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ABSTRACT
A top-k query retrieves thek highest scoring tuples from a data
set with respect to a scoring function defined on the attributes of a
tuple. The efficient evaluation of top-k queries has been an active
research topic and many different instantiations of the problem, in
a variety of settings, have been studied. However, techniques de-
veloped for conventional, centralized or distributed databases are
not directly applicable to highly dynamic environments andon-line
applications, like data streams.

Recently, techniques supporting top-k queries on data streams
have been introduced. Such techniques are restrictive however,
as they can only efficiently report top-k answers with respect to
a pre-specified (as opposed to ad-hoc) set of queries. In thispaper
we introduce a novel geometric representation for the top-k query
problem that allows us to raise this restriction. Utilizingnotions
of geometric arrangements, we design and analyze algorithms for
incrementally maintaining a data set organized in an arrangement
representation under streaming updates. We introduce query evalu-
ation strategies that operate on top of an arrangement data structure
that are able to guarantee efficient evaluation for ad-hoc queries.
The performance of our core technique is augmented by incorporat-
ing tuple pruning strategies, minimizing the number of tuples that
need to be stored and manipulated. This results in a main memory
indexing technique supporting both efficient incremental updates
and the evaluation ofad-hoctop-k queries. A thorough experimen-
tal study evaluates the efficiency of the proposed technique.

1. INTRODUCTION
The data stream model of computation [5] best captures the data

and query characteristics of many modern applications, including
network data management, financial data monitoring and sensor
networks. A stream of tuples arrives continuously at possibly high
rates and a main memory buffer maintains incoming tuples. As
the memory space is limited, aged tuples are evicted in orderto
free space for fresh incoming tuples. Several policies for managing
data in the main memory buffer have been studied. A natural policy
capturing the memory constraint requirements is to consider tuples
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valid as long as they belong to a sliding window of a specific size
W . Such a window can betime basedor tuple-count based. Time
based sliding windows assume that tuples arrive with a time stamp
and remain in the buffer as long as their time stamp belongs toa
fixed time period covering the most recent time stamps. Tuple-
count based sliding windows contain the most recentN records.

A basic requirement for many monitoring applications in a stream
setting is to be able to rank tuples in the buffer according toad-
hocpreferences towards their attributes. In a sensor application in
which tuples of readings arrive continuously, it is commonly re-
quired to order the tuples in the buffer in an ad-hoc way. For ex-
ample, one may be interested to report thek highest ranking tuples
in the buffer according to the temperature attribute, followed by a
request to report thek highest ranking tuples according to humid-
ity (for a suitably defined value ofk), followed by some ad-hoc
weighted combination of both, etc. Similar requirements exist in
streams with more rapid rates, such as IP network streams. There
we might be interested to rank tuples (packets) by destination port
or source port, or ad-hoc weighted combinations of packet length
and number of network hops, etc. Depending on the application
context, endless possibilities exist.

In this paper we focus on supporting efficient ad-hoc top-k query
answering over the contents of such a buffer. Previous work has
investigated the problem of efficiently maintaining the result of a
persistent set of top-k queries as the buffer is updated. This is too
restrictive as one must have a clear idea on what queries one wishes
to ask before hand. Therefore, we present techniques designed to
support the efficient evaluation of ad-hoc top-k queries. In particu-
lar we make the following contributions:

• We introduce a novel geometric representation of the top-
k query answering problem that allows us to utilize anar-
rangementof geometric objects, in order to perform indexing
and ad-hoc top-k query answering.

• We present algorithms for updating and querying such an in-
dex and study their complexity.

• We introduce and study tuple pruning methods, aiming to
minimize the number of tuples that need to be indexed, while
maintaining the capability to correctly answer any candidate
top-k query. We saw how to efficiently implement them by
utilizing query maintenance techniques [26, 19].

• Using a combination of real and synthetic data sets we eval-
uate the performance of our techniques for a variety of pa-
rameter settings, demonstrating its overall performance and
efficiency.



The rest of the paper is organized as follows. In Section 2 we re-
view related work. Section 3 formally defines the top-k query an-
swering problem and presents background material necessary for
the remainder of our study. In Section 4 we present our ad-hoc
query evaluation methodology using arrangements. Section5 de-
scribes tuple pruning techniques incorporated in the core arrange-
ments solution and dynamic maintenance issues. Section 6 dis-
cusses issues related to tuning our method. In Section 7 we discuss
the generalization of our techniques to high dimensions andtheir
application to an interesting variation of top-k queries. Finally,
Section 8 presents the results of our experimental evaluation; we
conclude in Section 9.

2. RELATED WORK
Top-k queries were first introduced in the context of multimedia

systems [12, 13]. Queries over multimedia content are rarely exact.
Instead, the objects most similar to the query are to be retrieved. A
multimedia system scores the objects according to how well they
match each of the query predicates and produces a sorted listin
descending score order for each of the predicates. These lists are
subsequently combined to produce the final ranking of the objects
with respect to the whole query. This final ranking is based ona
monotone scoring function defined over the partial scores.

Merging partial results is performed by the Threshold Algorithm
(TA) [22]. Variations of the TA algorithm exist depending onwhether
random accesses to the lists are allowed or prohibited. Several ex-
tensions to the basic TA algorithm have been proposed. [23] devel-
oped a version that produces approximate results, while offering
probabilistic guarantees about their precision. [6] use statistics on
the lists to optimize the performance of the TA algorithm, while
[10] allows the TA algorithm to use results of previously answered
queries in addition to the sorted lists.

TheOnion indexing technique [9] organizes the data into layers
of convex hulls and is able to answer queries using additive scoring
functions by processing the layers inwards, starting from the out-
most hull. The technique is therefore able to answer ad-hoc queries,
however it is mostly aimed at static data, since the hulls arevery
expensive to maintain dynamically. Several other top-k techniques
based on indices have been proposed [24, 17].

Most relevant to our problem is the top-k query monitoring tech-
niques of Mouratidis et al., [19]. The techniques, namedTMA and
SMA, employ a regular grid to index the buffer and use it to per-
form both top-k query answering and maintenance. Although top-k

query evaluation is supported, it is inefficient and the methods rely
instead on the incremental maintenance of the results of a fixed set
of queries in order to avoid expensive top-k recomputations. Our
approach raises such a restriction being able to efficientlyanswer
ad-hocqueries.

In [19], top-k computation is performed by visiting the cells of
the grid in descending maximum possible tuple score (max-score)
order, as determined by the score with respect to the query ofthe
upper-right corner of the cell. Query evaluation is facilitated by
a priority queue: the cell with the highest max-score is deheaped,
the tuples inside it are processed and its neighboring cellsare en-
heaped. The procedure terminates when the score of thek-th tuple
in the current result is higher than the max-score of the top cell in
the heap.

For result maintenance, each query is associated with a number
of grid cells that constitutes itsinfluence regionand only updates
that happen within the influence region of a query are processed.
The SMA method achieves better running times over TMA by tak-
ing into account future tuple expirations that will affect queries and
compensating by maintaining additional results per query.

3. BACKGROUND
We start by introducing material required for the remainderof

the paper. Section 3.1 formally defines the top-k query answering
problem. Section 3.2 introduces the notion of anarrangementof
geometric objects [20, 11, 3, 16] that is utilized by our solution .

