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ABSTRACT

A top-k query retrieves thé& highest scoring tuples from a data
set with respect to a scoring function defined on the attedbof a
tuple. The efficient evaluation of top-queries has been an active
research topic and many different instantiations of thélem, in

a variety of settings, have been studied. However, teclesigie-
veloped for conventional, centralized or distributed Hates are
not directly applicable to highly dynamic environments andine
applications, like data streams.

Recently, techniques supporting tépgueries on data streams
have been introduced. Such techniques are restrictive Veswe
as they can only efficiently report top-answers with respect to
a pre-specified (as opposed to ad-hoc) set of queries. |paipisr
we introduce a novel geometric representation for thektapiery
problem that allows us to raise this restriction. Utilizingtions
of geometric arrangements, we design and analyze algaifbm
incrementally maintaining a data set organized in an amarent
representation under streaming updates. We introduce guatu-
ation strategies that operate on top of an arrangement latéLse
that are able to guarantee efficient evaluation for ad-hasigs.
The performance of our core technique is augmented by incatp
ing tuple pruning strategies, minimizing the number of égpthat
need to be stored and manipulated. This results in a main memo
indexing technique supporting both efficient incremenjadates
and the evaluation aid-hoctop-k queries. A thorough experimen-
tal study evaluates the efficiency of the proposed technique

1. INTRODUCTION

The data stream model of computation [5] best captures tize da
and query characteristics of many modern applicationgudlirg
network data management, financial data monitoring andosens
networks. A stream of tuples arrives continuously at pdgditgh
rates and a main memory buffer maintains incoming tuples. As
the memory space is limited, aged tuples are evicted in daler
free space for fresh incoming tuples. Several policies fanaging
data in the main memory buffer have been studied. A natutalypo
capturing the memory constraint requirements is to consigees
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valid as long as they belong to a sliding window of a specifie si
W. Such a window can béme basedr tuple-count basedTime
based sliding windows assume that tuples arrive with a tiamg
and remain in the buffer as long as their time stamp belongs to
fixed time period covering the most recent time stamps. TFuple
count based sliding windows contain the most redénecords.

A basic requirement for many monitoring applications inraatn
setting is to be able to rank tuples in the buffer accordingde
hoc preferences towards their attributes. In a sensor apjgicat
which tuples of readings arrive continuously, it is comnyorg-
quired to order the tuples in the buffer in an ad-hoc way. Fer e
ample, one may be interested to reportit@ghest ranking tuples
in the buffer according to the temperature attribute, foéld by a
request to report the highest ranking tuples according to humid-
ity (for a suitably defined value of), followed by some ad-hoc
weighted combination of both, etc. Similar requirementistex
streams with more rapid rates, such as IP network streanereTh
we might be interested to rank tuples (packets) by destingtort
or source port, or ad-hoc weighted combinations of packegtle
and number of network hops, etc. Depending on the applitatio
context, endless possibilities exist.

In this paper we focus on supporting efficient ad-hockapiery
answering over the contents of such a buffer. Previous wask h
investigated the problem of efficiently maintaining theutesf a
persistent set of top-queries as the buffer is updated. This is too
restrictive as one must have a clear idea on what queries ishesv
to ask before hand. Therefore, we present techniques @ebsign
support the efficient evaluation of ad-hoc tbpgtueries. In particu-
lar we make the following contributions:

e We introduce a novel geometric representation of the top-
k query answering problem that allows us to utilizean
rangemenbf geometric objects, in order to perform indexing
and ad-hoc toge query answering.

e We present algorithms for updating and querying such an in-
dex and study their complexity.

e We introduce and study tuple pruning methods, aiming to
minimize the number of tuples that need to be indexed, while
maintaining the capability to correctly answer any canttida
top-k query. We saw how to efficiently implement them by
utilizing query maintenance techniques [26, 19].

e Using a combination of real and synthetic data sets we eval-
uate the performance of our techniques for a variety of pa-
rameter settings, demonstrating its overall performamce a
efficiency.



The rest of the paper is organized as follows. In Section 2ewe r
view related work. Section 3 formally defines the topuery an-
swering problem and presents background material negefwar
the remainder of our study. In Section 4 we present our ad-hoc
query evaluation methodology using arrangements. Sebtide-
scribes tuple pruning techniques incorporated in the cosnge-
ments solution and dynamic maintenance issues. Sectios-6 di
cusses issues related to tuning our method. In Section 7seasl
the generalization of our techniques to high dimensionsthait
application to an interesting variation of tépgueries. Finally,
Section 8 presents the results of our experimental evaluatve
conclude in Section 9.

2. RELATED WORK

Top-k queries were first introduced in the context of multimedia
systems [12, 13]. Queries over multimedia content arey@ct.
Instead, the objects most similar to the query are to beeketd. A
multimedia system scores the objects according to how \vejl t
match each of the query predicates and produces a sorted list
descending score order for each of the predicates. Thasealis
subsequently combined to produce the final ranking of theatbj
with respect to the whole query. This final ranking is basedion
monotone scoring function defined over the partial scores.

Merging partial results is performed by the Threshold Aitjon
(TA) [22]. Variations of the TA algorithm exist depending whether
random accesses to the lists are allowed or prohibited.r8lexe
tensions to the basic TA algorithm have been proposed. @a3ld
oped a version that produces approximate results, whikriotf
probabilistic guarantees about their precision. [6] uaéistics on
the lists to optimize the performance of the TA algorithm,ilerh
[10] allows the TA algorithm to use results of previously wased
queries in addition to the sorted lists.

The Onionindexing technique [9] organizes the data into layers
of convex hulls and is able to answer queries using additiveisg
functions by processing the layers inwards, starting fromdut-
most hull. The technique is therefore able to answer ad-bedesg,
however it is mostly aimed at static data, since the hullsvarg
expensive to maintain dynamically. Several other kaechniques
based on indices have been proposed [24, 17].

Most relevant to our problem is the tdpguery monitoring tech-
nigues of Mouratidis et al., [19]. The techniques, narié&tiA and
SMA employ a regular grid to index the buffer and use it to per-
form both topx query answering and maintenance. Althoughtop-
query evaluation is supported, it is inefficient and the rodthrely
instead on the incremental maintenance of the results oéd figt
of queries in order to avoid expensive thpecomputations. Our
approach raises such a restriction being able to efficiemtgwer
ad-hocqueries.

In [19], top+& computation is performed by visiting the cells of
the grid in descending maximum possible tuple score (make$c
order, as determined by the score with respect to the quettyeof
upper-right corner of the cell. Query evaluation is faatid by
a priority queue: the cell with the highest max-score is dpled,
the tuples inside it are processed and its neighboring asdi€n-
heaped. The procedure terminates when the score @fFthéuple
in the current result is higher than the max-score of the tdpic
the heap.

For result maintenance, each query is associated with a@umb
of grid cells that constitutes itisfluence regiorand only updates
that happen within the influence region of a query are prezkss
The SMA method achieves better running times over TMA by tak-
ing into account future tuple expirations that will affeciagies and
compensating by maintaining additional results per query.

3. BACKGROUND

We start by introducing material required for the remainoer
the paper. Section 3.1 formally defines the fopguery answering
problem. Section 3.2 introduces the notion ofarangementof
geometric objects [20, 11, 3, 16] that is utilized by our solu.

