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A New Way to Weigh Malnourished Euclidean Graphs 

Gautam Das * Giri Narasimhan t Jeffrey Salowe $ 

Abstract 

In this paper, we show that any Euclidean graph over a set 
V of n points in k-dimensional space that satisfies either the 

leapfrog property or the isolation property has small weight, 

i.e., has weight O(1) . wt(SMT), where SMT is a Steiner 

minimal tree of V. Both the leapfrog property as well as 

the isolation property constrain the way the edges of the 

graph are configured in space. Our main application is to 
prove that certain Euclidean graphs known as t-spanners can 
be constructed with optimal weight of O(1) + wt(SMT), an 
intriguing open problem that has attracted much attention 
recently. The main tool in obtaining the above weight 
bounds is a theorem that proves the existence of long edges 
in a Steiner minimal tree on a restricted set of points in 

k-dimensional space. We also generalize this theorem for 
Steiner minimal trees on arbitrary point sets. Since very 

little is known about high-dimensional Steiner minimal trees, 

these results are of independent interest. 

1 Introduction. 

It is often difficult to analyze the total edge weight of 
an Euclidean graph for the purpose of providing per- 
formance bounds. For instance, bounding the length of 
the Lin-Kernighan heuristic for the traveling salesper- 
son problem appears to be very difficult [16, 51, even for 
points in Euclidean space. More successful examples 
include algorithms for the on-line traveling salesperson 
problem for Euclidean points 113, 51 and the t-spanner 
problem for Euclidean points [l, 4, 7, 14, 151. Gener- 
ally, the analysis centers on relating the weights of a 
set of edges to zut(SMT) (or wt(MST) or wt(TSP)). 
Here wt(SMT), wt(MST), and wt(TSP) is the total 
edge weight of a Steiner minimal tree, minimum span- 
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ning tree, and an optimal traveling salesperson tour, 
resp., of a given set of points. (Note that wt(TSP) = 
O(wt(&!ST)) = O(wt(SMT)) for a set of points in Eu- 
clidean space). 

Various tools have been developed in order to 
perform such analyses. The central idea is to bound 
the weight of a set of edges that satisfy certain spatial 
constraints. In [4], it was shown that if a set of edges 
satisfies the property that the distance between the 
endpoints of any two edges is at least as large as a 
constant times the weight of the shorter edge (the gap 
property), then the weight of these edges can be bounded 
by O(logn) . wt(SMT), where wt(SMT) is the total 
edge weight of a Steiner minimal tree of the set of 
endpoints. The gap property found application in two 
different problems. It is satisfied by the set of edges 
produced by the greedy algorithm for t-spanners [4], 
and also by the set of edges produced by the 2-opt 
heuristic for the traveling salesperson problem [5], and 
consequently helped in their analyses. 

The gap property is unfortunately limited in power. 
It has been shown in 1141 that there is a set of edges 
that satisfies the gap property with weight f2( loilpo;4n) . 

wt(SMT) (very recently this lower bound has been 
increased to fi(logn) . wt(SMT), [3]). In order to prove 
stronger results, other properties were considered. In 
[7], it was shown that if a set of edges in S-dimensional 
space satisfies a property called the leapfrog property, 
then the weight of the edges can be bounded by O(1) . 
wt(SMT). The leapfrog property is a complicated 
restriction on how a set of edges may be positioned in 
space, and a precise definition is given later in the paper. 
This proof was based on a complex charging scheme and 
employed properties of 2-dimensional Steiner minimal 
trees. It was left as an open problem to prove the same 
statement for edges satisfying the leapfrog property in 
k-dimensional space. The following theorem of this 
paper solves this open problem. The proof requires a 
generalization of the properties of the Steiner minimal 
tree in higher dimensions. 

THEOREM 1.1. If a set of line segments E in k- 
dimensional space satisfies the leapfrog property, then 
wt(E) = 0( 1) . wt(SMT). 

The Ieapfrog property has found applications in the 
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improved analysis of t-spanners [7]. Since it is rather 
difficult to appreciate intuitively, in this paper we intro- 
duce a more intuitive property called the isolation prop- 
erty. Interestingly enough, recent t-spanner algorithms 
that enforce the isolation property have turned out to 
be more efficient than those that enforce the leapfrog 
property [2]. We believe that it will have applicability 
in other geometric problems. A precise formulation of 
the property is presented later; for now it suffices to say 
that a set of edges in k-dimensional space satisfies the 
isolation property if each edge can be associated with 
a large enough hypercylindrical region which does not 
intersect with the other edges. As will be evident later, 
the isolation property implies the leapfrog property (but 
not vice versa). However, in this paper we provide a sim- 

ization stated below. This represents a satisfactory con- 
clusion to the series of previous efforts on constructing 
small weight t-spanners in higher dimensional space. 