3.1 Top-k query answering
Consider a data setD of n tuplest1, . . . , tn with d numeric at-

tributesX1, . . . , Xd. Data setD is a snapshot of our main memory
buffer B at a specific time instance. LetDomi be the domain of
the i-th attribute. Without loss of generality, the domain of ev-
ery attribute is considered to be the unit interval[0, 1]. Through-
out the paper we will use this convention. Each tuple can alsobe
viewed as a numeric vector~t = (t.X1, . . . , t.Xd). A top-k rank-
ing query can be expressed as a pairQ = (S, k) returning thek
highest ranking (scoring) tuples with respect to a scoring function
S : Dom1 × · · · × Domd → R, defined on the attributes of a
tuple. To ease notation, we assume thatS involves all attributes but
our discussion remains valid for functions involving only asubset
of the attributes. Moreover, to simplify our presentation we choose
to present our framework for the case ofd = 2. We generalize
our framework in Section 7. In accordance to prior art [24, 10,
17, 9], we consider linear additive scoring functions of theform
S(t) = ~w~t = w1t.x1 + w2t.x2, wherew1 andw2 are positive,
real constants. Thus, a scoring function can be simply expressed as
a vector~w = (w1, w2).

Both data setD and a top-k queryQ = (~w, k) have natural geo-
metric representations. Such a geometric representation utilizes the
native coordinates of the tuples inD, as well as the query param-
eters, and we refer to it as the representation in theprimal plane.
This mapping has been extensively used in different variations of
the top-k query answering problem [9, 24, 19, 10]. Each tuple
t = (x1, x2) in D corresponds to a pointp(t) = (t.x1, t.x2)
that lies inside the unit square[0, 1] × [0, 1]. A query Q can be
mapped to the vector~w = (w1, w2) corresponding to its scor-
ing function. Notice that the score oft is equal to the dot product
~p(t)~w = w1t.x1 +w2t.x2. This dot product is proportional (times

|~w|) to the distance of the projection ofp on ~w, from the origin of
the space (in this case point(0, 0)) . This establishes a connection
between the ordering of the points’ projections on~w and the rank-
ing of the corresponding tuples with respect to the scoring function:
the order in which we meet the projections of the points as we move
along the supporting line of~w, from infinity towards the origin, is
the same as the ranking of the corresponding tuples (Figure 1).
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Figure 1: Top-k query answering in the primal plane.

We would like to support ad-hoc top-k queries on the contents
of bufferB continuously as its content change. Changes can hap-
pen according to either sliding window model, time or tuple-count
based. Thus, we seek a dynamic and scalable organization of the
contents ofB, able to report the results of ad-hoc top-k queries.



3.2 Arrangements
The arrangementA(S) of a finite collectionS of geometric

objects is the decomposition of thed-dimensional space into con-
nected open cells of dimensions0, . . . , d induced byS [16]. Re-
searchers have studied the arrangements of various geometric ob-
jects, including lines, curves, hyperplanes, hypersurfaces, triangles,
circles, etc, for arbitrary dimensionality. Their applications span
multiple scientific areas including Robotics and Computer Graph-
ics just to name a few. Furthermore, many problems can be reduced
to arrangement related equivalents. Detailed discussion is available
elsewhere [20, 11, 3, 16].

3.2.1 Definitions and combinatorial complexity
An arrangement is comprised of cells of dimensionality ranging

from 0 to d. A cell of dimensionalityl, 0 ≤ l ≤ d is namedl-cell.
Cells of dimensionality0, 1 and2 are also calledvertices, edgesand
facesrespectively, while a cell of maximum dimensionality (l = d)
is namedd-cell. For example, Figure 2(a) depicts an arrangement
of 3 linesǫ1, ǫ2 andǫ3 in ℜ2. The regions of the plane denoted
by f1, . . . , f7 are the faces of the arrangement,e1, . . . , e9 are its
edges, whilev1, v2, v3 are its vertices.
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Figure 2: Arrangement of lines.

The combinatorial complexityof an arrangement is the overall
number of cells of all dimensions in the arrangement. The com-
binatorial complexity of anl-cell is the number of cells of the ar-
rangement of dimension less thanl that are contained in the bound-
ary of the cell. For example, the complexity of a face is the number
of vertices and edges on its boundary. For arrangements of hyper-
surfaces, another interesting structure is thezoneof a surface not
present in the arrangement: it is the set ofd-cells intersecting the
surface. For example, in Figure 2(a), the zone of lineǫo is com-
prised of facesf1, f2, f6. The complexity of a zone is the sum of
complexities of thed-cells that comprise it.

In the case of arrangements of lines, the faces are convex, but
can be unbounded (Figure 2(a), facesf1, . . . , f6). Notice that the
arrangement of Figure 2(a) consists of 3 vertices, 9 edges and 7
faces. It is possible to prove [16] that an arrangement ofn lines
is composed ofO(n2) vertices,O(n2) edges andO(n2) faces.
Therefore, the combinatorial complexity of an arrangementof lines
is O(n2). Finally, the complexity of a single face isO(n), since its
boundary can be comprised of up ton edges.

One of the most important results in the arrangements literature
is the Zone Theorem.

THEOREM 1. The maximum complexity of the zone of a hyper-
plane in an arrangement ofn hyperplanes inRd is Θ(nd−1).

For an arrangement of lines (d = 2), the complexity of a zone
is Θ(n). This result is important, since for example, in two di-
mensions a line intersectsn faces and the boundary of a face can
have as many asn edges, therefore a trivial upper bound would
beO(n2). Similar combinatorial complexity results also exist for

arrangements of hyperplanes. Table 1 summarizes the complexity
results for arrangements ofn lines inR

2 andn hyperplanes inRd.

Complexity
Structure Lines Hyperplanes

d-cell O(n) O(n⌊ d

2
⌋)

Zone Θ(n) Θ(nd−1)

Arrangement O(n2) O(nd)

Table 1: Summary of complexity results.

3.2.2 Representation
We briefly review efficient data structures for representingand

storing arrangements and its various substructures; further details
are available elsewhere [20, 11, 3, 16, 25]. The appropriatedata
structure for representing an arrangement depends on its intended
use. For our purposes, we use thedoubly-connected-edge-list(DCEL)
data structure for arrangements of lines [25, 11]. This datastructure
has also been generalized for arrangements of hyperplanes.

The main idea behind the DCEL data structure is to represent
each edge using a pair of directedhalfedges, one going from the
left to the right vertex of the edge and the other, known as itstwin,
going in the opposite direction. Beyond a simple and flat represen-
tation of the planar graph induced by the arrangement, the DCEL
data structure maintains additional incidence and ordering informa-
tion in order to facilitate its convenient and meaningful traversal.
Figure 2(b) illustrates:

• Each halfedge maintains a pointer to its twin, e.g.,e2 to e9

and vice versa.

• For each vertex, a circular list of the incident halfedges is
maintained, in clockwise order. For example vertexv3 main-
tains a list with edges(e2, e8, e6, e4).

• Each halfedge has pointers to its source and target vertices,
for example edgee1 to verticesv1 andv2.

• Each halfedge stores a pointer to its incident face, e.g., edges
e1, e2, e3 store a link to facef1.

• For each face, the halfedges forming its boundary are or-
ganized in a doubly connected circular list. This way the
boundary can be traversed in both clockwise and counter-
clockwise order. For example, edgese1, e2 ande3 of facef1

form a chain.

The total space complexity of the data structure isO(n2), the same
as the combinatorial complexity of the arrangement. We willuse
the term arrangement to refer both to the partition of the plane and
the DCEL data structure used to store it; we clarify in the specific
context if needed.

4. INDEXING FOR TOP-K QUERY ANSWER-
ING IN THE DUAL PLANE

Besides the primal plane, the top-k problem can be also mapped
to the dual plane. The dual plane is a symmetric version of the
primal plane where each point (line) in the primal plane is mapped
to a line (point) in the dual. The mapping is not unique and canbe
selected so that it maintains certain geometric propertiesof interest
to the problem at hand. In our case, each tuplet = (x1, x2) is
mapped to a lineǫt : y = (1 − x2)x + (1 − x1) in the dual plane.
A queryQ can be represented as a pointp(Q) = (w2

w1

, 0), where
w1, w2 are the weights of its scoring function. Then, the following
Theorem holds.