3.1 Top+ query answering

Consider a data sé? of n tuplesty, . . ., t, with d numeric at-
tributesXy, ..., X4. Data setD is a snapshot of our main memory
buffer B at a specific time instance. L&om; be the domain of
the i-th attribute. Without loss of generality, the domain of ev-
ery attribute is considered to be the unit interfl1]. Through-
out the paper we will use this convention. Each tuple can lad¢so
viewed as a numeric vector= (t.X1,...,t.X,). A top-k rank-
ing query can be expressed as a [air= (S, k) returning thek
highest ranking (scoring) tuples with respect to a scorimgfion
S : Domy x --- x Domg — R, defined on the attributes of a
tuple. To ease notation, we assume thiatvolves all attributes but
our discussion remains valid for functions involving onlgubset
of the attributes. Moreover, to simplify our presentatios ehoose
to present our framework for the case df= 2. We generalize
our framework in Section 7. In accordance to prior art [24, 10
17, 9], we consider linear additive scoring functions of fhen
S(t) = WE = wit.z1 + wat.z2, Wherew; andw, are positive,
real constants. Thus, a scoring function can be simply espaas
a vectorw = (wi, w2).

Both data seD and a topk query@ = (w, k) have natural geo-
metric representations. Such a geometric representdtlzes the
native coordinates of the tuples i, as well as the query param-
eters, and we refer to it as the representation inptiimal plane
This mapping has been extensively used in different variatiof
the top4 query answering problem [9, 24, 19, 10]. Each tuple
t = (x1,z2) in D corresponds to a poini(t) = (t.x1,t.z2)
that lies inside the unit square, 1] x [0,1]. A query(@ can be
mapped to the vecto = (w1, w2) corresponding to its scor-
ing function. Notice that the score ofis equal to the dot product

Py

p(t)W = wit.z1 +wat.z2. This dot product is proportional (times
|d]) to the distance of the projection pfon «, from the origin of
the space (in this case poifit, 0)) . This establishes a connection
between the ordering of the points’ projections@m@and the rank-
ing of the corresponding tuples with respect to the sconmgtion:
the order in which we meet the projections of the points as weem
along the supporting line afi, from infinity towards the origin, is
the same as the ranking of the corresponding tuples (Figure 1
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Figure 1: Top-k query answering in the primal plane.

We would like to support ad-hoc tap-queries on the contents
of buffer B continuously as its content change. Changes can hap-
pen according to either sliding window model, time or tuptemt
based. Thus, we seek a dynamic and scalable organizatidr of t
contents of3, able to report the results of ad-hoc tbmueries.



3.2 Arrangements

The arrangementA(S) of a finite collectionS of geometric
objects is the decomposition of tlledimensional space into con-
nected open cells of dimensiofis. . ., d induced byS [16]. Re-
searchers have studied the arrangements of various geomigtr
jects, including lines, curves, hyperplanes, hypersedatiangles,
circles, etc, for arbitrary dimensionality. Their appticas span
multiple scientific areas including Robotics and Computesph-
ics just to name a few. Furthermore, many problems can beeedu
to arrangement related equivalents. Detailed discussiawdilable
elsewhere [20, 11, 3, 16].

3.2.1 Definitions and combinatorial complexity

An arrangement is comprised of cells of dimensionality lagg
from 0 to d. A cell of dimensionalityl, 0 < I < d is named-cell.
Cells of dimensionality, 1 and2 are also calleglertices edgesand
facesrespectively, while a cell of maximum dimensionality= d)

arrangements of hyperplanes. Table 1 summarizes the cxityple
results for arrangements aflines inR? andn hyperplanes i<,

Complexity
Structure Lines | Hyperplanes
d-cell om) | omE)
Zone O(n) o(nd—T)
Arrangement| O(n?) O(n%)

Table 1: Summary of complexity results.

3.2.2 Representation

We briefly review efficient data structures for representingl
storing arrangements and its various substructures;€udhtails
are available elsewhere [20, 11, 3, 16, 25]. The appropdata
structure for representing an arrangement depends ortétsded
use. For our purposes, we use tloeibly-connected-edge-li@CEL)

is namedd-cell. For example, Figure 2(a) depicts an arrangement data structure for arrangements of lines [25, 11]. This smtacture

of 3 linese;, e2 andes in R2. The regions of the plane denoted
by f1,..., fr are the faces of the arrangemest, ..., e9 are its
edges, whiley;, v2, v3 are its vertices.
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(b) The DCEL data structure

(a) Example

Figure 2: Arrangement of lines.

The combinatorial complexityf an arrangement is the overall
number of cells of all dimensions in the arrangement. The-com
binatorial complexity of ari-cell is the number of cells of the ar-
rangement of dimension less thathat are contained in the bound-
ary of the cell. For example, the complexity of a face is thenber
of vertices and edges on its boundary. For arrangementspeafrhy
surfaces, another interesting structure is zbeeof a surface not
present in the arrangement: it is the setlafells intersecting the
surface. For example, in Figure 2(a), the zone of kipés com-
prised of facesf1, f2, fé. The complexity of a zone is the sum of
complexities of thei-cells that comprise it.

has also been generalized for arrangements of hyperplanes.

The main idea behind the DCEL data structure is to represent
each edge using a pair of directhdlfedges one going from the
left to the right vertex of the edge and the other, known awiits,
going in the opposite direction. Beyond a simple and flatesgn-
tation of the planar graph induced by the arrangement, thElDC
data structure maintains additional incidence and ordeniforma-
tion in order to facilitate its convenient and meaningfaversal.
Figure 2(b) illustrates:

e Each halfedge maintains a pointer to its twin, ecg.10 eg
and vice versa.

e For each vertex, a circular list of the incident halfedges is
maintained, in clockwise order. For example vertgxnain-
tains a list with edgeges, es, es, €4).

e Each halfedge has pointers to its source and target vertices
for example edge; to verticesv; andvs,.

e Each halfedge stores a pointer to its incident face, e.ge®d
e1, ez, eg Store a link to facef;.

e For each face, the halfedges forming its boundary are or-
ganized in a doubly connected circular list. This way the
boundary can be traversed in both clockwise and counter-
clockwise order. For example, edgas e2 andes of face f1
form a chain.

In the case of arrangements of lines, the faces are convéx, bu The total space complexity of the data structur®{s”), the same

can be unbounded (Figure 2(a), fagks. . ., fs). Notice that the
arrangement of Figure 2(a) consists of 3 vertices, 9 edgds7an
faces. It is possible to prove [16] that an arrangement tihes
is composed oD (n?) vertices,O(n?) edges and)(n?) faces.
Therefore, the combinatorial complexity of an arrangenoéfines
is O(n?). Finally, the complexity of a single face (), since its
boundary can be comprised of upri@dges.

One of the most important results in the arrangements liteza
is the Zone Theorem.

THEOREM 1. The maximum complexity of the zone of a hyper-
plane in an arrangement of hyperplanes iRR? is ©(n?~*).

For an arrangement of lineg (= 2), the complexity of a zone

is ©(n). This result is important, since for example, in two di-
mensions a line intersectsfaces and the boundary of a face can
have as many as edges, therefore a trivial upper bound would
be O(n?). Similar combinatorial complexity results also exist for

as the combinatorial complexity of the arrangement. We ug#
the term arrangement to refer both to the partition of thegland
the DCEL data structure used to store it; we clarify in thectfjme
context if needed.

