

Standing Out in a Crowd: Selecting Attributes for

Maximum Visibility
Muhammed Miah

#1
, Gautam Das

#2
, Vagelis Hristidis

*
, Heikki Mannila

+

#
Department of Computer Science and Engineering, University of Texas at Arlington

416 Yates Street, Arlington, TX 76019, USA
1
mzmiah@uta.edu

2
gdas@uta.edu

*
School of Computing and Information Sciences, Florida International University

11200 S.W. 8
th
 Street, Miami, FL 33199, USA

vagelis@cis.fiu.edu

+
HIIT, Helsinki University of Technology and University of Helsinki

P.O Box 68, FI 00014, University of Helsinki, Helsinki, Finland

Heikki.Mannila@tkk.fi

Abstract— In recent years, there has been significant interest in
development of ranking functions and efficient top-k retrieval

algorithms to help users in ad-hoc search and retrieval in

databases (e.g., buyers searching for products in a catalog). In

this paper we focus on a novel and complementary problem: how

to guide a seller in selecting the best attributes of a new tuple

(e.g., new product) to highlight such that it stands out in the

crowd of existing competitive products and is widely visible to

the pool of potential buyers. We develop several interesting

formulations of this problem. Although these problems are NP-

complete, we can give several exact algorithms as well as

approximation heuristics that work well in practice. Our exact

algorithms are based on Integer Programming (IP) formulations

of the problems, as well as on adaptations of maximal frequent

itemset mining algorithms, while our approximation algorithms

are based on greedy heuristics. We conduct a performance study

illustrating the benefits of our methods on real as well as

synthetic data.

 I. INTRODUCTION

In recent years, there has been significant interest in

developing effective techniques for ad-hoc search and

retrieval in unstructured as well as structured data repositories,

such as text collections and relational databases. In particular,

a large number of emerging applications require exploratory

querying on such databases; examples include users wishing

to search databases and catalogs of products such as homes,

cars, cameras, restaurants, or articles such as news and job

ads. Users browsing these databases typically execute search

queries via public front-end interfaces to these databases.

Typical queries may specify sets of keywords in case of text

databases, or the desired values of certain attributes in case of

structured relational databases. The query-answering system

answers such queries by either returning all data objects that

satisfy the query conditions (Boolean retrieval), or may rank

and return the top-k data objects using suitable scoring

functions (Top-k retrieval).

However, the focus of this paper in not on new search and

retrieval techniques that will aid users in effective exploration

of such databases. Rather, the focus is on a complementary

yet novel problem of data exploration, as described below.

Selecting Attributes for Maximum Visibility. We

distinguish between two types of users of these databases:

users who search such databases trying to locate objects of

interest, as well as users who insert new objects into these

databases in the hope that they will be easily discovered by

the first types of users. For example, in a database

representing an e-marketplace (such as Craigslist.com, or the

classified ads section of newspapers), the former type of users

are potential buyers of products, while the latter type of users

are sellers or manufacturers of products – where products

could range from automobiles to phones to rental apartments

to job advertisements. We note that almost all of the prior

research efforts on effective search and retrieval techniques –

such as new top-k algorithms, new ranking functions, and so

on – have been designed with the first kind of user in mind

(i.e., the buyer). In contrast, relatively less research has been

expended towards developing techniques to help a

seller/manufacturer insert a new product for sale in such

databases that markets it in the best possible manner – i.e.,

such that it stands out in a crowd of competitive products and

is widely visible to the pool of potential buyers.

It is this latter problem that is the main focus of this paper.

To understand it a little better, consider the following real-

world scenario: assume that we wish to insert a classified ad

in an online newspaper to advertise an apartment for rent. Our

apartment may have numerous attributes (it has two

bedrooms, electricity will be paid by the owner, it is near a

train station, etc). However, due to the ad costs involved, it is

not possible for us to describe all attributes in the ad. So we

have to select, say the ten best attributes. Which ones should

we select? Thus, one may view our effort as an attempt to

build a recommendation system for sellers, unlike the more

traditional recommendation systems for buyers. It may also be

viewed as inverting a ranking function, i.e., determining the

argument of a ranking function that will lead to high ranking

scores.

This general problem also arises in domains beyond e-

commerce applications. For example, in the design of a new

product, a manufacturer may be interested in selecting the ten

best features from a large wish-list of possible features – e.g.,

a homebuilder can find out that adding a swimming pool

really increases visibility of a new home in a certain

neighborhood. Likewise, we may be interested in developing

a catchy title, or selecting a few important indexing keywords,

for a scientific article.

To define our problem more formally, we need to develop a

few abstractions. Let D be the database of products already

being advertised in the marketplace (i.e., the “competition”).

In addition, let Q be the set of search queries that have been

executed against this database in the recent past – thus Q is

the “workload” or “query log”. The query log is our primary

model of what past potential buyers have been interested in.

Consider a new product t that needs to be inserted into this

database. While the product has numerous attributes, due to

budget constraints there is a limit, say m, on the number of

attributes that can be selected for entry into the database. Our

problem can now be defined as follows:

In this paper we initiate a thorough investigation of this

novel optimization problem. We mainly focus on an important

variant where the data is Boolean and the queries follow

conjunctive retrieval semantics. We also briefly consider

several important variants, including Boolean data with other

types of retrieval semantics (disjunctive as well as top-k

retrieval), as well as categorical, numeric and text data. Our

main contributions are summarized below:

1. We introduce the problem of selecting attributes of a
tuple for maximum visibility as a new data exploration

problem that benefits a certain class of users interested in

designing and marketing their products. We consider

several interesting variants of the problem as well as

diverse application scenarios.

2. We show that the problem is NP-complete.

3. We give exact Integer Programming (IP) and Integer
Linear Programming (ILP)-based algorithms to solve the

problem. These algorithms are effective for moderate-

sized problem instances.