THEOREM 2. Considern tuplest1, . . . , tn, a scoring function
S = ~w and the following mapping to the dual plane:ti 7→ ǫi : y =
(1 − ti.x2)x + (1 − ti.x1) andS 7→ p(S) = (w2

w1
, 0). Then, the

ordering oft1, . . . , tn according toS is the same as the order in
which a vertical ray originating fromp(S) and shooting upwards
meets the corresponding linesǫi (Figure 3).

PROOF. Consider two tuplest, t′ and the scoring functionS,
such thatS(t) < S(t′). Let dt (dt′ ) be the vertical distance of line
ǫt (ǫt′ ) from point p(S). We will demonstrate thatdt > dt′ ⇔
S(t) < S(t′). The value ofdt is equal to they-coordinate of line
ǫt for x = w2

w1
. Therefore,dt > dt′ ⇔ (1 − x2)

w2

w1
+ (1 − x1) >

(1 − x′
2)

w2

w1
+ (1 − x′

1) ⇔ w2 − w2x2 + w1 − w1x1 > w2 −
w2x

′
2 +w1−w1x

′
1 ⇔ (w1 +w2)−S(t) > (w1 +w2)−S(t′) ⇔

S(t) < S(t′).

x

y

ε1

ε2

ε3

2

1

w

w
2

1

w

w

��0

Figure 3: Top-k query answering in the dual plane.

This observation immediately points to an alternative solution
to the top-k query answering problem. We can map the tuples
of a data set to lines in the dual plane and then store and query
the induced arrangement. The mapping to the dual plane and the
use of arrangements provides an intuitive framework for represent-
ing and maintaining the rankings ofall possible top-k queries in a
non-redundant, self-organizing manner. The representation is non-
redundant in the sense that all queries that produce the exact same
tuple ranking are mapped to a continuous interval on thex axis
and use the same part of the arrangement to retrieve that ranking.
Notice that an intersection signifies a change in the rankingof two
tuples. If we project all tuple intersections on thex-axis, all queries
that lie between two consecutive projections will produce the same
ranking. The representation is also self-organizing as theline in-
sertion/deletion operations on the arrangement that we will subse-
quently describe, change appropriately the rankings ofall queries,
eliminating the need to identify and maintain the result of specific
queries. Therefore, by mapping the top-k query answering problem
to the dual plane, we obtain the capability to evaluatead-hoctop-
k queries by essentially storing and maintaining the rankings of all
possible top-k queries in a non-redundant, query-independent man-
ner.

4.1 Operating on the arrangement
Before we describe the algorithms for operating on the arrange-

ment, let us make two observations. First, the points representing a
query can only lie in the positive part of thex axis of the dual plane,
so there is no need to maintain any arrangement related information
(vertices, edges, faces) on its negative side. Second, since the do-
main of the tuples is the unit square, the lines that result after the
mapping to the dual plane are of the formy = ax + b, where
0 ≤ a, b ≤ 1. Therefore, for positive values ofx, the lines lie
exclusively on the positive quadrant. Notice that the selected map-
ping places all the elements of the top-k query answering problem

in the positive quadrant of the dual plane. For this reason, we re-
alize a bounded frame of dimensions[0, M ] × [0, M + 1] (Figure
4(a)) in the dual plane and only store the part of the arrangement
that lies inside the frame. However, all the combinatorial bounds
that we described in Section 3.2.1 are still valid.

�
1

�
2

�
3�
4

(0,0) (M,0)

(0,M+1) (M,M+1)

(a) Arrangement represen-
tation

1

2

3

45
6

7
8

9
10

111213�
1

�
2

�
3�
4

p(Q)

R

(b) Vertical ray shooting

�
1

�
2

�
3�
4

l
7 8

10

9

11

12

13

1

2

3

4

5

6
v1

v2

v3

(c) Line insertion

Figure 4: Representing and operating on an arrangement.

We need to determine a suitable value forM . Notice that we
used a bounded frame in order to cover an unbounded quadrant.
Care must be exercised so that all the relevant arrangement infor-
mation is guaranteed to lie within the frame. Consider two lines
y = a1x + b1 andy = a2x + b2. Thex-coordinate of their inter-
section point isxI = b2−b1

a1−a2
. The maximum value ofxI is attained

whenb2 − b1 = 1 (the nominator is maximized) anda1 − a2 = δ

(the denominator is minimized), whereδ is the minimum allow-
able difference between two attribute values, as defined by either
machine precision or attribute domain information. Therefore, we
need to setM > 1

δ
in order to guarantee that all relevant informa-

tion lies within the frame.
As we proved, a top-k query is mapped to a vertical ray shooting

query in the dual plane. Figure 4(b) depicts the arrangementthat
corresponds to 4 tuples mapped to the dual plane (line segments
ǫ1, . . . , ǫ4 in our dual representation), the pointp(Q) correspond-
ing to a query and the vertical rayR. An arrangement traversal
starts from the bottom edge of the frame (step 1). This edge cannot
intersect with any of the lines in the arrangement, so we use it as
a reference point to initiate any traversal. The bottom edgeis also
associated with a face that lies inside the frame. RayR moves in-
side that face until it intersects its boundary. We can walk along
the boundary of the face until we locate the specific edge thatin-
tersectsR (steps 2-4). In the configuration of Figure 4(b), the edge
corresponds to tuple 4 (line segmente4 in the dual representation),
which is the highest ranking result for the query. At the intersection
point, rayR leaves the current face and enters a neighboring face
on the other side of the current edge. We therefore need to move
to the twin of the current edge (step 5) and again move along the
boundary of that neighboring face until we locate the new exit point
of R (step 6). Since tuple 2 is associated with the edge at the exit
point, it is the second tuple in the top-k result. This procedure is
repeated (steps 7-11 and 12-13) until the desired number of results



(all tuples in our example) has been retrieved. The pseudocode for
this operation is presented in Algorithm 1.

Algorithm 1 Top-k retrieval algorithm
R: ray corresponding to queryQ
k: number of tuples to be retrieved

Result=∅
edge=bottom
edge=edge.next()

for i = 1 to k do
while not intersects(R,edge)do

edge=edge.next()
end while

Result.append(edge.tuple())
edge=edge.twin()
edge=edge.next()

end for

return Result

The insertion procedure is similar to the vertical ray shooting op-
eration we just described. We use Figure 4(c) to demonstratea line
insertion. Every line in the arrangement intersects the left bound-
ary of the frame. The first step is therefore to locate the edgealong
the left boundary where the new line intersects the existingarrange-
ment. This involves a simple walk along the “exterior” of theframe.
Notice that the rest of the plane outside the frame also constitutes
anunboundedface, so we can also walk along its boundary (steps
1-6).

Let us denote byl the new line. After we locate the edge where
l enters the arrangement, we need to split that edge at the intersec-
tion with l and insert a new vertexv1 (step 7). Then, we traverse the
boundary of the current face until we locate the edge wherel exits
(steps 8-9). This edge is also split at the intersection point with l

and a new vertexv2 is inserted. This and the last vertex inserted in
the arrangement are connected using a new edge. This new edge
corresponds to a segment of linel. Line l enters a new face (step
10) whose boundary we also need to traverse until we find the new
exit point (11-13). The corresponding edge is again split (vertex
v3) and a new line segment is inserted in the arrangement as be-
fore. This procedure is repeated until the right boundary ofthe
frame is reached. The pseudocode for this operation is presented in
Algorithm 2.