4. INDEXING FORTOP-KQUERY ANSWER-
ING IN THE DUAL PLANE

Besides the primal plane, the tépsroblem can be also mapped
to thedual plane The dual plane is a symmetric version of the
primal plane where each point (line) in the primal plane ippea
to a line (point) in the dual. The mapping is not unique andtman
selected so that it maintains certain geometric propeofigsterest
to the problem at hand. In our case, each tuple (z1,z2) is
mapped to aline; : y = (1 — z2)x + (1 — z1) in the dual plane.
A query @ can be represented as a pgiit)) = (Z—f, 0), where
w1, we are the weights of its scoring function. Then, the following
Theorem holds.



THEOREM 2. Considern tuplests, . .., t,, a scoring function
S = w and the following mapping to the dual plang:— ¢; : y =
(I —tiwa)z + (1 — tiz1) andS — p(S) = ($2,0). Then, the
ordering oft4, ..., t, according toS is the same as the order in
which a vertical ray originating fronp(S) and shooting upwards
meets the corresponding lines(Figure 3).

PrRoOFR Consider two tuples, ¢ and the scoring functioty,
such thatS(t) < S(t'). Letd: (d,/) be the vertical distance of line
et (eyr) from pointp(S). We will demonstrate thad; > dy <
S(t) < S(t'). The value ofd; is equal to they-coordinate of line
e forz = 2. Therefored; > dy < (1 —2) 32 + (1 —21) >
(1 —mé)i—f + (1 —2)) & w2 — wazs + w1 — wiT1 > Wa —
wazh +wir —wixy & (w1 twz)—S(t) > (w1 +w2)—S(t') <
S(t) < S(). O
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Figure 3: Top-k query answering in the dual plane.

This observation immediately points to an alternative soiu
to the topk query answering problem. We can map the tuples

in the positive quadrant of the dual plane. For this reas@rex
alize a bounded frame of dimensiojis M| x [0, M + 1] (Figure
4(a)) in the dual plane and only store the part of the arraegem
that lies inside the frame. However, all the combinatorialinds
that we described in Section 3.2.1 are still valid.

(0M+1) M,M+1)

e D

L

a6

Y,

0,0 .0)

(a) Arrangement represefp) Vertical ray shooting
tation

(c) Line insertion

Figure 4: Representing and operating on an arrangement.

We need to determine a suitable value fdr. Notice that we

of a data set to lines in the dual plane and then store and queryused a bounded frame in order to cover an unbounded quadrant.

the induced arrangement. The mapping to the dual plane &nd th
use of arrangements provides an intuitive framework foresgnt-

ing and maintaining the rankings afl possible topk queries in a
non-redundant, self-organizing manner. The represent&inon-
redundant in the sense that all queries that produce the ssae
tuple ranking are mapped to a continuous interval onathexis
and use the same part of the arrangement to retrieve thahgank
Notice that an intersection signifies a change in the ran&frtg/o
tuples. If we project all tuple intersections on thaxis, all queries
that lie between two consecutive projections will produtesame
ranking. The representation is also self-organizing aditigein-
sertion/deletion operations on the arrangement that wesulilse-
quently describe, change appropriately the rankingaslajueries,
eliminating the need to identify and maintain the resultpddfic
queries. Therefore, by mapping the thjgruery answering problem

to the dual plane, we obtain the capability to evaluedehoctop-

k queries by essentially storing and maintaining the rarsifcall
possible topk queries in a non-redundant, query-independent man-
ner.

4.1 Operating on the arrangement

Before we describe the algorithms for operating on the gean
ment, let us make two observations. First, the points reptesy a
query can only lie in the positive part of theaxis of the dual plane,
so there is no need to maintain any arrangement relatednaton
(vertices, edges, faces) on its negative side. Second: Hiecdo-
main of the tuples is the unit square, the lines that restdt dfie
mapping to the dual plane are of the fogm= ax + b, where
0 < a,b < 1. Therefore, for positive values af, the lines lie
exclusively on the positive quadrant. Notice that the getlemap-
ping places all the elements of the tbpuery answering problem

Care must be exercised so that all the relevant arrangemiemnt i
mation is guaranteed to lie within the frame. Consider twedi
y = a1z + by andy = asx + be. Thez-coordinate of their inter-
section pointist; = 22=2L. The maximum value of; is attained
whenbs — b1 = 1 (the nominator is maximized) and — a2 = §

(the denominator is minimized), wheteis the minimum allow-
able difference between two attribute values, as definedthgre
machine precision or attribute domain information. Therefwe
need to sef\/ > % in order to guarantee that all relevant informa-
tion lies within the frame.

As we proved, a tog= query is mapped to a vertical ray shooting
query in the dual plane. Figure 4(b) depicts the arrangertexit
corresponds to 4 tuples mapped to the dual plane (line seagmen
€1,...,€s in our dual representation), the powt@) correspond-
ing to a query and the vertical raj. An arrangement traversal
starts from the bottom edge of the frame (step 1). This edgeata
intersect with any of the lines in the arrangement, so we uas i
a reference point to initiate any traversal. The bottom ég@éso
associated with a face that lies inside the frame. Rayoves in-
side that face until it intersects its boundary. We can wéthg
the boundary of the face until we locate the specific edgeithat
tersectsk (steps 2-4). In the configuration of Figure 4(b), the edge
corresponds to tuple 4 (line segmentin the dual representation),
which is the highest ranking result for the query. At theliséetion
point, ray R leaves the current face and enters a neighboring face
on the other side of the current edge. We therefore need t@ mov
to the twin of the current edge (step 5) and again move aloag th
boundary of that neighboring face until we locate the newpoiint
of R (step 6). Since tuple 2 is associated with the edge at the exit
point, it is the second tuple in the tdpresult. This procedure is
repeated (steps 7-11 and 12-13) until the desired numbesafts



(all tuples in our example) has been retrieved. The pseuttofar
this operation is presented in Algorithm 1.

Algorithm 1 Top-k retrieval algorithm
R: ray corresponding to quexy
k: number of tuples to be retrieved

Result#)
edge=bottom
edge=edge.next()

for i = 1tok do
while not intersects,edge)do
edge=edge.next()
end while

Result.append(edge.tuple())
edge=edge.twin()
edge=edge.next()

end for

return Result

The insertion procedure is similar to the vertical ray shapop-
eration we just described. We use Figure 4(c) to demonsirte
insertion. Every line in the arrangement intersects thieblefind-
ary of the frame. The first step is therefore to locate the ediysgy
the left boundary where the new line intersects the exigtinange-
ment. This involves a simple walk along the “exterior” of freme.
Notice that the rest of the plane outside the frame also itotet
anunboundedace, so we can also walk along its boundary (steps
1-6).

Let us denote by the new line. After we locate the edge where
[ enters the arrangement, we need to split that edge at theente
tion withl and insert a new vertax (step 7). Then, we traverse the
boundary of the current face until we locate the edge whepets
(steps 8-9). This edge is also split at the intersectiontpeith [
and a new vertex; is inserted. This and the last vertex inserted in

the arrangement are connected using a new edge. This new edg

corresponds to a segment of liheLine [ enters a new face (step
10) whose boundary we also need to traverse until we find tive ne
exit point (11-13). The corresponding edge is again spéttéx

vs) and a new line segment is inserted in the arrangement as be
fore. This procedure is repeated until the right boundaryhef
frame is reached. The pseudocode for this operation is et
Algorithm 2.

The procedure for line removal is basically the reverse afie |
insertion. The first segment of the line to be deleted isaliti
located along the left frame boundary and starting fromethier
segments are progressively removed. We therefore omitather
discussion on the delete procedure.

