
Minimum-Effort Driven Dynamic Faceted Search in
Structured Databases

Senjuti Basu Roy
Dept of Computer Sci and Eng
University of Texas at Arlington

Arlington TX, USA
roy@cse.uta.edu

Haidong Wang
Dept of Computer Sci and Eng
University of Texas at Arlington

Arlington TX, USA
haidong.wang@uta.edu

Gautam Das∗

Dept of Computer Sci and Eng
University of Texas at Arlington

Arlington TX, USA
gdas@cse.uta.edu

Ullas Nambiar
IBM India Research Lab

New Delhi, India
ubnambiar@in.ibm.com

Mukesh Mohania
IBM India Research Lab

New Delhi, India
mkmukesh@in.ibm.com

ABSTRACT
In this paper, we propose minimum-effort driven naviga-
tional techniques for enterprise database systems based on
the faceted search paradigm. Our proposed techniques dy-
namically suggest facets for drilling down into the database
such that the cost of navigation is minimized. At every
step, the system asks the user a question or a set of ques-
tions on different facets and depending on the user response,
dynamically fetches the next most promising set of facets,
and the process repeats. Facets are selected based on their
ability to rapidly drill down to the most promising tuples,
as well as on the ability of the user to provide desired values
for them. Our facet selection algorithms also work in con-
junction with any ranked retrieval model where a ranking
function imposes a bias over the user preferences for the se-
lected tuples. Our methods are principled as well as efficient,
and our experimental study validates their effectiveness on
several application scenarios.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-
ing, relational databases; H.3.3 [Information Search and
Retrieval]: Query formulation, search process

General Terms
Algorithms, Design, Performance

Keywords
Dynamic Facet Generation, Minimum-effort Entity Search,
Data browsing

∗Part of the work done as a visiting researcher at IBM India
Research Lab.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

1. INTRODUCTION
One of the primary problems that many organizations face

is that of facilitating effective search for data records within
vast data warehouses. For example, consider the customer
database of a large financial institution such as a bank. A
data analyst or a customer service representative for the
bank often has to search for records of a specific customer
or a specific account in such databases. Of course, if the
relevant tuple is uniquely identifiable by an identifier known
to the user, this problem is trivial. But in most cases the user
only has partial information about the tuple (e.g., perhaps
the values of a few of its attributes) and thus it is necessary
to enable an effective search procedure. As another example,
consider a potential car buyer searching for a suitable used
car listed in an online auto dealer’s database, where each car
is described via numerous attributes such as Make, Model,
Mileage, and so on. While the buyer is eventually interested
in buying only one car, at the beginning of her search she
may only have a few preferences in mind (e.g., a late model
family sedan with low mileage); thus a search is necessary
to narrow down the choices.

One approach for enabling tuple search in databases is
IR style ranked retrieval from databases. For the cars ex-
ample above, a query such as “CarType=sedan, Age<5,
Mileage<10k” can be specified via a form-based interface,
and rather than simply executing the query using SQL -
which will result in a flood of results since there are presum-
ably many cars in the database that satisfy such broad query
conditions - ranking-based systems will attempt to rank and
retrieve the top-k most “relevant” tuples that satisfy these
conditions (where k is usually a small number, such as 10-
20). Much of the recent research has focused on the design
of suitable ranking functions, as well as on the design of
efficient retrieval algorithms [7, 12, 13].

However, recently, other search paradigms have gained
popularity in certain specialized IR domains, including for
searching over image and text data. In particular, it has
been argued that faceted search interfaces can be extremely
useful in user navigation and search [3, 6]. E.g., a user
searching for a photograph of the Great Wall at a photo
hosting website may have the option of drilling down via
different facets of the dataset, e.g., first by geographical re-
gions (such as Asia → China → Beijing), then via age (such

as period → ancient), then via phototype (man made → his-
torical monuments). While it remains to be seen if faceted
search is a viable option for searching at the Web scale,
it does offer a promising alternative in specialized domains
such as these examples.

Main Goal - Investigate Faceted Search in Databases:
The main goal of this paper is to explore the opportunities of
adopting principles of the faceted search paradigm for tuple
search in structured databases. However, unlike past works
on images and text data, where the primary task is to design
hierarchical meta-data and facets to enable faceted search,
structured databases come with the tremendous advantage
that they are already associated with rich meta-data in the
form of tables, attributes and dimensions, known domain
ranges, and so on. Instead, the challenge is to determine,
from the abundance of available meta-data, which attributes
of the tuples are best suited for enabling a faceted search in-
terface. In the cars database example above, a very simple
faceted search interface is one where the user is prompted an
attribute1 (e.g., Make), to which she responds with a desired
value (e.g., “Honda”), after which the next appropriate at-
tribute (e.g., Model) is suggested to which she responds with
a desired value (e.g., “Accord”), and so on. In this paper we
focus on two broad problem areas. We briefly elaborate on
these problems and our solutions below.

1. Faceted Search as an Alternative to Ranked-Retrieval: We
first consider the problem where we don’t assume any tu-
ple relevance and ranking function as being available. Thus
when a user poses an initial selection query, without any
further information from the user we can only assume that
all of the selected tuples are equally preferred by the user.
Our task is then to develop a dialog with the user to extract
more information from her on other desired attribute values
- essentially initiate a facet-by-facet drill down procedure to
enable her to zoom in on the tuple(s) of interest. Our over-
all goal is to judiciously select the next facets dynamically
at every step, so that the user reaches the desired tuples
with minimum effort. While the effort expended by a user
during a search/navigation session may be fairly complex to
measure, we focus on a rather simple but intuitive metric:
the expected number of queries that the user has to answer
in order to reach the tuples of interest.

Variants of this problem have been considered in [2] in the
context of interactive question-answer applications. It was
shown that the problem is intractable, and an approxima-
tion algorithm suggested with provably good performance.
While we adopt the same cost metric, we extend the idea
in several important ways. We propose a novel cost model
for fast tuple search which assumes that attributes are as-
sociated with uncertainties, where the uncertainty of an at-
tribute refers to the probability with which a user can pro-
vide a value that belongs to the domain of the attribute.
We develop facet selection techniques that take into account
such uncertainties.