4. We also develop more scalable optimal solutions based
on novel adaptations of maximal frequent itemset

algorithms. Furthermore, in contrast to ILP-based

solutions, we can leverage preprocessing opportunities in

these approaches.

5. We also present fast greedy approximation algorithms
that work well in practice.

6. We perform detailed performance evaluations on both
real as well as synthetic data to demonstrate the

effectiveness of our developed algorithms.

The rest of the paper is organized as follows. In Section II

we give a formal definition of our problem, including several

interesting problem variants. Section III analyzes the

computational complexity of the problem, and Section IV

presents various optimal algorithms as well as heuristics. In

Section V we extend these techniques to also work for other

problem variants. In Section VI we discuss related work, and

present the result of extensive experiments in Section VII.

Section VIII is a short conclusion.

 II. PROBLEM FRAMEWORK

In this section we first develop, with a detailed example, a

formal definition of the problem for the case of Boolean data

and a query log of conjunctive Boolean queries. We then

briefly define other Boolean variants, as well as extensions for

other kinds of data such as categorical, text and numeric data.

Due to space constraints, throughout the paper we primarily

focus on the first Boolean variant, and restrict our discussion

of other variants to briefly outlining the extensions necessary.

A. A Boolean Problem Variant.

Some useful definitions and notations are given here.

Database: Let D = {t1…tN} be a collection of Boolean tuples

over the attribute set A = {a1…aM}, where each tuple t is a bit-

vector where a 0 implies the absence of a feature and a 1

implies the presence of a feature. A tuple t may also be

considered as a subset of A, where an attribute belongs to t if

its value in the bit-vector is 1.

Tuple Domination: Let t1 and t2 be two tuples such that for all

attributes for which tuple t1 has value 1, tuple t2 also has value

1. In this case we say that t2 dominates t1.

Tuple Compression: Let t be a tuple and let t′ be a subset of t

with m attributes. Thus t′ represents a compressed

representation of t. Equivalently, in the bit-vector

representation of t, we retain only m 1’s and convert the rest

to 0’s.

Query: We view each query as a subset of attributes. The

retrieval semantics is Conjunctive Boolean Retrieval, e.g., a

query such as {a1, a3} is equivalent to “return all tuples such

that a1 = 1 and a3 = 1”. Alternatively, if we view q as a special

PROBLEM: Given a database D, a query log Q, a

new tuple t, and an integer m, determine the best

(i.e., top-m) attributes of t to retain such that if the

shortened version of t is inserted into the database,

the number of queries of Q that retrieve t is

maximized.

type of “tuple”, then t dominates q. The set of returned tuples

is denoted as R(q).

Query Log: Let Q = {q1…qS} be collection of queries where

each query q defines a subset of attributes.

We are now ready to formally define the main problem

variant considered in the paper.

Intuitively, for buyers interested in browsing products of

interest, we wish to ensure that the compressed version of the

new product is visible to as many buyers as possible. The

following running example will be used to illustrate Problem

SOC-CB-QL (as well as other variants later in the paper).

EXAMPLE 1: Consider an inventory database of an auto

dealer, which contains a single database table D with N=7

rows and M=6 attributes where each tuple represents a car

for sale. The table has numerous attributes that describe

details of the car: Boolean attributes such as AC, Four Door,

etc; categorical attributes such as Make, Color, etc; numeric

attributes such as Price, Age, etc; and text attributes such as

Reviews, Accident History, and so on. Fig 1 illustrates such a

database (where only the Boolean attributes are shown) of

seven cars already advertised for sale. The figure also

illustrates a query log of five queries, and a new car t that

needs to be advertised, i.e., inserted into this database. �

Suppose we are required to retain m = 3 attributes of the

new tuple. It is not hard to see that if we retain the attributes

AC, Four Door, and Power Doors (i.e., t′ = [1, 1, 0, 1, 0, 0]),

we can satisfy a maximum of three queries (q1, q2, and q3). No

other selection of three attributes of the new tuple will satisfy

more queries. Notice that in SOC-CB-QL, it is the query log Q

that needs to be analyzed in solving the problem; the actual

database D (i.e., the “competing products”) is irrelevant. That

is, there is no need of access to the database.

B. Other Problem Variants.

Here we define several other variants of the problem that

are useful in different applications. Problem SOC-CB-QL has

a per-attribute version where m is not specified; in this case

we may wish to determine t′ such that the number of satisfied

queries divided by |t′| is maximized. Intuitively, if the number

of attributes retained is a measure of the cost of

advertising/manufacturing the new product, this problem

maximizes the number of potential buyers per unit cost.

A complementary variant to SOC-CB-QL is SOC-CB-D (or

“Stand Out in a Crowd-Conjunctive Boolean–Data”): given a

database D, a new tuple t, and an integer m, we wish to

compute a compressed tuple t′ by retaining m attributes such

that the number of tuples in D dominated by t′ is maximized.

This is useful in scenarios where we have access to the

database, but do not have access to the query log. To illustrate

this variant, consider the example in Fig 1 again. Suppose we

are required to retain m = 4 attributes of the new tuple t. It is

not hard to see that if we retain the four attributes AC, Four

Door, Power Doors and Power Brakes (i.e., t′ = [1, 1, 0, 1, 0,

1]), we dominate four tuples (t1, t4, t5 and t6). No other

selection of four attributes of the new tuple will dominate

more tuples. It is also easy to see that any algorithm that

solves SOC-CB-QL can be also used to solve SOC-CB-D, by

replacing the query log with the database as input. SOC-CB-D

also has a natural per-attribute version.