Let n be the number of lines that are already present in the ar-
rangement. The left boundary of the frame is comprised &f 1
segments, as it is intersected by alllines in the arrangement.
Therefore, traversing the boundary until locating the progpeg-
ment where the line insertion will commence is@fw) operation.
The complexity of the main loop of the insertion procedurdés
termined by the number of the arrangement’s edges that neust b
traversed and the number of new edges that must be inserted. A
edge insertion is a®(1) operation. Since a line can intersect with
up ton other lines, the cost for inserting the new edge3(s). As
for the number of edges that must be traversed, their nurahegs-i
per bounded by the total number of edges in the faces thaethe n
line intersects. This is exactly the complexity of the Isxebne and
is of sizeO(n) (Zone Theorem). Consequently, the total cost of

Algorithm 2 Insertion algorithm
l: line to be inserted

edge=bottom
edge=edge.twin()

while not intersectd(edge)do
edge=edge.next()
end while

edge=edge.twin()
lastvertex=edge.split()

while edge not on right boundado

while not intersectd(edge)do
edge=edge.next()
end while

edge.twin()
currentvertex=edge.split()
connect(currenvertex,lastvertex)
lastvertex=currenivertex

end while

the insertion procedure i9(n). In a very similar manner we can
demonstrate that the cost of a deletion operation is@i30).

The cost of a query is determined by the number of the arrange-
ment edges that must be traversed. Since a vertical ray can be
treated as a line, the complexity of its zoneQ$n). This is an
upper bound since a tap-query needs only to visit faces, one
face for each tuple that has to be retrieved. However, in thestw
case, a face consists afedges, therefore even though we walk
along the boundary df faces, the worst case cost of the procedure
is still O(n). Fortunately, we can expect the number of edge traver-
sals that are required in practice to be limited, since te fize
should normally be small.

To summarize, after mapping a data set of sizto the dual

lE\)Iane, we can treat it as an arrangement of lines and be able to

perform ad-hoc tog: query answering, for any value &f < n,
while also supporting tuple insertions and deletions iriteaty or-
der. The space complexity of the solutiorQ$n?) and the cost of
the query answering, insert and delete operatio¥(is).

The aforementioned worst case bounds are a direct consagjuen
of the combinatorial complexity of the arrangement, whicighh
initially appear inappropriate for use in a streaming ceitén or-
der to compensate, we have developed a methodology thadesenab
us to reduce to just a handful the number of tuples from tha dat
set we need to store in the arrangement. The following sectio
demonstrates our tuple pruning technique and derives rave-f
able complexity results for our core arrangement-basegtisal
namelyO(k In n) operations and(k* In® n) space consumption.

5. TUPLE PRUNING

Let Q be a topk query. We denote by (Q) the point in the
dual plane where a ray shooting upwards frp(@) (the point in
the dual plane wheré is maps to) meets the-th line. Further-
more, letQ: < Q2 denote the fact thai(Q1) lies left of p(Q2)
and let[Q1, Q2] be the interval along the axis of the dual plane

betweerp(Q1) andp(Q2).

LEMMA 1. LetQ1, Q2 be two topk queries such thaf): <
Q2. Let alsol;(Q1,Q2) be the line in the dual plane that passes
through the origin andR(Q1). Then, any line that is located
abovel; (Q1, Q2) in the interval[Q1, Q2] cannot be in the result



of any topk query that lies insidéQ1, Q2].

PROOF The property ofl; (Q1,Q2) is that it “bounds” thek
lines inQ1’s result below it throughout intervéd)+ , Q2]. Since alll
lines in the dual plane are of the fogm= axz+bwith0 < a,b < 1,
the “steepest” line that passes through(Q1) is 11(Q1, Q2). The
“steepest” lines that pass through (Q1), . .., Rk—1(Q1) are also
bounded byi: (@1, Q2). Therefore, the property holds. Any line
e that is located abova (Q1, Q2) in the interval[@Q1, Q-] is also
located above thé lines in Q1's result throughout@:, Q2]. In
other words, in the intervd), Q2] there are at leadt tuples that
are located below and hence score higher for any query that lies
in [Q1, Q2]. Figure 5(a) illustrates for two top-queries. [

LEMMA 2. LetQ1, Q2 be two topk queries such thaf): <
Q2. Let alsol2(Q1,Q2) be thehorizontalline in the dual plane
that passes througiR. (Q2). Then, any line that is located above
12(Q1,Q2) in the interval[Q1, Q2] cannot be in the result of any
top-k query that lies insidgQ1, Q-].

PROOF The proof is similar to that of Lemma 2. Figure 5(b)
illustrates for two to2 queries. [

We now introduce the following Theorem.

THEOREM 3. LetQ1, Q2 be two topk queries such tha®); <
Q2. Letalsol (Q1, Q2) be the intersection point of linés(Q1, Q2)
(Lemma 1) and2(Q1, Q2) (Lemma 2). We refer to this point as the
pruning point Then, any line that is located abo¥éQ+, Q2) can-
not be in the result of any top-query that lies insid¢Q1, Q-].

PROOF Combining Lemmata 1 and 2, we can argue that any
line that is located above eithér(Q1,Q2) or I2(Q1,Q2) in the
interval between); and Q> cannot be in the result of any top-
k query betweer): and Q.. However, notice that this is true if
and only if the line is above the intersection pointlofQ1, Q2)
andl2(Q1, Q2). Figure 5(c) illustrates for two top-queries. [
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Figure 5: Proving Theorem 3.

Consequently, given two top-queriesQ+, Q2 and their result,
we can, by performing simple computations, filter out a jporif

the data sefD that is definitely irrelevant to any top-query in
[@1,Q2]. In other words, only the part of the data set not pruned,
denoted byD*, needs to be stored in the arrangement. This part
contains all information relevant tany top- query in[Q1, Q2].
Notice thatD* is not guaranteed to be minimal, in the sense that it
can contain tuples that do not appear in the result of any:tgpery

in [Q1, Q2] and thus are irrelevant. The guarantee we are offered is
that D — D* contains only irrelevant tuples, while* contains all
relevant tuples.

Pruning a significant portion of the data set involves a toffde
We can correctly answer any tapguery in[Q1, Q2], requesting up
to a number of results determined by the number of reshl)sie
choose to return for queri€3;, Q2. Notice thatK” determines the
position of the pruning point. Effectively, the choice Bfimposes
a bound on the maximum number of tépresults any query can
request k < K) in accordance to previous work [24, 9].

Thus, we can utilize Theorem 3 in order to reduce the number
of tuples we need to store in the arrangement and still reken
capability to answer any top-query. Consider now a sd® of
m + 1 top-k queriesB = {Bi,..., Bm+1}, such thatB; < B;
for i < j andp(B1) (0,0), p(Bm+1) = (M,0). We will
refer to those queries dorders In the dual plane, the rays cor-
responding to the borders superimpose on the arrangemeriea s
of m disjoint, consecutivestrips S = {S1,...,Sy} that cover
the entire arrangement. (Figure 6(a)). Treating each bada
query, we can compute (e.g., by traversing the arrangenhemng a
the vertical ray corresponding to the border) the queryltdeu
each border toj-query. As a result, we can compute freining
point I(S;) = I(Bi, Bi+1) for each strip and identify the part of
the full data seD that we need to use in order to be able to answer
any top query that lies inside a strip. We denote the filtered data
set associated with strif; by D; .

