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Abstract— In recent years, there has been significant interest in 
development of ranking functions and efficient top-k retrieval 

algorithms to help users in ad-hoc search and retrieval in 

databases (e.g., buyers searching for products in a catalog). In 

this paper we focus on a novel and complementary problem: how 

to guide a seller in selecting the best attributes of a new tuple 

(e.g., new product) to highlight such that it stands out in the 

crowd of existing competitive products and is widely visible to 

the pool of potential buyers. We develop several interesting 

formulations of this problem. Although these problems are NP-

complete, we can give several exact algorithms as well as 

approximation heuristics that work well in practice. Our exact 

algorithms are based on Integer Programming (IP) formulations 

of the problems, as well as on adaptations of maximal frequent 

itemset mining algorithms, while our approximation algorithms 

are based on greedy heuristics. We conduct a performance study 

illustrating the benefits of our methods on real as well as 

synthetic data.  

 

 I. INTRODUCTION 

In recent years, there has been significant interest in 

developing effective techniques for ad-hoc search and 

retrieval in unstructured as well as structured data repositories, 

such as text collections and relational databases. In particular, 

a large number of emerging applications require exploratory 

querying on such databases; examples include users wishing 

to search databases and catalogs of products such as homes, 

cars, cameras, restaurants, or articles such as news and job 

ads. Users browsing these databases typically execute search 

queries via public front-end interfaces to these databases. 

Typical queries may specify sets of keywords in case of text 

databases, or the desired values of certain attributes in case of 

structured relational databases. The query-answering system 

answers such queries by either returning all data objects that 

satisfy the query conditions (Boolean retrieval), or may rank 

and return the top-k data objects using suitable scoring 

functions (Top-k retrieval).  

However, the focus of this paper in not on new search and 

retrieval techniques that will aid users in effective exploration 

of such databases. Rather, the focus is on a complementary 

yet novel problem of data exploration, as described below. 

Selecting Attributes for Maximum Visibility. We 

distinguish between two types of users of these databases: 

users who search such databases trying to locate objects of 

interest, as well as users who insert new objects into these 

databases in the hope that they will be easily discovered by 

the first types of users. For example, in a database 

representing an e-marketplace (such as Craigslist.com, or the 

classified ads section of newspapers), the former type of users 

are potential buyers of products, while the latter type of users 

are sellers or manufacturers of products – where products 

could range from automobiles to phones to rental apartments 

to job advertisements. We note that almost all of the prior 

research efforts on effective search and retrieval techniques – 

such as new top-k algorithms, new ranking functions, and so 

on – have been designed with the first kind of user in mind 

(i.e., the buyer). In contrast, relatively less research has been 

expended towards developing techniques to help a 

seller/manufacturer insert a new product for sale in such 

databases that markets it in the best possible manner – i.e., 

such that it stands out in a crowd of competitive products and 

is widely visible to the pool of potential buyers. 

It is this latter problem that is the main focus of this paper. 

To understand it a little better, consider the following real-

world scenario: assume that we wish to insert a classified ad 

in an online newspaper to advertise an apartment for rent. Our 

apartment may have numerous attributes (it has two 

bedrooms, electricity will be paid by the owner, it is near a 

train station, etc). However, due to the ad costs involved, it is 

not possible for us to describe all attributes in the ad. So we 

have to select, say the ten best attributes. Which ones should 

we select? Thus, one may view our effort as an attempt to 

build a recommendation system for sellers, unlike the more 



 

traditional recommendation systems for buyers. It may also be 

viewed as inverting a ranking function, i.e., determining the 

argument of a ranking function that will lead to high ranking 

scores.  

This general problem also arises in domains beyond e-

commerce applications. For example, in the design of a new 

product, a manufacturer may be interested in selecting the ten 

best features from a large wish-list of possible features – e.g., 

a homebuilder can find out that adding a swimming pool 

really increases visibility of a new home in a certain 

neighborhood. Likewise, we may be interested in developing 

a catchy title, or selecting a few important indexing keywords, 

for a scientific article.  

To define our problem more formally, we need to develop a 

few abstractions. Let D be the database of products already 

being advertised in the marketplace (i.e., the “competition”). 

In addition, let Q be the set of search queries that have been 

executed against this database in the recent past – thus Q is 

the “workload” or “query log”. The query log is our primary 

model of what past potential buyers have been interested in. 

Consider a new product t that needs to be inserted into this 

database. While the product has numerous attributes, due to 

budget constraints there is a limit, say m, on the number of 

attributes that can be selected for entry into the database. Our 

problem can now be defined as follows: 

 

 
 

In this paper we initiate a thorough investigation of this 

novel optimization problem. We mainly focus on an important 

variant where the data is Boolean and the queries follow 

conjunctive retrieval semantics. We also briefly consider 

several important variants, including Boolean data with other 

types of retrieval semantics (disjunctive as well as top-k 

retrieval), as well as categorical, numeric and text data. Our 

main contributions are summarized below: 

1. We introduce the problem of selecting attributes of a 
tuple for maximum visibility as a new data exploration 

problem that benefits a certain class of users interested in 

designing and marketing their products. We consider 

several interesting variants of the problem as well as 

diverse application scenarios. 

