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Abstract. Similarity between complex data objects is one of the cen-
tral notions in data mining. We propose certain similarity (or distance)
measures between various components of a 0/1 relation. We define mea-
sures between attributes, between rows, and between subrelations of the
database. They find important applications in clustering, classification,
and several other data mining processes. Our measures are based on the
contexts of individual components. For example, two products (i.e., at-
tributes) are deemed similar if their respective sets of customers (i.e.,
subrelations) are similar. This reveals more subtle relationships between
components, something that is usually missing in simpler measures. Our
problem of finding distance measures can be formulated as a system
of nonlinear equations. We present an iterative algorithm which, when
seeded with random initial values, converges quickly to stable distances
in practice (typically requiring less than five iterations). The algorithm
requires only one database scan. Results on artificial and real data show
that our method is efficient, and produces results with intuitive appeal.

1 Introduction

Similarity between complex data objects is a crucial notion in data mining and
information retrieval. In order to look for patterns or regularities in a database,
it is often necessary to be able to quantify how far from each other two objects in
the database are. Once we have a natural notion for similarity between objects in
a database, we can for example use distance-based clustering or nearest neighbor
techniques to search for interesting information from the data set. Recently,
there has been considerable interest in defining intuitive and easily computable
measures of similarity between complex objects and in using abstract similarity
notions in querying databases [1, 2, 10, 14, 17, 19, 22, 4, 12, 15].

Ideally, the similarity notion is defined by the user, who understands the
domain concepts well and is able to explicate the notions needed for similarity
computations. However, in many applications the domain expertise is not avail-
able. The users do not understand the interconnections between objects well
enough to formulate exact definitions of similarity or distance. In such cases it is
quite useful to have (semi)automatic methods for finding out the similarity (or
distance) between objects.



In this paper we focus on defining similarity between various components
of categorical databases. Such databases typically do not contain numeric data.
Instead, the domains of the attributes are small, unordered sets of values. An
important example is a market basket database which is typically a supermar-
ket’s record of customer purchases. Conceptually this is a binary table where
columns (or attributes) represent products, and rows represent customers. Such
databases also frequently occur in domains outside retail (for example, in this
paper we consider a TV viewership dataset, where the columns are TV shows
and the rows are viewers). We consider the problem of defining distance mea-
sures between various components of such databases, such as between attributes,
between rows, and between subrelations. Since the data is nonnumeric, simple
distance measures such as Euclidean distances are inappropriate in this context.

We develop measures that are context-based, i.e. similarity between compo-
nents is determined by examining the contexts in which the components appear.
For example, two products (i.e. attributes) are deemed similar if their respec-
tive sets of customers (i.e. subrelations) are similar. This reveals more subtle
relationships between components, something that is usually missing in simpler,
context insensitive measures. A highlight of our methods is that they are based on
plausible probabilistic arguments: data components are assumed to be samples
of underlying probability distributions, and computing the similarity between
two components is reduced to computing the similarity between two respective
probability distributions. While other context-based approaches to similarity and
clustering problems have been investigated by other researchers (see discussion
at the end of this section), our proposal is particularly appropriate for the kind
of applications we consider.

In the rest of the paper we describe our results only for market basket
databases, i.e. binary tables. Our results can be extended to general categor-
ical databases by mapping them into binary relations; we omit details from this
version of the paper. In what follows, we use the words attribute, column and
product interchangeably; likewise we also use row and customer interchangeably.

Consider the problem of defining (dis)similarities between attributes. This
has several applications, such as in forming product hierarchies or clusters of
attributes [13, 20]. Typically, one assumes that the hierarchy is given by a domain
expert. However, in the absence of such knowledge, we could produce a product
hierarchy that is derived from the data. This can be done through standard
similarity measures such as Euclidean distance, correlations, etc. However, if
we use them in a typical supermarket scenario, we might conclude that two
products such as Coke and Pepsi are quite dissimilar because they do not have
many common customers, whereas in reality both are soft drinks and should thus
be more similar than say, Pepsi and Mustard. Secondly, consider a high volume
product such as Coke, and a relatively low volume product such as RC Cola.
Correlations or Euclidean distances would not detect much similarity between
the two. We propose the following measure: two products are similar if the
buying patterns of the customers of each are similar. Thus Coke and Pepsi can
be deemed similar attributes, if the buying behavior of buyers of Coke and buyers



of Pepsi are similar. But buyers of Coke (resp. Pepsi) are simply subrelations of
the database. Thus we relate similarity between attributes to similarity between
certain subrelations.