THEOREM 1.3. For a set of points in k-dimensional 
space, a t-spanner can be constructed with an optimal 
weight of O(1) . wt(SMT). 

While the leapfrog property has been used here 
to prove the existence of optimal weight t-spanners, 
the less general isolation property has been recently 
found crucial in devising an eficient O(n logn)-time 
t-spanner construction with optimal weight [2]. In 
contrast, the best known algorithm that constructs t- 
spanners satisfying the leapfrog property has a running 
time of O(nlog2 n) [8]. 

pler and more direct proof for the following theorem. Our main tool in proving the above theorems is to 

THEOREM 1.2. If a set of line segments E in k- show properties of higher dimensional Steiner minimal 

dimensional space satisfies the isolation property, then trees. Steiner minimal trees are useful in weight- 

wt(E) = O(1) . wt(SMT). bounding tasks because they are monotonic in the 

We now define the notion of a t-spanner. Let following sense. If Sr c 5’2 are sets of points, a SMT 

V be a set of n points in k-dimensional Euclidean on 5’s cannot be shorter than a SMT on 5’1. For 

space, and let t > 1. A subgraph of the complete example, in [7] a SMT is maintained for the endpoints 

Euclidean graph of V is a t-spanner if for every U, v E of edges which satisfy the leapfrog property. *At every 

V, the shortest path length between any two points step in the analysis, a suitable edge is removed, and 

is at most t times the Euclidean distance between it is shown that the SMT of the endpoints of the 

the two points. Computing a t-spanner with a small remaining edges is shorter than the previous SMT by an 

weight and other desirable properties has been the focus 
amount proportional to the weight of the edge removed. 

of much recent research. Although many algorithm 
Steiner minimal trees are interesting in their own right, 

exist for producing sparse t-spanners, analyzing the and have been studied by many researchers, 111, 121. 

performance of these algorithms turns out to be a However, very little is known about Steiner minimal 

difficult task. The earliest results on small weight t- 
trees in higher dimensions [18, 191. 

spanners appeared in [l, 151, where it was shown that in In this paper we consider Steiner minimal trees that 

2-dimensional space, such t-spanners exist with weight connect n + 1 points, n of which lie on the surface of 

at most O( 1). wt(SMT). However, the proofs employed a unit hypersphere in k-dimensional Euclidean space 

planarity properties and could not be directly extended 
(these points are called terminals), while one point lies 

to higher dimensions. In [14] a t-spanner based on the 
at the center s of the hypersphere. We call such a tree a 

well-separated pairs construction was described, and its 
restricted Steiner minimal tree. We prove the following 

weight was analyzed to be O(log2 n) . wt(SMT). In [4] theorem. 
it was shown that in k-dimensional space, t-spanners THEOREM 1.4. There is a constant 0 < c < 1 such 

constructed by a certain greedy algorithm have weight that for any restricted Steiner minimal tree, the path 

at most O(logn) . wt(SMT). These results seemed to between s and any terminal u contains an edge of weight 

indicate that eliminating the (poly)log factors in the at least c. 

weight for higher dimensional t-spanners will require The existence of these long edges in restricted 
more sophisticated techniques than had been previously Steiner minimal trees is crucial to the applications that 
used. The first optimal result for dimensions higher we discuss, as will be described later. The above 
than 2 appeared in [7]. In that paper it was shown theorem also provides insight into the local structure 
that the t-spanner constructed by the greedy algorithm of the SMT of an unrestricted set of points. Consider 
satisfies the leapfrog property in k-dimensional space. a hypersphere centered at any vertex of an unrestricted 
However, the paper only provided a proof ef the 3- SMT with radius equal to the distance to the nearest 
dimensional version of Theorem 1.1, which implied the neighbor of V. The above theorem says that every 
existence of t-spanners with weight 0( 1) . wt(SMT) in path from v to the outside of this hypersphere has to 
S-dimensional space. contain suitably long edges. Later we also prove several 

Our proof of Theorem 1.1 leads us to the general- additional properties of unrestricted SMTs. 
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The rest, of the paper is organized as follows. $2 2.2 Restricted Steiner Minimal Trees in k- 
discusses properties of Steiner minimal trees, while 53 Dimensions. We shall now prove Theorem 1.4 for k- 
discusses applications of these properties in the weight, dimensions. We need the following result in our proof. 
analysis of edge sets satisfying (1) the isolation property, It was originally proven by Few [lo] and subsequently 
and (2) the leapfrog property. We note that although improved by Smith [17] (see Hwang et al. [12]). 
the results in this paper assume the Euclidean (Lz) THEOREM 2.1. The largest possible weight of a 
metric, they can easily be extended to any arbitrary Steiner minimal tree for n points in the unit hypercube 
L, metric. in k-dimensions is O(nl-l/‘“). 