2. We show that the problem is NP-complete.  

3. We give exact Integer Programming (IP) and Integer 
Linear Programming (ILP)-based algorithms to solve the 

problem. These algorithms are effective for moderate-

sized problem instances. 

 

4. We also develop more scalable optimal solutions based 
on novel adaptations of maximal frequent itemset 

algorithms. Furthermore, in contrast to ILP-based 

solutions, we can leverage preprocessing opportunities in 

these approaches. 

5. We also present fast greedy approximation algorithms 
that work well in practice. 

6. We perform detailed performance evaluations on both 
real as well as synthetic data to demonstrate the 

effectiveness of our developed algorithms. 

 

The rest of the paper is organized as follows. In Section II 

we give a formal definition of our problem, including several 

interesting problem variants. Section III analyzes the 

computational complexity of the problem, and Section IV 

presents various optimal algorithms as well as heuristics. In 

Section V we extend these techniques to also work for other 

problem variants. In Section VI we discuss related work, and 

present the result of extensive experiments in Section VII. 

Section VIII is a short conclusion. 

 

 II. PROBLEM FRAMEWORK 

In this section we first develop, with a detailed example, a 

formal definition of the problem for the case of Boolean data 

and a query log of conjunctive Boolean queries. We then 

briefly define other Boolean variants, as well as extensions for 

other kinds of data such as categorical, text and numeric data. 

Due to space constraints, throughout the paper we primarily 

focus on the first Boolean variant, and restrict our discussion 

of other variants to briefly outlining the extensions necessary. 

A. A Boolean Problem Variant. 

Some useful definitions and notations are given here. 

Database: Let D = {t1…tN} be a collection of Boolean tuples 

over the attribute set A = {a1…aM}, where each tuple t is a bit-

vector where a 0 implies the absence of a feature and a 1 

implies the presence of a feature. A tuple t may also be 

considered as a subset of A, where an attribute belongs to t if 

its value in the bit-vector is 1. 

Tuple Domination: Let t1 and t2 be two tuples such that for all 

attributes for which tuple t1 has value 1, tuple t2 also has value 

1. In this case we say that t2 dominates t1.  

Tuple Compression: Let t be a tuple and let t′ be a subset of t 

with m attributes. Thus t′ represents a compressed 

representation of t. Equivalently, in the bit-vector 

representation of t, we retain only m 1’s and convert the rest 

to 0’s.  

Query: We view each query as a subset of attributes. The 

retrieval semantics is Conjunctive Boolean Retrieval, e.g., a 

query such as {a1, a3} is equivalent to “return all tuples such 

that a1 = 1 and a3 = 1”. Alternatively, if we view q as a special 

PROBLEM: Given a database D, a query log Q, a 

new tuple t, and an integer m, determine the best 

(i.e., top-m) attributes of t to retain such that if the 

shortened version of t is inserted into the database, 

the number of queries of Q that retrieve t is 

maximized.  



 

type of “tuple”, then t dominates q. The set of returned tuples 

is denoted as R(q).  

Query Log: Let Q = {q1…qS} be collection of queries where 

each query q defines a subset of attributes.  

We are now ready to formally define the main problem 

variant considered in the paper. 

 

 

 

 

 

 

Intuitively, for buyers interested in browsing products of 

interest, we wish to ensure that the compressed version of the 

new product is visible to as many buyers as possible.  The 

following running example will be used to illustrate Problem 

SOC-CB-QL (as well as other variants later in the paper). 

 

EXAMPLE 1: Consider an inventory database of an auto 

dealer, which contains a single database table D with N=7 

rows and M=6 attributes where each tuple represents a car 

for sale. The table has numerous attributes that describe 

details of the car: Boolean attributes such as AC, Four Door, 

etc; categorical attributes such as Make, Color, etc; numeric 

attributes such as Price, Age, etc; and text attributes such as 

Reviews, Accident History, and so on. Fig 1 illustrates such a 

database (where only the Boolean attributes are shown) of 

seven cars already advertised for sale. The figure also 

illustrates a query log of five queries, and a new car t that 

needs to be advertised, i.e., inserted into this database. � 

 

Suppose we are required to retain m = 3 attributes of the 

new tuple. It is not hard to see that if we retain the attributes 

AC, Four Door, and Power Doors (i.e., t′ = [1, 1, 0, 1, 0, 0]), 

we can satisfy a maximum of three queries (q1, q2, and q3). No 

other selection of three attributes of the new tuple will satisfy 

more queries. Notice that in SOC-CB-QL, it is the query log Q 

that needs to be analyzed in solving the problem; the actual 

database D (i.e., the “competing products”) is irrelevant. That 

is, there is no need of access to the database.  

B. Other Problem Variants. 

Here we define several other variants of the problem that 

are useful in different applications. Problem SOC-CB-QL has 

a per-attribute version where m is not specified; in this case 

we may wish to determine t′ such that the number of satisfied 

queries divided by |t′| is maximized. Intuitively, if the number 

of attributes retained is a measure of the cost of 

advertising/manufacturing the new product, this problem 

maximizes the number of potential buyers per unit cost.  

A complementary variant to SOC-CB-QL is SOC-CB-D (or 

“Stand Out in a Crowd-Conjunctive Boolean–Data”): given a 

database D, a new tuple t, and an integer m, we wish to 

compute a compressed tuple t′ by retaining m attributes such 

that the number of tuples in D dominated by t′ is maximized. 

