that for any � > 0, a (1+ �)-approximateMST can be computed in time O(n log n + n (1=�)d log 1=�). (See [4, 8, 9].)We consider the problem of constructing an r-approximateMST for large values ofr. Using the relation between an r-approximateMST and a 2r-approximate TSP -tour(see Lemma 2 below) we have the following result.Theorem 2 Let d � 1 be an integer constant. In the algebraic computation treemodel, any algorithm that, given a set S of n points in IRd and a su�ciently large realnumber r < n, computes an r-approximate MST for S, takes
(n log n=r) time in theworst case. 2

Again, this lower bound is tight. That is, for any set S of n points in IRd and anyreal number r, 4 < r < n, we can in O(n log n=r) time compute a connected graph onS|in fact, a tree|having weight at most r �wt(MST (S)). (Also here, the constant 4is somewhat arbitrary. We concentrate on \large" values of r.)Hence, in the algebraic computation tree model, computing an r-approximate TSP -tour, or an r-approximate MST takes �(n log n=r) time. In particular, for r a (suf-�ciently large) constant, the complexity is �(n log n). In fact, if r is a large numberlike n1�1=d, the complexity is still �(n log n). To give an algorithm with running timeo(n log n), we need a very large approximation factor such as r = n= log n.All results mentioned so far hold for the algebraic computation tree model. Inparticular, they hold for algorithms that do not use the non-algebraic
oor functionor random access. In the �nal part of the paper, we consider algorithms that do havethese two operations at their disposal.Bern et al.[3] show that for any � > 0 and any set of n points in the plane, a(1 + �)-approximate MST can be computed in O((1=�)n log log n) time in this morepowerful model.We give an algorithm that, given a set S of n points in IRd, computes a 3pdn1�1=d-approximate MST for S in O(n) time. This yields an algorithm that computes a6pd n1�1=d-approximate TSP -tour for S, also in O(n) time.The rest of this paper is organized as follows. In the next section, we recall someresults that will be used in the rest of the paper. In Section 3, we prove the lowerbounds. Then, in Section 4, we give the algorithm that shows that the lower boundsare tight in the algebraic computation tree model. In Section 5, we give the algorithmthat operates in the more powerful model of computation. Finally, in Section 6, wegive some concluding remarks.2 Some preliminary resultsWe assume that the reader is familiar with the algebraic computation tree model. (SeeBen-Or [2], and Preparata and Shamos [7].) Our lower bound will use the followingimportant result.Theorem 3 (Ben-Or [2]) Let W be any set in IRn and let A be any algorithm thatbelongs to the algebraic computation tree model and that accepts W . Let #W denotethe number of connected components of W . Then the worst-case running time of A is
(log #W � n).The following two lemmas are well known. We include their proofs for complete-ness.Lemma 1 Let S be a set of n points in IRd. Any tour of S is an n-approximateTSP-tour.Proof: Let T be any tour of S, and let Topt be an optimal TSP -tour. Let (p; q) bean edge of T . Consider one of the two parts of Topt that connects p and q. By thetriangle inequality, the distance between p and q is at most equal to the total length3