Also, we formally show that the approximation algorithm
for building minimal cost decision trees given in [2] generates
trees different from those generated by other classical deci-
sion tree construction algorithms based on information gain,
as well as other classical dimensionality reduction techniques
such as principal component analysis (PCA).

1Henceforth in this paper facets and attributes will be used
interchangeably.

2. Faceted Search that Leverages Ranking Functions: We
next ask whether faceted search procedures can work in
conjunction with ranking functions. This is a novel prob-
lem area, and to the best of our knowledge, has not been
investigated before. Recall that a ranked-retrieval system
typically assigns relevance scores to all selected tuples and
returns only the top-k tuples. From a faceted search per-
spective, we may view the ranking function as imposing a
skew over the user preferences for the selected tuples, and
thus would like to select the facet that directs the user to-
wards the most preferred tuples as efficiently as possible.
One interesting complication is that these tuple preferences
(or scores) may change as the faceted search progresses; this
is because as new attribute information is provided by the
user, the ranking function may re-evaluate the scores of the
remaining tuples still in contention. Thus a faceted search
system in conjunction with a ranking function offers the ben-
efits of focused retrieval as well as drill-down flexibility. We
provide a formal definition of this problem, and offer a so-
lution for facet selection that is based on minimum-effort
driven principles.

The main contributions of our paper may be summarized
as follows:

1. We initiate research into the problem of automated
facet discovery for enabling minimal effort browsing of
entities (tuples) in structured databases. We adopt a
simple approximation algorithm, and show how this
approach can be extended to incorporate the notion of
user uncertainty in providing binding values for facets.
We discuss how this approach is different from other
attribute selection techniques.

2. We also extend our methods to work in conjunction
with ranking functions for tuples. We show how our
methods are different from other attribute selection
techniques in the presence of ranking functions such
as [18].

3. We develop novel scalable implementation techniques
of our algorithms using a modified Rainforest frame-
work [15].

4. We describe the results of a thorough experimental
evaluation of our proposed techniques.

The rest of this paper is organized as follows. Section 2
presents faceted search as an alternative to ranked retrieval.
In Section 3, we discuss faceted search algorithms that lever-
age ranking functions. Section 4 describes the evaluations
performed and discusses the results. Related work is de-
scribed in Section 5 and conclusions are given in Section 6.

2. FACETED SEARCH AS AN ALTERNA-
TIVE TO RANKED RETRIEVAL

Let D be a relational table with n tuples {t1, t2, . . . , tn}
and m categorical attributes A = {A1, A2, . . . , Am}, each
with domain Domi (for the rest of this paper we only con-
sider categorical data, and assume that numeric data has
been suitably discretized). Assume that no two tuples are
identical and that a user wishes to retrieve a tuple from this
database. The faceted search system will prompt the user
with a series of questions, where each question takes the
form of an attribute name, and to which the user responds

with a value from its domain. This drill-down process ter-
minates when a unique tuple has been isolated. The task is
to design a faceted search system which asks the minimum
number of questions on the average, assuming that each tu-
ple is equally likely to be preferred by the user (thus we do
not assume the presence of a ranking function).

Essentially, the task is to build a decision tree which distin-
guishes each tuple by testing attribute values (asking ques-
tions). Each node of the tree represents an attribute, and
each edge leading out of the node is labeled with a value from
the attribute’s domain. As an example consider Figure 1(a)
which refers to a toy movie database with three attributes
and four tuples. A decision tree for identifying each of the
tuples in the tuple set D = {t1, t2, t3, t4} is shown in Fig-
ure 1(b). The leaves of the tree represent the tuple set D
and each tuple appears exactly once. A user reaches her
tuple of interest by picking a path after each non-leaf node
in the tree i.e. by assigning a value to each attribute query
on the path leading to the tuple.

(a) A small movies database (b) An optimal decision tree

Figure 1: A Small Movie Database and an Optimal
Decision Tree

Given such a tree T , cost(T) can be defined as the average
tree height,

∑

i ht(ti)/n where ht(ti) is the height of leaf
ti. Equivalently, cost (i.e., effort) represents the expected
number of queries that needs to be answered before the user
arrives at a preferred tuple (assuming all tuples are equally
likely to be preferred). It is easy to verify that the tree in
Figure 1(b) is optimal (with minimum cost = (2 + 2 + 1 +
1)/4 = 1.5).

The problem of determining the minimum cost tree has
been studied in the past in the context of question-answering
dialog systems, and shown to be NP-complete (see [2] and
references therein). A greedy approximation algorithm has
been developed [2] which achieves an approximation factor of
O(log d log n) in the cost, where d is the maximum domain
size of any attribute. Although the approximation factor
appears large, it is the only theoretical approximation bound
known for this problem. Moreover, as our experiments show,
this algorithm performs quite well in practice. We describe
this algorithm next as it forms the foundation for all our
facet selection procedures.

The intuition is that any decision tree should distinguish
every pair of distinct tuples. The approach is to make the
attribute that distinguishes the maximum number of pairs
of tuples as the root of the tree, where an attribute Al is said
to distinguish a pair of tuples ti, tj if ti[l] 6= tj [l]. Picking
the attribute Al as the root node partitions the database D
into disjoint tuple sets Dx1

, Dx2
, . . . , Dx|Doml|

, where each

Dxq is the set of tuples that share the same attribute value
xq of Al. Using this intuition, we seek to select as root

attribute Al that minimizes the number of indistinguishable
pairs of tuples. Hence, formally the function, Indg() seeks
to minimize,

Indg(Al, D) =
∑

1≤q≤|Doml|
|Dxq |(|Dxq | − 1)/2 (1)

This process is recursively repeated for all sets Dxq , until
each set reduces to singleton tuples. Applying this algo-
rithm to the database in Figure 1(a) gives the same resul-
tant decision tree as shown in Figure 1(b). We see that
Indg(Actor) = 1, while Indg(Genre) = Indg(Color) = 3.
Thus Actor should be the root.