This is useful in scenarios where we have access to the 

database, but do not have access to the query log. To illustrate 

this variant, consider the example in Fig 1 again. Suppose we 

are required to retain m = 4 attributes of the new tuple t. It is 

not hard to see that if we retain the four attributes AC, Four 

Door, Power Doors and Power Brakes (i.e., t′ = [1, 1, 0, 1, 0, 

1]), we dominate four tuples (t1, t4, t5 and t6). No other 

selection of four attributes of the new tuple will dominate 

more tuples.  It is also easy to see that any algorithm that 

solves SOC-CB-QL can be also used to solve SOC-CB-D, by 

replacing the query log with the database as input. SOC-CB-D 

also has a natural per-attribute version. 

A more general problem variant arises when the retrieval 

semantics is not simply conjunctive Boolean; e.g., the 

retrieval semantics could be disjunctive Boolean or even Top-

k retrieval. To understand the latter, let score(q, t) be a 

scoring function that returns a real-valued score for any tuple 

t. Let k be a small integer associated with a query q. Then R(q) 

is defined as the set of top-k tuples in the database with the 

highest scores. The problem variant SOC-Topk is defined as: 

given a database D, a query log Q with top-k retrieval 

semantics via a scoring function, a new tuple t, and an integer 

m, compute a compressed tuple t′ by retaining m attributes 

Car 

ID 

AC Four 

Door 

Turbo Power 

Doors 

Auto 

Trans 

Power 

Brakes 

t1 0 1 0 1 0 0 

t2 0 1 1 0 0 0 

t3 1 0 0 1 1 1 

t4 1 1 0 1 0 1 

t5 1 1 0 0 0 0 

t6 0 1 0 1 0 0 

t7 0 0 1 1 0 0 

Database D 
 

Query 

ID 

AC Four 

Door 

Turbo Power 

Doors 

Auto 

Trans 

Power  

Brakes 

q1 1 1 0 0 0 0 

q2 1 0 0 1 0 0 

q3 0 1 0 1 0 0 

q4 0 0 0 1 0 1 

q5 0 0 1 0 1 0 

Query Log Q 

 

 

New 

Car 

AC Four 

Door 

Turbo Power 

Doors 

Auto 

Trans 

Power 

Brakes 

t 1 1 0 1 1 1 

New tuple t to be inserted 

Fig 1 Illustrating EXAMPLE 1 

PROBLEM SOC-CB-QL (or “Stand Out in a 

Crowd-Conjunctive Boolean-Query Log”): Given a 

query log Q with Conjunctive Boolean Retrieval 

semantics, a new tuple t, and an integer m, compute a 

compressed tuple t′ by retaining m attributes such that 

the number of queries that retrieve t′ is maximized. 



 

such that the number of queries that retrieve t′ is maximized. 

Solving this problem requires access to both the query log as 

well as the database. 

The above problems are not restricted only to Boolean 

databases. Categorical databases are natural extensions of 

Boolean databases where each attribute ai can take one of 

several values from a multi-valued categorical domain Domi. 

Problem variants similar to Boolean can be defined for 

categorical databases. Furthermore, text databases consist of a 

collection of documents, where each document is modeled as 

a bag of words as is common in Information Retrieval. 

Queries are sets of keywords, with top-k retrieval via scoring 

functions such as the tf-idf-based BM25 scoring function [19]. 

SOC-Topk can be directly mapped to a corresponding problem 

for text data if we view a text database as a Boolean database 

with each distinct keyword considered as a Boolean attribute. 

This problem arises in several applications, e.g. when we wish 

to post a classified ad in an online newspaper and need to 

specify important keywords that will enable the ad to be 

visible to the maximum number of potential buyers. Finally, 

the above problems can be extended to numeric databases, 

i.e., databases with numeric attributes, where queries specify 

ranges over a subset of attributes. For example, users 

browsing a database for digital cameras may specify desired 

ranges on price, weight, resolution, etc, and the returned 

results may be ranked by price. 

In the rest of the paper we primarily focus on analyzing the 

complexity and developing solutions for our main variant 

SOC-CB-QL defined in Section II.A; due to lack of space our 

discussion of the other variants is restricted to brief outlining 

the extensions necessary of our proposed approaches. 

 

 III. COMPLEXITY RESULTS 

In this section we show that our main problem variant is NP-

complete. 

 

Theorem 1: SOC-CB-QL is NP-complete. 

 

Proof (sketch): The membership of the decision version of 

the problem in NP is obvious. To see NP-hardness, we reduce 

the Clique problem to SOC-CB-QL. Given a graph G = (V, E) 

and an integer r, the task in the Clique problem is to check if 

there is a clique of size r in G. We transform this to an 

instance of SOC-CB-QL as follows. The attribute set A will be 

V, and the query log will contain one row for each edge. If e = 

(u, v) is an edge, then the query log Q contains the conjunctive 

query {u, v}, i.e., the query retrieving all tuples with u=1 and 

v=1. The new tuple t has all the attributes in V set to 1. Let m 

= r. It is straightforward to verify that t has a compressed 

representation with m attributes that satisfies m(m-1)/2 

queries if and only if the graph G has a clique of size r.  � 

It is not hard to show that the same proof can be extended 

to show that all the other variants described in Section II.B are 

also NP-hard. We omit further details due to lack of space.  