Consider the problem of defining similarities between rows. This is affected
by the fact that not all attributes are equidistant from each other (for example,
a Coke customer is closer to a Pepsi customer than to a Mustard customer).
In other words, our row similarity measure depends on our attribute similarity
measure. So we see that various different similarity notions are interdependent
on one another: row similarity depends on attribute similarity, which depends on
subrelation similarity, which in turn depends on row similarity (since a subrela-
tion is basically a set of rows). The main result of this paper is that the problem
of simultaneously solving for all distance measures is formulated as a system of
nonlinear equations. We present ICD (Iterated Contertual Distances), an itera-
tive algorithm which, when seeded with random initial values, converges quickly
to stable distances in practice (typically requiring less than five iterations). The
algorithm requires only one database scan.

We complete this section with a discussion of related research. Recently, sev-
eral iterative procedures (quite different from ours) have been developed for other
problems, such as document retrieval systems [5, 15], extraction of information
in hyperlinked environments [9, 16], and clustering of categorical data [8]. Much
of the emphasis in document retrieval is on grouping/clustering documents based
on co-occurances of keywords. The problem of clustering values of a categorical
database has attracted much attention recently. A variety of approaches have
been developed, such as dynamical systems formulations, probabilistic mixture
models, combinatorial methods, etc. [8, 3, 12, 7, 11].

However clustering only gives an indirect sense of inter-attribute distances,
and in some applications it is important to have the direct distance measure. It
is not clear whether the above clustering methods will easily extend to defining
and computing the kind of similarities that we desire (such as defining product
similarity based on buying patterns of customers, etc.). Attribute distances of
a binary database has been investigated in [12, 4]. The idea of using contexts
to define attribute distances has been used in [4], but there the distance be-
tween subrelations is defined by looking at the marginal distributions for certain
probe attributes. Also, the paper did not take into account issues such as the
dependencies between attribute distances and row distances.

The rest of the paper is organized as follows. We first describe our Iterated
Contextual Distances algorithm. We then describe a variety of experiments on
artificial and real data. We conclude with some open problems.

2 The Iterated Contextual Distances (ICD) Algorithm

Let r be a 0/1 relation containing n rows, over the set of attributes R where
|R| = m. As mentioned earlier, given distances between attributes we will define
distances between rows, given distances between rows we will define distances
between subrelations, and, given distances between subrelations we will define



distances between attributes. This way of defining distances between attributes
is circular, and therefore we use an iterative approach. The basic idea is to ini-
tially start with an arbitrary distance function dy between attributes of R and
use that to derive a vector representation for the rows. From this we go to a
vector representation for subrelations. This representation gives us a distance
metric Ag between subrelations of r. Then the value of Ag(ra,rp) is used to
get a new distance value d; (A4, B) for attributes. A few iterations of these steps
quickly produces a stable set of distances between attributes. We denote the
resulting distance function by d* and call it the iterated contexrtual distance be-
tween attributes. From these attribute distances, we can easily compute other
stable distances such as row distances and subrelation distances.

For attributes A and B,let rqa = {t€r|t[A] =1} and rg ={t € r | t[B] =
1} be two corresponding subrelations. We shall relate the distance between A
and B to the distance between r4 and rg. Defining distance between attributes
by distance between relations might seem a step backwards; we want to define
distance between two objects of size n x 1 by reducing this to distance between
objects of dimensions ng x m and np x m, where ng = |ra| and ng = |rp|.
However, we will see later that we can rely on some well-established probabilistic
notions for defining distance between subrelations.

2.1 From Attribute Distances to Row Representations

Assume we have a distance function d between attributes. We will use this to
define distances between rows.

A row in r can also be viewed as an m-dimensional vector with values from
{0,1}. In what follows, we will often speak of real-valued rows over R as vectors
over R. We map each row ¢t € r to a vector f(t) over R as follows. We build the
vector f(t) for row ¢ by combining vectors g4 for each A € ¢ (i.e., A € R such
that ¢[A] = 1).

For each attribute A € R define the function g4 from R to [0,1] by

_ _ K(d(4, B))
~ YcerK(d(4,0)

where K is a kernel smoothing function. We only require that K is monotonically
decreasing (for example, K(z) = 1/(1 + x)).

Note that ) p.pga(B) = 1. It is useful to think of g4 as a probability
distribution that represents the amount of equivalence of other products with
product A. Thus, if a customer bought A, then g4(B) represents the probability
that the customer would have been satisfied buying B instead. If products A
and B are completely similar, i.e., d(4, B) = 0, then g4(A) = ga(B).