A more general problem variant arises when the retrieval

semantics is not simply conjunctive Boolean; e.g., the

retrieval semantics could be disjunctive Boolean or even Top-

k retrieval. To understand the latter, let score(q, t) be a

scoring function that returns a real-valued score for any tuple

t. Let k be a small integer associated with a query q. Then R(q)

is defined as the set of top-k tuples in the database with the

highest scores. The problem variant SOC-Topk is defined as:

given a database D, a query log Q with top-k retrieval

semantics via a scoring function, a new tuple t, and an integer

m, compute a compressed tuple t′ by retaining m attributes

Car

ID

AC Four

Door

Turbo Power

Doors

Auto

Trans

Power

Brakes

t1 0 1 0 1 0 0

t2 0 1 1 0 0 0

t3 1 0 0 1 1 1

t4 1 1 0 1 0 1

t5 1 1 0 0 0 0

t6 0 1 0 1 0 0

t7 0 0 1 1 0 0

Database D

Query

ID

AC Four

Door

Turbo Power

Doors

Auto

Trans

Power

Brakes

q1 1 1 0 0 0 0

q2 1 0 0 1 0 0

q3 0 1 0 1 0 0

q4 0 0 0 1 0 1

q5 0 0 1 0 1 0

Query Log Q

New

Car

AC Four

Door

Turbo Power

Doors

Auto

Trans

Power

Brakes

t 1 1 0 1 1 1

New tuple t to be inserted

Fig 1 Illustrating EXAMPLE 1

PROBLEM SOC-CB-QL (or “Stand Out in a

Crowd-Conjunctive Boolean-Query Log”): Given a

query log Q with Conjunctive Boolean Retrieval

semantics, a new tuple t, and an integer m, compute a

compressed tuple t′ by retaining m attributes such that

the number of queries that retrieve t′ is maximized.

such that the number of queries that retrieve t′ is maximized.

Solving this problem requires access to both the query log as

well as the database.

The above problems are not restricted only to Boolean

databases. Categorical databases are natural extensions of

Boolean databases where each attribute ai can take one of

several values from a multi-valued categorical domain Domi.

Problem variants similar to Boolean can be defined for

categorical databases. Furthermore, text databases consist of a

collection of documents, where each document is modeled as

a bag of words as is common in Information Retrieval.

Queries are sets of keywords, with top-k retrieval via scoring

functions such as the tf-idf-based BM25 scoring function [19].

SOC-Topk can be directly mapped to a corresponding problem

for text data if we view a text database as a Boolean database

with each distinct keyword considered as a Boolean attribute.

This problem arises in several applications, e.g. when we wish

to post a classified ad in an online newspaper and need to

specify important keywords that will enable the ad to be

visible to the maximum number of potential buyers. Finally,

the above problems can be extended to numeric databases,

i.e., databases with numeric attributes, where queries specify

ranges over a subset of attributes. For example, users

browsing a database for digital cameras may specify desired

ranges on price, weight, resolution, etc, and the returned

results may be ranked by price.

In the rest of the paper we primarily focus on analyzing the

complexity and developing solutions for our main variant

SOC-CB-QL defined in Section II.A; due to lack of space our

discussion of the other variants is restricted to brief outlining

the extensions necessary of our proposed approaches.

 III. COMPLEXITY RESULTS

In this section we show that our main problem variant is NP-

complete.

Theorem 1: SOC-CB-QL is NP-complete.

Proof (sketch): The membership of the decision version of

the problem in NP is obvious. To see NP-hardness, we reduce

the Clique problem to SOC-CB-QL. Given a graph G = (V, E)

and an integer r, the task in the Clique problem is to check if

there is a clique of size r in G. We transform this to an

instance of SOC-CB-QL as follows. The attribute set A will be

V, and the query log will contain one row for each edge. If e =

(u, v) is an edge, then the query log Q contains the conjunctive

query {u, v}, i.e., the query retrieving all tuples with u=1 and

v=1. The new tuple t has all the attributes in V set to 1. Let m

= r. It is straightforward to verify that t has a compressed

representation with m attributes that satisfies m(m-1)/2

queries if and only if the graph G has a clique of size r. �

It is not hard to show that the same proof can be extended

to show that all the other variants described in Section II.B are

also NP-hard. We omit further details due to lack of space.

 IV. ALGORITHMS FOR SOC-CB-QL

In this section we discuss our main algorithmic results. We

restrict our discussion to Problem SOC-CB-QL, and defer

discussion of other problem variants to Section V.

A. Optimal Brute Force Algorithm.

Clearly, since SOC-CB-QL is NP-hard, it is unlikely that

any optimal algorithm will run in polynomial time in the

worst case. The problem can be obviously solved by a simple

brute force algorithm (henceforth called BruteForce-SOC-CB-

QL), which simply considers all combinations of m-attributes

of the new tuple t and determines the combination that will

satisfy the maximum number of queries in the query log Q.

However, we are interested in developing optimal algorithms

that work much better for typical problem instances. We

discuss such algorithms next.

B. Optimal Algorithm Based on ILP.

We next show how SOC-CB-QL can be described in an

integer programming (ILP) framework. Let the new tuple be

the Boolean vector)}(),...,({ 1 tatat M= , and let
Mxx ,...,1
be

integer variables such that if ai(t) = 1 then xi ∈ {0, 1}, else xi =

0. Consider the task:

Maximize∑∏
= ∈

S

i qa

j

ij

x
1

subject to ∑
=

≤
M

j

j mx
1

It is easy to see that the maximum gives exactly the

solution to SOC-CB-QL. The objective function is not linear,

however, and thus we next show how this can be achieved.

We introduce additional 0-1 integer variables
Syy ,...,1
,

i.e., one variable for each query in Q.

Maximize∑
=

S

i

iy
1

subject to

∑
=

≤
M

j

j mx
1

and
ji xy ≤ for each j and i such that

ij qa ∈

Thus, the variable
iy corresponding to a query can be 1

only if all the variables
jx corresponding to the attributes in

the query are 1. This implies that the maximum remains the

same. We refer to the above algorithm as ILP-SOC-CB-QL.