2.1 Comparing Against Other Attribute Se-
lection Procedures

Comparing Against Information Gain: Decision tree
construction is a very well understood process in machine
learning and data mining, and several popular algorithms
such as ID3 and C4.5 have been developed [19]. These algo-
rithms are designed for the classification problem, and seek
to maximize classification accuracy and avoid over-fitting.
In contrast, our goal is not to solve a classification problem
- rather our aim is to build full decision trees (where each leaf
is a tuple) that minimizes average root-to-leaf path lengths.
A popular heuristic used by these algorithms (e.g., ID3) for
selecting the next feature, or “splitting” attribute, is the in-
formation gain measure. Since there is no class variable
associated with the database, we may imagine that each tu-
ple consists of its own unique class, and thus the information
gain of an attribute Al is equivalent to

InfoGain(Al, D) = log n− 1

n





∑

1≤q≤|Doml|
|Dxq | log |Dxq |





(2)
The selected facet may be the one with the largest informa-
tion gain. Unlike the Indg() based approach for which there
are known approximation bounds, it is open whether simi-
lar approximation bounds exist for information gain based
approaches. In fact, as we show now, the information gain
heuristic produces different trees than the approach of min-
imizing Indg().

Lemma 2.1. Given a database D, the decision tree con-
structed by selecting facets that minimize Indg() may be dif-
ferent from the decision tree constructed by selecting facets
that maximize InfoGain().

Proof: Consider two attributes A and B of a database table
D. Let A be a Boolean attribute with domain {a1, a2}. Let
n(x) represent the number of tuples with attribute value
x. Let n(a1) = n(a2) = n/2. Let the domain of B be
{b1, b2, . . . , bn/(2+

√
2)+1} where n(b1) = n/

√
2 and n(b2) =

· · · = n(bn/(2+
√

2)+1) = 1. We then have

Indg(A,D) =
n

2

(n
2
− 1

2

)

+
n

2

(n
2
− 1

2

)

=
n(n − 2)

4

Indg(B,D) =
n√
2

(

n√
2
− 1

2

)

=
n(n −

√
2)

4

Clearly Indg(B,D) > IndgA,D), and thus A will be pre-
ferred over B during facet selection. We next consider the

information gain heuristic. We then have

InfoGain(A, D) = log n − 1

n

(n

2
log
(n

2

)

+
n

2
log
(n

2

))

= 1

InfoGain(B, D) = log n − 1

n
(

n√
2

(

n√
2

log

(

n√
2

))

)

= log n −
(

log n − 1
2

)

√
2

Clearly InfoGain(B, D) > InfoGain(A, D) and thus B
will be preferred over A during facet selection. These argu-
ments demonstrate that the tree produced by maximizing
information gain may be different from the tree produced
by minimizing Indg().

Comparing Against Principal Component Analysis
(PCA): We explore the popular technique of principal com-
ponent analysis (PCA) [17] to see if it is applicable in facet
selection. PCA has traditionally been developed for dimen-
sionality reduction in numeric datasets, thus extending PCA
to categorical databases such as ours requires some care. We
illustrate these ideas by again considering the small movies
database in Figure 1(a). Suppose we wish to reduce the di-
mension of this database from three to two and decide to
retain the dimensions Genre and Color. In that case, the
attribute Actor has to be homogenized (i.e., all values have
to be transformed to a single common value) such that the
number of values that are changed is minimized. It is easy
to see that if we make all Actors as “Al Pacino”, this will
require minimum number of changes (two changes, i.e., the
Actor field in tuples t2 and t3). Hence the cost of the re-
duction is two in this case. On the other hand, if we decide
to retain the dimensions Actor and Genre, only one value in
the database needs to be changed (the Color field of t4 has
to be changed to “Color”). Thus, reducing the dimensions
to Actor and Genre is cheaper than (and thus preferable to)
reducing the dimensions to Genre and Color. More specifi-
cally, the best k attributes we retain are the ones that have
the smallest modes. Mode of an attribute is defined as:

Mode(Al, D) = max{|Dxq |, |1 ≤ q ≤ |Doml|}

Lemma 2.2. Given a database D, the decision tree con-
structed by selecting facets that minimize Indg() may be dif-
ferent from the decision tree constructed by selecting facets
that minimize Mode().

The proof for above lemma can be derived using simi-
lar intuition as for prior lemma. The details are omitted
in the interest of space. Among all three heuristics, only
the Indg() based approach has a known approximation fac-
tor associated with it and performs better in experimental
evaluation.

2.2 Modeling Uncertainty in User Knowledge
The facet selection algorithm presented above assumes

that the user knows the answer to any attribute that is se-
lected as the next facet. In a practical setting, this is not
very realistic. For example, a customer service represen-
tative of a bank searching for a specific customer may not
know exactly the street address of the customer’s residence;
likewise a user searching for a movie may not be sure of the
director of the desired movie, and so on. One of the con-
tributions of this paper is to recognize that there are inher-
ent uncertainties associated with the user’s knowledge of an

entity’s attribute values, and accordingly to build decision
trees that take such uncertainties into account.

In the simplest case, each attribute Ai of the database is
associated with a probability pi that signifies the likelihood
that a random user knows the answer to the corresponding
query. For example, in a cars database, the attribute Car
Type may be associated with a probability of 0.8 (i.e., 80%
of users know whether they want a sedan, hatchback, SUV,
etc.) For simplicity we assume no correlations between at-
tribute uncertainties (i.e., a user who does not know the car
type is still assumed to specify heated seats with a finite
probability) nor other more general uncertainty models. Es-
timating these probabilities require access to external knowl-
edge sources beyond the database such as domain experts,
user surveys, and analyzing past query logs.

In this paper, we assume that the uncertainty models have
already been estimated. In designing our decision trees to
cope with uncertainty, we assume that users can respond to
a question by either (a) providing the correct value of the
queried attribute Ai, or (b) responding with a “don’t know”.
In either case, the faceted search system has to respond by
questioning the user with a fresh attribute. Consider Figure
2, which shows the decision tree of the same database of
Figure 1(a). Assume each of the attributes has associated
uncertainties. Consequently, each node in the decision tree
also has an associated “don’t know”link. As can be seen, the
leaf nodes in this decision tree are either a single tuple, a set
of tuples, or, at worst, the entire database. Moreover, note
that the tuples of the database do not occupy unique leaves
in the decision tree. For example, there are 7 different path
instances of tuple t1. This implies that when attempting
to reach a tuple, different users may follow different paths
through the tree.

