
G E N E R A T I N G  S P A R S E  S P A N N E R S  F O R  W E I G H T E D  G R A P H S  1 

INGO ALTHOFER - Fakutt/it fur Mathematik, Universit£t Bielefeld 

GAUTAM DAS - Department of Computer Sciences, University of Wisconsin 

DAVID DOBKIN - Department of Computer Science, Princeton University 

DEBORAH JOSEPH - Department of Computer Sciences, University of Wisconsin 

A B S T R A C T .  Given a graph G, a subgraph G ~ is a t-spanner of G, if for every 
u, v E V, the distance from u to v in G I is at most t times longer than the distance 
in G. In this paper we give a very simple algorithm for constructing sparse spanners 
for arbitrary weighted graphs. We then apply this algorithm to obtain specific results 
for planar graphs and Euclidean graphs. We discuss the optimality of our results and 
present several nearly matching lower bounds. 

1. I N T R O D U C T I O N  

Let G = (V, E) be a connected n-vertex graph with arbitrary positive edge weights. 
A subgraph G I -- (V, E ~) is a t-spanner if, between any pair of vertices the distance 
in G ~ is at most t times longer than the distance in G. The vMue of t is the stretch 
factor a~ssociated with Gq We consider the problem of determining t-spanners for graphs 
where the spanners are sparse and t is a constant independent of the size of the graph. 
Sparsity will be measured according to two criteria. Let Weight(G) denote the sum 
of all edge weights of graph G, and Size(G) denote the number of edges. A graph is 
sparse in size if it has few edges. Similarly, a graph is sparse in weight if its total edge 
weight is small. Our results separate graphs into classes where spanners with linearly 
many edges achieve constant stretch factors, and classes where a non-linear number of 

edges are necessary. 

Problems of this type appear in numerous applications. Spanners appear to be the 
underlying graph structure in various constructions in distributed systems and com- 
munication networks [Aw~ PU1, PU]. They also appear in biology in the process of re- 
constructing phylogenetic trees from matrices, whose entries represent genetic distances 
among contemporary living species [BD]. Robotics researchers have studied spanners 
under the constraints of Euclidean geometry, where vertices of the graph are points in 
space, and edges are line segments joining pairs of points [C, DFS, D J, K, KG, LL]. 

t The work of the second and fourth authors was supported by NSF PYI grant DCR- 
8402375. The work of the third author was supported by NSF grant CCI%-8700917. 



27 

In the above applications, previous research has focussed on graphs with specific 
constraints. In distributed computation, the design of synchronizers law, PUll and the 
design of succinct routing tables [PU] implicitly generated spanners for graphs with 
unit edge weights. For example, in designing routing tables [PU], the routes follow 
the edges of a sparse spanner. For any stretch factor O(t), the size of these spanners 
are O(n 1 + 1/t). These designs are based upon a clustering algorithm, which is more 
complex than the algorithm in this paper. Moreover, it is not easy to generalize the 
clustering algorithm to graphs with arbitrary edge weights. Recently the problem of 
designing succinct routing tables has been considered for graphs with arbitrary edge 
weights [ABLP, AP]. For any t, the scheme in [ABLP] routes along paths which are 
at most 0(t29 t) longer than the shortest paths, while the total memory required for 
the tables is O(tn 1 + I/tlogn). In [AP], the routes are O(t 2) longer, while the memory 
required is O(n 1 + 1/tlog2nlogD), where D is the diameter of the graph. Spanners have 
been considered for special classes of graphs in [PS], however these graphs have unit 
edge weights: 

In all the above research, sparseness has been achieved in the size of spanners, but 
not in the weight. In robotics, graphs with varying edge weights have been examined, 
but the weights are Euclidean distances and not arbitrary. Because of this restriction, 
it has been possible to construct linearly sized spanners, unlike the above examples. 
For instance, the Delaunay and other triangulations approximate complete straight- 
edged graphs on the plane [C, DFS, D J, LL, KG]. A few papers have considered weight 
sparseness of spanners for these graphs [D J, LL]. For any t, there exist spanners for the 
complete graph on the plane with stretch factor O(t), and weight within a O(1 + 1/t) 
multiple of the weight of the minimum spanning tree. Weight sparseness has also been 
considered in [A, D, S] for the special case of 1-spanners under a general model where 
spanners may have auxiliary vertices. 