 

 IV. ALGORITHMS FOR SOC-CB-QL 

In this section we discuss our main algorithmic results. We 

restrict our discussion to Problem SOC-CB-QL, and defer 

discussion of other problem variants to Section V. 

A. Optimal Brute Force Algorithm. 

Clearly, since SOC-CB-QL is NP-hard, it is unlikely that 

any optimal algorithm will run in polynomial time in the 

worst case.  The problem can be obviously solved by a simple 

brute force algorithm (henceforth called BruteForce-SOC-CB-

QL), which simply considers all combinations of m-attributes 

of the new tuple t and determines the combination that will 

satisfy the maximum number of queries in the query log Q. 

However, we are interested in developing optimal algorithms 

that work much better for typical problem instances. We 

discuss such algorithms next. 

B. Optimal Algorithm Based on ILP. 

We next show how SOC-CB-QL can be described in an 

integer programming (ILP) framework. Let the new tuple be 

the Boolean vector )}(),...,({ 1 tatat M= , and let 
Mxx ,...,1
be 

integer variables such that if ai(t) = 1 then xi ∈ {0, 1}, else xi = 

0. Consider the task:  

Maximize∑∏
= ∈

S

i qa

j

ij

x
1

subject to ∑
=

≤
M

j

j mx
1

 

It is easy to see that the maximum gives exactly the 

solution to SOC-CB-QL. The objective function is not linear, 

however, and thus we next show how this can be achieved. 

We introduce additional 0-1 integer variables 
Syy ,...,1
, 

i.e., one variable for each query in Q.  

Maximize∑
=

S

i

iy
1

subject to 

∑
=

≤
M

j

j mx
1

and
ji xy ≤ for each j and i such that 

ij qa ∈  

Thus, the variable
iy  corresponding to a query can be 1 

only if all the variables 
jx  corresponding to the attributes in 

the query are 1. This implies that the maximum remains the 

same. We refer to the above algorithm as ILP-SOC-CB-QL. 

The integer linear formulation is particularly attractive as 

unlike more general IP solvers, ILP solvers are usually more 

efficient in practice. 

C. Optimal Algorithm Based on Maximal Frequent Itemsets. 

The algorithm based on Integer Linear Programming 

described in the previous subsection has certain limitations; it 

is impractical for problem instances beyond a few hundred 

queries in the query log. The reason is that it is a very generic 

method for solving arbitrary integer linear programming 

formulations, and consequently fails to leverage the specific 

nature of our problem. In this subsection we develop an 

alternate approach that scales very well to large query logs. 

This algorithm, called MaxFreqItemSets-SOC-CB-QL, is 

based on an interesting adaptation of an algorithm for mining 



 

Maximal Frequent Itemsets [11]. We first define the frequent 

itemset problem: 

The Frequent Itemset Problem. Let R be a N-row M-column 

Boolean table, and let r > 0 be an integer known as the 

threshold. Given an itemset I (i.e., a subset of attributes), let 

freq(I) be defined as the number of rows in R that “support” I 

(i.e., the set of attributes corresponding to the 1’s in the row is 

a superset of I). Compute all itemsets I such that freq(I) > r. 

Computing frequent itemsets is a well studied problem and 

there are several scalable algorithms that work well when R is 

sparse and the threshold is suitably large. Examples of such 

algorithms include [2, 14]. In our case, given a new tuple t, 

recall that our task is to compute t′, a compression of t by 

retaining only m attributes, such that the number of queries 

that satisfy t′ is maximized. This suggests that we may be able 

to leverage algorithms for frequent itemsets mining over Q for 

this purpose. However, there are several important 

complications that need to be overcome.  

Complementing the Query Log. Firstly, in itemset mining, a 

row of the Boolean table is said to support an itemset if the 

row is a superset of the itemset. In our case, a query satisfies a 

tuple if it is a subset of the tuple. To overcome this conflict, 

our first task is to complement our problem instance, i.e., 

convert 1’s to 0’s and vice versa. Let ~t (~q) denote the 

complement of a tuple t (query q), i.e., where the 1’s and 0’s 

have been interchanged. Likewise let ~Q denote the 

complement of a query log Q where the each query has been 

complemented. Now, freq(~t) can be defined as the number of 

rows in ~Q that support ~t.  

The rest of the approach is now seemingly clear: compute 

all frequent itemsets of ~Q (using an appropriate threshold to 

be discussed later), and from among all frequent itemsets of 

size M – m, determine the itemset I that is a superset of ~t 

with the highest frequency. The optimal compressed tuple t’ is 

therefore the complement of I, i.e.,  ~I. 