The integer linear formulation is particularly attractive as

unlike more general IP solvers, ILP solvers are usually more

efficient in practice.

C. Optimal Algorithm Based on Maximal Frequent Itemsets.

The algorithm based on Integer Linear Programming

described in the previous subsection has certain limitations; it

is impractical for problem instances beyond a few hundred

queries in the query log. The reason is that it is a very generic

method for solving arbitrary integer linear programming

formulations, and consequently fails to leverage the specific

nature of our problem. In this subsection we develop an

alternate approach that scales very well to large query logs.

This algorithm, called MaxFreqItemSets-SOC-CB-QL, is

based on an interesting adaptation of an algorithm for mining

Maximal Frequent Itemsets [11]. We first define the frequent

itemset problem:

The Frequent Itemset Problem. Let R be a N-row M-column

Boolean table, and let r > 0 be an integer known as the

threshold. Given an itemset I (i.e., a subset of attributes), let

freq(I) be defined as the number of rows in R that “support” I

(i.e., the set of attributes corresponding to the 1’s in the row is

a superset of I). Compute all itemsets I such that freq(I) > r.

Computing frequent itemsets is a well studied problem and

there are several scalable algorithms that work well when R is

sparse and the threshold is suitably large. Examples of such

algorithms include [2, 14]. In our case, given a new tuple t,

recall that our task is to compute t′, a compression of t by

retaining only m attributes, such that the number of queries

that satisfy t′ is maximized. This suggests that we may be able

to leverage algorithms for frequent itemsets mining over Q for

this purpose. However, there are several important

complications that need to be overcome.

Complementing the Query Log. Firstly, in itemset mining, a

row of the Boolean table is said to support an itemset if the

row is a superset of the itemset. In our case, a query satisfies a

tuple if it is a subset of the tuple. To overcome this conflict,

our first task is to complement our problem instance, i.e.,

convert 1’s to 0’s and vice versa. Let ~t (~q) denote the

complement of a tuple t (query q), i.e., where the 1’s and 0’s

have been interchanged. Likewise let ~Q denote the

complement of a query log Q where the each query has been

complemented. Now, freq(~t) can be defined as the number of

rows in ~Q that support ~t.

The rest of the approach is now seemingly clear: compute

all frequent itemsets of ~Q (using an appropriate threshold to

be discussed later), and from among all frequent itemsets of

size M – m, determine the itemset I that is a superset of ~t

with the highest frequency. The optimal compressed tuple t’ is

therefore the complement of I, i.e., ~I.

However, the problem is that Q is itself a sparse table, as

the queries in most search applications involve the

specification of just a few attributes. Consequently, the

complement ~Q is an extremely dense table, and this prevents

most frequent itemset algorithms from being directly

applicable to ~Q. For example, most “level-wise algorithms”

(such as Apriori [2], which operates level by level of the

Boolean lattice over the attributes set by first computing the

single itemsets, then itemsets of size 2, and so on) will only

progress past just a few initial levels before being overcome

by an intractable explosion in the size of candidate sets. To

see this, consider a table with M=50 attributes, and let m =

10. To determine a compressed tuple t′ with 10 attributes, we

need to know the itemset of ~Q of size 40 with maximum

frequency. Due to the dense nature of ~Q, algorithms such as

Apriori will not be able to compute frequent itemsets beyond

a size of 5-10 at the most. Likewise, the sheer number of

frequent itemsets will also prevent other algorithms such as

FP-Tree [14] from being effective.

Setting of the Threshold Parameter. Let us assume we can

solve the itemset mining problem of extremely dense datasets.

What should be the setting of the threshold? Clearly setting

the threshold r=1 will solve SOC-CB-QL optimally. But this

is likely to make any itemset mining algorithm impractically

slow.

There are two alternate approaches to setting the threshold.

One approach is essentially a heuristic, where we set the

threshold to a reasonable fixed value dictated by the

practicalities of the application. For example, setting the

threshold as 1% of the query log size implies that we are

attempting to compress t such that at least 1% of the queries

are still able to retrieve the tuple. For a fixed threshold setting

such as this, one of two possible outcomes can occur. If the

optimal compression t′ satisfies more than 1% of the queries,

the algorithm will discover it. Otherwise, the algorithm will

return empty.

The alternate adaptive procedure of setting the threshold is,

first initialize the threshold to a high value and compute the

frequent itemsets of ~Q. If there are no frequent itemsets of

size at least M – m that are supersets of ~t, repeat the process

with a smaller threshold (say half of the previous threshold).

This process is guaranteed to discover the optimal t′.

Random Walk to Compute Maximal Frequent Itemsets.

We now return back to the task of how to compute frequent

itemsets of the dense Boolean table ~Q. In fact, we do not

compute all frequent itemsets of the dense table ~Q, as we

have already argued earlier that there will be prohibitively too

many of them. Instead, our approach is to compute the

maximal frequent itemsets of ~Q. A maximal frequent itemset

is a frequent itemset such that none of its supersets are

frequent. The set of maximal frequent itemsets are much

smaller than the set of all frequent itemsets. For example, if

we have a dense table with M attributes, then it is quite likely

that most of the maximal frequent itemsets will exist very

high up in the Boolean lattice over the attributes, very close to

the highest possible level M. Fig 2 shows a conceptual

diagram of a Boolean lattice over a dense Boolean table ~Q.

The shaded region depicts the frequent itemsets and the

maximal frequent itemsets are located at the highest positions

of the border between the frequent and infrequent itemsets.