For example, in Figure 6(a), we have four bord&s ..., By
corresponding to top-queries, that induce strig$, S2, .S3. The
corresponding filtered sets af® = {e1,¢€2,e4} andD; = D3 =
{e1, €2, €3, ea}. Notice that there can be overlap between g&ts
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Figure 6: Placing borders on top of an arrangement.

There are two ways we could potentially utilize s&t5in order
to answer any arbitrary top-query. The first is to consider the
arrangement of data seX" = (J;;, D;. D" contains all the tuples
necessary to answer any tépguery, since it is a superset of any of
the D] data sets. We refer to this option as thdl Arrangement
(FA) solution. A second option is to create a separate aeraegt
for each of theD; tuple sets and use the relevant arrangement to
answer a query. We will refer to each of these arrangements as
arrangement stripsWe call this option th&trip Arrangemen(SA)
solution.

The motivation behind the SA solution is that each of itsrye
ment strips can be considerably smaller than the full aeament



of the FA solution. Each of the arrangement strips indexssau
subset of the tuples indexed by the full arrangement. Furtbee,
since each strip is responsible for answering queries tbdtd-
tween two bordersB; and B;+1, we only need to construct and
maintain the arrangement in the interya;, B;+1]. This effect
greatly reduces the arrangement complexity. Figure 6(pjctie
the arrangement that corresponds to sffipof Figure 6(a). The
complexity of the full arrangement is reduced in an arranggm
strip in terms of points, segments and faces, while it is aiwithat
it can correctly answer any tabpguery that falls inside the strip.

5.1 Handling updates

In a streaming environment we expect new tuples to enter the
buffer B and old tuples to expire. As a result both the FA and SA
solutions should support dynamic changes in the data thdgxin
Let D denote the data set in our buffer at a time instance. Suppose
that after a number of tuple insertions and deletions we enalitin
an updated version db, denoted byD’. The first action one must
take is to recalculate the result of the borders, in ordeptiate the
pruning pointsI(.S;) associated with the strips. Using those up-
dated points, we need to prune dataiRéand calculate the filtered
setsDY*, ..., Dy, D™, For the FA method, tuples ib’”* — D*
must be added in the arrangement, while tupleBin— D" must
be removed. Similarly, for strip; of the SA method we must in-
sert in the corresponding arrangement strip tuple9jin— D; and
delete tuples iD} — Dj*.

The two issues we have to resolve is how to update the borders
and how to rapidly filter the data s&’ in order to compute sets
Di*,..., D D'™. Let us first concentrate on efficiently filtering
the data set. Given a setwofines, we need to report the subset that
lies below the pruning point. We would like to do so by conside
ing as few of then lines as possible. While we could potentially
attempt to tackle the problem in the dual plane, it is muctpsm
and more convenient to handle it in the primal plane, as iivag
lent (in the primal plane) is a well known Computational Gebmy
problem, namelalfspace range searching

The halfspace range searching problem has the followinm for
[2]: given a set of points iiR? (RY), we wish to index them us-
ing a data structure, so we can efficiently report all the {soihat
lie above a query line (hyperplane). A connection betweerfibu
tering problem in the dual plane and the halfspace rangelsiear
problem in the primal plane is formally established by thiéofe-
ing Theorem:

THEOREM 4. Lett be a tuple and(t), e its mapping to the
primal and dual plane respectively. Then, lings located below a
pointI = (z1, yr) iff point p(t) is located above aline; = f(I).

PROOF Lett = (a,b). Then,p(t) = (a,b) ande; = (1 —
b)x + (1 — a). Fore; to be belowl, the following equation must
hold: y; > (1 — b)z; + (1 — a). Forz; # 0, this is equivalent to
b> —%a + (1 + =-#5), which is exactly the condition fqs(t)
to be above ling = —%x + (1+ =-#). We get a similar result
forzy =0. O

Theorem 4 allows us to perform filtering in the primal plane,
where we can utilize specialized fully dynamic data strresuo
index the data in the buffer and perform halfspace rangebizay.
Depending on query time and update time requirements, ds wel
as potential space constraints, a large number of datatstesc
could be employed, including grid or sophisticated panitiree
structures, that offe® (n'%/2)=1%<) update time and(log n +r)
query time [2], whered is the dimensionalityn the number of
points indexed and the result size of the query.

In order to dynamically calculate and maintain the toguery
result for the borders, we observe that this is exactly tleblpm
of maintaining topk query results for a fixed set of queries in a
streaming environment. For this problem we can utilize kmow
solutions, such as [26, 19]. We discuss our choices in Se8tih

5.2 Pruning efficiency

As was previously discussed, the filtered data/3&tcontains
all tuples that can potentially appear in the result of akapiery,
a property that guarantees the correctness of the propostuehda
Because of this propertyp™ is a superset of thé-skyband[19]
of D. Thek-skyband is the generalization of tekylineof a tuple
set. As the skyline is the minimal subsetbfrequired to answer
correctly any topt query, thek-skyband is the minimal subset re-
quired to correctly answer any tdpeuery.

Therefore, the size ab™ is lower bounded by the size of tle
skyband. As will become clear in the following section, easing
the number of borders results in more efficient pruning. Altj
a sufficient number of borders can redubé to the k-skyband.
However, this is not required since, as we will demonstnatgdc-
tion 8, a small number of borders can provide a sufficientijtti
supersetD*.

This observation allows us to approximate the sizédfwith
the size of thek-skyband. In [8] it is established that faruncor-

related d-dimensional tuples, the size of the skyIin@QéE‘;:—ll)’f).

While this result has not been generalized for khgkyband, it is

plausible to estimate its size &klz‘;j)?). Ford = 2, this is
equal to©(klnn). Furthermore, in [15] it is demonstrated that
even for anticorrelated data and high dimensionality, ibe of the
skyline does not explode and remains a tiny fraction of tigiroail
data set.

Putting it all together, after the application of our prumitech-
nique, only| D*| tuples need to be stored in an arrangement repre-
sentation. Therefore, the complexity of arrangement djgersis
reduced ta@)(|D*|) instead ofO(n), n being the size of the buffer.

In the case of uncorrelated data, the cost of arrangemeratopes
isonlyO(k1Inn).

6. PLACING THE BORDERS

We now turn our attention to the problem of placing a number of
borders on the arrangement and discuss the issues asdagitte
the dynamic maintenance of such placement under changiag da
distributions.

Let us first focus on the tradeoffs associated with the nuraber
borders placed on the arrangement. A first observation tsirtha
creasing their number results in more efficient pruninguked’ (a)
illustrates this effect. A new bordé3,,.., is added in between two
existing bordersB; and B;+1. As a consequence, the region that
can be pruned given the newly created pruning point is lattger
before. In the worst case, it will be exactly as before theitaud
of the new border, sinc&(B;) < Ri(Bnew) < Ri(Bit+1). For
example, in Figure 7(a) notice that linesande, are pruned only
after the addition of the new border.

Although increasing the number of borders increases the-pru
ing capability, so does the cost one has to pay after eachteipda
order to maintain the correct tdpvalues at each border and cor-
rectly assess the pruning point for each strip. Furtherpriorthe
case of the SA method, so does the number of arrangemert strip
that need to be maintained. As the number of borders incsease
we expect to get diminishing increases in pruning efficiengyile
their maintenance becomes more costly. We explore sucedffad
in Section 8.
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Figure 7: New borders and band-queries.