In this paper we approach the problem from a very broad perspective. Our graphs 
have no special embeddings, and we allow arbitrary positive edge weights. For any t, we 
show that every such graph has a spanner with O(t) stretch factor, and O(n ~ + 1/t) size. 
We also provide weight bounds for our spanners. The contributions of this paper are: 
a very simple polynomial time algorithm for constructing sparse spanners (in both size 
and weight) of azbitrary weighted graphs, using these ideas for constructing spanners 
of planar graphs, some lower bound results, and some results on spanners in Euclidean 
spaces of arbitrary dimensions and norms. Since any spanner with appropriate sparse- 
ness and stretch :factor can be used for constructing synchronizers [PUll, our algorithm 
provides a simple; alternative to the clustering algorithm previously used for construct- 
ing synchronizers. Similarly, we hope that our results will simplify the construction of 
succinct routing tables for arbitrary weighted graphs. 

The nex.t section describes how to construct sparse spanners for general as well as 
planar graphs with arbitrary edge weights. Section 3 deals with several lower bound 
results. Section 4 discusses spanners for Euclidean graphs. We conclude with some open 



28 

problems. Due to lack of space, we omit details of some of the proofs, which may be 
found in the full paper [ADD J]. 

2. C O N S T R U C T I O N  OF S P A R S E  S P A N N E R S  

Let G be a n-vertex, connected, weighted graph. The minimum spanning tree of G, 
denoted MST(G), is obviously the sparsest spanner, however, it is not hard to see that 
its stretch factor can be as bad as g/(n). Instead, we would like to look for spanners 
whose stretch factors are constants, independent of n. Our results are encouraging, 
because we show that any graph has spanners with constant stretch factors, whose 
sparseness can be made arbitrarily close to that of MST(G). They are summarized by 

the following two theorems. 

T h e o r e m  1: Given a n-vertex graph G and a t >_ 1, there is a polynomiMly con- 
structible (2t + 1)-spanner G I such that 

1) Size(a') < n .  rn~l" l ,  
2) We ght(a') < We@ht(MST(a)). (1 + nl2t). 

Note that the stretch factor is independent of the number of vertices in the graph, 
and of the edge weights. Thus, even for a dense graph with f~(n 2) edges, arbitrarily 
sparse spanners exist which have good stretch factors. Our lower bound results will show 
that the size bound is almost tight, though the weight bound is loose. Previous research 
lAw, PS] has produced spanners with the same size and stretch factors, but the graphs 
considered there were unweighted, and sparseness was measured by size only. Also, our 
algorithm is simpler than the clustering algorithm employed. Recently the problem of 
designing succinct routing tables has been considered for graphs with arbitrary edge 
weights [ABLP, AP], again based on the clustering algorithm. For any t, the scheme in 
[ABLP] routes along paths which are at most O(t29 t) longer than the shortest paths, 
while the total memory required for the tables is O(tn 1 + 1~tioga). In [AP], the routes 
are O(t 2) longer, while the memory required is O(n ~ + 1/tlog2nIogD), where D is the 

diameter of the graph. 

T h e o r e m  2: Given a n-vertex planar graph G and a t >_ 1/2, there is a polynomially 

constructible (2t + 1)-spanner G I such that 
1) Size(G') <_ (n , 2). (1 + 2/[2tJ), 
2) Weight(V') < Weight(MST(G)).  (1 + lit).  

Here we again observe that the stretch factor is independent of the number of 
vertices in the planar graph, or the edge weights. Thus, arbitrarily sparse spanners 
exist which have good stretch factors. (Note that the maximum size of a planar graph 
can be 3n - 6, so in effect we demonstrate that even the multiplicative constant in the 
size can be reduced). Theorem 2 is stronger in flavor than our first theorem, because 
our lower bound results will show that both size and weight bounds are tight. We later 
give an interesting application of this in connection with Euclidean graphs. 