The procedure for line removal is basically the reverse of a line
insertion. The first segment of the line to be deleted is initially
located along the left frame boundary and starting from there its
segments are progressively removed. We therefore omit any further
discussion on the delete procedure.

Let n be the number of lines that are already present in the ar-
rangement. The left boundary of the frame is comprised ofn + 1
segments, as it is intersected by alln lines in the arrangement.
Therefore, traversing the boundary until locating the proper seg-
ment where the line insertion will commence is anO(n) operation.
The complexity of the main loop of the insertion procedure isde-
termined by the number of the arrangement’s edges that must be
traversed and the number of new edges that must be inserted. An
edge insertion is anO(1) operation. Since a line can intersect with
up ton other lines, the cost for inserting the new edges isO(n). As
for the number of edges that must be traversed, their number is up-
per bounded by the total number of edges in the faces that the new
line intersects. This is exactly the complexity of the line’s zone and
is of sizeO(n) (Zone Theorem). Consequently, the total cost of

Algorithm 2 Insertion algorithm
l: line to be inserted

edge=bottom
edge=edge.twin()

while not intersects(l,edge)do
edge=edge.next()

end while

edge=edge.twin()
last vertex=edge.split()

while edge not on right boundarydo

while not intersects(l,edge)do
edge=edge.next()

end while

edge.twin()
currentvertex=edge.split()
connect(currentvertex,lastvertex)
last vertex=currentvertex

end while

the insertion procedure isO(n). In a very similar manner we can
demonstrate that the cost of a deletion operation is alsoO(n).

The cost of a query is determined by the number of the arrange-
ment edges that must be traversed. Since a vertical ray can be
treated as a line, the complexity of its zone isO(n). This is an
upper bound since a top-k query needs only to visitk faces, one
face for each tuple that has to be retrieved. However, in the worst
case, a face consists ofn edges, therefore even though we walk
along the boundary ofk faces, the worst case cost of the procedure
is still O(n). Fortunately, we can expect the number of edge traver-
sals that are required in practice to be limited, since the face size
should normally be small.

To summarize, after mapping a data set of sizen to the dual
plane, we can treat it as an arrangement of lines and be able to
perform ad-hoc top-k query answering, for any value ofk ≤ n,
while also supporting tuple insertions and deletions in arbitrary or-
der. The space complexity of the solution isO(n2) and the cost of
the query answering, insert and delete operations isO(n).

The aforementioned worst case bounds are a direct consequence
of the combinatorial complexity of the arrangement, which might
initially appear inappropriate for use in a streaming context. In or-
der to compensate, we have developed a methodology that enables
us to reduce to just a handful the number of tuples from the data
set we need to store in the arrangement. The following section
demonstrates our tuple pruning technique and derives more favor-
able complexity results for our core arrangement-based solution,
namelyO(k ln n) operations andO(k2 ln2 n) space consumption.

5. TUPLE PRUNING
Let Q be a top-k query. We denote byRk(Q) the point in the

dual plane where a ray shooting upwards fromp(Q) (the point in
the dual plane whereQ is maps to) meets thek-th line. Further-
more, letQ1 < Q2 denote the fact thatp(Q1) lies left of p(Q2)
and let[Q1, Q2] be the interval along thex axis of the dual plane
betweenp(Q1) andp(Q2).

LEMMA 1. Let Q1, Q2 be two top-k queries such thatQ1 <

Q2. Let alsol1(Q1, Q2) be the line in the dual plane that passes
through the origin andRk(Q1). Then, any line that is located
abovel1(Q1, Q2) in the interval[Q1, Q2] cannot be in the result



of any top-k query that lies inside[Q1, Q2].

PROOF. The property ofl1(Q1, Q2) is that it “bounds” thek
lines inQ1’s result below it throughout interval[Q1, Q2]. Since all
lines in the dual plane are of the formy = ax+b with 0 ≤ a, b ≤ 1,
the “steepest” line that passes throughRk(Q1) is l1(Q1, Q2). The
“steepest” lines that pass throughR1(Q1), . . . , Rk−1(Q1) are also
bounded byl1(Q1, Q2). Therefore, the property holds. Any line
ǫ that is located abovel1(Q1, Q2) in the interval[Q1, Q2] is also
located above thek lines in Q1’s result throughout[Q1, Q2]. In
other words, in the interval[Q1, Q2] there are at leastk tuples that
are located belowǫ and hence score higher for any query that lies
in [Q1, Q2]. Figure 5(a) illustrates for two top-2 queries.

LEMMA 2. Let Q1, Q2 be two top-k queries such thatQ1 <

Q2. Let alsol2(Q1, Q2) be thehorizontal line in the dual plane
that passes throughRk(Q2). Then, any line that is located above
l2(Q1, Q2) in the interval[Q1, Q2] cannot be in the result of any
top-k query that lies inside[Q1, Q2].

PROOF. The proof is similar to that of Lemma 2. Figure 5(b)
illustrates for two top-2 queries.

We now introduce the following Theorem.

THEOREM 3. LetQ1, Q2 be two top-k queries such thatQ1 <

Q2. Let alsoI(Q1, Q2) be the intersection point of linesl1(Q1, Q2)
(Lemma 1) andl2(Q1, Q2) (Lemma 2). We refer to this point as the
pruning point. Then, any line that is located aboveI(Q1, Q2) can-
not be in the result of any top-k query that lies inside[Q1, Q2].

PROOF. Combining Lemmata 1 and 2, we can argue that any
line that is located above eitherl1(Q1, Q2) or l2(Q1, Q2) in the
interval betweenQ1 and Q2 cannot be in the result of any top-
k query betweenQ1 andQ2. However, notice that this is true if
and only if the line is above the intersection point ofl1(Q1, Q2)
andl2(Q1, Q2). Figure 5(c) illustrates for two top-2 queries.
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Figure 5: Proving Theorem 3.

Consequently, given two top-k queriesQ1, Q2 and their result,
we can, by performing simple computations, filter out a portion of

the data setD that is definitely irrelevant to any top-k query in
[Q1, Q2]. In other words, only the part of the data set not pruned,
denoted byD∗, needs to be stored in the arrangement. This part
contains all information relevant toany top-k query in [Q1, Q2].
Notice thatD∗ is not guaranteed to be minimal, in the sense that it
can contain tuples that do not appear in the result of any top-k query
in [Q1, Q2] and thus are irrelevant. The guarantee we are offered is
thatD − D∗ contains only irrelevant tuples, whileD∗ contains all
relevant tuples.

Pruning a significant portion of the data set involves a tradeoff.
We can correctly answer any top-k query in[Q1, Q2], requesting up
to a number of results determined by the number of results (K) we
choose to return for queriesQ1, Q2. Notice thatK determines the
position of the pruning point. Effectively, the choice ofK imposes
a bound on the maximum number of top-k results any query can
request (k ≤ K) in accordance to previous work [24, 9].

Thus, we can utilize Theorem 3 in order to reduce the number
of tuples we need to store in the arrangement and still retainthe
capability to answer any top-k query. Consider now a setB of
m + 1 top-k queriesB = {B1, . . . , Bm+1}, such thatBi < Bj

for i < j and p(B1) = (0, 0), p(Bm+1) = (M, 0). We will
refer to those queries asborders. In the dual plane, the rays cor-
responding to the borders superimpose on the arrangement a series
of m disjoint, consecutivestrips S = {S1, . . . , Sm} that cover
the entire arrangement. (Figure 6(a)). Treating each border as a
query, we can compute (e.g., by traversing the arrangement along
the vertical ray corresponding to the border) the query result for
each border top-k query. As a result, we can compute thepruning
point I(Si) = I(Bi, Bi+1) for each strip and identify the part of
the full data setD that we need to use in order to be able to answer
any top-k query that lies inside a strip. We denote the filtered data
set associated with stripSi by D∗

i .
For example, in Figure 6(a), we have four bordersB1, . . . , B4

corresponding to top-3 queries, that induce stripsS1, S2, S3. The
corresponding filtered sets areD∗

1 = {ǫ1, ǫ2, ǫ4} andD∗
2 = D∗

3 =
{ǫ1, ǫ2, ǫ3, ǫ4}. Notice that there can be overlap between setsD∗

i
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Figure 6: Placing borders on top of an arrangement.