However, the problem is that Q is itself a sparse table, as 

the queries in most search applications involve the 

specification of just a few attributes. Consequently, the 

complement ~Q is an extremely dense table, and this prevents 

most frequent itemset algorithms from being directly 

applicable to ~Q. For example, most “level-wise algorithms” 

(such as Apriori [2], which operates level by level of the 

Boolean lattice over the attributes set by first computing the 

single itemsets, then itemsets of size 2, and so on) will only 

progress past just a few initial levels before being overcome 

by an intractable explosion in the size of candidate sets. To 

see this, consider a table with M=50 attributes, and let m = 

10. To determine a compressed tuple t′ with 10 attributes, we 

need to know the itemset of ~Q of size 40 with maximum 

frequency. Due to the dense nature of ~Q, algorithms such as 

Apriori will not be able to compute frequent itemsets beyond 

a size of 5-10 at the most. Likewise, the sheer number of 

frequent itemsets will also prevent other algorithms such as 

FP-Tree [14] from being effective.  

Setting of the Threshold Parameter. Let us assume we can 

solve the itemset mining problem of extremely dense datasets. 

What should be the setting of the threshold? Clearly setting 

the threshold r=1 will solve SOC-CB-QL optimally. But this 

is likely to make any itemset mining algorithm impractically 

slow.  

There are two alternate approaches to setting the threshold. 

One approach is essentially a heuristic, where we set the 

threshold to a reasonable fixed value dictated by the 

practicalities of the application. For example, setting the 

threshold as 1% of the query log size implies that we are 

attempting to compress t such that at least 1% of the queries 

are still able to retrieve the tuple. For a fixed threshold setting 

such as this, one of two possible outcomes can occur. If the 

optimal compression t′ satisfies more than 1% of the queries, 

the algorithm will discover it. Otherwise, the algorithm will 

return empty. 

The alternate adaptive procedure of setting the threshold is, 

first initialize the threshold to a high value and compute the 

frequent itemsets of ~Q. If there are no frequent itemsets of 

size at least M – m that are supersets of ~t, repeat the process 

with a smaller threshold (say half of the previous threshold). 

This process is guaranteed to discover the optimal t′. 

Random Walk to Compute Maximal Frequent Itemsets. 

We now return back to the task of how to compute frequent 

itemsets of the dense Boolean table ~Q. In fact, we do not 

compute all frequent itemsets of the dense table ~Q, as we 

have already argued earlier that there will be prohibitively too 

many of them. Instead, our approach is to compute the 

maximal frequent itemsets of ~Q. A maximal frequent itemset 

is a frequent itemset such that none of its supersets are 

frequent. The set of maximal frequent itemsets are much 

smaller than the set of all frequent itemsets. For example, if 

we have a dense table with M attributes, then it is quite likely 

that most of the maximal frequent itemsets will exist very 

high up in the Boolean lattice over the attributes, very close to 

the highest possible level M. Fig 2 shows a conceptual 

diagram of a Boolean lattice over a dense Boolean table ~Q. 

The shaded region depicts the frequent itemsets and the 

maximal frequent itemsets are located at the highest positions 

of the border between the frequent and infrequent itemsets. 

There exist several algorithms for computing maximal 

frequent itemsets, e.g. [3, 4, 13, 11].  Let us consider the 

random walk based algorithm in [11], which starts from a 

random singleton itemset I at the bottom of the lattice, and at 

each iteration, adds a random item to I (from among all items 

A - I such that I remains frequent), until no further additions 

are possible. At this point a maximal frequent itemset I have 

been discovered. If the number of maximal frequent itemsets 

is relatively small, this is a practical algorithm: repeating this 

random walk a reasonable number of times will discover all 

maximal frequent itemsets with high probability. However, 

since this algorithm is based on traversing the lattice from 

bottom to top, the random walk will have to traverse a lot of 



 

levels before it reaches a maximal frequent itemset of a dense 

table. 

 

 

Fig 2 Maximal frequent itemsets in a Boolean Lattice 

 

Instead, we propose an alternate approach which starts 

from the top of the lattice and traverses down. Our random 

walk can be divided into two phases: (a) Down Phase: starting 

from the top of the lattice (I = {a1a2…aM}), walk down the 

lattice by removing random items from I until I becomes 

frequent, and (b) Up Phase: starting from I, walk up the lattice 

by adding random items to I (from among all items A - I such 

that I remains frequent), until the no further additions are 

possible, resulting in a maximal frequent itemset I.  

Fig 3 shows an example of the two phases of the random 

walk. What is important to note is that this process is much 

more efficient than a bottom-up traversal, as our walks are 

always confined to the top region of the lattice and we never 

have to traverse too many levels.  

Number of Iterations. Repeating this two phase random walk 

several times will discover, with high probability, all the 

maximal frequent itemsets. The actual number of such 

iterations can be monitored adaptively; our approach is to stop 

the algorithm if each discovered maximal frequent itemset has 

been discovered at least twice (or a maximum number of 

iterations have been reached). This stopping heuristic is 

motivated by the Good-Turing estimate for computing the 

number of different objects via sampling [8].  

 

 

Fig 3 Two phase random walk 

Frequent itemsets at level M – m. Finally, once all maximal 

frequent itemsets have been computed, we have to check 

which ones are supersets of ~t. Then, for all possible subsets 

(of size M – m) of each such maximal frequent itemset (see 

Fig 4), we can determine that subset I that is (a) a superset of 

~t, and (b) has the highest frequency. The optimal compressed 

tuple t′ is therefore the complement of I, i.e., ~I.  