At this context, we organized a small survey among 20
people selected from the students and faculty of our univer-
sity.In that survey, each person assigned a value (between 0
to 1) for each attribute. This value denotes the likelihood
(probability) with which she is able to answer the question
corresponding to that attribute. The overall probability of
each attribute is calculated by averaging all 20 values.

Figure 2: The decision tree of Figure 1(a) with un-
certainty models

Thus our challenge is to build such decision trees such that
the expected path length through the tree is minimized. Our
Single Facet based search algorithm is shown in Algorithm 1.

Algorithm 1 Single Facet Based Search(D, A′)

1: Input: D, a set A′ ⊂ A of attributes not yet used
2: Global parameters: an uncertainty pi for each attribute

Ai ∈ A
3: Output: A decision tree T for D
4: begin
5: if |D| = 1 then
6: Return a tree with any attribute Al ∈ A′ as a singleton

node
7: end if
8: if |A′| = 1 then
9: Return a tree with the attribute in A′ as a singleton

node
10: end if
11: Let Al be the attribute that distinguishes the maximum

expected number of pairs in D:
12: Al = argminAs∈A′(1 − ps) × |D|(|D| − 1)/2 + ps ×

Indg(As, D)
13: Create the root node with Al as its attribute label
14: for each xq ∈ Doml do
15: Let Dxq = {t ∈ D|t[l] = xq}
16: Txq = Single-Facet-Based-Search(Dxq , A′ − {Al})
17: Add Txq to T by adding a link from Al to Txq with

label xq

18: end for
19: Create the “don’t know” link:
20: T ′ = Single-Facet-Based-Search(D, A′ − {Al})
21: Add T ′ to T by adding a link from Al to T ′ with label

“don’t know”
22: Return T with Al as root
23: end

However, we note that each node Al now has |Doml| + 1
links, with one of the links labeled as “don’t know”. This
link is taken with probability 1 − pl, whereas the rest of
the links are taken with probability pl. Thus, in the former
case, the attribute Al cannot distinguish any further pairs
of tuples (the query was essentially wasted), whereas in the
latter case, only Indg(Al, D) pairs were left indistinguish-
able. Thus, we can see that if we select Al as the root node,
then the expected number of tuple pairs that cannot be dis-
tinguished is (1 − pl) × |D|(|D| − 1)/2 + pl × Indg(Al, D).
Consequently, an obscure attribute that has little chance
of being answered correctly by most users, but is otherwise
very effective in distinguishing attributes, will be overlooked
in favor of other attributes in the decision tree construction.

2.3 Extending to k-Facets Selection
Next, we extend our model further by giving the user more

flexibility at every step. As a practical consideration, a de-
cision tree as shown in Figure 2 can sometimes be tedious
to a user. It may be more efficient to present, at every step,
several (say k) attributes to the user at the same time, with
the hope that the user might know the correct value of one
of the proffered attributes.

It may appear that for designing the root node of the de-
cision tree for the k-facet case, instead of considering only m
possible attributes as we did for the single-facet case, we will
need to consider mCk

sets of attributes of size k each, and
from them, select the set that is the best at disambiguating
tuple pairs. However, if we restrict the user to answering
only one question at each iteration, the problem of deter-

mining best k-facets at any node in this decision tree has a
much simpler solution - we order the unused attributes from
the one that distinguishes most number of tuple pairs to the
one that distinguishes the least number of tuple pairs, and
select the top-k attributes from this sequence.

In this tree, the probability that a random user will follow
“don’t know”links is much smaller than the single-facet case.
For example, given the set of attributes A′′ at the root, the
probability that a random user will be unable to answer any
of the k questions is

∏

Al∈A′′(1 − pl). Thus we expect such

trees to be more efficient (i.e., shallower) than the trees in
the single-facet case.

2.4 Designing a Fixed k-Facets Interface
In certain applications, it is disconcerting for the user to

be continuously presented with new sets of attributes after
every response. Such users would prefer to be presented
with a single fixed form-like interface, in which a reasonably
large (k) number of attributes are shown, and the user as-
signs values to as many of the preferred attributes as she
can. If the space available on the interface is restricted such
that only k < m attributes can be shown, the task is then
to select the best set of k attributes such that the expected
number of tuples that can be distinguished via this interface
can be maximized. We formalize this problem as follows:
Given a database D, a number k, and uncertainties pi for
all attributes Ai, select k attributes such that the expected
number of tuples that can be distinguished is maximized. If
we assume that there are no uncertainties associated with
attributes, this problem has similarities with the classical
problem of computing minimum-sized keys of database rela-
tions, and with the problem of computing approximate keys
of size k (see [11]).

However, in our case the problem is complicated by the
fact that attributes are associated with uncertainties, thus
such deterministic procedures [11] appear difficult to gener-
alize to the probabilistic case. Instead, we propose a greedy
strategy for selecting the k facets that is based on some of
the underlying principles developed in our earlier algorithms.
The overall idea is, if we have already selected a set A′ of k′

attributes, the task is then to select the next attribute Al

such that the expected number of pairs of tuples that cannot
be distinguished by A′ ∪ {Al} is minimized.

Ignoring attribute uncertainties, the algorithm can be de-
scribed as follows. Let A′ ∪ {Al} partition D into the sets
D1, D2, . . . , Dd where within each set the tuples agree on
the values of attributes in A′∪{Al}. Thus, we should select
Al such that the quantity

∑

i |Di|(|Di| − 1)/2 is minimized.
Introducing attribute uncertainties implies that A′ ∪ {Al}
does not always partition D into the sets D1, D2, . . . , Dd.
Rather, depending on the user interactions, the possible
partitions could vary between finest possible partitioning,
Pfine(A

′ ∪ {Al}) = {D1, D2, . . . , Dd}, to the coarsest possi-
ble partitioning Pcoarse(A

′ ∪ {Al}) = {D} (the latter hap-
pens if the user responds to each attribute with a “don’t
know”). Each intermediate partitioning occurs when the
user responds with a “don’t know” to some subset of the
attributes.