Let t € r,and let Ay, ..., A be the attributes for which ¢ has value 1. Define
a vector f(t) where

f(t) (C) = c(gA1 (C)J sy JA (C))

ga(B)



where ¢ is a combination function defined as

k

c(gla"'agk) =1- H(l _gi)J

i=1
i.e., we have

k

FOC) =1-T]1-94.(0)

i=1

corresponding to a disjunction of the different pieces of evidence g4, (C) for the
presence of C.

Using this mapping f, we define the row distance d(¢,u) between rows ¢ and
u as the Ly distance between the two vectors, i.e. Li(f(t), f(u)).

Remarks: There are several possible choices for the kernel smoothing function,
K(z). If we run the ICD algorithm with different kernel functions, we get differ-
ent final distances. However, the actual choice of a does not seem to affect the
relative ranks of the distances by much.

2.2 Distances between Subrelations

Consider two subrelations r4 and rp of r (say the Coke customers and the Pepsi
customers). We would like to define a notion of distance between r4 and rg. We
construct the following sets of vectors for r4 and rg: V(ra) = {f(u)|u € ra}
and V(rg) = {f(v)|v € rg}. Then the task is reduced to defining the distance
between two sets of vectors in m-space.

We could view each relation as a point set and use one of a variety of com-
binatorial methods for defining the distance between them, such as Hausdorff
distance, closest pair, etc. [6]. However, we choose to view the subrelations as
samples of corresponding underlying probability distributions (e.g. the distribu-
tions of Coke and Pepsi customers), and reduce the problem to computing dis-
tance between the two distributions. A comprehensive way of doing this would
be to fit distributions (such as gaussians) to each sample and then compute the
Kulback-Leibler distance between the two. In the interest of simplicity, we sim-
ply choose to compute the distance between the two corresponding centroids c4
and cp of the sets V(r4) and V(rg). Thus,

A(’I'A,T'B) = Ll(CA,CB)

2.3 Details of the ICD Algorithm

In detail, the process of finding the attribute distances is as follows. Let r be a
0/1 relation over attributes R.

1. Initialize with random seed: Set d(A, A) = 0 for all A € R, and let d(A, B) =
d(B, A) = rand() for all A, B € R with A # B.



2. Normalize distances: Multiply all distances d(A, B) by a constant ¢ so that
the average pairwise distance between attributes is 1.

3. Compute attribute vectors: For each A € R, compute the vector g4 : R —
[0,1] by

K(d(4, B))
9a(B) = -
YcerK(d(4,0))
4. Compute row vectors: For each ¢t € r, let Ay,..., A; be the attributes for

which ¢ has value 1. Define a vector f(t) as

f(t) (C) = C(gAl (C)a <A, (C))a

where ¢(g1,...,9x) =1 — Hle (1—g;).

5. Form subrelation centers: For each A € R, let c4 be the vector on R defined
as the average of the vectors f(t), where t(A) = 1.

6. Compute distances between subrelation centers: For each pair of attributes
A,BeR,let

A(ra,rB) = Li(ca,cB).

7. Iterate: for each pair of attributes A,B € R, let d(A,B) = A(ra,rp). If
the method has converged, stop; now the distance function d is the iterated
contextual distance function d*. Otherwise, go to step 2.

2.4 Analysis of the ICD Method

It can be shown that the distances produced by the ICD algorithm satisfy the
triangle inequality. We omit details from this version of the paper.

The ICD algorithm seems to always converge very quickly in practice, typi-
cally not requiring more than five iterations. A theoretical analysis of the conver-
gence seems quite difficult, as the ICD algorithm is essentially trying to compute
the fixed points of a nonlinear dynamical system. In practice, different starting
points sometimes (but rarely) lead to different fixed points, and when that oc-
curs, we have to select the solution(s) that satisfies our requirements best. Our
approach is to select the solutions with large variances in attribute distances,
the rationale being that solutions which “spread” attributes apart are more in-
teresting.

A naive implementation requires I database scans, where I is the number
of iterations required for convergence (usually less than five). A much better
implementation which requires only one database scan is possible for sparse
relations. Here the first scan can be used to prepare certain main memory data
structures (such as the distance matrix, and for each centroid the formula which
determines how it is updated after every iteration). The remaining iterations can
proceed without having to access the database.



3 Experiments

We experimented with three types of data: (a) small illustrative examples, (b)
TV shows viewing data, and (c) data on pages visited at the MSN website.