 

 

Fig 4 Checking frequent itemsets at level M – m 

 

In summary, the pseudo-code of our algorithm 

MaxFreqItemSets-SOC-CB-QL is shown in Fig 5 (details of 

how certain parameters such as the threshold are set, are 

omitted from the pseudo-code).  

Preprocessing Opportunities. Note that the algorithm also 

allows for certain operations to be performed in a 

preprocessing step. For example, all the maximal itemsets can 

be pre-computed, and the only task that needs to be done at 

runtime would be to determine, for a new tuple t, those 

itemsets that are supersets of ~t and have size M – m. If we 

know the range of m that is usually requested for compression 

in new tuples, we can even precompute all frequent itemsets 

for those values of m, and simply lookup the itemset with the 

highest frequency at runtime. 

D. Greedy Algorithms. 

While the maximal frequent itemset based algorithm has 

much better scalability properties than the ILP based 

algorithm, it too becomes prohibitive for really large datasets 

(query logs). Consequently, we also developed three 

(suboptimal) greedy heuristics for solving SOC-CB-QL, some 

of whom worked very well in our experiments.  

The greedy algorithm ConsumeAttr-SOC-CB-QL first 

computes the number of times each individual attribute appear 

in the query log. It then selects the top-m attributes of the new 

tuple that have the highest frequencies. The greedy algorithm 

ConsumeAttrCumul-SOC-CB-QL is a cumulative version of 

the previous algorithm. It first selects the attribute with the 

highest individual frequency in the query log. It then selects 

the second attribute that co-occurs most frequently with the 

first attribute in the query log, and so on. Finally, instead of 

consuming attributes greedily, an alternative approach is to 

consume queries greedily. The greedy algorithm 

ConsumeQueries-SOC-CB-QL operates as follows. It first 

picks the query with minimum number of attributes, and 

selects all attributes specified in the query. It then picks the 

query with minimum number of new attributes (i.e., not 

already specified in the first query), and adds these new 

attributes to the selected list. This process is continued until m 

attributes have been selected. 
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 V. ALGORITHMS FOR OTHER PROBLEM VARIANTS 

In this section we briefly outline how the algorithms 

developed in Section IV can be extended to solve the problem 

variants defined in Section II.B.  

The per-attribute variant of SOC-CB-QL can be simply 

solved by trying out values of m between 1 and M (recall that 

M is the total number of attributes of the database) and 

making M calls to any of the algorithms discussed in Section 

IV, and selecting the solution that maximizes our objective.  

SOC-CB-D can be solved using any algorithm for SOC-CB-

QL by replacing the query log with the database.  

For the SOC-Topk problem, since the retrieval semantics is 

not always conjunctive Boolean, the frequent itemset 

approach is not always applicable. In general, the problem can 

be formulated as a non-linear integer program. However, ILP 

formulations and frequent itemset mining approaches are 

possible in the case of global scoring functions – i.e., 

functions of the form score(t) which are dependent on the 

tuple, but not on the query. For example, a user may be 

interested in getting the top-10 cars with AC and Turbo, 

ordered by decreasing number of available features – here the 

scoring function is the number of attributes in each tuple that 

have value 1. Another example of a global scoring function is 

ordering by a numeric attribute such as Price. We omit further 

details of these formulations from this version of the paper. 

Alternatively, the greedy algorithms of Section IV.D can be 

extended to the SOC-Topk problem.  

The case of categorical data is a straightforward 

generalization of Boolean data. Likewise, as discussed in 

Section II.B, text data can be treated as Boolean data, and in 

principle all the algorithms developed for Boolean data can be 

used for text data. However, if we view each distinct keyword 

in the text corpus (or query log) as a distinct Boolean 

attribute, the dimension of the Boolean database is enormous. 

Consequently, the greedy approaches are the only ones 

feasible in this scenario.  

Finally, problems involving numeric databases and query 

logs of range queries can be reduced to Boolean problem 

instances as follows: We first execute each query in the query 

log, and for each numeric attribute ai in Q, we replace it by a 

Boolean attribute bi as follows: if the ith range condition of 

query q contains the ith value of tuple t, then assign 1 to bi for 

query q, else assign 0 to bi for query q. I.e., each query has 

effectively been reduced to a Boolean row in a Boolean query 

log Q. The tuple t can be converted to a Boolean tuple 

consisting of all 1’s. It is not hard to see that we have created 

an instance of SOC-CB-QL, whose solution will solve the 

corresponding problem for numeric data.  

 

 VI. RELATED WORK 

A large corpus of work has tackled the problem of ranking 

the results of a query. In the documents world, the most 

popular techniques are tf-idf based [21] ranking functions, like 

BM25 [19], as well as link-structure-based techniques like 

PageRank [5] if such links are present (e.g., the Web). In the 

database world, automatic ranking techniques for the results 

of structured queries have been recently proposed [1, 6, 22]. 

In addition to ranking the results of a query, there has been 

recent work [7] on ordering the displayed attributes of query 

results. 

Both of these tuple and the attribute ranking techniques are 

inapplicable to our problem. The former inputs a database and 

a query, and outputs a list of database tuples according to a 

ranking function, and the latter inputs the list of database 

results and selects a set of attributes that “explain” these 

results. In contrast, our problem inputs a database, a query 

log, and a new tuple, and computes a set of attributes that will 

rank the tuple high for as many queries in the query log as 

possible. 