Consider any partitioning P = {U1, U2, . . . Uu}. Let the
quantity IndgPartition(P) be defined as

∑

i |Ui|(|Ui|−1)/2.
This represents the number of tuple pairs that fail to be
distinguished. Since each partitioning is associated with a
probability of occurrence, we should thus select Al such that

the expected value of IndgPartition(P) is minimized. How-
ever, this process is quite impractical since the number of
partitionings are exponential in |A′∪{Al}|, i.e., exponential
in k′ + 1. We thus chose a simpler approach, by assuming
that there are only two partitionings, the finest, as well as
the coarsest. The probability of occurrence of the coarsest
partitioning is p(coarse) =

∏

As∈A′∪{Al}(1 − ps). Thus, we
select Al that minimizes

IndgPartition(Pcoarse(A
′ ∪ {Al}))p(coarse)+

IndgPartition(Pfine(A
′ ∪ {Al}))(1 − p(coarse))

2.5 Implementation
We have implemented our algorithms by modifying scal-

able decision tree frameworks Rainforest [15]. While Rain-
forest [15] aims to identify a class of tuples efficiently for a
large data set, our task here is to identify each tuple. Since
there is no class variable associated with the database, we
may imagine that each tuple consists of its own unique class.
Precisely, we can assume At every leaf node of the partially
built tree, a single scan of the database partition associ-
ated with that node can be used to score each tuple and
simultaneously and incrementally compute Indg(Al, D) for
all facets Al, and eventually the most promising facet is se-
lected.

For the case where the database is static and the search
queries are provided beforehand, our proposed approaches
can simply pre-compute the decision trees. However, when
the search queries are initiated on-the-fly with a regular
SQL-like query, then building faceted search interface would
require us to build the tree online (or in realtime). For such
cases, instead of building the complete tree immediately, we
can stay in sync with the user while she is exploring the par-
tially constructed tree, and build a few “look ahead” nodes
at a time. Finally, in the highly dynamic scenario where the
database is frequently updated, a simple solution is to per-
sist with the decision tree created at the start of the search,
except that if a path through the tree terminates without
a tuple being distinguished, the algorithm can then ask the
remaining attributes in decreasing order of attribute proba-
bility until either the tuple gets distinguished or we run out
of attributes. Thus, a fresh construction of the decision tree
can be deferred to reasonable intervals, rather than after
each update to the database.

3. FACETED SEARCH IN CONJUNCTION
WITH RANKING FUNCTIONS

In this section we develop faceted search procedures that
can work in conjunction with ranking functions. Given a
query Q, a ranking function typically assigns relevance scores
S(Q, t) to all selected tuples t, and a ranked-retrieval system
will score and return only the top-n′ tuples where n′ << n.
Developing ranking functions for database search applica-
tions is an active area of research, and ranking functions
range from simple distance-based functions to probabilistic
models (see [7, 20]). But in this paper we shall treat such
ranking functions as “black boxes”; thus our methods are
aimed at very general applicability.

Our facet selection algorithm calls one such “black box”
ranking function at every node in the decision tree during
its construction and uses the ranked scores of the returned
tuples as inputs to the facet selection algorithm. However,

because the ranking function is a black box, it is challenging
to develop methods for facet selection that are theoretically
rigorous. In our approaches, we shall make one assumption:
that the scores are normalized so that they are (a) positive,
and (b)

∑

t selected by Q S(Q, t) = 1. In other words, the
ranking function can be imagined as inducing a non-uniform
“probability distribution” over the selected tuples, such that
S(Q, t) represents the probability that tuple t is preferred by
the user. Of course, in the case that scoring functions are
derived from probabilistic IR as well as language models,
this assumption is justifiable. In the case of more ad-hoc
ranking functions (such as distance-based, or vector-space
models popular in IR), this assumption is perhaps a stretch.
However, other than this specific assumption, we strive to
be as principled as possible in our approaches.

From a faceted search perspective the task is to select the
facet that directs the user towards the most preferred tuples
(according to the ranking function) as efficiently as possi-
ble. One interesting complication is that these tuple pref-
erences may change as the faceted search progresses; this
is because as new attribute information is provided by the
user, the ranking function may re-evaluate the scores of the
remaining tuples still in contention. As an example, consider
the car buyer who starts her search with an initial query Q
= “Mileage = low AND Age = recent AND Car Type =
sedan”. Suppose a ranking function when applied to such
cars ranks cars with good reliability ratings the highest. Af-
ter this initial query, a faceted search process starts which
allows her to drill down further into the query results. But
as the faceted search progresses, the buyer could select at-
tribute values that may cause the ranking function to rank
the remaining cars differently. For example, if the user also
desires a “powerful engine” (i.e., the query has now been ex-
tended to Q = “Mileage = low AND Age = recent AND
Car Type = sedan AND Engine Power = high”) then the
ranking function may score cars with top speeds higher over
good reliability. Thus a faceted search system in conjunc-
tion with a ranking function offers the benefits of focused
retrieval as well as drill-down flexibility.

Defining the Cost of a Decision Tree: Given the above
discussion, the cost of a specific decision tree T becomes
more complicated than the corresponding definition in Sec-
tion 2 where no ranking function was assumed. Consider
a database D selected by an initial query Q, and consider
a decision tree T with each tuple of D at its leaves. We
will thus derive a formula for cost(T, Q). Note that Q needs
to be a parameter in the cost, as the ranking function uses
Q to derive preference probabilities for each tuple. Note
that in this cost definition we are not considering attribute
uncertainties.