There exist several algorithms for computing maximal

frequent itemsets, e.g. [3, 4, 13, 11]. Let us consider the

random walk based algorithm in [11], which starts from a

random singleton itemset I at the bottom of the lattice, and at

each iteration, adds a random item to I (from among all items

A - I such that I remains frequent), until no further additions

are possible. At this point a maximal frequent itemset I have

been discovered. If the number of maximal frequent itemsets

is relatively small, this is a practical algorithm: repeating this

random walk a reasonable number of times will discover all

maximal frequent itemsets with high probability. However,

since this algorithm is based on traversing the lattice from

bottom to top, the random walk will have to traverse a lot of

levels before it reaches a maximal frequent itemset of a dense

table.

Fig 2 Maximal frequent itemsets in a Boolean Lattice

Instead, we propose an alternate approach which starts

from the top of the lattice and traverses down. Our random

walk can be divided into two phases: (a) Down Phase: starting

from the top of the lattice (I = {a1a2…aM}), walk down the

lattice by removing random items from I until I becomes

frequent, and (b) Up Phase: starting from I, walk up the lattice

by adding random items to I (from among all items A - I such

that I remains frequent), until the no further additions are

possible, resulting in a maximal frequent itemset I.

Fig 3 shows an example of the two phases of the random

walk. What is important to note is that this process is much

more efficient than a bottom-up traversal, as our walks are

always confined to the top region of the lattice and we never

have to traverse too many levels.

Number of Iterations. Repeating this two phase random walk

several times will discover, with high probability, all the

maximal frequent itemsets. The actual number of such

iterations can be monitored adaptively; our approach is to stop

the algorithm if each discovered maximal frequent itemset has

been discovered at least twice (or a maximum number of

iterations have been reached). This stopping heuristic is

motivated by the Good-Turing estimate for computing the

number of different objects via sampling [8].

Fig 3 Two phase random walk

Frequent itemsets at level M – m. Finally, once all maximal

frequent itemsets have been computed, we have to check

which ones are supersets of ~t. Then, for all possible subsets

(of size M – m) of each such maximal frequent itemset (see

Fig 4), we can determine that subset I that is (a) a superset of

~t, and (b) has the highest frequency. The optimal compressed

tuple t′ is therefore the complement of I, i.e., ~I.

Fig 4 Checking frequent itemsets at level M – m

In summary, the pseudo-code of our algorithm

MaxFreqItemSets-SOC-CB-QL is shown in Fig 5 (details of

how certain parameters such as the threshold are set, are

omitted from the pseudo-code).

Preprocessing Opportunities. Note that the algorithm also

allows for certain operations to be performed in a

preprocessing step. For example, all the maximal itemsets can

be pre-computed, and the only task that needs to be done at

runtime would be to determine, for a new tuple t, those

itemsets that are supersets of ~t and have size M – m. If we

know the range of m that is usually requested for compression

in new tuples, we can even precompute all frequent itemsets

for those values of m, and simply lookup the itemset with the

highest frequency at runtime.

D. Greedy Algorithms.

While the maximal frequent itemset based algorithm has

much better scalability properties than the ILP based

algorithm, it too becomes prohibitive for really large datasets

(query logs). Consequently, we also developed three

(suboptimal) greedy heuristics for solving SOC-CB-QL, some

of whom worked very well in our experiments.

The greedy algorithm ConsumeAttr-SOC-CB-QL first

computes the number of times each individual attribute appear

in the query log. It then selects the top-m attributes of the new

tuple that have the highest frequencies. The greedy algorithm

ConsumeAttrCumul-SOC-CB-QL is a cumulative version of

the previous algorithm. It first selects the attribute with the

highest individual frequency in the query log. It then selects

the second attribute that co-occurs most frequently with the

first attribute in the query log, and so on. Finally, instead of

consuming attributes greedily, an alternative approach is to

consume queries greedily. The greedy algorithm

ConsumeQueries-SOC-CB-QL operates as follows. It first

picks the query with minimum number of attributes, and

selects all attributes specified in the query. It then picks the

query with minimum number of new attributes (i.e., not

already specified in the first query), and adds these new

attributes to the selected list. This process is continued until m

attributes have been selected.

{a1a2…aM}

Frequent itemsets at level M - m

{a1a2…aM}

Down Phase Up Phase

a1 a2 a3 aM

{a1a2} {a1a3} {a1a4}

……

……. {aM-1 aM}

{a1a2…aM}

Maximal

frequent itemsets

Infrequent

itemsets
Frequent

itemsets

 V. ALGORITHMS FOR OTHER PROBLEM VARIANTS

In this section we briefly outline how the algorithms

developed in Section IV can be extended to solve the problem

variants defined in Section II.B.

The per-attribute variant of SOC-CB-QL can be simply

solved by trying out values of m between 1 and M (recall that

M is the total number of attributes of the database) and

making M calls to any of the algorithms discussed in Section

IV, and selecting the solution that maximizes our objective.

SOC-CB-D can be solved using any algorithm for SOC-CB-

QL by replacing the query log with the database.

For the SOC-Topk problem, since the retrieval semantics is

not always conjunctive Boolean, the frequent itemset

approach is not always applicable. In general, the problem can

be formulated as a non-linear integer program. However, ILP

formulations and frequent itemset mining approaches are

possible in the case of global scoring functions – i.e.,

functions of the form score(t) which are dependent on the

tuple, but not on the query. For example, a user may be

interested in getting the top-10 cars with AC and Turbo,

ordered by decreasing number of available features – here the

scoring function is the number of attributes in each tuple that

have value 1. Another example of a global scoring function is

ordering by a numeric attribute such as Price. We omit further

details of these formulations from this version of the paper.

Alternatively, the greedy algorithms of Section IV.D can be

extended to the SOC-Topk problem.