We will base the description of our border positioning sigyt
on the SA technique. The method can be directly used to genera
an appropriate border set for the FA technique. The bordesce
a partitioning of the dual plane into strips and the compjeri
the corresponding arrangement strips determines therpeafce
of queries and update operations on them. Assuming a uniform
query workload, a natural objective is to produce stripg tra
equally complex. In general, the number of vertices in g giro-
vides a very accurate estimate of its complexity, that is assy
to compute without having to actually materialize the strithe
intuition behind the strategy is simple: a single dense amaptex
strip can dominate update and query time; thus by equaliirg
complexity, given a specific number of strips, we aim to pdevan
unbiased treatment to all queries and update events. Atiaukli
plausible objective would be to minimize the maximum comijtje
of a strip, that is minimize the maximum number of verticethwi
a strip, for a specific number of strips.

Given a set of point® in the buffer, placing a number of borders
B in away that we generate arrangement strips of equal coftylex
is equivalent to the problem of generatingequi-depthpartition-
ing of the arrangement intB arrangement strips. This problem is
challenging as even the placement of a single border wiiterevo
new strips of unknown size. The specific size depends on htav da
are distributed inside the buffer. We don’t have a way ofneating
the size unless we actually place the border and generatevthe
arrangement strips. One way to circumvent this issue woeltbb
assume that we have information regarding the sizes oftiegul
arrangement strips, for a large number of stéifis> B. Thus, we
first generate a numbdB’ of arrangement strips, placing them in
anequi-widthmanner, while maintaining the number of vertices in
each.

Although this would reduce the problem to a one dimensional
problem, an additional complication arises. L#t,(B’) denote
the resulting array recording the number of vertices in exdhe
B’ strips. We can then solve the equi-depth partitioning @bl
assuming a “granularity” of3’ strips and induceB strips in an
equi-depth manner (or according to some other objectivensa-
imize L;, ¢ norm), applying known algorithms [21]. However, ev-
ery time we collapse a number of adjacent strips, the sumedf th
sizes is only a crudwer boundof the size of the newly formed
strip. For example, in Figure 7(a), after merging stiiBs, Brew|
and[B,.cw, Bi+1] the size of the resulting strip is equal to the sum
of the sizes of the merged strips plus the vertex that is diuired
by the intersection of lines, ande, that are no longer pruned. In
practice, this effect is greatly exacerbated. As a resnit,atempt
to obtain a partitioning based on maintaining informatiba wer
granularity will be always based on lower bound estimataschS
lower bounds, do not necessarily provide a good indicaticthe
actual size (complexity) of arrangement strips.

We demonstrate that even aiming to maintain an equi-depth pa
titioning using such lower bounds is a hard problem. Hgt(B)
denote the resulting equi-depth histogram (on the lowentdswf
the complexity of the arrangement strips), with the buclketrial-
aries signifying the location of th& borders. This will generate
an equi-depth partitioning into arrangement strips, fa ithitial
contents of the buffer before any update commences. A sumgle
date, in terms of points entering or leaving the buffer cdacafall
entries ofH,,(B’) in the worst case. In principle, all the’ equi-
width strips may be affected. However, the valuediin(B’) can
be incrementally maintained as updates take place in tHerbuf

We would like to dynamically maintain the boundariedhf( B)
as changes happen intd,,(B’). This is a challenging streaming
problem, as the model of streaming changes fifita( B’) does not
follow the usual sliding window model. In particular the nebthat
describes the streaming changes iffo(B’) is the cash-register
model [14]. In this model, the only results known maintaitketsh
of the changes i, (B’) and periodically extract &+ (minimiz-
ing the L2 norm) [18] histogram from the sketch.

Thus, the optimization is not continuous but happens period
cally at select time intervals. No results are known for edgjith
histograms or other norms (e.g., tiig, ) in this model. Even
if one is interested to pursue extractiondf,: histograms, given
that the changes to the underlyifify, (B’) can be arbitrary under
buffer updates, the resulting,,: boundaries (locations of the bor-
ders) can be vastly different than the ones before the upddite
the worst case adjusting the location of the borders may bstwo
than building the new arrangement strips from scratch. iBHie-
cause the overhead of identifying the relevant verticeshandr-
rangement strips between the old and new border positiaralifo
borders would result to very high maintenance and prunirgy-ov
head, since changes are not localized.

For these reasons, we chose to adopt a conservative appooach
this problem and rebuild the arrangement strips when napess
The cost of doing so is amortized over time. As a result, oeral
strategy for maintaining the locations of the borders cxigsif:

e Initially placing them in a equi-depth fashion. We do so
by first considering the arrangement on the entire buffer and
identifying its vertices. We then sweep the arrangemempla
until we encounter half its vertices and place a new border at
this point. We empirically found that this border positiogi
protocol creates two strips of approximately equal complex
ity. Then, we recursively split the resulting strips, umtich
arrangement strip contains at most a specified number of ver-
ticesvma.. We experimentally study the different effects of
varying the value ob,,.. in Section 8.

Allowing changes to occur in the buffer and conducting the
suitable arrangement maintenance to assure correctmess (i
serting and deleting tuples from the affected arrangemsht a
arrangement strips).

Monitoring appropriate statistics to validate that thelgad

the border generation strategy we just described are met. Fo
the SA method, two statistics are monitored: the mean and
coefficient of variation (standard deviation over the mesin)
the arrangement strips’ complexity (as is measured in terms
of arrangement vertices). The goal of our border generation
method is to produce strips of approximately equal complex-
ity that also have fewer than,,.. vertices. Therefore, the
coefficient of variation is monitored to guarantee thatpstri
are of similar complexity, while the mean is monitored to
assert that our maximum strip complexity objective is net vi
olated. For the FA method, we monitor the arrangement’s



complexity. The number of vertices after the last rebuild is the points in the buffer into each of these two dimensionatep,
saved, and if the current number of vertices becomes consid- and build arrangements for the duals of each. Now, given ayque

erably larger than the initial value, a significant changth@
data distribution is implied.

e Triggering a full rebuild when the aforementioned statisti

such aguiz1 + wazxs + - - - + waxq, We can similarly partition it
into £ 2-dimensional queriesy z1 + w22, w33 + waz4 and so
on. Each partitioned query can be answered by its corresppnd
arrangement using the techniques we have developed thus/dar

exceed predefined thresholds. The rebuild involves the gen- can then use the Threshold Algorithm (TA) to collect the eoiir-

eration of new border set and the reconstruction of the in-

der of the tuples in each projection, and merge them to olt&in

duced arrangement or arrangement strips. We evaluate th'stop-k points of the original query.

strategy in Section 8.

7. EXTENSIONS

7.1 Band-queries

Consider the following interesting type of query. Given a-co
tinuous band of querie€):, Q2] (Section 5), return all the tuples
that appear in the top-result of any query in [Q1, Q2] (union
semantics) or return the tuples that appear in thektopsult of

all queries in[Q1, Q2] (intersection semantics). Band queries can
be relevant and useful in many contexts. As an example, a user

might not wish to provide specific query weights, but speaify

stead weightanges Such a query can be translated into a band

query in a straightforward manner.