Let the root of the tree select the facet Al. The root parti-
tions D into the sets Dx1

, . . . , Dx|Doml|
where Dxq is the set

that satisfies the query Q ∧ (Al = xq) for each xq ∈ Doml.
Let the corresponding subtrees for each of these partitions be
Tx1

, . . . , Tx|Doml|
. Clearly cost(Txq , Q∧(Al = xq)) is the (re-

cursive) cost of each subtree. The quantity
∑

t∈Dxq
S(Q, t)

is the cumulative probabilities of all tuples in Dxq and rep-
resents the probability that when the user is at the root, she
will prefer any of the tuples in Dxq . Thus we have

cost(T, Q) =
∑

xq∈Doml

∑

t∈Dxq

S(Q, t)×(cost(Txq , Q∧Al = xq)+1)

(3)

It is easy to see that if no ranking functions are assumed,
i.e., each tuple is uniformly preferred by the user, the cost of
a tree reduces to the definition in Section 2, i.e.,

∑

t∈D ht(t)/n.
Our task is then the following: Given an initial query Q that
selects a set of tuples D, to determine a tree T such that
cost(T, Q) is minimized. Since the problem is NP-Hard even
without a ranking function, this problem too is intractable.

3.1 Facet Selection Algorithms
We develop a greedy heuristic that is motivated by our

facet selection approaches presented in Section 2. Assume
that we are at a particular node v of the decision tree. Let
Q be the current query at that node. Thus Q is the initial
query at the root, concatenated (i.e., AND’ed) with all con-
ditions along the path from the root to v. Let D be the set
of tuples of the database that satisfy Q. For any attribute
Al we can define a function Indg(Al, D) as follows:

Indg(Al, D) =
∑

xq∈Doml





∑

ti,tj∈Dxq ,i<j

S(Q, ti) × S(Q, tj)





(4)
The rest of the algorithm for selecting a single facet, even
considering attribute uncertainty, is exactly the same as in
Algorithm 1, except that Line 12 of Algorithm 1 is replaced
selecting the attribute Al that minimizes the expected value
of Equation 4. The extensions to selecting k-facets, or build-
ing a fixed k-facet interface are similarly straightforward,
and details are omitted from this version of the paper.

3.2 Comparing Against Other Attribute Se-
lection Procedures

In a recent paper [18], algorithms were described that au-
tomatically select attributes of the results of a ranking query.
Several selection criteria were examined, with the overall
objective of attempting to select attributes that are most
“useful” to the user. Attributes are consider most useful if,
when the database is projected only on these attributes, the
ranking function will re-rank the tuples in almost the same
order. By listing the useful attributes, the motivation was
to provide the end user the reasons why the top tuples were
ranked so high. While such attribute selection algorithms
can be used for faceted search, the following lemma shows
that they do not necessarily achieve our goal of minimizing
effort during the drill-down process.

Lemma 3.1. Given a query Q that selects a set of tuples
D, and a scoring function S(), the decision tree constructed
by selecting facets that minimize Indg() may be different
from the decision tree constructed by selecting facets accord-
ing to the Score-Based and Rank-Based attribute selection
algorithms in [18].

Proof (sketch): We sketch the proof by describing an exam-
ple. Consider a cars database, and assume a ranking func-
tion exists, such that when a user poses an initial query for
cars available in Texas, it ranks cars with air-conditioners
very high. The ranking function assigns scores of 1 to the
latter cars, and 0 to the rest. Both the Score-Based and
Rank-Based algorithms in [18] will select the Boolean at-
tribute AirCon as the most influential attribute. However,
our minimum effort driven approach would not prefer to se-
lect the AirCon attribute. This is because all cars with air-
conditioners will have high scores and will group together

to produce a rather high value for Indg(AirCon). In con-
trast, consider another attribute such as AutoTrans, which
splits the total tuple set such that the highly ranked cars
are evenly divided into each group. It is easy to see that
Indg(AutoTrans) is smaller than Indg(AirCon) and hence
more preferable.

Basically the attribute AirCon does not really help in fur-
ther narrowing down the highly ranked tuples, because of the
correlation with Texas cars via the ranking function. Offer-
ing some other facet such as AutoTrans will help the user
narrow down the tuples more efficiently. Our experiments
corroborate this observation in general.

3.3 Implementation
Although we assume that we are provided with a black box

scoring function S(Q, t), the way such a scoring function is
implemented greatly affects the performance of our attribute
selection algorithms. We define single-result interface for the
ranking black box which is supported by previous works [18]
on top-k computations. The single-result interface S(Q, t)
takes as input a query Q and a tuple t and outputs the score
of the tuple. This interface incurs unit cost.
Facet Selection using Single Result Interface: A scal-
able implementation of facet selection (Equation 4) using the
single result interface is straightforward using ideas from the
Rainforest framework [15]. We point out that even though
the definition of Indg() appears to require a quadratic-time
algorithm, it can be computed in a single linear scan. The
extensions to selecting k-facets as well as designing a fixed
k-facet interface are straightforward. The extensions to in-
clude attribute uncertainties, k-facet selection, as well as
designing a fixed k-facet interface are straightforward and
omitted.

4. EVALUATION
In this section we describe our experimental setup, our

different results of facet selection algorithms (without and
in conjunction with ranking functions) and draw conclusions
on the quality and performance of the techniques. We val-
idated the quality of the our solutions by measuring cost,
which is defined as the average number of user interactions
(i.e., number of attributes or facets selected) before the de-
sired tuple is identified. Experiments evaluating the time
complexity of the node creation step of our tree building
algorithms were also conducted. This measure is especially
relevant for exploratory interactive users and hence a fast
scalable implementation is desirable. In case the trees can
be built in a preprocessing step, this measure is less criti-
cal. We also implemented several existing attribute selection
techniques to compare against our approaches. Evaluation
results clearly show that our solutions perform significantly
better.

All implementation is done using Java and C# and the
evaluations performed on a Windows XP machine with 3.0Ghz
Intel Xeon processor and 2GB RAM.