There are two ways we could potentially utilize setsD∗
i in order

to answer any arbitrary top-k query. The first is to consider the
arrangement of data setD∗ =

⋃m
i=1 D∗

i . D∗ contains all the tuples
necessary to answer any top-k query, since it is a superset of any of
theD∗

i data sets. We refer to this option as theFull Arrangement
(FA) solution. A second option is to create a separate arrangement
for each of theD∗

i tuple sets and use the relevant arrangement to
answer a query. We will refer to each of these arrangements as
arrangement strips. We call this option theStrip Arrangement(SA)
solution.

The motivation behind the SA solution is that each of its arrange-
ment strips can be considerably smaller than the full arrangement



of the FA solution. Each of the arrangement strips indexes just a
subset of the tuples indexed by the full arrangement. Furthermore,
since each strip is responsible for answering queries that lie be-
tween two bordersBi andBi+1, we only need to construct and
maintain the arrangement in the interval[Bi, Bi+1]. This effect
greatly reduces the arrangement complexity. Figure 6(b) depicts
the arrangement that corresponds to stripS2 of Figure 6(a). The
complexity of the full arrangement is reduced in an arrangement
strip in terms of points, segments and faces, while it is obvious that
it can correctly answer any top-k query that falls inside the strip.

5.1 Handling updates
In a streaming environment we expect new tuples to enter the

bufferB and old tuples to expire. As a result both the FA and SA
solutions should support dynamic changes in the data they index.
Let D denote the data set in our buffer at a time instance. Suppose
that after a number of tuple insertions and deletions we end up with
an updated version ofD, denoted byD′. The first action one must
take is to recalculate the result of the borders, in order to update the
pruning pointsI(Si) associated with the strips. Using those up-
dated points, we need to prune data setD′ and calculate the filtered
setsD′∗

1 , . . . , D′∗
m, D′∗. For the FA method, tuples inD′∗ − D∗

must be added in the arrangement, while tuples inD∗ − D′∗ must
be removed. Similarly, for stripSi of the SA method we must in-
sert in the corresponding arrangement strip tuples inD′∗

i −D∗
i and

delete tuples inD∗
i − D′∗

i .
The two issues we have to resolve is how to update the borders

and how to rapidly filter the data setD′ in order to compute sets
D′∗

1 , . . . , D′∗
m, D′∗. Let us first concentrate on efficiently filtering

the data set. Given a set ofn lines, we need to report the subset that
lies below the pruning point. We would like to do so by consider-
ing as few of then lines as possible. While we could potentially
attempt to tackle the problem in the dual plane, it is much simpler
and more convenient to handle it in the primal plane, as its equiva-
lent (in the primal plane) is a well known Computational Geometry
problem, namelyhalfspace range searching.

The halfspace range searching problem has the following form
[2]: given a set of points inR2 (Rd), we wish to index them us-
ing a data structure, so we can efficiently report all the points that
lie above a query line (hyperplane). A connection between our fil-
tering problem in the dual plane and the halfspace range searching
problem in the primal plane is formally established by the follow-
ing Theorem:

THEOREM 4. Let t be a tuple andp(t), ǫt its mapping to the
primal and dual plane respectively. Then, lineǫt is located below a
point I = (xI , yI) iff point p(t) is located above a lineǫI = f(I).

PROOF. Let t = (a, b). Then,p(t) = (a, b) and ǫt = (1 −
b)x + (1 − a). For ǫt to be belowI , the following equation must
hold: yI ≥ (1 − b)xI + (1 − a). ForxI 6= 0, this is equivalent to
b ≥ − 1

xI
a + (1 + xI−yI

xI
), which is exactly the condition forp(t)

to be above liney = − 1
xI

x+(1+ xI−yI

xI

). We get a similar result
for xI = 0.

Theorem 4 allows us to perform filtering in the primal plane,
where we can utilize specialized fully dynamic data structures to
index the data in the buffer and perform halfspace range searching.
Depending on query time and update time requirements, as well
as potential space constraints, a large number of data structures
could be employed, including grid or sophisticated partition tree
structures, that offerO(n⌊d/2⌋−1+ǫ) update time andO(log n+r)
query time [2], whered is the dimensionality,n the number of
points indexed andr the result size of the query.

In order to dynamically calculate and maintain the top-k query
result for the borders, we observe that this is exactly the problem
of maintaining top-k query results for a fixed set of queries in a
streaming environment. For this problem we can utilize known
solutions, such as [26, 19]. We discuss our choices in Section 8.1.

5.2 Pruning efficiency
As was previously discussed, the filtered data setD∗ contains

all tuples that can potentially appear in the result of a top-k query,
a property that guarantees the correctness of the proposed method.
Because of this property,D∗ is a superset of thek-skyband[19]
of D. Thek-skyband is the generalization of theskylineof a tuple
set. As the skyline is the minimal subset ofD required to answer
correctly any top-1 query, thek-skyband is the minimal subset re-
quired to correctly answer any top-k query.

Therefore, the size ofD∗ is lower bounded by the size of thek-
skyband. As will become clear in the following section, increasing
the number of borders results in more efficient pruning. Actually,
a sufficient number of borders can reduceD∗ to thek-skyband.
However, this is not required since, as we will demonstrate in Sec-
tion 8, a small number of borders can provide a sufficiently tight
supersetD∗.

This observation allows us to approximate the size ofD∗ with
the size of thek-skyband. In [8] it is established that forn uncor-
related d-dimensional tuples, the size of the skyline isΘ( lnd−1 n

(d−1)!
).

While this result has not been generalized for thek-skyband, it is

plausible to estimate its size asΘ(k lnd−1 n
(d−1)!

). For d = 2, this is
equal toΘ(k ln n). Furthermore, in [15] it is demonstrated that
even for anticorrelated data and high dimensionality, the size of the
skyline does not explode and remains a tiny fraction of the original
data set.

Putting it all together, after the application of our pruning tech-
nique, only|D∗| tuples need to be stored in an arrangement repre-
sentation. Therefore, the complexity of arrangement operations is
reduced toO(|D∗|) instead ofO(n), n being the size of the buffer.
In the case of uncorrelated data, the cost of arrangement operations
is onlyO(k lnn).

6. PLACING THE BORDERS
We now turn our attention to the problem of placing a number of

borders on the arrangement and discuss the issues associated with
the dynamic maintenance of such placement under changing data
distributions.

Let us first focus on the tradeoffs associated with the numberof
borders placed on the arrangement. A first observation is that in-
creasing their number results in more efficient pruning. Figure 7(a)
illustrates this effect. A new borderBnew is added in between two
existing bordersBi andBi+1. As a consequence, the region that
can be pruned given the newly created pruning point is largerthan
before. In the worst case, it will be exactly as before the addition
of the new border, sinceRk(Bi) ≤ Rk(Bnew) ≤ Rk(Bi+1). For
example, in Figure 7(a) notice that linesǫ1 andǫ2 are pruned only
after the addition of the new border.