The case of categorical data is a straightforward

generalization of Boolean data. Likewise, as discussed in

Section II.B, text data can be treated as Boolean data, and in

principle all the algorithms developed for Boolean data can be

used for text data. However, if we view each distinct keyword

in the text corpus (or query log) as a distinct Boolean

attribute, the dimension of the Boolean database is enormous.

Consequently, the greedy approaches are the only ones

feasible in this scenario.

Finally, problems involving numeric databases and query

logs of range queries can be reduced to Boolean problem

instances as follows: We first execute each query in the query

log, and for each numeric attribute ai in Q, we replace it by a

Boolean attribute bi as follows: if the ith range condition of

query q contains the ith value of tuple t, then assign 1 to bi for

query q, else assign 0 to bi for query q. I.e., each query has

effectively been reduced to a Boolean row in a Boolean query

log Q. The tuple t can be converted to a Boolean tuple

consisting of all 1’s. It is not hard to see that we have created

an instance of SOC-CB-QL, whose solution will solve the

corresponding problem for numeric data.

 VI. RELATED WORK

A large corpus of work has tackled the problem of ranking

the results of a query. In the documents world, the most

popular techniques are tf-idf based [21] ranking functions, like

BM25 [19], as well as link-structure-based techniques like

PageRank [5] if such links are present (e.g., the Web). In the

database world, automatic ranking techniques for the results

of structured queries have been recently proposed [1, 6, 22].

In addition to ranking the results of a query, there has been

recent work [7] on ordering the displayed attributes of query

results.

Both of these tuple and the attribute ranking techniques are

inapplicable to our problem. The former inputs a database and

a query, and outputs a list of database tuples according to a

ranking function, and the latter inputs the list of database

results and selects a set of attributes that “explain” these

results. In contrast, our problem inputs a database, a query

log, and a new tuple, and computes a set of attributes that will

rank the tuple high for as many queries in the query log as

possible.

Although the problem of choosing attributes is seemingly

related to the area of feature selection [9], our work differs

from the extensive body of work on feature selection because

our goal is very specific – to enable a tuple to be highly

visible to the users of the database – and not to reduce the cost

of building a mining model such as classification or

clustering.

Kleinberg at al. [15] present a set of microeconomic

problems suitable for data mining techniques; however no

specific solutions are presented. Their problem closer to our

work is identifying the best parameters for a marketing

strategy in order to maximize the attracted customers, given

Q: Query Log

t: new tuple

m: num attributes of t to retain

r: threshold ← suitable value

MaxFreqItemsets ← {}

MaxNumIter ← suitable value

Algorithm TwoPhase-Random-Walk(~Q, r)

 execute Down Phase random walk

 execute Up Phase random walk

 return itemset reached after Up Phase

Algorithm ComputeMaxFreqItemsets(~Q, r)

 while
 (i++ ≤ MaxNumIter) and

 (∃ J in MaxFreqItemsets s.t.

 timesDiscovered(J)= 1)

 I ← TwoPhase-Random-Walk(~Q, r)

 timesDiscovered(I)++

 MaxFreqItemsets←MaxFreqItemsets∪ {I}

Algorithm MaxFreqItemSets-SOC-CB-QL(~Q, r)

 ComputeMaxFreqItemsets(~Q, r)

 let Itemsets(t) ← {I | I ⊆ MaxFreqItemsets,

 |I| = M – m, and I ⊇ ~t)}

 let I be the itemset in Itemsets(t) with highest

 frequency

 return ~I

Fig 5 Algorithm MaxFreqItemSets-SOC-CB-QL

that the competitor independently also prepares a similar

strategy. Our problem is different since we know the

competition (other data items). Another area where boosting

an item's rank has received attention is Web search, where the

most popular techniques involve manipulating the link-

structure of the Web to achieve higher visibility [12].

Integer and linear programming optimization problems are

extremely well studied problems in operations research,

management science and many other areas of applicability

(see recent book on this subject [20]). Integer programming is

well-known to be NP-hard [10]; however carefully designed

branch and bound algorithms can efficiently solve problems

of moderate size. In our own experiments, we use an of-the-

shelf ILP solver available from

http://lpsolve.sourceforge.net/5.5/download.htm.

Computing frequent itemsets is a popular area of research

in data mining and some of the best known algorithms include

Apriori ([2]) and FP-Tree [14]. Several papers have also

investigated the problem of computing maximal frequent

itemsets [3, 4, 11, 13].

The recent works on dominant relationship analysis [16]

and dominating neighborhood profitably [17] are related to

our work. The former tries to find out the dominant

relationship between products and potential buyers where by

analyzing such relationships, companies can position their

products more effectively while remaining profitable, and the

latter introduces skyline query types taking into account not

only min/max attributes (e.g., price, weight) but also spatial

attributes (e.g., location attributes) and the relationships

between these different attribute types. Their work aims at

helping manufacturers choose the right specs for a new

product, whereas our work aims at choosing the attributes

subset of an existing product for advertising purposes.

 VII. EXPERIMENTS

In this section we measure (a) the time cost of the proposed

optimal and greedy algorithms, and (b) the approximation

quality of the greedy algorithms. Due to lack of space we have

chosen to present the results for the most representative

problem variant, SOC-CB-QL. Due to space constraints we

omit experiments on text, categorical and numeric data

problem variants as they are adaptations of the algorithms

used for SOC-CB-QL, as described in Section V.

System Configuration: We used Microsoft SQL Server 2000

RDBMS on a P4 3.2-GHZ PC with 1 GB of RAM and 100

GB HDD for our experiments. We implemented all algorithms

in C#, and connected to the RDBMS through ADO.

Dataset: We use an online used-cars dataset consisting of

15,211 cars for sale in the Dallas area extracted from

autos.yahoo.com. There are 32 Boolean attributes, such as

AC, Power Locks, etc. We used a real workload of 185

queries created by users at UT Arlington, as well as a

synthetic workload of 2000 queries. In the synthetic workload,

each query specifies 1 to 5 attributes chosen randomly

distributed as follows: 1 attribute – 20%, 2 attributes – 30%, 3

attributes – 30%, 4 attributes – 10%, 5 attributes – 10%. That

is, we assume that most of the users specify two or three

attributes.