Database Used: We evaluated our methods using two data
sets, IMDB movie database2 - a real world movie database
accessible over the internet and Yahoo Autos3, a online used-
car listing database. Using the IMDB database, we gener-
ated a single movie database containing about 234, 000 tu-

2http://www.imdb.com
3http://autos.yahoo.com

ples with 19 attributes including null values in some fields.
Similarly, we built a car database with 43 attributes and
more than 40, 000 tuples. We also generated a large syn-
thetic dataset having nearly 10 million rows and 100 at-
tributes from the car dataset by maintaining the original
distribution of the dataset.
Uncertainty Model: As we discussed in Section 2.2, we
use external knowledge about user uncertainty for ranking
the attributes of our databases. For our evaluation, we or-
ganized a small survey among 20 randomly selected users
comprising students and faculty members. In the survey,
each person was asked to assign a value (between 0 to 1) for
each attribute in the IMDB movie database. This value de-
notes the likelihood (probability) with which the user thinks
she would be able to answer a question over that attribute.
We took average probability scores for all attributes in our
evalution. Note that the question of whether the survey
accurately reflects the true uncertainty model for the user
population at large is an orthogonal problem, and is not
extremely relevant for our purposes. The survey was con-
ducted merely to obtain uncertainty values that are some-
what realistic for the related domain. Developing techniques
for ascertaining uncertainty values is a future direction of re-
search.

4.1 Experiments on Faceted Search Without
Ranking Function

In this set of experiments all tuples were considered equally
desirable to the end user as no ranking function was as-
sumed. We conducted evaluations to check the quality and
robustness of the algorithms we developed.

4.1.1 Quality Evaluation
In this subsection, we briefly explain the three different

quality experiments we performed and draw inferences. These
experiments measure cost as defined in Section 3, which is
the average number of queries that needs to be answered
before the user arrives at a desired tuple (i.e., effort).
Cost versus varying attribute probability: The intrin-
sic assumption in our decision tree modeling is the user’s
inability to answer all the questions. This experiment infers
the influence of the probability of an attribute in determin-
ing cost.

Figure 3: Change Of cost with varying probability

As shown in Figure 3, we compare the cost of the Single-
Facet search with the k-Facets based search algorithm by
varying the uncertainty model. In our evaluation we set
the value of k top = 2. We varied the probability of each

attribute in increments of 0.2 in this experiment. As the
graph suggests, with higher probability, the cost decreases
for both the algorithms. This observation corroborates our
basic intuition of considering probability of the attributes in
the decision tree construction.
Cost versus varying database size: In this set of exper-
iments, we vary the database size (auto database) and com-
pare the costs of the Single-Facet and the k-Facets based
search algorithms. As can be seen from Figure 4, the cost
is more for the Single-Facet algorithm. Also, in both cases,
costs increase with increasing database size. The reason be-
ing, with an increase in the number of tuples, more questions
are needed to distinguish them.

Figure 4: Change of cost with varying database size

Comparing against existing techniques: We compared
the cost of facets suggested by our methods with that sug-
gested using the Indg() method developed in [2] (named as
Ambigous method in Figure 4, PCA for categorical data and
the ID3 classification algorithm. Note that these three al-
gorithms assume all values are known to the user and so
do not have any provision for handling uncertainty in user
response. Hence, these techniques are principally different
from our facet selection algorithms. Howeve, from Figure 4,
it is clear that the Indg() based method clearly outperforms
the ID3 and PCA. Since, both Single-Facet and K-Facet
algorithms are richer than Indg() and also show better per-
formance, we can therefore claim that our techniques are
better than existing facet (attribute) selection methods.

4.2 Performance Evaluation
We implemented the scalable Rainforest [15] framework to

construct the decision tree. We vary two parameters (num-
ber of tuples and number of attributes) and measure the
average node creation time. As seen from the Figure 6 and
Figure 5, average node creation time increases with the in-
crease of dataset size/ width. We point out that that the
objective of our decision tree is to distinguish each tuple (in
contrast to identifying a class of tuples). Hence, the depth
of this tree is much larger than the normal decision trees
used for classification problems. Consequently, this leads to
a proportional increase in creation time.

4.3 Experiments on Faceted Search in Con-
junction with Ranking Function

In this section, we explain our experiments on facet se-
lection algorithms in conjunction with ranking functions.
We assume the presence of a ”black box” ranking function
which simply contributes skewness towards the preference

Figure 5: Change of average node creation time with
varying number of attributes

Figure 6: Change of average node creation time with
varying number of tuples

of tuples. Consequently, the solution cost is computed as
described in Section 3.

Ranking Function: Design of an efficient and effective
ranking function is an orthogonal research problem and is
not our focus here. For practical purposes, however, we im-
plement a simple ranking function where a tuple t gets a
score equal to the square of its Euclidian distance from the
centroid of the residual database partition. We further nor-
malize this squared distance to a non-uniform probability
distribution over the selected tuples, such that S(Q, t) rep-
resents the probability that tuple t is preferred by the user,
and that

∑

t selected by Q S(Q, t) = 1.

4.3.1 Quality Evaluation
In this experiment, we compared the cost of our Single

Interface algorithm with the existing rank based attribute
selection technique [18] on IMDB data. As seen from the
Figure 7, our Single Interface facet selection technique per-
forms better than existing approach.

4.3.2 Performance Evaluation
We measure performance is in terms of the average node

creation time. We varied the database size and observed
the performance of our face selection algorithm using Single
Result Interface. As seen in Figure 8, average node creation
time increases with the increase in database size. The rea-
son is more tuples need to be processed to make attribute
selection decision as size of the database increases.

Figure 7: Comparison of Cost between Facet Selec-
tion and Attribute Ordering Problem

Figure 8: Average Node Creation Time Varying
Dataset Size

5. RELATED WORK
The traditional design goal of faceted search interfaces [3,

4, 6, 24, 25] is to offer users a flexible navigational struc-
ture, targeted towards text and/or image data. There have
been recent efforts at creating a faceted search interface over
structured database, e.g., [16], as well as heterogeneous col-
lections [23]. The former is typically designed for specific
applications by domain experts. In our work, we aim to
propose a domain independent solution for automatically
generating facets. In [23], the focus is on computing corre-
lated facets and using them to aggregate and present related
information to the user. This appears to be different from
our problem, where the focus is minimum effort drill-down.

Our work bears resemblance to the problem of generating
automatic categorization of query results [1]. Our developed
approach differs from this prior work along several key di-
mensions: (a) our proposed approach considers uncertainty
models, (b) our approach is decision-tree based and depends
on user interaction, and (c) our algorithms can work in con-
junction with available ranking functions.