Although increasing the number of borders increases the prun-
ing capability, so does the cost one has to pay after each update in
order to maintain the correct top-k values at each border and cor-
rectly assess the pruning point for each strip. Furthermore, in the
case of the SA method, so does the number of arrangement strips
that need to be maintained. As the number of borders increases,
we expect to get diminishing increases in pruning efficiency, while
their maintenance becomes more costly. We explore such tradeoffs
in Section 8.
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Figure 7: New borders and band-queries.

We will base the description of our border positioning strategy
on the SA technique. The method can be directly used to generate
an appropriate border set for the FA technique. The borders induce
a partitioning of the dual plane into strips and the complexity of
the corresponding arrangement strips determines the performance
of queries and update operations on them. Assuming a uniform
query workload, a natural objective is to produce strips that are
equally complex. In general, the number of vertices in a strip pro-
vides a very accurate estimate of its complexity, that is also easy
to compute without having to actually materialize the strip. The
intuition behind the strategy is simple: a single dense and complex
strip can dominate update and query time; thus by equalizingstrip
complexity, given a specific number of strips, we aim to provide an
unbiased treatment to all queries and update events. An additional
plausible objective would be to minimize the maximum complexity
of a strip, that is minimize the maximum number of vertices within
a strip, for a specific number of strips.

Given a set of pointsD in the buffer, placing a number of borders
B in a way that we generate arrangement strips of equal complexity
is equivalent to the problem of generating anequi-depthpartition-
ing of the arrangement intoB arrangement strips. This problem is
challenging as even the placement of a single border will create two
new strips of unknown size. The specific size depends on how data
are distributed inside the buffer. We don’t have a way of estimating
the size unless we actually place the border and generate thetwo
arrangement strips. One way to circumvent this issue would be to
assume that we have information regarding the sizes of resulting
arrangement strips, for a large number of stripsB′ ≫ B. Thus, we
first generate a numberB′ of arrangement strips, placing them in
anequi-widthmanner, while maintaining the number of vertices in
each.

Although this would reduce the problem to a one dimensional
problem, an additional complication arises. LetHw(B′) denote
the resulting array recording the number of vertices in eachof the
B′ strips. We can then solve the equi-depth partitioning problem
assuming a “granularity” ofB′ strips and induceB strips in an
equi-depth manner (or according to some other objective, say min-
imize Linf norm), applying known algorithms [21]. However, ev-
ery time we collapse a number of adjacent strips, the sum of their
sizes is only a crudelower boundof the size of the newly formed
strip. For example, in Figure 7(a), after merging strips[Bi, Bnew ]
and[Bnew , Bi+1] the size of the resulting strip is equal to the sum
of the sizes of the merged strips plus the vertex that is introduced
by the intersection of linesǫ1 andǫ2 that are no longer pruned. In
practice, this effect is greatly exacerbated. As a result, any attempt
to obtain a partitioning based on maintaining information at a lower
granularity will be always based on lower bound estimates. Such
lower bounds, do not necessarily provide a good indication of the
actual size (complexity) of arrangement strips.

We demonstrate that even aiming to maintain an equi-depth par-
titioning using such lower bounds is a hard problem. LetHd(B)
denote the resulting equi-depth histogram (on the lower bounds of
the complexity of the arrangement strips), with the bucket bound-
aries signifying the location of theB borders. This will generate
an equi-depth partitioning into arrangement strips, for the initial
contents of the buffer before any update commences. A singleup-
date, in terms of points entering or leaving the buffer can affect all
entries ofHw(B′) in the worst case. In principle, all theB′ equi-
width strips may be affected. However, the values inHw(B′) can
be incrementally maintained as updates take place in the buffer.

We would like to dynamically maintain the boundaries ofHd(B)
as changes happen intoHw(B′). This is a challenging streaming
problem, as the model of streaming changes intoHw(B′) does not
follow the usual sliding window model. In particular the model that
describes the streaming changes intoHw(B′) is the cash-register
model [14]. In this model, the only results known maintain a sketch
of the changes inHw(B′) and periodically extract aVopt (minimiz-
ing theL2 norm) [18] histogram from the sketch.

Thus, the optimization is not continuous but happens periodi-
cally at select time intervals. No results are known for equi-depth
histograms or other norms (e.g., theLinf ) in this model. Even
if one is interested to pursue extraction ofVopt histograms, given
that the changes to the underlyingHw(B′) can be arbitrary under
buffer updates, the resultingVopt boundaries (locations of the bor-
ders) can be vastly different than the ones before the updates. In
the worst case adjusting the location of the borders may be worst
than building the new arrangement strips from scratch. Thisis be-
cause the overhead of identifying the relevant vertices in the ar-
rangement strips between the old and new border positions for all
borders would result to very high maintenance and pruning over-
head, since changes are not localized.

For these reasons, we chose to adopt a conservative approachto
this problem and rebuild the arrangement strips when necessary.
The cost of doing so is amortized over time. As a result, our overall
strategy for maintaining the locations of the borders consists of:

• Initially placing them in a equi-depth fashion. We do so
by first considering the arrangement on the entire buffer and
identifying its vertices. We then sweep the arrangement plane
until we encounter half its vertices and place a new border at
this point. We empirically found that this border positioning
protocol creates two strips of approximately equal complex-
ity. Then, we recursively split the resulting strips, untileach
arrangement strip contains at most a specified number of ver-
ticesvmax. We experimentally study the different effects of
varying the value ofvmax in Section 8.

• Allowing changes to occur in the buffer and conducting the
suitable arrangement maintenance to assure correctness (in-
serting and deleting tuples from the affected arrangement and
arrangement strips).

• Monitoring appropriate statistics to validate that the goals of
the border generation strategy we just described are met. For
the SA method, two statistics are monitored: the mean and
coefficient of variation (standard deviation over the mean)of
the arrangement strips’ complexity (as is measured in terms
of arrangement vertices). The goal of our border generation
method is to produce strips of approximately equal complex-
ity that also have fewer thanvmax vertices. Therefore, the
coefficient of variation is monitored to guarantee that strips
are of similar complexity, while the mean is monitored to
assert that our maximum strip complexity objective is not vi-
olated. For the FA method, we monitor the arrangement’s



complexity. The number of vertices after the last rebuild is
saved, and if the current number of vertices becomes consid-
erably larger than the initial value, a significant change inthe
data distribution is implied.

• Triggering a full rebuild when the aforementioned statistics
exceed predefined thresholds. The rebuild involves the gen-
eration of new border set and the reconstruction of the in-
duced arrangement or arrangement strips. We evaluate this
strategy in Section 8.

7. EXTENSIONS

7.1 Band-queries
Consider the following interesting type of query. Given a con-

tinuous band of queries[Q1, Q2] (Section 5), return all the tuples
that appear in the top-k result of any query in [Q1, Q2] (union
semantics) or return the tuples that appear in the top-k result of
all queries in[Q1, Q2] (intersection semantics). Band queries can
be relevant and useful in many contexts. As an example, a user
might not wish to provide specific query weights, but specifyin-
stead weightranges. Such a query can be translated into a band
query in a straightforward manner.

Figure 7(b) helps demonstrate how band queries can be easily
evaluated using the proposed techniques. Suppose that we want
to answer a top-2 band query betweenQ1 andQ2. We first per-
form a vertical ray shooting query atQ1 and retrieve its top-2 re-
sult {ǫ4, ǫ1}. The segment ofǫ1 that intersectsQ1 is used as a
starting point to further traverse the arrangement towardsQ2. The
invariant we maintain while progressing towardsQ2 is that we al-
ways move along the top-2 (top-k in general) tuple from the base
of the arrangement. The vertices we meet during the traversal can
correspond to tuples leaving and entering the “current” top-2 result
(vertexv2) or just a reordering between the top-1 and top-2 tuples
(top-k and top-(k − 1) in general). Depending on whether we use
union or intersection semantics, we keep adding or removingtuples
from the initial top-2 set, until we reachQ2.