Before we prove our results, we introduce an algorithm for constructing spanners. 
It constructs a sparse subset of edges so that a required stretch factor is achieved. The 



29 

algorithm, called SPANNER(G, r), takes as input a weighted graph G, and a positive 
parameter r. The.. weights need not be unique. It produces as output a subgraph G'.2 

A l g o r i t h m  SPANNER(G = (V, E), r); 

beg in  

Sort E by nondecreasing weight; 
G' := ¢; 

for every edge e = [u, v] in E do 
begin  
Compute P(u, v), the shortest path from u to v in G'; 
if (r.  Weight(e) < Weight(P(u, v))) t h e n  add e to G'; 
end; 

Output G'; 

end; 

While our algorithm is very simple, the subgraph it generates has many interesting 
properties. The following lemmas describe these properties. 

L e m m a  1: G' is a r-spanner of G. 

Proof. Consider any edge [u, v] in G - G'. At the instant it is examined by 
the algorithm, there is a path P(u, v) from u to v in the current graph of length 
<_ r.  Weight([u, v]). Thus, in the final output each deleted edge [u, v] is associated 
with a short path P(u, v). Now consider any shortest path in G of length l. For every 
deleted [u, v] edge along this path we replace by P(u, v), and thus obtain an alternate 
path in G' of length < I. r, which proves the lemma. • 

L e m m a  2: Let C be any simple cycle in G'. Then Size(C) > r + 1. 

Proof. Assume that a cycle C remained with size < r + 1. Let [u, v] be the 
last edge in C to be examined by the algorithm. Clearly, it is one of the (possibly 
many) edges in the cycle with the largest weight. When [u, v] is being considered by 
the Mgorithm, there is a clearly path from u to v (the remaining portion of the cycle) 
whose length is <_. r .  Weight([u, v]). Thus, [u, v] should not have been added, which 
is a contradiction. • 

L e m m a  3: Let C be any simple cycle in G', and let e be any edge in C. Then 
Weight(C - {e}) > r .  Weight(e). 

Proof. Assume that a cycle C remained which violates the above weight condition 
for some edge e in C. Clearly, it violates this condition for the last edge in C to be 

2 We understand that this algorithm has been independently discovered by Bern, [Be]. 



30 

examined by the algorithm, say [% v]. As in the above lemma, it is one of the (possibly 
many) edges in the cycle with the largest weight. Thus, the remaining portion of the 
cycle has length < r-  Weight([u, v]). Thus, [u, v] should not have been added, which 
is a contradiction. ® 

L e m m a  41 MST(G)  is contained in G I. 

Proof. Before we prove this lemma, we observe that our algorithm is essentially 
a generalized minimum spanning tree algorithm, because for an infinite r, it outputs 
MST(G) .  In fact, for an infinite r its behavior is exactly like Kruskal's minimum 
spanning tree algorithm [T]. 

Our proof (sketch) is by induction on the order in which edges are examined. Let 
the sequence ¢ = G~, G~, --- ,  GIs I = G' represent the growth of G', where G~ 

represents the partially constructed subgraph after the i *h edge has been examined. Now 
let us consider Kruskal's algorithm, which also examines edges by increasing weight, tn 
this case, let the sequence ¢ = 21//0, M1, . . . ,  MiE t = MST(G)  represent the growth 
of the minimum spanning tree, where Mi represents the partially constructed tree after 
the i *h edge has been examined. It is not hard to prove by induction that, for all i, Mi 
is contained in G~, which in turn proves the lemma. * 

The algorithm is clearly polynomial and easy to implement. In proving the two 
theorems, Lemma 2 will be used in proving size sparseness, while Lemma 3 and Lemma 
4 will be used in proving weight sparseness of the resulting subgraphs. 

We still need two more lemmas. Let the size of a face of a planar graph be the num- 
ber of edges encountered while traversing the face (with repetitions allowed). Lemma 5 
bounds the size o£ a planar graph, given a minimum face size. 