of this part, which in turn is at most equal to the length of Topt. Since T contains nedges, it follows that the length of T is at most equal to n times the length of Topt.Lemma 2 Let S be a set of n points in IRd, and let G be a connected graph on Scontaining m edges and having weight at most r times the weight of an MST of S.Then, in O(m) time, we can compute a 2r-approximate TSP-tour for S.Proof: Using depth �rst search, compute a spanning tree G0 of G. Then, double eachedge of G0, compute an Euler tour of the resulting graph, and, �nally, by short-cuttingthis Euler tour, make it into a tour T . By the triangle inequality, T has length at mosttwice the weight of G. This, in turn, implies that T has length at most 2r�wt (MST (S)).Let Topt denote an optimal TSP -tour for the set S. By deleting any edge of Topt,we get a spanning tree of S. Hence, the length of Topt is at least equal to wt(MST (S)).This proves that the tour T is a 2r-approximate TSP -tour for S. It is clear that T canbe computed from G in O(m) time. (Note that m � n� 1, because G is connected.)Corollary 1 The lower bound of Theorem 1 implies the lower bound of Theorem 2.Proof: Let A be an algorithm that, given a set S of n points in IRd and a su�cientlylarge real number r < n, computes a connected graph on S having weight at mostr � wt (MST (S)). If such a graph contains
(n log n=r) edges, then A clearly takes
(n log n=r) time. So assume that any such graph constructed by A has o(n log n=r)edges. Then, Lemma 2 and Theorem 1 imply that A has running time
(n log n=r).3 The lower bound proofIn this section, we prove Theorem 1. By Corollary 1, this will also prove Theorem 2.We prove Theorem 1 for algorithms that solve the r-approximate TSP problemfor one-dimensional point sets. Clearly, this will prove the theorem for any dimensiond � 1.Throughout the rest of this section, A denotes any algorithm that, given a set S ofn real numbers and a su�ciently large real number r < n, computes an r-approximateTSP -tour for S. We will show that the worst-case running time of A is
(n log n=r).In fact, we prove this lower bound for even values of n. It is easy to see that thisimplies the lower bound for odd values of n as well.Hence from now on, we only consider even values of n and values of r that arelarger than some appropriate constant and less than n.Here is an outline of our proof. First, we de�ne an algorithm B that, when givenn + 1 real numbers x1; x2; : : : ; xn; r as input, runs algorithm A and constructs fromA's output two lists SL and LL, the so-called source and length lists. B outputsthe pair (SL;LL). Its running time is roughly the same as that of A. Then, weconsider the outputs of B on all inputs �(1); �(2); : : : ; �(n); r, where � ranges over alln! permutations of 1; 2; : : : ; n, and choose the one that occurs most frequent. Next,we de�ne a set W � IRn, consisting of all points (x1; x2; : : : ; xn) 2 IRn such that Bcomputes this special output when given x1; x2; : : : ; xn; r as input. We show that the4

logarithm of the number of connected components of W is
(n log n=r). Finally, wede�ne an algorithm C that accepts W and whose running time is roughly the same asthat of B and, hence, of A. Theorem 3 implies that algorithm C and, hence, also Ahave
(n log n=r) running time.Algorithm B does the following on an input consisting of n + 1 real numbersx1; x2; : : : ; xn; r.Step B1: Run algorithm A on the input x1; x2; : : : ; xn; r. Let(xi1; xi2; : : : ; xin; xi1)be the r-approximate TSP -tour that is computed by A.Step B2: For j, 1 � j � n=2, letej := fxi2j�1 ; xi2jg:Give each ej a direction, from the smaller to the larger element, breaking ties arbi-trarily, and denote the resulting edge by ~ej. Hence,~ej = (min(xi2j�1 ; xi2j);max(xi2j�1 ; xi2j)):We call the two components of ~ej its source and sink, respectively. The weight of theedge is de�ned as the di�erence of its sink and its source.Step B3: Compute a source list SL of length n. For 1 � j � n, the j-th element ofthis list is equal to xj, if xj is the source of some edge ~e`, and equal to a special symbol?, if xj is the sink of some edge ~e`.Step B4: Compute a length list LL of length n. For 1 � j � n, the j-th elementof this list is equal to the weight of the edge ~e` having xj as its source, provided thisedge exists. Otherwise, if