The part of the arrangement that needs to be traversed in order to
answer a band query is known as itsk-level, and its combinatorial
complexity isO(n

3
√

k) [3, 16]. Therefore, band queries can be
efficiently evaluated inO(|D∗| 3

√
k) time.

7.2 Higher dimensionality
A direct extension of our techniques tod-dimensions will require

us to compute the arrangement of|D∗| (d−1)-dimensional hyper-
planes, each corresponding to the dual of an original point in the
buffer. As we presented in Section 3.2.1, the complexity of such
an arrangement isO(|D∗|d). Moreover, to answer any query, we
will have to efficiently trace a ray (the dual of a query) within this
arrangement and compute the firstk intersections with the hyper-
planes. The complexity of this operation is bounded by the com-
plexity of the zone of a 1-dimensional line in this arrangement.
The extended Zone Theorem in [4] states that this complexityis
O(|D∗|(d+1)/2). Furthermore, in Section 5.2 we observed that the

size of|D∗| in the case of uncorrelated data isΘ(k lnd−1 n
(d−1)!

). As a
consequence, the direct extension of our approach to three dimen-
sions will result in anO(k3 ln6 n) arrangement of hyperplanes and
the time complexity of answering any query will beO(k2 ln4 n).

As an alternative, we can also leverage the efficient solution in-
volving arrangements we presented for two dimensions in thefol-
lowing approach. Consider ad-dimensional space with dimensions
x1, x2, . . ., xd. Let us form pairs of dimensions, such as(x1, x2),
(x3, x4), . . ., (xd−1, xd) (wlog, assumed is even). We can project

the points in the buffer into each of these two dimensional spaces,
and build arrangements for the duals of each. Now, given a query
such asw1x1 + w2x2 + · · · + wdxd, we can similarly partition it
into d

2
2-dimensional queries:w1x1 +w2x2, w3x3 +w4x4 and so

on. Each partitioned query can be answered by its corresponding
arrangement using the techniques we have developed thus far. We
can then use the Threshold Algorithm (TA) to collect the sorted or-
der of the tuples in each projection, and merge them to obtainthe
top-k points of the original query.

8. EXPERIMENTAL EVALUATION
In this section we discuss in greater detail the implementation of

the proposed methods and present a thorough experimental study
evaluating their performance.

8.1 Implementation details
In Section 5.1 we introduced a framework for updating the pro-

posed indexing structures that requires concrete methods for per-
forming halfspace range searching and border maintenance.Since
a border is just a persistent top-k query, we use the query moni-
toring technique of Mouratidis et al. [19] to perform bordermain-
tenance. The technique uses a simple, regular grid to index the
buffer. Since the grid is in place, we also utilize it to perform half-
space range searching. Although this choice does not offer opti-
mal halfspace query answering performance, it relieves thepro-
posed methods from the overhead of maintaining a second, dedi-
cated data structure. Even better performance can be achieved by
the techniques proposed herein by utilizing optimum structures for
halfspace range searching [2]. Our implementation of the arrange-
ment data structure was based on theArrangementspackage of the
CGAL library [25] and supports lines inR2.

8.2 Experimental setting
A stream of tuples arrives continuously at the system which main-

tains a tuple-count buffer of sizen. Varying tuple arrival rate is
“simulated” as follows: at eachupdate cycle, r% of the tuples in
the buffer are evicted to be replaced by an equal number of fresh,
incoming tuples. After each buffer update, all indices are brought
up to date in order to reflect the current state of the buffer and m

ad-hoc top-k queries are evaluated.
The parameters that can potentially affect performance arethe

size of the buffer (n), the rate of the incoming stream (r), the num-
ber of queries monitored (m) and the number of results retrieved
by each query (k). Attribute distributions of the incoming tuples
can also have a direct impact on performance. Therefore, we de-
signed a set of experiments to evaluate the actual impact of these
parameters to the performance of our methods, FA and SA.

We also compare the performance of our methods with the top-k

answering technique of [19] (Section 2), referred to as MBP.All
experiments were carried out on a 3.2GHz Pentium D CPU with
2GB of RAM.

8.3 Experimental evaluation

8.3.1 Pruning efficiency
The tunable parameter of the MBP method is the grid granu-

larity. In [19], the use of a specific, empirical value, is suggested
but it is intended for use with a restricted set of buffer sizevalues.
We found the best performing value to be dependant on the buffer
size, therefore for every different value ofn in our experiments we
used the respective best performing grid granularity for the MBP
technique. As a heuristic and for fairness, we also used the same
granularity for the relevant grid utilized by the FA and SA methods.



Respectively, the tunable parameter for the FA and SA solutions
is the maximum allowable strip complexityvmax (Section 6). As
Figure 8(a) demonstrates, the number of borders generated is in-
versely proportional tovmax. This is expected, as a larger number
of borders is required to produce lower complexity arrangement
strips. Figure 8(a) also depicts the complexity of the resulting full
arrangement (for the FA solution) and the total complexity of the in-
duced arrangement strips (for the SA solution). As expected, larger
values ofvmax result in fewer borders, therefore worse tuple prun-
ing and more complex arrangements.
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Figure 8: Effect of vmax.

Figure 8(b) demonstrates the effectiveness of our pruning tech-
nique in terms of the size of the filtered datasetD∗. Even a small
number of borders, i.e., 16 borders forvmax = 1K, produces a
filtered datasetD∗ containing on average only 250 tuples, a tiny
fraction of the 1M tuples that are present in the buffer. The size of
thek-skyband (k = 20 for this experiment), the minimum size for
D∗ we could hope to achieve is approximately 80 tuples.

Summarizing, larger values ofvmax result in fewer borders, but
larger arrangement (strips) for the FA (SA) method. Therefore, less
time is spent in border maintenance and tuple filtering (remember
that there is a filtering step per strip), while more time is spent in
arrangement maintenance and query answering. Smaller values of
vmax have the exact opposite effect. Therefore, the best value of
vmax is subject to such bicriteria reasoning; a reasonable approach
is to balance these competing trends. We experimentally identified
that the value ofvmax depends primarily on the size of the stream-
ing buffer and is insensitive to the rest of the experimentalparame-
ters, including data distribution. Table 2 summarizes the best value
of vmax identified for various values ofn (in terms of combined
ad-hoc query and update performance).

vmax

Buffer Size FA SA

10K,20K,50K,100K 100 500
200K,500K 200 1000

1M 500 1000
2M 500 5000

5M,10M 1000 5000

Table 2: Best performingvmax values.

It is worth noticing in Figure 8(a) that for the same number of
borders (and border positioning), the total complexity of the ar-
rangement strips of the SA solution is always less than the corre-
sponding arrangement complexity of the FA solution. The reason
is the following: the arrangement strips of the SA method isolate
the interaction between lines only within relevant strips.Consider
for example two linesǫ1 andǫ2 that are materialized within an ar-
rangement stripS. If their intersection point lies outsideS, it is not
stored in the arrangement strip. However, if these two linesare ma-
terialized in the full arrangement utilized by the FA method, their

intersection point and all the relevant induced information will have
to be stored, resulting in additional complexity. Furthermore, con-
sider a lineǫ1 that is stored only in arrangement stripS1 and a line
ǫ2 that is only stored in arrangement stripS2. Possible interaction
between these two lines is irrelevant for the SA solution, but not for
the FA method.