2 Properties of Steiner Minimal Trees. 
Few’s proof of this result is also valid for points on 

the surface of a unit hypersphere (the essential idea is 
In this section we first derive properties of restricted to use projections, and the fact that the surface area of 
Steiner minimal trees in 2-dimensions, then generalize 
them to higher dimensions, and finally consider unre- 

a unit k-dimensional hypersphere is k&.) 

stricted Steiner minimal trees. 
COROLLARY 2.1. The largest possible weight of a 

Steiner minimal tree for n terminals on the surface of 

2.1 Restricted Steiner Minimal Trees in 2- 
Dimensions. Here we prove the 2-dimensional version 
of Theorem 1.4. 

Proof. Let S be the set of terminals, T the Steiner 
minimal tree under consideration, o < 1 a constant, C 
a circle of radius cv and the same center s, N the set 
of Steiner points of T within C, and N’ G N the set, of 
points that do not have all neighbors in N (these are the 
fringe vertices of the subtree containing vertices from 
N). We first prove that IN’1 is bounded by a constant. 
For every vertex w E N’ there is at least one path in T 
of length (1 - CX) from v to a terminal. Clearly, there 
exists a constant p such that if IN’/ > p, then I&(T) 
would exceed 1 + 27r, which is a simple upper bound for 
wt(T). All the Steiner points in T have degree 3. Hence 
INI < IN’] and is also bounded by a constant,. Thus any 
path in T from s to a terminal must have a long edge (of 
weight at least c = a/2p), which concludes the proof, 

The proof also implies that of the O(n) Steiner 
points in the Steiner minimal tree T, most of them lie 
far away from the center s and lie close to the unit circle. 
Corresponding theorems can be trivially proven for the 
case where terminals lie on a circle with radius r (here cy 
will be replaced by ar), and for the case where terminals 
lie outside the circle. In an unrestricted setting, where 
the points to be connected do not necessarily lie on a 
circle, this theorem implies that for any point s, if its 
nearest neighbor is at distance d away, then the theorem 
could be applied with r = d. 

The above proof and the consequent observations 
do not easily extend to the case when the points are 
in k-dimensional space. In the 2-dimensional case, the 
n points on the unit, circle could be connected together 
by a network of weight at most 2~ (independent of n), 
which does not hold for n points on the unit hypersphere 
in k-dimensional space. However, using significantly 
different techniques we prove that similar results also 
hold for the k-dimensional case. This is presented next. 

a k-dimensional unit hypersphere is Q(nl-l/(k--i)). 

We first show that restricted Steiner minimal tree T 
must contain some long edges. We then show that there 
must be a long edge in each path from s to a vertex on 
the surface of the hypersphere. 

LEMMA 2.1. T contains an edge of weight at least 
c’, for some constant c’. 

Proof. Suppose to the contrary that there are no 
edges of weight c’ in T. We show that T must contain 
greater than n leaves, which contradicts the claim that 
T is a Steiner minimal tree on n terminals. 

To be more specific, consider a sequence of trees 
Tl,Tz,..., where each Ti is a subtree of T. Tree TI 
consists of s and all the portions of T that are within 
path distance l/2 of s. Tree T2 consists of s and the 
portions of T within path distance 3/4 of s. In general, 
tree Ti consists of s and all the portions of T that are 
within path distance 1 - 1/2i of s. Note that tree Tj 
is a subtree of tree Ti, j < i. Our goal is to obtain 
lower bounds on the number of leaves l(Ti) in Ti and 
show that for any n, there is some i such that C(Ti) > n. 
This implies that T contains more than n leaves. 

We now bound the number of leaves in Tl. Let 
co = c’. By assumption, there are no edges of weight CO 
in T, so there are no edges of weight CO in TI . Since each 
Steiner point has degree 3 and each edge has weight lat 

most c’, the height of Tl is at least &, and L(T1) 2 2Z. 
Using Corollary 2.1, we can obtain an even stronger 

bound on the weight of edges in T2 - Tl, the portion 
of T2 induced by the removal of tree Tl. There are 
B = I(Tl) components in T2 - Tl; in each component, 
choose a longest edge, and let H be the set of edges 
chosen. If H is removed from T, the Steiner minimal 
tree T is broken into e + 1 components. Choose an 
arbitrary terminal in each of these components, and let 
H(S) be the terminals chosen. Corollary 2.1 implies 
that the terminals in H(S) - {s} can be interconnected 
using a Steiner minimal tree of weight O(@-‘/(k-l)); an 
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additional edge of weight 1 to s interconnects the tree. 
This implies that the total edge weight in H must be 
o(p’l(“-1)). 