xj is the sink of some edge ~e`, the special symbol ? occursat position j.Step B5: Output the pair of lists (SL;LL).Note that the edges ~ej form a perfect matching of x1; x2; : : : ; xn. As an example,let n = 4, x3 < x4 < x1 < x2, and assume A computes the tour (x1; x3; x4; x2; x1).Then we have ~e1 = (x3; x1) and ~e2 = (x4; x2). The output of algorithm B consists ofthe lists SL = (?; ?; x3; x4) and LL = (?; ?; x1 � x3; x2 � x4).Lemma 3 Let TA(n; r) and TB(n; r) denote the worst-case running times of algorithmsA and B, respectively. Then there is a constant c independent of n and r, such thatTB(n; r) � TA(n; r) + cn:Proof: We assume that the input sequence x1; x2; : : : ; xn; r is stored in a linked list.Moreover, we adapt algorithm A such that when it computes an edge (xi; xj) of ther-approximate TSP -tour, we give the occurrences of xi and xj in the input list pointersto this edge. Then, by walking along the input list, we can compute the lists SL and5

LL in O(n) time, within the algebraic computation tree model. In particular, randomaccess is not used.We now �x an even integer n and a real number r. Let � be any permutationof 1; 2; : : : ; n. Let (SL�;LL�) be the output of algorithm B when given as input�(1); �(2); : : : ; �(n); r. Among all these n! pairs (SL�;LL�), let (Sn;r;Ln;r) be onethat occurs most frequent.As an example, we may have Sn;r = (2; ?; ?; 1) and Ln;r = (1; ?; ?; 3). Then theinputs 2; 3; 4; 1; r and 2; 4; 3; 1; r may produce these lists.De�neW as the set of all points (x1; x2; : : : ; xn) 2 IRn such that algorithm B, whengiven x1; x2; : : : ; xn; r as its input, outputs the pair (Sn;r;Ln;r).Lemma 4 Let �1; �2; : : : ; �k be the permutations of 1; 2; : : : ; n such that (SL�i;LL�i) =(Sn;r;Ln;r), 1 � i � k. Then W has at least k connected components.Proof: Assume w.l.o.g. that Sn;r has the formSn;r = (a1; a2; : : : ; an=2; ?; ?; : : : ; ?);where fa1; a2; : : : ; an=2g is a subset of f1; 2; : : : ; ng of size n=2. Let Ln;r be given byLn;r = (l1; l2; : : : ; ln=2; ?; ?; : : : ; ?):Note that all non-? elements of Sn;r and Ln;r are integers.Let 1 � i < j � k. We show that the permutations �i and �j belong to di�erentconnected components of W . (Note that both these permutations are elements of W .)This will prove the lemma.Since (SL�i ;LL�i) = (SL�j ;LL�j) = (Sn;r;Ln;r), we can write the permutations �iand �j as �i = (a1; a2; : : : ; an=2; b1; b2; : : : ; bn=2)and �j = (a1; a2; : : : ; an=2; c1; c2; : : : ; cn=2);where fb1; b2; : : : ; bn=2g = fc1; c2; : : : ; cn=2g = f1; 2; : : : ; ng n fa1; a2; : : : ; an=2g:Let ` be an index such that b` 6= c`.Consider any continuous curve in IRn that connects �i and �j. LetP = (p1; p2; : : : ; pn=2; q1; q2; : : : ; qn=2)be a point on this curve such that q` is not an integer. Note that point P exists,because b` and c` are distinct integers. Let us look what happens when algorithm Bis run on input p1; p2; : : : ; pn=2; q1; q2; : : : ; qn=2; r.In Step B1, an r-approximate TSP -tour T is computed. In the rest of algorithmB, a source list SL = (�1; �2; : : : ; �n)6

and a length list LL = (�1; �2; : : : ; �n)is computed. We distinguish two cases.Case 1: (�1; �2; : : : ; �n=2) 6= (a1; a2; : : : ; an=2).In this case, SL 6= Sn;r. Hence, point P does not belong to our set W .Case 2: (�1; �2; : : : ; �n=2) = (a1; a2; : : : ; an=2).Since SL contains exactly n=2 ?'s, we must have SL = Sn;r. Consider the perfectmatching of the r-approximate TSP -tour T that is computed in Step B2. Let ~e be theedge that contains q`. The source of this edge is contained in the source list SL, whichis equal to Sn;r, and which contains only integers and ?'s. It follows that q` must be asink, and the weight of ~e is not an integer. Since this non-integer weight occurs in thelength list LL, we must have LL 6= Ln;r. As a result, also in this case point P doesnot belong to the set W .We have shown that any curve connecting �i and �j passes through a point outsideW . Hence, �i and �j are contained in di�erent connected components of W .Lemma 5 The number of permutations � of 1; 2; : : : ; n such that(SL�;LL�) = (Sn;r;Ln;r)is at least (n=2)!, nn=2! 