Figure 7(b) helps demonstrate how band queries can be easily
evaluated using the proposed techniques. Suppose that nte wa

to answer a tog band query betwee®: and Q2. We first per-
form a vertical ray shooting query &, and retrieve its tog re-
sult {es, e1}. The segment o€, that intersects), is used as a
starting point to further traverse the arrangement towérslsThe
invariant we maintain while progressing towai@s is that we al-
ways move along the top-(top-k in general) tuple from the base
of the arrangement. The vertices we meet during the traveasa
correspond to tuples leaving and entering the “current*2eopsult
(vertexws) or just a reordering between the té@nd top2 tuples
(top-k and top{k — 1) in general). Depending on whether we use
union or intersection semantics, we keep adding or remavipigs
from the initial top2 set, until we reacld)-.

The part of the arrangement that needs to be traversed intorde
answer a band query is known asftdevel, and its combinatorial
complexity isO(nV/k) [3, 16]. Therefore, band queries can be
efficiently evaluated iD(| D*| V&) time.

7.2 Higher dimensionality

A direct extension of our techniquesdedimensions will require
us to compute the arrangement 6| (d — 1)-dimensional hyper-
planes, each corresponding to the dual of an original pairihé
buffer. As we presented in Section 3.2.1, the complexityumhs
an arrangement i©(|D*|*). Moreover, to answer any query, we
will have to efficiently trace a ray (the dual of a query) witlhis
arrangement and compute the fiksintersections with the hyper-
planes. The complexity of this operation is bounded by tha-co
plexity of the zone of a 1-dimensional line in this arrangaime
The extended Zone Theorem in [4] states that this complégity

O(|D*|“4*+Y/2), Furthermore, in Section 5.2 we observed that the

size of| D*| in the case of uncorrelated data(%k:l?;:i)?). As a
consequence, the direct extension of our approach to tlmesnel
sions will result in arO(k* In® n) arrangement of hyperplanes and
the time complexity of answering any query will B§k? In* n).

As an alternative, we can also leverage the efficient salutie
volving arrangements we presented for two dimensions ifidhe
lowing approach. Considerd&dimensional space with dimensions
Z1, T2, ..., Tq. Let us form pairs of dimensions, such(@s, z2),
(z3,24), ..., (xa—1,24) (Wlog, assumel is even). We can project

8. EXPERIMENTAL EVALUATION

In this section we discuss in greater detail the implementatf
the proposed methods and present a thorough experimends st
evaluating their performance.

8.1 Implementation details

In Section 5.1 we introduced a framework for updating the pro
posed indexing structures that requires concrete mettardsef-
forming halfspace range searching and border mainten&ioee
a border is just a persistent tdpguery, we use the query moni-
toring technique of Mouratidis et al. [19] to perform bordeain-
tenance. The technique uses a simple, regular grid to irfokex t
buffer. Since the grid is in place, we also utilize it to penfiohalf-
space range searching. Although this choice does not offéér o
mal halfspace query answering performance, it relievespte
posed methods from the overhead of maintaining a second, ded
cated data structure. Even better performance can be achisv
the techniques proposed herein by utilizing optimum stnest for
halfspace range searching [2]. Our implementation of thenagje-
ment data structure was based onAlneangementpackage of the
CGAL library [25] and supports lines iR2.

8.2 Experimental setting

A stream of tuples arrives continuously at the system whialmm
tains a tuple-count buffer of size. Varying tuple arrival rate is
“simulated” as follows: at eacbpdate cycler% of the tuples in
the buffer are evicted to be replaced by an equal number s fre
incoming tuples. After each buffer update, all indices axupht
up to date in order to reflect the current state of the bufferran
ad-hoc topk queries are evaluated.

The parameters that can potentially affect performancetere
size of the buffer#), the rate of the incoming stream)(the num-
ber of queries monitoredh{) and the number of results retrieved
by each queryK). Attribute distributions of the incoming tuples
can also have a direct impact on performance. Therefore,ene d
signed a set of experiments to evaluate the actual impacteskt
parameters to the performance of our methods, FA and SA.

We also compare the performance of our methods with thé:top-
answering technique of [19] (Section 2), referred to as M&IP.
experiments were carried out on a 3.2GHz Pentium D CPU with
2GB of RAM.

8.3 Experimental evaluation

8.3.1 Pruning efficiency

The tunable parameter of the MBP method is the grid granu-
larity. In [19], the use of a specific, empirical value, is gagted
but it is intended for use with a restricted set of buffer siakies.

We found the best performing value to be dependant on therbuff
size, therefore for every different valuewin our experiments we
used the respective best performing grid granularity fer MBP
technique. As a heuristic and for fairness, we also usedaimes
granularity for the relevant grid utilized by the FA and SAthus.



Respectively, the tunable parameter for the FA and SA sigti
is the maximum allowable strip complexity,.... (Section 6). As
Figure 8(a) demonstrates, the number of borders genersitied i
versely proportional t@...... This is expected, as a larger number
of borders is required to produce lower complexity arrangem
strips. Figure 8(a) also depicts the complexity of the tasgifull
arrangement (for the FA solution) and the total complexitye in-
duced arrangement strips (for the SA solution). As expedtaeger
values ofv,,,q. result in fewer borders, therefore worse tuple prun-
ing and more complex arrangements.
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Figure 8(b) demonstrates the effectiveness of our prurgnf-t
nigue in terms of the size of the filtered datag¥t. Even a small
number of borders, i.e., 16 borders faf.. = 1K, produces a
filtered datasefD* containing on average only 250 tuples, a tiny
fraction of the 1M tuples that are present in the buffer. Tike of
the k-skyband g = 20 for this experiment), the minimum size for
D* we could hope to achieve is approximately 80 tuples.

Summarizing, larger values of,... result in fewer borders, but
larger arrangement (strips) for the FA (SA) method. Theefless
time is spent in border maintenance and tuple filtering (raber
that there is a filtering step per strip), while more time iergpn
arrangement maintenance and query answering. Smallezsvafu
vmaz have the exact opposite effect. Therefore, the best value of
Umaz IS SUDjECt to such bicriteria reasoning; a reasonable appro
is to balance these competing trends. We experimentalhtifid
that the value ob,.... depends primarily on the size of the stream-
ing buffer and is insensitive to the rest of the experimepsahme-
ters, including data distribution. Table 2 summarizes & balue
of vma. identified for various values af (in terms of combined
ad-hoc query and update performance).

Umax
Buffer Size FA T SA
10K,20K,50K,100K| 100 500
200K,500K 200 | 1000
1M 500 | 1000
2M 500 | 5000
5M,10M 1000 | 5000

Table 2: Best performing vma. values.

It is worth noticing in Figure 8(a) that for the same number of
borders (and border positioning), the total complexity lué &r-
rangement strips of the SA solution is always less than the€o
sponding arrangement complexity of the FA solution. Theoea
is the following: the arrangement strips of the SA methodaiso
the interaction between lines only within relevant strigansider
for example two lineg; ande; that are materialized within an ar-
rangement stri. If their intersection point lies outsids, it is not
stored in the arrangement strip. However, if these two laresna-
terialized in the full arrangement utilized by the FA methttkir

intersection point and all the relevant induced informatigll have
to be stored, resulting in additional complexity. Furthere con-
sider a linec; that is stored only in arrangement stfp and a line
€2 that is only stored in arrangement sti§p. Possible interaction
between these two lines is irrelevant for the SA solution ot for
the FA method.

It should also be noted that although the proposed techsigfite
lize arrangements data structures that are of quadratée span-
plexity, the resulting storage overhead attributed to thrarge-
ments is negligible. Figure 9 demonstrates.
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Figure 9: Arrangements space consumption.