L e m m a  5: If all the faces of an h-vertex planar graph G have sizes >__ r, then 
Size(G) _< (n - 2). (1 + 2/(r - 2)). 

Proof. Let rn be the size of the graph. Euler's formula for planar graphs states that 
n - m + f = 2, where f is the number of faces in the graph. Thus, f = m + 2 - n. 
If we traverse each face and mark the edges encountered, every edge in the graph will 
eventually be marked twice. We thus have f o r <_ 2rn. Substituting for f from above 
and simplifying, we have m _< (n - 2). (1 + 2/(r - 2)), which proves the lemma. ® 

Our next lemma is from extremal graph theory (which is derivable from Theorem 
3.7, Chapter III, [B]). Let the girth of a graph be the size (number of edges) of' its 
smallest simple cycle. This lemma provides an upper bound on the size of a graph with 
a given girth. 

L e m m a  6: Let G be an n-vertex graph with girth > r. Then Size(G) < n .  
rn l(, - -  

We first prove Theorem 2, then use some of the ideas in proving Theorem 1. 

Proof of Theorem 2. We run the SPANNER algorithm on a given n-vertex planar 
graph G and a t > 1/2, after setting r = 2t + 1. By Lemma 1, the resulting graph 



31 

has stretch factor 2t + 1. Also, by Lemma 2, the girth of the output is > 2t + 1, 
that is, >_ [2t + 2J. This clearly implies that the minimum face size is _> [2t + 2J. 
Thus, by Leman  5, the size of the output is _< n .  (1 + 2/[2tJ). In the next section 
we will show that this size bound is tight. 

We now prove the weight bound, which requires a different approach (the outline 
is similar to the method in [LL]). By Leman  4, the output subgraph has to contain 
MST(G). Consider a planar drawing of the subgraph, with MST(G)  embedded in the 
subgraph. If we walk around the tree (counting each edge twice), our path will resemble 
a "skinny" polygon with perimeter being 2 Weight(MST(G)). Our accounting 
strategy will be to "grow" this polygon outwards by absorbing neighboring edges of 
the subgraph, until it becomes the outer face of the graph. At any stage, an edge is 
selected which, along with a portion of the polygon's current boundary circumscribes 
a face adjacent to the polygon. Consider Stage i. Let the length of the polygon be Wi 
(with W0 = 2.  Weight(MST(G))). Let Ti be the total length of all non minimum 
spanning tree edges encountered so far. Thus To = 0. Let the edge selected to be 
added be [u, v], and the portion of the polygon's boundary from u to v be P(u, v). By 
Lemma 3, Weig,~t([u, v]) < (1/(2t + 1)). Weight(P(u, v)). Thus, 

1) Wi +1 < ]~Vi - Weight([u, v]). (1/(2t + 1) - 1), 
Ti 2) Ti +1 = + Weight([u, v]). 

We state without proof that T converges to at most Weight(MST(G)). ( l / t ) .  Thus 
Wcight(G') < Weight(MST(G)). (1 + l/t). We later show that this weight bound 
is tight because there are graphs for which one can do no better. • 

Proof o] Th,~orem 1. We are given an n-vertex graph G and a t > 1 as input. We 
set r = 2t + 1 and run the SPANNER algorithm. By Lemma 1, the resulting graph 
has stretch factor < 2t + 1. Also, by Lemma 2, the girth of the output is > 2t + 1. 
Thus, by Lemma 6, the size of the output is < n .  FnlPl . In the next section we will 
show that this size bound is quite tight because there exist graphs for which one cannot 
do much better. 