Although the problem of choosing attributes is seemingly 

related to the area of feature selection [9], our work differs 

from the extensive body of work on feature selection because 

our goal is very specific – to enable a tuple to be highly 

visible to the users of the database – and not to reduce the cost 

of building a mining model such as classification or 

clustering.  

Kleinberg at al. [15] present a set of microeconomic 

problems suitable for data mining techniques; however no 

specific solutions are presented. Their problem closer to our 

work is identifying the best parameters for a marketing 

strategy in order to maximize the attracted customers, given 

Q: Query Log 

t: new tuple 

m: num attributes of t to retain 

r: threshold ← suitable value 

MaxFreqItemsets ← {} 

MaxNumIter ← suitable value 

Algorithm TwoPhase-Random-Walk(~Q, r) 

    execute Down Phase random walk 

    execute Up Phase random walk 

    return itemset reached after Up Phase 

Algorithm ComputeMaxFreqItemsets(~Q, r) 

   while  
     (i++ ≤ MaxNumIter) and 

     (∃ J in MaxFreqItemsets s.t.  

         timesDiscovered(J)= 1) 

     I ← TwoPhase-Random-Walk(~Q, r) 

     timesDiscovered(I)++ 

     MaxFreqItemsets←MaxFreqItemsets∪ {I} 

Algorithm MaxFreqItemSets-SOC-CB-QL(~Q, r) 

    ComputeMaxFreqItemsets(~Q, r) 

    let Itemsets(t) ← {I |  I ⊆  MaxFreqItemsets,  

                                       |I| = M – m, and   I ⊇ ~t)} 

    let I be the itemset in Itemsets(t) with highest 

         frequency 

    return ~I 

 
Fig 5 Algorithm MaxFreqItemSets-SOC-CB-QL 



 

that the competitor independently also prepares a similar 

strategy. Our problem is different since we know the 

competition (other data items). Another area where boosting 

an item's rank has received attention is Web search, where the 

most popular techniques involve manipulating the link-

structure of the Web to achieve higher visibility [12]. 

Integer and linear programming optimization problems are 

extremely well studied problems in operations research, 

management science and many other areas of applicability 

(see recent book on this subject [20]). Integer programming is 

well-known to be NP-hard [10]; however carefully designed 

branch and bound algorithms can efficiently solve problems 

of moderate size. In our own experiments, we use an of-the-

shelf ILP solver available from 

http://lpsolve.sourceforge.net/5.5/download.htm. 

Computing frequent itemsets is a popular area of research 

in data mining and some of the best known algorithms include 

Apriori ([2]) and FP-Tree [14]. Several papers have also 

investigated the problem of computing maximal frequent 

itemsets [3, 4, 11, 13]. 

The recent works on dominant relationship analysis [16] 

and dominating neighborhood profitably [17] are related to 

our work. The former tries to find out the dominant 

relationship between products and potential buyers where by 

analyzing such relationships, companies can position their 

products more effectively while remaining profitable, and the 

latter introduces skyline query types taking into account not 

only min/max attributes (e.g., price, weight) but also spatial 

attributes (e.g., location attributes) and the relationships 

between these different attribute types. Their work aims at 

helping manufacturers choose the right specs for a new 

product, whereas our work aims at choosing the attributes 

subset of an existing product for advertising purposes. 

 

 VII. EXPERIMENTS 

In this section we measure (a) the time cost of the proposed 

optimal and greedy algorithms, and (b) the approximation 

quality of the greedy algorithms. Due to lack of space we have 

chosen to present the results for the most representative 

problem variant, SOC-CB-QL. Due to space constraints we 

omit experiments on text, categorical and numeric data 

problem variants as they are adaptations of the algorithms 

used for SOC-CB-QL, as described in Section V. 

 

System Configuration: We used Microsoft SQL Server 2000 

RDBMS on a P4 3.2-GHZ PC with 1 GB of RAM and 100 

GB HDD for our experiments. We implemented all algorithms 

in C#, and connected to the RDBMS through ADO.  

 

Dataset: We use an online used-cars dataset consisting of 

15,211 cars for sale in the Dallas area extracted from 

autos.yahoo.com. There are 32 Boolean attributes, such as 

AC, Power Locks, etc. We used a real workload of 185 

queries created by users at UT Arlington, as well as a 

synthetic workload of 2000 queries. In the synthetic workload, 

each query specifies 1 to 5 attributes chosen randomly 

distributed as follows: 1 attribute – 20%, 2 attributes – 30%, 3 

attributes – 30%, 4 attributes – 10%, 5 attributes – 10%. That 

is, we assume that most of the users specify two or three 

attributes. 

The top-m attributes selected by our algorithms seem 

promising. For example, even with a small real query log of 

185 queries, our optimal algorithms could select top features 

specific to the car, e.g., sporty features are selected for sports 

cars, safety features are selected for passenger sedans, and so 

on. 

We first compare the execution times of the optimal and 

greedy algorithms that solve SOC-CB-QL. These are (Section 

IV.A): ILP-SOC-CB-QL, MaxFreqItemSets-SOC-CB-QL, 

which produce optimal results, and ConsumeAttr-SOC-CB-

QL, ConsumeAttrCumul-SOC-CB-QL, and ConsumeQueries-

SOC-CB-QL, which are greedy approximations. The SOC-

CB-QL suffix is skipped in the graphs for clarity.  