Since the total weight of edges in H must be 
O(.fl-l/(“-l)), say cl-l/@-r), at least C/2 of these edges 
must have weight at most Z/@/(“-r). This implies that 

1-l 
at least 2% components in T2 - Tl have longest edge 
with weight at most cl = 21-1/(2co(k-‘)) < cc. The 
number of leaves in T2 is at least 21/2c~-1 x 21i4”1. 

In general, let ci-1 be an upper bound on the weight 
of a longest edge on a particular subtree of T in which 
the longest root-to-leaf path length is 1/2i. This tree 
T’ is intended to be a component of Ti - T+1. (TO = 0 
and CO = c’). Then the height of T’ is at least & 1 1’ 

and the number of leaves is e 2 2*. From the 
argument above, at least e/2 of the subtrees rooted 
at the leaves of T’ have longest edge weight at most 
2/.!?l/(“-l). Consequently, let ci satisfy the following 
recurrence: 

l- 1 
ci = 2 2’(k-l)cipl 

co = c’. 

Then if a component in Ti - Ti-1 has longest edge at 
_I 

most c+.~, it must have 2*2ci-1 leaves, and half of these 
leaves are roots of subtrees with maximum weight bound 
Ci. 

By successively applying the arguments above, we 
see that the number of leaves in Ti satisfies 

l?(Z) 2 rgl(2=3. 

There is a j such that k’(Tj) > n, completing the proof. 
Although Lemma 2.1 guarantees the existence of a 

long edge in each tree in the forest, it does not guarantee 
that a long edge lies on the path from s to 21. Let p(s, u) 
be the path from s to u. 

LEMMA 2.2. The total number of Steiner points in 
p(s, u) II Tl is bounded by a constant. 

Proof Assume the contrary. Suppose there are j 
such Steiner points. Since the degree of each Steiner 
point is 3, each Steiner point on p(s, u) f1T1 is associated 
with at least one tree connecting that Steiner point to 
some boundary terminal. By a slight generalization of 
Lemma 2.1, there is an edge of weight at least c’/2 in 
each of j trees. Remove these edges. The weight of the 
removed edges is c/j/2. Reconnect these components by 
choosing one vertex from each component and forming a 
Steiner minimal tree on the surface of the hypersphere, 
connected by an edge to s. Corollary 2.1 states that the 
weight of the latter tree is O(jl-l/(“-r)), which is less 
than c/j/2 for large enough j, thus contradicting the 
fact that T is a Steiner minimum tree. Hence the proof. 

Lemma 2.2 implies there is an edge of weight at 
most c”’ in p(s,u), where c”’ is a constant. As a 
consequence, there is an edge in p(s, u) nT1 of weight at 
least c”‘, for some constant c”‘, thus proving Theorem 
1.4. 

2.3 Unrestricted Steiner Minimal Trees. Here 
we extend some of our earlier results, by considering 
Steiner minimal trees of more general point sets. First 
we consider the case when instead of a single vertex at 
the center s of the unit hypersphere, we have a set A 
of m points contained within a hypersphere of radius 0 
centered at s. 

THEOREM 2.2. Let ,O 5 cr( < (Y, < 1. Let A be a 
set of m points lying within a hypersphere of radius p 
centered at a point s. Let B be a set of n points lying 
outside the unit hypersphere centered at s. Then the 
number of Steiner points on any Steiner minimal tree 
T lying within a hyperspherical shell of inner radius ai 
and outer radius cq, is bounded by a constant. Also, 
every path in T connecting a point in A and a point in 
B must have an edge of weight greater than c, for some 
constant c. 

Proof. Let T be a Steiner minimal tree connecting 
A and B. Let Ci be a hypersphere centered at s of 
radius CX~ and let CZ be a hypersphere centered at s of 
radius a,. Let S be the hyperspherical shell between 
Cl and Cz. Let SA (SB) be the set of Steiner points 
beyond (within) radius cyi (cr,) with at least 1 subtree 
such that all its leaves are in A (B). Let SL (S&) be the 
set of fringe vertices of SA (5’~). In other words, these 
are the vertices of SA (SB) not all of whose neighbors 
are from SA (SB). Also, let R be the set of (remaining) 
Steiner points from T that are not in SA or 5’~. 