Decision trees and classical Information Value Theory [10]
are widely studied class of techniques in machine learning
[19]. However such models require explicit knowledge of

each of the user decision models which is not present in
our model. A recent work [2] uses decision trees for fast tu-
ple identification in databases. Our proposed decision tree
model captures user inability to answer certain attributes as
well as the ability to incorporate ranking functions, which
marks the intrinsic difference between our approach and [2].

Dimensionality reduction techniques aim at mapping high
dimensional data to lower dimensional data, while preserv-
ing some metrics such as distances to the best possible ex-
tent (e.g., (PCA) [17]). We have attempted a mapping of the
key ideas of PCA to categorical data, and have compared it
against other approaches for selecting facets.

Ranked retrieval in structured databases is an active re-
search area [7, 12, 13, 8]. Recent research effort address the
problem of keyword-based search techniques in databases
combined with the power of aggregation in Online Analyt-
ical Processing(OLAP) systems [5]. This ranking metric is
based upon “interestingness” of attributes which is different
from our effort-based strategy.

In [18], algorithms were described that automatically se-
lect attributes of the results of a ranking query. As discussed
in this paper, while such attribute selection algorithms can
be used for faceted search, they do not necessarily achieve
our minimum effort goals.

Selecting the next facet based on a ranking function has
connections with automatic query expansion (AQE) stud-
ies in IR ([21, 22]. At some level automatic facet selection
may be viewed as a similar problem, however while AQE
techniques are largely empirical and target text collections,
we make several new and important contributions involv-
ing structured data, black box ranking functions, as well as
scalable algorithms based on modern top-k concepts.

Our fixed k-facets interface design problem has similari-
ties with the classical problem of computing minimum and
approximate keys and functional dependencies of database
relations (see [14, 11]). Most problem variants are NP-
complete, and popular algorithms are based on level-wise
methods from data mining ([11]). However, in our case the
problem is complicated by the fact that attributes are associ-
ated with uncertainties, thus such deterministic procedures
appear difficult to generalize to the probabilistic case.

6. CONCLUSION
In this paper we tackle the problem of building faceted

search interfaces over enterprise data warehouses for pro-
viding a much needed minimal effort entity (tuples) naviga-
tion solution. Our proposed technique shows facets based
on their ability to rapidly drill down to the most promising
tuples, as well as the ability of the user to provide desired
values for them. We also provide solutions that can con-
sider bias over the tuple introduced by any ranking func-
tion. We provide scalable and efficient implementations of
our solutions and present results that show the efficiency
and robustness of our solutions. Future directions include
extending the techniques to work with multi-table databases
and developing faceted interfaces that span both structured
and unstructured data sources.

7. REFERENCES
[1] K. Chakrabarti, S. Chaudhuri and S. Hwang. Automatic

Categorization Of Query Results. SIGMOD 2004.

[2] V. T.Chakravarthy, V. Pandit, S. Roy, P. Awasthi and
M. Mohania. Decision Trees for Entity Identification:

Approximation Algorithms and Hardness Results.
PODS 2007.

[3] J. English, M. Hearst, R. Sinha, K. Swearingen and
P. Yee. Hierarchical Faceted Metadata in Site Search
Interfaces. CHI Conference Companion 2002.

[4] W. Dakka, P. G. Ipeirotis and K. R. Wood. Faceted
Browsing over Large Databases of Text-Annotated
Objects. ICDE 2007.

[5] P. Wu, Y. Sismanis and B. Reinwald. Towards
Keyword-Driven Analytical Processing. SIGMOD 2007.

[6] E. Stoica, M. Hearst and M. Richardson. Automating
Creation of Hierarchical Faceted Metadata Structures.
In the proceedings of NAACL-HLT 2007.

[7] S. Chaudhuri, G. Das, V. Hristidis and G. Weikum.
Probabilistic information retrieval approach for ranking
of database query results. ACM Trans. Database Syst,
31(3): 1134–1168.

[8] S. Agrawal, S. Chaudhuri and G. Das. DBXplorer:
enabling keyword search over relational databases.
SIGMOD 2002.

[9] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. The Morgan Kaufmann Series 2006.

[10] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall Series 2003.

[11] Y. Huhtala, J. Krkkinen, P. Porkka, and H. Toivonen.
Efficient discovery of functional and approximate
dependencies using partitions. ICDE 1998.

[12] V. Hristidis, Y. Papakonstantinou. DISCOVER:
Keyword Search in Relational Databases. VLDB 2002.

[13] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri,
C. Nakhe, P. S. Sudarshan. BANKS: Browsing and
Keyword Searching in Relational Databases. ICDE
2003.

[14] C. L. Lucchesi and S. L. Osborn. Candidate Keys for
Relations. J. Comput. Syst. Sci., 17(2): 1978.

[15] J. Gehrke, R. Ramakrishnan and V. Ganti.
RainForest - A Framework for Fast Decision Tree
Construction of Large Datasets. DMKD 2000.

[16] http://www.l3s.de/growbag/demonstrators.php.

[17] J. Shlens. A Tutorial on Principal Component
Analysis. Institute for Nonlinear Science, UCSD, 2005.

[18] G. Das, V. Hristidis, N. Kapoor, S. Sudarshan.
Ordering the Atributes of Query Results. SIGMOD
2006.

[19] Tom Mitchell. Machine Learning. McGraw Hill 1997.

[20] S. Agrawal, S. Chaudhuri, G. Das, A. Gionis.
Automated Ranking of Database Query Results. CIDR
2003.

[21] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley 1999.

[22] E. N. Efthimiadis. Query Expansion. Annual Review
of Information Systems and Technology 1996.

[23] O. Ben-Yitzhak et al. Beyond Basic Faceted Search.
WSDM 2008.

[24] W. Dakka, P. G. Ipeirotis, and K. R. Wood.
Automatic construction of multifaceted browsing
interfaces. CIKM 2005.

[25] I. Martin and J. Jose. A personalised information
retrieval tool. SIGIR 2003.