We now prove the weight bound. By Leman  4, MST(G) is contained in the 
subgraph. For each vertex v, consider the graph Gv, composed of MST(G) and the 
edges in G ~ incident to v and not in MST(G). Let the set of latter edges be denoted 
as Ev. It is easy to see that this graph is planar. Hence by methods similar to the 
proof of Theorem 2, we can show that Weight(Ev) < Weight(MST(G)). lit. Thus 
~ e vWeight(Ev) < Weight(MST(G)). nit. In the above summation each edge in 
the E~'s have been counted twice, thus Weight(G') < Weight(MST(G)).(1 + n/2t), 
which proves the. weight bound. In the next section we shall see that this bound is not 
as tight as our other results. • 



32 

3.  L O W E R  B O U N D S  

In this section we will show various lower bounds for spanners of graphs. 
Our first result concerns general graphs with arbitrary positive weights. In [PSI, 

using results from extremal graph theory [B], it has already been shown that, for every 
t > 1, there exist infinitely many n-vertex graphs with unit edge weights such that 
every (2t + 1)-spanner requires ft(n 1 + 1/(2t + 3)) edges. Thus the size result of Theorem 
! is tight up to a constant factor in the exponent of n. The above lower bound gives 
a corresponding lower bound for weights of spanners, that is, for every t > 1, there 
exist infinitely many n-vertex weighted graphs G such that every (2t + 1)-spanner has 
weight ~'t(Weight(MST(G)) .  n 1/(2~ +3)). Thus the weight result of Theorem 1 is not 
as tight as the size result. 

Our next result concerns planar graphs with arbitrary positive weights. 

T h e o r e m  3: For infinitely many n and t, there exists a n-vertex planar graph G with 
unit edge weights such that every (2t + 1)-spanner requires ~ ( n .  (1 + l / t ) )  edges, 
and has weight gt (Weight (MST(G)) .  (1 + l / t )) .  

Proof. For infinitely many n and t, we state without proof that it is possible to 
construct a planar n-vertex graph with unit edge weights, such that each face is a regular 
(2t + 4)-gon, and such that the girth is also >_ 2t + 4. From Euler's formula it can 
be derived that the size of this graph is ~(n-  (1 + l / t )) .  Clearly any proper subgraph 
will have stretch factor > 2t + 3, and the result follows. • 

This shows "that the size and weight results of Theorem 2 are tight. 

In what follows we shall state lower bound results for various generalizations of 
spanners. Consider graphs with arbitrary positive weights. Let Dist(u,  v, G) be the 
distance from vertex u to vertex v in graph G. Let G1 -- (V1, El)  and G2 = (V2, E2) 
be two graphs with V1 a subset of I/2. G2 is called a generalized t-spanner of G1 if, for 
all u, v E ti1, Dist(u, v, Gt) <_ Dist(u, v, G2) <_ t . D i s t ( u ,  v, GI). Thus, the 
spanner is not simply a subgraph of G1, rather it may contain auxiliary vertices and 
edges. An important point is, the spanner is not allowed to "cheat", that is, paths in 
G2 are never shorter than those in the original graph G1, though they may use auxiliary 
vertices and edges. 

For special graphs generalized spanners can be substantially smaller than simple 
spanners. For example, consider the complete n-vertex graph with unit edge weights. 
Clearly every simple 1-spanner requires all edges. But the star graph with one auxiliary 
vertex attached to all n original vertices via n additional edges of weight 1/2 is a 
generalized 1-spanner with only n edges. However, the following lower bound result 
shows that such constructions are not always possible for all graphs. In fact, there exist 
graphs such that generalized spanners cannot be much smaller than simple spanners. 

T h e o r e m  4: For infinitely many n and t, there exists a n-vertex graph G with unit edge 
weights such that every generalized t-spanner requires ft(zo- ~ • n 1 + 1/(t + 2)) edges. 



33 

Before we prove the theorem, we need some definitions and lemmas. Let t _> 1, 
and m be a positive integer. Let g be a function that maps each unweighted n-vertex 
graph to a string of m bits. We say g is an (n, t, m)-compressor if the following is 
true. For all pairs of graphs G1, G2, if g(G1) = g(G2), then for all pairs of vertices 
u, v, Dis t (u ,  v, G1) <_ t .  Dis t (u ,  v, G2). Informally, the compressor is just like a 
hash function. It partitions M1 graphs into groups, such that in each group the graphs 
have approximately the same distances between any given pair of vertices. Clearly, 
as t increases, it should be possible to construct compressors with fewer groups. The 
following lemma provides a lower bound on the number of groups, given any t. 