2rn + n=2n=2 !! :Proof: Consider again the output (SL�;LL�) of B when given �(1); �(2); : : : ; �(n); ras input. We give an upper bound on the total number of di�erent outputs if � rangesover all permutations of 1; 2; : : : ; n.A source list contains n=2 distinct integers from f1; 2; : : : ; ng, and n=2 specialsymbols ?. Hence, the total number of di�erent source lists is at most equal to nn=2! � n!(n=2)! :Consider one �xed source list SL. How many di�erent length lists LL are there suchthat (SL;LL) is an output of algorithm B? Such a list LL contains n=2 ?'s, and n=2non-? elements. Since we have �xed SL, the positions in LL that contain these non-?'sare also �xed. Every non-? is an integer. Recall that the length list represents the edgeweights of a perfect matching of the r-approximate TSP -tour computed in Step B1.Since the input is a permutation of 1; 2; : : : ; n, we know that the optimal TSP -tourhas length 2(n � 1) � 2n. Hence, the tour computed in Step B1 has length at most2rn. This, in turn, implies that the sum of the non-? symbols in the length list LL isat most equal to 2rn. It follows that for this �xed source list SL, the total number ofdi�erent corresponding length lists LL is at most equal to the number of solutions ofthe inequality x1 + x2 + � � � + xn=2 � 2rn7

in non-negative integers xi. It is well known (see [5, pages 103{104]) that the latterquantity is equal to 2rn + n=2n=2 !:We have shown that by running B on all n! di�erent permutations of 1; 2; : : : ; n,we get at most X := nn=2! � n!(n=2)! � 2rn + n=2n=2 !di�erent outputs (SL;LL). Therefore, by the pigeon-hole principle, one of these out-puts is computed on at least n!=X inputs.Now we can complete the proof of Theorem 1. First, we show thatY := ln0@ �n2�!� nn=2��2rn+n=2n=2 �1A =
(n log n=r):Lemma 6 Let 0 � b � a be integers. Then ab! � aabb(a� b)a�b :Proof: We haveaa = (b+ (a� b))a = aXi=0 ai!bi(a� b)a�i � ab!bb(a� b)a�b:Applying Lemma 6, and the inequalities � nn=2� � 2n and a! � (a=e)a for a = n=2,we get �n2�!� nn=2��2rn+n=2n=2 � � � n2e�n=2 �n2�n=2 (2rn)2rn2n (2rn + n=2)2rn+n=2= nn (2rn)2rn22n en=2 (2rn + n=2)2rn+n=2 :Taking logarithms givesY � n ln n+ 2rn ln(2rn)� (2rn + n=2) ln(2rn + n=2) � 2n ln 2 � n=2= n ln nq2rn + n=2 + 2rn ln 2rn2rn + n=2 � 2n ln 2 � n=2= 12 n ln n2r + 1=2 + n ln 2r2r + 1=2!2r � 2n ln 2� n=2:We have 2r2r + 1=2!2r = 1 � 1=22r + 1=2!2r = 1� 1=22r + 1=2!2r+1=2 1� 1=22r + 1=2!�1=2 :8

The quantity on the right-hand side converges to e�1=2 if r !1. Therefore,ln 2r2r + 1=2!2r � �1for all su�ciently large r. Also, since 2r + 1=2 � 3r, we have ln(n=(2r + 1=2)) �ln(n=(3r)) = lnn=r � ln 3. It follows thatY � 12 n ln nr � 12 n ln 3 � n� 2n ln 2 � n=2 =
(n ln n=r); (1)which is exactly what we wanted to prove. Note that the constant factor in the
-bound in (1) does not depend on n and r.Recall that we denote the number of connected components of the set W by #W .Lemmas 4 and 5, and inequality (1) imply that, for our �xed values of n and r, wehave log#W � c0 n log n=r;where c0 is a constant that does not depend on n and r.Consider the following algorithm C. It only accepts inputs of our �xed length n.On input x1; x2; : : : ; xn, algorithm C does the following.Step C1: Run algorithm B on the input x1; x2; : : : ; xn; r. Let the output be the pair(SL;LL).Step C2: Output YES if SL = Sn;r and LL = Ln;r. Otherwise, output NO.Since algorithm C only accepts inputs of our �xed length n, and since we also �xedr, we may assume that it \knows" the