It should also be noted that although the proposed techniques uti-
lize arrangements data structures that are of quadratic space com-
plexity, the resulting storage overhead attributed to the arrange-
ments is negligible. Figure 9 demonstrates.
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Figure 9: Arrangements space consumption.

8.3.2 Evaluating the performance of the techniques
In our first set of experiments, we used randomly generated2-

dimensional data and queries to evaluate the effect of each param-
etern, r, m andk independently. The default values for the pa-
rameters isn = 1M , r = 1%, m = 1K andk = 20. In each
experiment, a single parameter was varied, spanning diverse val-
ues, while the rest of the parameters were set to their default values.
For each parameter set, three different incoming tuple distributions
were used: uniform (tuple attributesx1 andx2 are uncorrelated),
correlated (high values ofx1 imply high values ofx2) and anticor-
related (high values ofx1 imply low values ofx2). The data were
generated as suggested in [7]. For each parameter set and data dis-
tribution we populated the buffer and then measured the total time
required forc = 100 update cycles. No rebuilds were required
by the proposed methods in this experiment, since only static data
distributions were used.

Figures 10-13 present the results of this experiment set. The
plots for correlated data are omitted as the performance of all three
methods was found on all instances to be very similar to theircor-
responding performance on uniform data. We have used a loga-
rithmic Time axis to present the experimental results, as the perfor-
mance of the proposed solutions is frequently orders of magnitude
better than the competing MBP technique.

In general, we found the proposed solutions to consistentlyout-
perform the MBP technique by a large margin, even by two orders
of magnitude in the case of anticorrelated data, on which MBP
performs particularly bad. On the contrary, the border position-
ing scheme employed by both the SA and FA solutions adapts ex-
tremely well to all data distributions, guaranteeing predictable per-
formance while not needing a different, appropriatevmax value for
every different data distribution. Furthermore, notice that the SA
method is consistently better than the FA method throughoutthe
parameter space and for all three data distributions. The reason is
the reduced total complexity of the arrangement strips of the SA
method with respect to the full arrangement complexity of the FA
method.

More specifically, Figure 10 shows that the FA and SA solutions
scale gracefully with respect to the buffer size, consistently outper-
forming MBP for buffer sizes as small as 10K to as large as 5M,
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Figure 11: Time vs Stream Rate.

and more. Figure 11 demonstrates that the proposed methods scale
linearly with respect to the incoming stream rate and offer aclear
advantage for lower stream rates. As the stream rate increases, this
performance advantage diminishes, due to the fact that the MBP
method has an insignificant index maintenance overhead (a simple
regular grid).

Both the FA and SA techniques offer rapid query evaluation that
is also decoupled from index maintenance. Therefore, increasing
the number of queries has a small impact on their total runtime.
On the contrary, MBP scales particularly bad with respect tothe
number of queries. We can witness this trend in Figure 12. Finally,
Figure 13 demonstrates that the SA method is more scalable than
FA with respect tok and as scalable as MBP. The performance
advantage of SA over FA in this case can again be attributed tothe
interaction isolation effect, that becomes more pronounced as the
value ofk increases.

The performance of the proposed solutions was also evaluated
using real data. To this end, we utilized the Intel Lab SensorData
[1]. The data set contains a stream of tuples consisting of tem-
perature, humidity, luminosity and voltage readings, collected pe-
riodically by 54 sensors. We processed this data set, extracting a
2-dimensional stream of total size 11M tuples. The data distribu-
tion of the resulting stream is both irregular and, more importantly,
changing over time. Therefore, this experiment evaluates the ro-
bustness of the proposed methods when the incoming data distribu-
tion demonstrates high variability. Both the SA and FA solutions
avert potential performance degradation by rebuilding their indices
when the data distribution changes, amortizing the cost incurred by
rebuilding over time.

For this experiment we used the default values forr, m andk and
varied the value ofn. The total time required forc = 1000 update
cycles was measured. For a buffer size of1M tuples, we process
the entire stream of 11M tuples. For smaller values of the buffer
size, we ignore an appropriate number of incoming tuples before
actually processing a tuple, so that all 11M tuples of the stream ar-
rive at the system in only 1000 cycles. For example, ifn = 200K

we process 1 in every 5 tuples and ifn = 10K we process 1 in
every 100 tuples. This way we witness the same pattern of vari-
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ation in the stream for all buffer size values. Lastly, we used the
following rebuild protocol (Section 6). The SA method triggered a
rebuild when either the mean value of arrangement strip complexity
exceeded1.5vmax, or when the corresponding coefficient of varia-
tion exceeded value 2.5. The FA method method triggered a rebuild
whenever it witnessed a 3-fold increase in arrangement complexity
since the last rebuild. The aforementioned threshold values were
also validated on a variety of synthetic, changing distributions and
were found to yield near optimal performance on all occasions.
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Figure 14: Time vs Buffer Size, using real data.

The results of the experiment are presented in Figure 14. The
SA solution is considerably more robust from both the MBP and
FA techniques. The FA method performs worse than SA particu-
lary due to a higher number of rebuilds required. This effectis ex-
acerbated for large buffer size values, where the overhead incurred
by a rebuild is larger. The reduced number of rebuilds required by
the SA method is once more due to the methods’ ability to isolate
changes within few strips: updates that negatively affect few ar-
rangement strips in the SA method, have a global adverse effect on
the full arrangement of the FA method. While the SA method can
tolerate a few oversized strips, without considerable performance
degradation, the FA method cannot maintain an oversized full ar-
rangement without a severe impact on its performance.

We also performed experiments implementing the query parti-
tioning technique described in Section 7.2, based on the 2-dimensional
SA solution. Figure 15(a) presents the results of the experiment, in-



volving 3-dimensional uniformly distributed tuples and tuples from
the real data set. Furthermore,k was set to 5 and we used the same
rebuild threshold values as before. For higher dimensions the tech-
nique appears more sensitive to the size of the buffer, sincedue to
the multiple arrangements realized, the number of points involved
in query answering increases. In the figure we report the timere-
quired to report results which includes the time to compute the an-
swers using the TA algorithm, as the buffer size increases.

Notice that in general, and especially in higher dimensions, the
performance of the MBP technique is expected to be highly sen-
sitive to the choice of the grid granularity. In the 2d experiments
presented before, the grid granularity for the MBP technique, was
unrealistically set to the empirically observed value thatyielded
best performance for each specific data distribution. That way, the
MBP technique was maximally favored. One major deficiency of
the MBP technique is that it is difficult to set the grid granularity
since it depends on a multitude of factors.

Figure 15(b) presents the performance of the MBP technique
with respect to the underlying grid granularity. Notice that the per-
formance of MBP is (a) extremely sensitive to the grid size and (b)
the best performing grid size strongly depends on the data distribu-
tion. Furthermore, the best performing grid granularity onuniform
data, when used on real data results in particularly poor perfor-
mance and vice versa. In [19] no proposal was presented on how
to choose or adjust the grid size. It is evident that the rightchoice
of grid granularity for good performance depends on the datadis-
tribution. A similar trend was observed for all buffer size values.
The figure shows that both for uniform and real data sets (similar
results observed for correlated and anti-correlated data)SA offers
very large performance benefits for a vast range of grid sizes.

We have also performed higher dimensional experiments involv-
ing larger values ofk, making similar observations. We omit these
results due to space constraints.
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Figure 15: Higher dimensionality experiments.

9. CONCLUSION
In this paper we have presented techniques for answering ad-hoc

top-k queries over streaming data. We have introduced techniques
based on the notion of geometric arrangements and presentedtheir
practical realization in a data streaming scenario. We havepre-
sented analytical and experimental results quantifying the tradeoffs
around the choice of various parameters inherent in our techniques.
Our results demonstrate the practical utility of our methods.
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