L e m m a  7: For an (n, t, m)-compressor to exist, m > 1/4.  n 1 + 1/(t + 2) 

Proof. For infinitely many n and t, there exist n-vertex graphs with girth > t + 2 
and at least 1/4.  n 1 + 1/(t + 2) edges [B, pp 104]. Let G = (V, E) be such a graph, 
and let Gt, G2 be two different subgraphs of G. By the girth condition of G, both 
subgraphs have to belong to different groups of the compressor. Thus the total number 
of groups is > 21EI, t h u s m  > ]El. • 

Two further observations will be useful in proving the theorem. First, existence of 
spanners (even generalized spanners) for all graphs implies the existence of a compressor. 
For example, consider a collection of t-spanners, one for each n-vertex graph. Let the 
set of spanners (without repetitions) be {G~, ..., G~}. Then, setting g(G) = binary(i) 
if G~ is a spanner of G, yields an (n, t, Flogk])-compressor. 

Second, we show how to encode an unweighted graph as a bit string. Every n-vertex 
graph with m edges can be encoded by 2. [logn] • m bits, by representing every edge as 
a pair of [logn] bit strings, each in turn representing a vertex. 

Proof of Theorem ~. We shall first prove the theorem for unweighted spanners, then 
sketch the proof for weighted spanners. To prove the first part, consider any collection 
of t-spanners, one for each n-vertex graph. Since we are interested in sparse generalized 
spanners of n-vertex graphs, even with auxiliary vertices these spanners should have no 
more than n + 2. n(n  - 1)/2 = n 2 vertices. Let m be the size of the largest spanner 
in this set. Each spanner can be encoded in < 4. Flogn] • m bits. Thus by our previous 
observation, these spamxers imply the existence of an (n, t, 4- [logn] • m)-compressor. 
But by Lemma 7, 4- [logn] .m > 1 /4 .n  1 + 1/(t + 2). Solving for rn proves the theorem. 

To prove the second part, the idea is to encode the edge weights of the spanners 
as bit strings. The problem arises because weights could be arbitrarily large, or require 
many precision bits. However, it can be shown that by ignoring very large weights, and 
rounding off the remaining in a certain way, we can get suitably encodable spanners 
with slightly larger stretch factors. • 

Note that we have no lower bounds on the weight sparseness of generalized spanners. 
We now generalize spmmers in another direction. Let t > 1. G' = (V, E s) is 
a t-approzimator of G = (V, E )  if, for all u, v E V,  l i t .  Dis t (u ,  v, G) <_ 
Dis t (u ,  v, G')  :<_ t . Dis t (u ,  v, G). The following theorem (without proof)provides 
a lower bound on the size of approximators. 



34 

T h e o r e m  5; For infinitely many n and t, there exists a n-vertex graph G with unit 
edge weights such that every t-approximator has f~(zo--~ ' nl + i/(t + ~)) edges. 

We finish this section by stating a lower bound for complete graphs with weights 
that are proper. The latter mean that the weight of any edge is never more than the 
length of any path between its end vertices. 

T h e o r e m  6: For infinitely many n and t, there exists a n-vertex complete graph G with 
proper edge weights, such that every (2t - 1)-spanner requires f~(1/t, n i + i/(2t + i)) 

edges. 

All the above lower bound results emphasize robustness, that is, they hold even 
after allowing more general spanners, or more restrictive graphs. In the next section we 
discuss spanners of Euclidean graphs. 

4. S P A N N E R S  IN E U C L I D E A N  G R A P H S  

In Euclidean graphs, the weights assigned to the edges are not arbitrary, hence the lower 
bounds of Section 3 do not apply. It has been possible to construct spanners for such 
graphs with a linear number of edges. 