two lists Sn;r and Ln;r. Algorithm C exists,although we have not explicitly computed these lists. The following lemma is clear.Lemma 7 Let TB(n; r) and TC(n; r) denote the worst-case running times of algorithmsB and C, respectively. Then there is a constant c0 independent of n and r, such thatTC(n; r) � TB(n; r) + c0n:Algorithm C accepts exactly our set W . Hence, by Theorem 3, there is an input onwhich this algorithm takes time at least c1n log n=r, for some constant c1 that does notdepend on n and r. Then, by Lemmas 3 and 7, there is an input on which algorithmA takes time at least c2n log n=r, for some constant c2. Since c2 does not depend on nand r, this implies that the lower bound holds for all values of n and r. This completesthe proof of Theorem 1.4 Proving the matching upper boundIn this section, we show that the lower bounds of Theorems 1 and 2 are tight. ByLemma 2, it su�ces to give an O(n log n=r)-time algorithm that computes an r-approximate MST for any set of n points in IRd, and any 4 < r < n.9

Let S be a set of n points in IRd, and let 4 < r < n. The algorithm does thefollowing.Step 1: Compute the smallest axes-parallel d-dimensional cube that contains allpoints of S. Let ` be the side length of this cube. Translate the set S such that it iscontained in the cube [0; `]d.Step 2: Let b := (r � 2) `=(5npd). Note thatb̀ = 5npdr � 2 � 10pd nr � 3npd:Compute the integer b`=bc by making a scan along the integers 1; 2; : : : ; 3npd. Builda balanced binary search tree BT , storing the integers 0; 1; 2; : : : ; b`=bc in its leaves.For each point p = (p1; p2; : : : ; pd) of S, and each index i, 1 � i � d, use this treeto �nd the integer cpi := bpi=bc:Hence, considering the grid over [0; `]d with mesh size b, point p is contained in thecpi -th slab along the i-th dimension. We callCp := (cp1; cp2; : : : ; cpd)the grid vector of p.Sort the n grid vectors lexicographically, by inserting them one after another intoan initially empty balanced binary search tree BT 0. With each leaf of this tree, storeall points p with the same grid vector.Step 3: For each grid vector C that occurs in BT 0, do the following. Let SC be theset of points p of S for which Cp = C. Pick an arbitrary point qC of SC, and call itthe representative of SC . Then connect each point of SC n fqCg to this representative.This gives a tree TC on SC.Step 4: Let R be the set of all representatives. Compute a 2-approximate MSTTR for the points of R, using any one of the (algebraic computation tree) algorithmsof [4, 8, 9]. (In fact, if d = 2, we can even compute an exact MST for R, using thealgorithm given in [7].)Step 5: Let T be the tree obtained by taking the union of all trees TC and the treeTR. Output T .Lemma 8 The running time of this algorithm is bounded by O(n log n=r).Proof: Steps 1, 3 and 5 take O(n) time. Consider Step 2. The tree BT can be builtin O(n) time. Given this tree, the grid vectors can be computed in timeO(n log `=b) =O(n log n=r). Since the tree BT 0 contains at most (`=b)d elements, its height is boundedby O(log(`=b)d) = O(log n=r). Hence, all n grid vectors can be inserted into BT 0 intime O(n log n=r). This proves that Step 2 takes time O(n log n=r). Step 4 takes timeO(jRj log jRj). Since R is a subset of S, we have jRj � n. Also, the size of R is atmost equal to the number of cells in our grid, i.e., jRj � (`=b)d. Therefore, Step 4takes time O(n log(`=b)d) = O(n log n=r). This completes the proof.10