The top-m attributes selected by our algorithms seem

promising. For example, even with a small real query log of

185 queries, our optimal algorithms could select top features

specific to the car, e.g., sporty features are selected for sports

cars, safety features are selected for passenger sedans, and so

on.

We first compare the execution times of the optimal and

greedy algorithms that solve SOC-CB-QL. These are (Section

IV.A): ILP-SOC-CB-QL, MaxFreqItemSets-SOC-CB-QL,

which produce optimal results, and ConsumeAttr-SOC-CB-

QL, ConsumeAttrCumul-SOC-CB-QL, and ConsumeQueries-

SOC-CB-QL, which are greedy approximations. The SOC-

CB-QL suffix is skipped in the graphs for clarity.

Fig 6 shows how the execution times vary with m for the

real query workload, averaged over 100 randomly selected to-

be-advertised cars from the dataset. Note that different y-axis

scales are used for the two optimal and the three greedy

algorithms to better display the differences among themselves.

We note that the MaxFreqItemSets algorithm consistently

performs better than the ILP algorithm. Another interesting

observation is that the cost of ILP does not always increase

with m. The reason seems to be that the ILP solver is based on

branch and bound, and for some instances the pruning of the

search space is more efficient than for others.

The times in Fig 6 for MaxFreqItemSets also include the

preprocessing stage, which can be performed once in advance

regardless of the new tuple (user car), as explained in Section

IV.C. If the pre-processing time is ignored, then

MaxFreqItemSets takes only approximately 0.015 seconds to

execute for any m value.

Fig 7 shows the quality, that is, the numbers of satisfied

queries for the greedy algorithms along with the optimal

numbers, for varying m. The numbers of queries are averaged

over 100 randomly selected to-be-advertised cars from the

dataset. Note that no query is satisfied for m = 3 because all

queries specify more than 3 attributes. We see that

ConsumeAttr and ConsumeAttrCumul produce near-optimal

results. In contrast, ConsumeQueries has low quality, since it

is often the case that the attributes of the queries with few

attributes (which are selected first) are not common in the

workload.

Performance for real query log with varying m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

3 5 7 10

Top-m

T
im
e
 i
n
 S
e
c
 (
b
a
r)

0

10

20

30

40

50

60

70

T
im
e
 i
n
 S
e
c
 (
li
n
e
)

ConsumeAttr ConsumeAttrCumul

ConsumeQueries MaxFreqItemSets

ILP

Fig 6 Execution times for SOC-CB-QL for varying m, for real workload.

Quality for real query log with varying m

0

10

20

30

40

3 5 7 10
Top-m

#
 o
f
Q
u
e
ri
e
s

ConsumeAttr ConsumeAttrCumul ConsumeQueries Optimal

Fig 7 Satisfied queries for SOC-CB-QL for varying m, for real workload.

Fig 8 and Fig 9 repeat the same experiments for the

synthetic query workload. In Fig 8, we do not include the ILP

algorithm, because it is very slow for more than 1000 queries

(as also shown in Fig 10).

Performance for varying top-m

0

0.2

0.4

0.6

0.8

1

1.2

3 5 7 10Top-m

T
im
e
 i
n
 S
e
c
 (
b
a
r)

0

20

40

60

80

100

T
im
e
 i
n
 S
e
c
 (
li
n
e
)

ConsumeAttr ConsumeAttrCumul

ConsumeQueries MaxFreqItemSets

Fig 8 Execution times for SOC-CB-QL for varying m, for the synthetic

workload of 2000 queries

Quality for varying top-m

0

100

200

300

400

500

600

3 5 7 10
Top-m

#
 o
f
Q
u
e
ri
e
s

ConsumeAttr ConsumeAttrCumul

ConsumeQueries MaxFreqItemSets

Fig 9 Satisfied queries for SOC-CB-QL for varying m, for synthetic workload
of 2000 queries.

Next, we measure the execution times of the algorithms for

varying query log size and number of attributes. The quality

results for these experiments are not reported due to lack of

space. Fig 10 shows how the average execution time varies

with the query log size, where the synthetic workloads were

created as described earlier in this section. We observe that

ILP does not scale for large query logs; this is why there are

no measurements for ILP for more than 1000 queries.

ConsumeQueries performs consistently worse than other

greedy algorithms since we make a pass on the whole

workload at each iteration to find the next query to add.

Combined with the fact that ConsumeQueries has inferior

quality, we conclude that it is generally a bad choice.

Performance for varying query log size

0

100

200

300

400

500

600

700

200 400 600 800 1000 2K 100K 1M

Query log size (# of queries)

T
im
e
 i
n
 S
e
c
 (
b
a
r)

0

5000

10000

15000

20000

T
im
e
 i
n
 S
e
c
 (
li
n
e
)

ConsumeAttr ConsumeAttrCumul

ConsumeQueries ILP

MaxFreqItemSets

Fig 10 Execution times for SOC-CB-QL for varying query log size,
varying synthetic workload size, m = 5

Fig 11 focuses on the two optimal algorithms, and

measures the execution times of the algorithms, averaged over

100 randomly selected to-be-advertised cars from the dataset,

for varying number M of total attributes of the dataset and

queries, for a synthetic query log of 200 queries. We observe

that ILP is faster than MaxFreqItemSets for more than 32 total

attributes. For 32 total attributes MaxFreqItemSets is faster as

also shown in Fig 6. However, note that ILP is only feasible

for very small query logs. For larger query logs, ILP is very

slow or infeasible, as is also shown by the missing values in

Fig 10. To summarize, ILP is better for small query logs and

many total attributes (i.e. short and wide query log), whereas

MaxFreqItemSets is better for larger query logs with fewer

total attributes (i.e. long and narrow query log). However for

query logs those are long as well as wide, the problem

becomes truly intractable, and approximation methods such as

our greedy algorithms are perhaps the only feasible

approaches.