Our first result is on Euclidean graphs on the plane. The vertices of such a graph 
are a set V of n points on the plane. The edges are line segments joining pairs of 
vertices and each edge weight is the Euclidean distance (measured in some norm, It" H) 
between the vertices. These graphs may be either planar or nonplanar. We let K(V) be 
the complete Euclidean graph (which is clearly nonplanar). We pose the question: are 
there sparse planar spanners of K(V)? This problem has been extensively studied in the 
past. In [C, DFS] it was shown that Delaunay triangulations in the I I" Ill and H" 112 norms 
are spanners with constant stretch factors. Using a general framework, [DJ] showed that 
other planar graphs such as greedy triangulations and minimum weight triangulations 
also have constant stretch factors (with different constant values). In [KG] the stretch 
factor for Detaunay triangulations in the It" 112 norm was improved to 2.42 (current 
best). In [DJ~ LL] it was shown that there exist extremely short Euclidean planar 
graphs (that is, almost as short as the minimum spanning tree) that have constant 
stretch factors. The algorithm in ILL] produces arbitrarily short graphs based upon 
a parameter, though it is not obvious how small are the sizes of these graphs. Using 
Theorem 2 we can produce planar spanners that are both short, as well as small, in size. 

Let t _> 1/2, axed consider the Delaunay triangulation over V in the II" 112 norm. It 
is known that this triangulation contains MST(K(V)) .  We now apply the SPANNER 
algorithm on the triangulation with r = 2t + 1. Because spanners are transitive, it 
is easy to see that the output (denoted as G ~) satisfies the following property. 

T h e o r e m  7: G' is a (2.42). (2t + 1)-spanner of K(V), such that 
1) Size(G') <_ (n - 2)-(1 + 2/[2t]),  
2) Weight(G) < Weight(MST(K(V))) . (1 + 1/t). 



35 

In higher dimensions planarity of spanners is not an issue. Our next result is on 

constructing linear sized spanners for complete graphs of point sets V in (R d, l I" l I), for 
a~ dimensions d _> 2, and all norms I I" II- Fix some angle ~ > 0. The key idea is 
to cover R d by finitely many open cones C1, ..., C8(,), all with the same focus at the 
origin O, such that  for all points u, v in the same cone, g u O v < (~. Such a covering 
exists for every d and every I I. I I by the theorem of Heine-Borel [CS]. Similar ideas for 
constructing spanners for fixed norms have been considered in [K]. 

We construct the spanner G t as follows. For every v E V, consider the covering 
of R d by the cones C1 + v, ..., Cs(8) + v, where C + v represents a shifting of the 
cone C to a new origin v, in the spirit of Minkowski. For every cone Ci + v, let u be 
the vertex in the cone such that  Ilu - vii is minimized. We add [u, v] to G', and u is 
known as the i *h neighbor  of v. 

Clearly, the size of G ~ is < s($) • n, and is therefore linear. It remains to show 
that  its stretch factor is small. Consider u, v E V. A short path  between them is 
constructed in the following way. Let u be inside the cone Ci + v. Go from v to its i *h 
neighbor, and proceed from there in the same way. We show that  this path is not too 
long with respect to ]iv - all. 

L e m m a  8: For every e < 1/(2 + V~), there is an angle ~(e) > 0 such that  
D i s t a n c e ( , ,  u,  C,') < llv - u l l / ( 1  - + 

The estimation of the angle 6(e) is rather technical to prove and we omit it from 
this version of the paper. The basic idea is to bound distances in I1" II from above and 
below by constant multiples of corresponding distances in I1" 112. The lemma leads to 
the following theorem. 

T h e o r e m  8: For every t > 0, dimension d, and norm tl" ]] of R d, there exists a 
constant c( t ,  d, II " II) such that  every finite set V has a t-spanner with at most c .  n 
edges. 

5. O P E N  P R O B L E M S  

We conclude with some open problems. 

1) In Theorem 1, the bound in the weight does not agree with the lower bound as nicely 
as in the other results. Can it be improved? We feel that  our strategy of dividing the 
graph into planar components cannot be extended to yield the optimal answer. 

2) Even in the other results, there are gaps between upper and lower bounds. For 
instance, in Theorem 1, the upper bound for the size is O ( n  I + 1/,), while the lower 
bound is ~ (n  1 + 1/(2t + 3)). Only for t = 1, the known bounds, ~(n3/2),  are of the 
same order. The lower bound was proved in ILl, and the upper bound is mentioned in 
[PC]. 