It remains to show that the tree T computed by the algorithm is an r-approximateMST . Consider the minimum spanning tree MST (S) for the set S. Then we have toshow that wt(T) � r � wt (MST (S)).The following argument is due to Bern et al.[3]. Imagine \moving" each point ofS to the representative of the cell it is contained in. Then the tree MST (S) \moves"to a graph, say T 0, possibly containing multiple edges and loops.Lemma 9 wt (T 0) � 2pd bn+ wt(MST (S)).Proof: Consider any edge (p0; q0) of T 0. Then there is a unique edge (p; q) in MST (S)that was \moved" to (p0; q0). Denoting the Euclidean distance between two points xand y by jxyj, and using the triangle inequality, we havejp0q0j � jp0pj+ jpqj+ jqq0j:Since p and p0 are contained in the same grid cell, we have jp0pj � pd b. Similarly,jqq0j � pd b. Hence, jp0q0j � 2pd b+ jpqj:Doing this for all n� 1 edges of T 0 proves the claim.Lemma 10 The tree T is an r-approximate MST for the set S.Proof: Let TRopt be the exact MST for the points of R. Then the graph TR computedin Step 4 satis�es wt(TR) � 2 � wt(TRopt).Since T 0 is a spanning graph of R, we have wt(TRopt) � wt(T 0). This, together withLemma 9, implies that wt(TR) � 4pd bn+ 2 � wt(MST (S)):Now, consider the total weight of the edges in the trees TC that are computed inStep 3. Clearly, each such edge has weight at most pd b. It follows thatwt(T) = wt(TR) +XC wt(TC) � 5pd bn+ 2 � wt(MST (S)):Our choice of ` in Step 1 of the algorithm guarantees that there are two points of Shaving distance at least `. Hence,wt(MST (S)) � ` = 5pd bnr � 2 :This implies thatwt(T) � (r � 2) ` + 2 � wt(MST (S)) � r � wt (MST (S)):This completes the proof.We summarize our result. 11

Theorem 4 Let d � 1 be an integer constant. There is an algorithm that, given aset S of n points in IRd and a real number 4 < r < n, computes an r-approximateMST for S in O(n log n=r) time. This algorithm �ts in the algebraic computation treemodel. Hence, the lower bound of Theorem 2 is tight.Corollary 2 Let d � 1 be an integer constant. There is an algorithm that, given aset S of n points in IRd and a real number 8 < r < n, computes an r-approximateTSP-tour for S in O(n log n=r) time. This algorithm �ts in the algebraic computationtree model. Hence, the lower bound of Theorem 1 is tight.5 A non-algebraic computation tree algorithmThe results of the previous sections imply that in the algebraic computation tree modela very large approximation factor is needed in order to get a running time of o(n log n).In this section, we consider algorithms from a more powerful model of computation.More precisely, we assume that besides the operations of the algebraic computationtree model, we have the non-algebraic
oor function and random access available. Wewill prove the following result.Theorem 5 Let d � 1 be an integer constant.1. There is an algorithm that, given a set S of n points in IRd, computes an r-approximate MST for S in O(n) time, where r = 3pdn1�1=d.2. There is an algorithm that, given a set S of n points in IRd, computes an r-approximate TSP-tour for S in O(n) time, where r = 6pdn1�1=d.Besides the operations of the algebraic computation tree model, these algorithms usethe non-algebraic
oor function and random access.Let S be a set of n points in IRd. The following algorithm computes an approximateMST for S.Step 1: Let r := 3pd n1�1=d. Compute the smallest axes-parallel d-dimensional cubethat contains all points of S. Let ` be the side length of this cube. Translate the setS such that it is contained in the cube [0; `]d.Step 2: Let b := `=n1=d. Initialize a d-dimensional arrayI[0::b`=bc; 0::b`=bc; : : : ; 0::b`=bc]:Initialize an empty list with each array entry. Then store each point p = (p1; p2; : : : ; pd)of S in the list stored with I[bp1=bc; bp2=bc; : : : ; bpd=bc]:Step 3: For each array entry C, let SC be the set of points of S that are stored in thelist corresponding to this entry. If SC is non-empty, pick an arbitrary point qC in this12