8.3.2 Evaluating the performance of the techniques

In our first set of experiments, we used randomly generated
dimensional data and queries to evaluate the effect of eacnp
etern, r, m andk independently. The default values for the pa-
rameters isn = 1M, r = 1%, m = 1K andk = 20. In each
experiment, a single parameter was varied, spanning @wers
ues, while the rest of the parameters were set to their defalules.
For each parameter set, three different incoming tupleibiigions
were used: uniform (tuple attributas andx, are uncorrelated),
correlated (high values af; imply high values ofc2) and anticor-
related (high values af; imply low values ofzz). The data were
generated as suggested in [7]. For each parameter set andiglat
tribution we populated the buffer and then measured thétiote
required forc = 100 update cycles. No rebuilds were required
by the proposed methods in this experiment, since onlycstatia
distributions were used.

Figures 10-13 present the results of this experiment see Th
plots for correlated data are omitted as the performancé thfrae
methods was found on all instances to be very similar to teair
responding performance on uniform data. We have used a loga-
rithmic Time axis to present the experimental results, ap#rfor-
mance of the proposed solutions is frequently orders of iihadgm
better than the competing MBP technique.

In general, we found the proposed solutions to consistently
perform the MBP technique by a large margin, even by two arder
of magnitude in the case of anticorrelated data, on which MBP
performs particularly bad. On the contrary, the border tomsi
ing scheme employed by both the SA and FA solutions adapts ex-
tremely well to all data distributions, guaranteeing pcéatble per-
formance while not needing a different, appropriatg... value for
every different data distribution. Furthermore, noticattthe SA
method is consistently better than the FA method througkimat
parameter space and for all three data distributions. Tasoreis
the reduced total complexity of the arrangement strips efSiA
method with respect to the full arrangement complexity ef A
method.

More specifically, Figure 10 shows that the FA and SA solwgion
scale gracefully with respect to the buffer size, constterutper-
forming MBP for buffer sizes as small as 10K to as large as 5M,
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and more. Figure 11 demonstrates that the proposed mettalds s
linearly with respect to the incoming stream rate and offetear
advantage for lower stream rates. As the stream rate iresetss
performance advantage diminishes, due to the fact that tAB M
method has an insignificant index maintenance overheadnfalesi
regular grid).

Both the FA and SA techniques offer rapid query evaluatian th
is also decoupled from index maintenance. Therefore, asing
the number of queries has a small impact on their total ruatim
On the contrary, MBP scales particularly bad with respedh
number of queries. We can witness this trend in Figure 12alfyin
Figure 13 demonstrates that the SA method is more scaladte th
FA with respect tok and as scalable as MBP. The performance
advantage of SA over FA in this case can again be attributéukto
interaction isolation effect, that becomes more pronodrathe
value ofk increases.

The performance of the proposed solutions was also evaluate
using real data. To this end, we utilized the Intel Lab Seilsta
[1]. The data set contains a stream of tuples consisting rof te
perature, humidity, luminosity and voltage readings, exitd pe-
riodically by 54 sensors. We processed this data set, extgaa
2-dimensional stream of total size 11M tuples. The dataidistr
tion of the resulting stream is both irregular and, more irtgoatly,
changing over time. Therefore, this experiment evaludiesro-
bustness of the proposed methods when the incoming datidist
tion demonstrates high variability. Both the SA and FA solus
avert potential performance degradation by rebuilding thdices
when the data distribution changes, amortizing the costried by
rebuilding over time.

For this experiment we used the default values-fon andk and
varied the value ofi. The total time required far = 1000 update
cycles was measured. For a buffer sizel 8f tuples, we process
the entire stream of 11M tuples. For smaller values of théebuf
size, we ignore an appropriate number of incoming tuplesreef
actually processing a tuple, so that all 11M tuples of thesstr ar-
rive at the system in only 1000 cycles. For example, # 200K
we process 1 in every 5 tuples andnif= 10K we process 1 in
every 100 tuples. This way we witness the same pattern of vari
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ation in the stream for all buffer size values. Lastly, weditee
following rebuild protocol (Section 6). The SA method treggd a
rebuild when either the mean value of arrangement strip &exitp
exceeded .5vmq2, OF When the corresponding coefficient of varia-
tion exceeded value 2.5. The FA method method triggeredudldeb
whenever it witnessed a 3-fold increase in arrangement texity
since the last rebuild. The aforementioned threshold galere
also validated on a variety of synthetic, changing distidns and
were found to yield near optimal performance on all occasion
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1000
10K 20K

50K 100K 200K
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500K 1M

Figure 14: Time vs Buffer Size, using real data.

The results of the experiment are presented in Figure 14. The
SA solution is considerably more robust from both the MBP and
FA techniques. The FA method performs worse than SA particu-
lary due to a higher number of rebuilds required. This effeetx-
acerbated for large buffer size values, where the overhreadried
by a rebuild is larger. The reduced number of rebuilds regliry
the SA method is once more due to the methods’ ability to tsola
changes within few strips: updates that negatively affeat &r-
rangement strips in the SA method, have a global adverset effie
the full arrangement of the FA method. While the SA method can
tolerate a few oversized strips, without considerableqrarance
degradation, the FA method cannot maintain an oversizéaiful
rangement without a severe impact on its performance.

We also performed experiments implementing the query parti
tioning technique described in Section 7.2, based on thHm2stsional
SA solution. Figure 15(a) presents the results of the empest, in-



volving 3-dimensional uniformly distributed tuples angles from
the real data set. Furthermokewas set to 5 and we used the same
rebuild threshold values as before. For higher dimensioasech-
nigue appears more sensitive to the size of the buffer, slnego
the multiple arrangements realized, the number of poinvsiwed

in query answering increases. In the figure we report the tene
quired to report results which includes the time to compléean-
swers using the TA algorithm, as the buffer size increases.

Notice that in general, and especially in higher dimensitims
performance of the MBP technique is expected to be highly sen
sitive to the choice of the grid granularity. In the 2d expents
presented before, the grid granularity for the MBP techajquas
unrealistically set to the empirically observed value thiaided
best performance for each specific data distribution. Tlzat the
MBP technique was maximally favored. One major deficiency of
the MBP technique is that it is difficult to set the grid graanitly
since it depends on a multitude of factors.

Figure 15(b) presents the performance of the MBP technique
with respect to the underlying grid granularity. Noticetttiee per-
formance of MBP is (a) extremely sensitive to the grid size @)
the best performing grid size strongly depends on the dateiluli-
tion. Furthermore, the best performing grid granularityumiform
data, when used on real data results in particularly podioper

11.
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(3]

(4]

(5]
(6]

(7]
(8]
El

mance and vice versa. In [19] no proposal was presented on how(10]

to choose or adjust the grid size. It is evident that the raditice
of grid granularity for good performance depends on the daa
tribution. A similar trend was observed for all buffer sizalues.
The figure shows that both for uniform and real data sets k@imi
results observed for correlated and anti-correlated d&dadffers
very large performance benefits for a vast range of grid sizes
We have also performed higher dimensional experimentsdvnvo
ing larger values ok, making similar observations. We omit these
results due to space constraints.
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Figure 15: Higher dimensionality experiments.

9. CONCLUSION

In this paper we have presented techniques for answeritmgad-
top-k queries over streaming data. We have introduced techniques
based on the notion of geometric arrangements and prestheied
practical realization in a data streaming scenario. We lmee
sented analytical and experimental results quantifyiegrtideoffs
around the choice of various parameters inherent in ountgubs.

Our results demonstrate the practical utility of our method
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