36 

3) For dimensions higher than 2, Euclidean spanners with linear sizes exist. Do Eu- 
clidean spanners exist with weights within a constant multiple of the weight of the 
minimum spanning tree? 

4) What spanners do random graphs have? The Euclidean random case has been 
examined in [SV]. 

5) Consider/~d, some fixed norm, and t > 1. What are the worst (or at least bad) 
point configurations V with respect to the number of edges in optimal t-spanners? 

6) Do spanners have other applications? 

6. A C K N O W L E D G E M E N T S  

Thanks are due to Torsten Sillke for his help in simplifying the proof of Lemma 8. 

7. R E F E R E N C E S  

[A] Alth6fer: On Optimal tlealizations of Finite Metric Spaces by Graphs: Discrete and 
Computational Geometry 3, 1988, 103-122. 

lAw] Awerbuch: Complexity of Network Synchronization: JACM, 1985, 804-823. 

[ABLP] Awerbuch, Bar-Noy, Linial, Peleg: Compact Distributed Data Structures for 
Adaptive Routing: STOC, I989, 479-489. 

[ADD J] AlthSfer, Das, Dobkin, Joseph: Generating Sparse Spanners for Weighted 
Graphs: submitted to Discrete and Computational Geometry. 

[AP] Awerbuch, Peleg: Routing with Polynomial Communication-Space Tradeoff: 
Manuscript, 1989. 

[B] Bollobas: Extremal Graph Theory: Academic Press, 1978. 

[BD] Bandelt, Dress: Reconstructing the Shape of a Tree from Observed Dissimilarity 
Data: Advances in Appl. Maths, 7, 1986, 309-343. 

[Be] Bern: private communication to David Dobkin, 1989. 

[C] Chew: There is a Planar Graph Almost as Good as the Complete Graph: ACM 
Symposium on ComputationaJ Geometry, 1986, 169-177. 

[CS] Conway, Sloane: Sphere Packing, Lattices, and Groups: Springer, New York, 1988. 

[D] Dress: Trees, Tight Extensions of Metric Spaces: Adv. in Math. 53, 1984, 32t-402. 

[DFS] Dobkin, Friedman, Supowit: Delaunay Graphs are Almost as Good as Complete 
Graphs: FOCS, 1987, 20-26. 

[D J] Das, Joseph: Which Triaxlgulations Approximate the Complete Graph?: Interna- 
tional Symposium on Optimal Algorithms, 1989 (LNCS, Springer-Verlag). 



37 

[K] Keil: Approximating the Complete Euclidea~a Graph: SWAT, 1988 (LNCS, Springer- 
Verlag). 

[KG] Keil, Gutwin: The Delaunay Tria~agulation Closely Approximates the Complete 
Euclidean Graph: WADS, 1989 (LNCS, Springer-Verlag). 

[L] Longyear: Regular d-valent Graphs of Girth 6 and 2(d * d - d + 1) Vertices: 
Journal of Combin. Theory 9, 1970, 420-422. 

ILL] Levcopoulos, Lingas: There are Planar Graphs Almost as Good as the Complete 
Graphs and as Short as Minimum Spanning Trees: International Symposium on Optimal 
Algorithms, 1989 (LNCS, Springer-Verlag). 

[PS] Peleg, Sch/~ffer: Graph Spanners: Journal of Graph Theory, Vol 13 No 1, 1989, 
99-116. 

[PU] Peleg, Upfal: A Tradeoff Between Space and Efficiency for Routing Tables: STOC, 
1988, 43-52. 

[PU1] Peleg, Ullman: An Optimal Synchronizer for the Hypereube: SIAM Journal of 
Computing, Aug 1989, 740-747. 

IS] Simoes-Pereira: A Note on the Tree Realizabitity of a Distance Matrix: Journal of 
Combin. Theory 6, 1969, 303-310. 

[SV] Sedgewick, Vitter: Shortest Paths in Euclidean Graphs: Algorithmica 1, 1986, 
31-48. 

IT] Tarjan: Data Structures and Network Algorithms: Society for Industrial and Ap- 
plied Mathematics, 1983. 