set and call it the representative. Let TC be the tree on SC obtained by connectingeach point of SC n fqCg to the representative.Step 4: Walk along the (`=b)d entries of the array I in lexicographical order. Thisde�nes an ordering on the representatives. Connect these representatives into a treeTR|in fact, a path|according to this ordering.Step 5: Let T be the tree obtained by taking the union of all trees TC and the treeTR. Output T .Lemma 11 The running time of this algorithm is bounded by O(n).Proof: It is easy to see that the running time is bounded by O(n + (`=b)d). By ourchoice of b, this is bounded by O(n).Lemma 12 Let r := 3pd n1�1=d. Consider the minimum spanning tree MST (S) ofthe set S. Then we have wt(T) � r � wt (MST (S)), i.e., T is an r-approximate MST.Proof: First consider the path TR. This path has a vertex in each grid cell thatcontains at least one point of S. We take an arbitrary point from each grid cell thatdoes not contain any points of S. Let T 0 be the path on the representatives plus theseextra points that is de�ned by the ordering of Step 4. Then, the representatives occurin TR and T 0 in the same order. By the triangle inequality, the weight of TR is atmost equal to that of T 0. It is easy to see that for each grid cell there are at most twoedges of T 0 that intersect this cell. Hence, since there are (`=b)d cells, each one havingdiameter pd b, the weight of T 0 is bounded above by 2 (`=b)dpd b. This implies thatwt (TR) � 2 (`=b)dpd b = 2npd b:It is also clear that each edge of any tree TC has weight at most pd b. It follows thatwt(T) � npd b+ 2npd b = 3npd b:We know that wt (MST (S)) � `. Hence, it su�ces to show that 3npd b � r`, whichsimpli�es to 3npd � rn1=d. But this holds with equality, by our choice of r.Lemmas 11 and 12 prove the �rst claim of Theorem 5. The second claim followsfrom Lemma 2.6 Concluding remarksWe have shown that in the algebraic computation tree model, the complexities of ther-approximate TSP and MST problems are �(n log n=r), for large values of r and nsuch that r < n. We have also shown that in a model that additionally uses the
oorfunction and random access, it is possible to solve both problems in linear time forr = c n1�1=d for some constant c.We mention the following three open problems. First, in this more powerful model,can these problems be solved in linear time for values of r that are smaller than13

n1�1=d? Second, is it possible in this model to solve the planar version of the problemsin o(n log log n) time for a constant value of r (thereby improving the result of [3])?Finally, for dimension d � 3, can these problems be solved in o(n log n) time in thismodel for a constant value of r?References[1] P.K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. Euclidean minimumspanning trees and bichromatic closest pairs. Discrete & Computational Geometry6 (1991), pp. 407-422.[2] M. Ben-Or. Lower bounds for algebraic computation trees. Proceedings 15th AnnualACM Symposium on the Theory of Computing, 1983, pp. 80-86.[3] M.W. Bern, H.J. Karlo�, P. Raghavan, and B. Schieber. Fast geometric approxima-tion techniques and geometric embedding problems. Proceedings 5th Annual ACMSymposium on Computational Geometry, 1989, pp. 292-301.[4] P.B. Callahan and S.R. Kosaraju. Faster algorithms for some geometric graph prob-lems in higher dimensions. Proceedings 4th Annual Symposium on Discrete Algo-rithms, 1993, pp. 291{300.[5] J.H. van Lint and R.M.Wilson. A Course in Combinatorics. Cambridge UniversityPress, 1992.[6] C.H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete.Theoretical Computer Science 4 (1977), pp. 237-244.[7] F.P. Preparata and M.I. Shamos. Computational Geometry, an Introduction.Springer-Verlag, New York, 1985.[8] J.S. Salowe. Constructing multidimensional spanner graphs. International Journalof Computational Geometry and Applications 1 (1991), pp. 99-107.[9] P.M. Vaidya. Minimum spanning trees in k-dimensional space. SIAM Journal onComputing 17 (1988), pp. 572-582.
14