Performace for varying # of attributes

0

4

8

12

16

20

24

32 64 96 124
of Boolean attributes

T
im
e
 i
n
 S
e
c
 (
b
a
r)

0

500

1000

1500

2000

2500

T
im
e
 i
n
 S
e
c
 (
li
n
e
)

ILP MaxFreqItemSets

Fig 11 Execution times for SOC-CB-QL for varying M, synthetic workload of

200 queries, m = 5

 VIII. CONCLUSIONS

In this work we introduced the problem of selecting the

best attributes of a new tuple, such that this tuple will be

ranked highly, given a dataset, a query log, or both, i.e., the

tuple “stands out in the crowd”. We presented variants of the

problem, and showed that even though the problem is NP-

complete, optimal algorithms are feasible for small inputs.

Furthermore, we present greedy algorithms, which are

experimentally shown to produce good approximation ratios.

While the problems considered in this paper are novel and

important to the area of ad-hoc data exploration and retrieval,

we observe that our specific problem definition does have

limitations. After all, a query log is only an approximate

surrogate of real user preferences, and moreover in some

applications neither the database, nor the query log may be

available for analysis; thus we have to make assumptions

about the nature of the competition as well as about the user

preferences. Finally, in all these problems our focus is on

deciding what subset of attributes to retain of a product. We

do not attempt to suggest what values to set for specific

attributes, which is a problem tackled in marketing research,

e.g., [18].

However, while we acknowledge that the scope of our

problem definition is indeed limited in several ways, we do

feel that our work takes an important first step towards

developing principled approaches for attribute selection in a

data exploration environment. Overcoming the limitations

mentioned above is subject of future work.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers, Stefan

Schoenauer, and Valentin Polishchuk for useful comments.

The work of Vagelis Hristidis was partially supported by

National Science Foundation Grant IIS-0534530. The work of

Gautam Das and Muhammed Miah was partially supported by

unrestricted gifts from Microsoft Research and start-up funds

from the University of Texas, Arlington. The work of Heikki

Mannila was partially supported by the Academy of Finland.

REFERENCES

[1] Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, Aristides Gionis:

Automated Ranking of Database Query Results. CIDR 2003.

[2] R. Agrawal, and R. Srikant. Fast Algorithms for Mining Association

Rules in Large Databases. VLDB, 1994.

[3] Roberto J. Bayardo Jr.: Efficiently Mining Long Patterns from

Databases. SIGMOD Conference 1998: 85-93. 1

[4] Douglas Burdick, Manuel Calimlim, Johannes Gehrke: MAFIA: A

Maximal Frequent Itemset Algorithm for Transactional Databases.
ICDE 2001

[5] S. Brin and L. Page: The Anatomy of a Large-Scale Hypertextual Web

Search Engine. WWW Conference, 1998

[6] S. Chaudhuri, G. Das, V. Hristidis, G. Weikum: Probabilistic Ranking

of Database Query Results. VLDB, 2004

[7] Gautam Das, Vagelis Hristidis, Nishant Kapoor, S. Sudarshan. Ordering

the Attributes of Query Results. SIGMOD, 2006.

[8] Good, I., The population frequencies of species and the estimation of

population parameters, Biometrika, v. 40, 1953, pp. 237-264.

[9] Isabelle Guyon and Andre Elisseeff. An introduction to variable and

feature selection. Journal of Machine Learning Research, 3(mar):1157–
1182, 2003.

[10] Michael R. Garey and David S. Johnson (1979). Computers and

Intractability: A Guide to the Theory of NP-Completeness. W.H.

Freeman. ISBN 0-7167-1045-5.

[11] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, R. S.

Sharm: Discovering all most specific sentences. ACM TODS. 28(2):

140-174 (2003)

[12] M. Gori and I. Witten. The bubble of web visibility. Commun. ACM 48,

3 (Mar. 2005), 115-117

[13] Karam Gouda, Mohammed J. Zaki: Efficiently Mining Maximal

Frequent Itemsets, ICDM 2001

[14] Jiawei Han, Jian Pei, Yiwen Yin: Mining Frequent Patterns without

Candidate Generation. SIGMOD 2000: 1-12.

[15] J. Kleinberg, C. Papadimitriou and P. Raghavan.A Microeconomic

View of Data Mining. Data Min. Knowl. Discov. 2, 4 (Dec. 1998), 311-
324

[16] Cuiping Li, Beng Chin Ooi, Anthony K. H. Tung, Shan Wang: DADA:

a Data Cube for Dominant Relationship Analysis. SIGMOD Conference

2006: 659-670

[17] Cuiping Li, Anthony K. H. Tung, Wen Jin, Martin Ester: On

Dominating Your Neighborhood Profitably. VLDB 2007: 818-829

[18] Thomas T. Nagle, John Hogan. The Strategy and Tactics of Pricing: A

Guide to Growing More Profitably (4th Edition), Prentice Hall, 2005

[19] S E Robertson and S Walker. Some simple effective approximations to

the 2-Poisson model for probabilistic weighted retrieval. SIGIR 1994

[20] Alexander Schrijver: Theory of Linear and Integer Programming. John

Wiley and Sons. 1998

[21] G. Salton. Automatic Text Processing: The Transformation, Analysis,

and Retrieval of Information by Computer. Addison Wesley, 1989

[22] W. Su, J. Wang, Q. Huang, F. Lochovsky. Query Result Ranking over

E-commerce Web Databases. ACM CIKM 2006