3.1 An Illustrative Example

Consider the following relation:

ABCDEFG
t11000000
tp 1100000
t31 010000
t40110000
ts 0100000
ts 1001000
t 0100100
ts0000010
to 0000001

If we run the ICD algorithm (with kernel smoothing function K (z) = 1/(1+x)),
it converges quickly to the following attribute distances:

A B C D E F G
A 0.000 0.032 0.338 0.338 0.338 2.065 2.065
B 0.032 0.000 0.338 0.338 0.338 2.065 2.065
C 0.338 0.338 0.000 0.058 0.058 2.322 2.322
D 0.338 0.338 0.058 0.000 0.076 2.320 2.320
£ 0.338 0.338 0.058 0.076 0.000 2.320 0.320
F 2.065 2.065 2.322 2.320 2.320 0.000 0.063
G 2.065 2.065 2.322 2.320 2.320 0.063 0.000

Upon examining these distances (especially close to the main diagonal), we notice
that there are essentially three clusters of attributes: A and B are similar to each
other, C, D, and E are similar to each other, and F' and G are similar to each
other.

We give some intuitive reasoning for the above. Let us try to determine
the attribute distance between A and B by examining the buying behavior of
their customers. The customers buying A buy the same proportion of C as the
customers buying B. Also, the proportion of D bought by A’s customers is the
same as the proportion of E bought by B’s customers. If we knew that D and E
are themselves similar, then we can conclude that the customers of A and B are
very similar, and thus A and B are themselves very similar. But how do we know
anything about the similarity between D and E? If we compare the customers
of D with the customers of E, we see that they buy A and B respectively. Thus
by a circular argument, we see that A and B must be similar, and D and E also
must be similar.



We next consider C. The customers buying C buy the same proportion of A
(or B) as the customers buying D. Thus C is similar to D (and thus to E).

As for F' and G, since their customers have nothing in common with the
others, they are far from the other attributes.

3.2 TV Shows Data

We experimented using data about which TV shows people watched. The data
set contained 2272 observations (rows) over about 15 shows (columns)® Our
objective was to compute distances between TV shows based on viewership pat-
terns.

If we examine the ICD attribute distances for the TV shows in sorted order,
they make intuitive sense. For example, the most distant/similar pairs are shown
in Figure 1.

Most distant pairs
AMER.FUNNIEST-HM VIDEOS FRIENDS
ABC WORLD NEWS TONIGHT FRIENDS

FRIENDS CBS EVE NEWS-RATHER/CHUN
MAD ABOUT YOU-THU. CBS EVE NEWS-RATHER/CHUN
Most similar pairs

FRIENDS MAD ABOUT YOU-THU

ABC WORLD NEWS TONIGHT GOOD MORNING, AMERICA
AMER.FUNNIEST-HM VIDEOS NBC NIGHTLY NEWS
MURDER, SHE WROTE 60 MINUTES

Fig. 1. Distance between shows

One interesting result is that ABC NEWS:NIGHTLINE is close to both
NBC NIGHTLY NEWS and CBS EVE NEWS-RATHER/CHUN. Also, ABC
WORLD NEWS TONIGHT and GOOD MORNING, AMERICA are close to
each other, but tend to be far from most of the other shows. These relation-
ships were not discovered by other methods, such as by computing correlations
between the respective shows.

During the experiments, we tried out the following family of kernel smoothing
functions: K(z) = 1/(1 4+ az), for a > 0. The precise value of a did not seem
to affect the relative ranks of the attribute distances by much. Also, the ICD
algorithm seems to converge to fixed points very quickly from random starting
points (typically within five iterations).

3 The original data had about 130 shows, but it was pruned to contain only those
shows that were watched by at least 300 persons.



3.3 MSN Data

We have started an extensive examination of data on the pages visited at the
MSN website. The data has been collected over a six months period, and sampled
to extract information about the most frequent 5000 visitors. Since MSN is a
vast site, we focus on the activities at the top of the hierarchy, i.e. at the top 50
(in number of hits) DNSids. After some aggregation, we prepared a 50 x 5000
binary table (in sparse form) where the columns are the DNSid’s and the rows
are visitors. An entry of 1 indicates that the visitor has visited that DNSid during
those six months. Our objective is to compute similarities between DNSids based
on similarity between their respective visitor sets.

Due to lack of space, the details of the experiments will appear in the full ver-
sion of this paper. We only mention here that the initial results appear encourag-
ing. As an example, the pair of DNSids women.msn.com and underwire.msn.com
are found similar by our method, but do not appear similar if we simply compute
correlations.

4 Open problems

How reasonable and natural are the resulting distance measures? Our prelim-
inary investigations with real data seem to indicate that the ICD method has
intuitive appeal. We are carefully investigating if some of the other context-
senstive methods can be unified with ICD to produce even better results in our
application domains.

Even though it seems to work well in practice, the ICD method needs further
theoretical study. The criteria (if any) for convergence, estimates of the number
of fixed points, etc., need to be investigated.
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