Fig 6 shows how the execution times vary with m for the 

real query workload, averaged over 100 randomly selected to-

be-advertised cars from the dataset. Note that different y-axis 

scales are used for the two optimal and the three greedy 

algorithms to better display the differences among themselves. 

We note that the MaxFreqItemSets algorithm consistently 

performs better than the ILP algorithm. Another interesting 

observation is that the cost of ILP does not always increase 

with m. The reason seems to be that the ILP solver is based on 

branch and bound, and for some instances the pruning of the 

search space is more efficient than for others. 

The times in Fig 6 for MaxFreqItemSets also include the 

preprocessing stage, which can be performed once in advance 

regardless of the new tuple (user car), as explained in Section 

IV.C. If the pre-processing time is ignored, then 

MaxFreqItemSets takes only approximately 0.015 seconds to 

execute for any m value. 

Fig 7 shows the quality, that is, the numbers of satisfied 

queries for the greedy algorithms along with the optimal 

numbers, for varying m. The numbers of queries are averaged 

over 100 randomly selected to-be-advertised cars from the 

dataset. Note that no query is satisfied for m = 3 because all 

queries specify more than 3 attributes. We see that 

ConsumeAttr and ConsumeAttrCumul produce near-optimal 

results. In contrast, ConsumeQueries has low quality, since it 

is often the case that the attributes of the queries with few 

attributes (which are selected first) are not common in the 

workload. 
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Fig 6 Execution times for SOC-CB-QL for varying m, for real workload. 
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Fig 7 Satisfied queries for SOC-CB-QL for varying m, for real workload. 

 

Fig 8 and Fig 9 repeat the same experiments for the 

synthetic query workload. In Fig 8, we do not include the ILP 

algorithm, because it is very slow for more than 1000 queries 

(as also shown in Fig 10). 
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Fig 8 Execution times for SOC-CB-QL for varying m, for the synthetic 

workload of 2000 queries 
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Fig 9 Satisfied queries for SOC-CB-QL for varying m, for synthetic workload 
of 2000 queries. 

Next, we measure the execution times of the algorithms for 

varying query log size and number of attributes. The quality 

results for these experiments are not reported due to lack of 

space. Fig 10 shows how the average execution time varies 

with the query log size, where the synthetic workloads were 

created as described earlier in this section. We observe that 

ILP does not scale for large query logs; this is why there are 

no measurements for ILP for more than 1000 queries. 

ConsumeQueries performs consistently worse than other 

greedy algorithms since we make a pass on the whole 

workload at each iteration to find the next query to add. 

Combined with the fact that ConsumeQueries has inferior 

quality, we conclude that it is generally a bad choice. 
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Fig 10 Execution times for SOC-CB-QL for varying query log size, 
varying synthetic workload size, m = 5 

Fig 11 focuses on the two optimal algorithms, and 

measures the execution times of the algorithms, averaged over 

100 randomly selected to-be-advertised cars from the dataset, 

for varying number M of total attributes of the dataset and 

queries, for a synthetic query log of 200 queries. We observe 

that ILP is faster than MaxFreqItemSets for more than 32 total 

attributes. For 32 total attributes MaxFreqItemSets is faster as 

also shown in Fig 6. However, note that ILP is only feasible 

for very small query logs. For larger query logs, ILP is very 

slow or infeasible, as is also shown by the missing values in 

Fig 10. To summarize, ILP is better for small query logs and 



 

many total attributes (i.e. short and wide query log), whereas 

MaxFreqItemSets is better for larger query logs with fewer 

total attributes (i.e. long and narrow query log). However for 

query logs those are long as well as wide, the problem 

becomes truly intractable, and approximation methods such as 

our greedy algorithms are perhaps the only feasible 

approaches. 
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Fig 11 Execution times for SOC-CB-QL for varying M, synthetic workload of 

200 queries, m = 5 

 

 

 VIII. CONCLUSIONS 

In this work we introduced the problem of selecting the 

best attributes of a new tuple, such that this tuple will be 

ranked highly, given a dataset, a query log, or both, i.e., the 

tuple “stands out in the crowd”. We presented variants of the 

problem, and showed that even though the problem is NP-

complete, optimal algorithms are feasible for small inputs. 

Furthermore, we present greedy algorithms, which are 

experimentally shown to produce good approximation ratios.  

While the problems considered in this paper are novel and 

important to the area of ad-hoc data exploration and retrieval, 

we observe that our specific problem definition does have 

limitations. After all, a query log is only an approximate 

surrogate of real user preferences, and moreover in some 

applications neither the database, nor the query log may be 

available for analysis; thus we have to make assumptions 

about the nature of the competition as well as about the user 

preferences. Finally, in all these problems our focus is on 

deciding what subset of attributes to retain of a product. We 

do not attempt to suggest what values to set for specific 

attributes, which is a problem tackled in marketing research, 

e.g., [18].  

However, while we acknowledge that the scope of our 

problem definition is indeed limited in several ways, we do 

feel that our work takes an important first step towards 

developing principled approaches for attribute selection in a 

data exploration environment. Overcoming the limitations 

mentioned above is subject of future work. 
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