Let 21 E S&. Consider the subtree of ‘u. that has all 
its leaves from B and whose neighbor is a vertex not in 
Sh. By Theorem 1.4, this subtree has a long edge of 
length say c’. By lemma 2.2 this subtree has at most a 
constant number of Steiner points inside Cz. We claim 
that the number of points in SL within C2 is bounded 
by a constant. To prove this, assume the contrary. 
Let this number be more than some constant j. Since 
each of these subtrees has a long edge of weight c’, by 
arguments similar to those used in the previous section, 
for large enough j, one can force c’j > 1 + jl-l/(k-l), 
thus contradicting the assumption that T is a Steiner 
minimal tree. Similarly, one can also prove that the 
number of points in Si outside Cl is bounded by a 
constant. Hence the number of points from Si U Sb 
that lie in the hyperspherical shell S is bounded by a 
constant. 

Using arguments similar to ones used before, it can 
be shown that since SX and SL are the fringe vertices of 
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the subtree of vertices from SA and 5’s, and since their 2.2 it can be shown that the number of Steiner points in 
number within the hyperspherical shell S is bounded the rest of the region is bounded by a constant. Since 
by a constant, the number of points from SA U SB that any path from a point in A to a point in B must pass 
lie in the hyperspherical shell S is also bounded by a through this region, there must be a long edge. 
constant. 

In order to show that the number of Steiner points 3 Applications to Weight Analysis. 
of T that lie within the hyperspherical shell S is 
bounded by a constant, we are left to show that the 

In this section we apply the properties of Steiner min- 

number of points in R that lie within the hyperspherical 
imal trees to bound the weight of edge sets satisfying 

shell S is also bounded by a constant. Similar to the 
various spatial constraints. We first prove Theorem 1.2 

approach employed in the previous proofs, we define a 
which concerns the isolation property. Then we outline 

set R’ of vertices in R, not all of whose neighbors are in 
the proof of Theorem 1.1 which concerns the leapfrog 

R. We will first show that the number of vertices in R’ 
property. 

lying in S are bounded by a constant. Each vertex in R’ 
has degree 3 and has at least one neighbor from 5’~ USB. 

3.1 The Isolation Property. Let c > 0 be a 

By Theorem 1.4, for every vertex in R’, the subtree 
constant . Let E be a set of edges in k-dimensional 

rooted at the neighbor from 5’~ U S, must contain a 
space, and let e E E be an edge of weight 1. If it is 

long edge since the root is at distance at least (pi or CY, 
possible to place a hypercylinder B of radius and height 

(depending on whether the vertex is in SA or Se) awaY 
c .1 each, such that the axis of B is a subedge of e and 

from the leaves of the subtree. Now, if there are more 
B n (E _ je)) = 0, then e is said to be isolated. If all 

than a constant number of vertices in R’, a contradiction 
the edges in E are isolated, then E is said to satisfy the 

to the minimality of the Steiner tree can be arrived at. 
isolation property. We now prove Theorem 1.2. 

Having bounded the size of R’ lying within S, similar 
Proof. Let E be a set of edges satisfying the iso- 

arguments as used before can be used again to prove 
lation property. Let T be a Steiner minimal tree con- 

that the size of R lying within S is also bounded. 
netting the endpoints of E. We first partition E into a 

Once the total number of Steiner points in S are 
constant number of groups, El, E2,. . . Eo(~), such that 

bounded, it is easy to see that every path in T that 
within each group the edges are almost parallel to each 

connects a point in A and a point in B must pass 
other. This can be done by using the standard tech- 

through S, and contains no vertex, one vertex, or a 
nique of covering the space with cones, and selecting 

constant number of vertices that lie in S. In each of the 
edges that lie within a particular cone (see [7]). We will 

cases it is easy to see that there must be an edge on the 
now prove that for each i, wt(Ei) = O(1) .wt(T), where 

path of weight more than some constant c, thus proving 
T is now a Steiner (though not necessarily minimal) tree 

the theorem. 
connecting the endpoints of Ei. 

In a more general setting, the results we have 
Let the k co-ordinate axes be named xi, x2,. . . xk, 

shown imply that if for some point s, there exists an 
and w.1.o.g. let the x1 axis be parallel to the edges 

empty hyperspherical shell between radius @- and T 
of Ei. If a line segment is parallel (perpendicular) 

(for some ,6 < l), then the Steiner minimal tree will 
to the x1 axis, it is said to be vertical (horizontal). 

have long edges (of weight CT for some constant c), and 
Furthermore, if a point u has a larger x1 co-ordinate 

that the number of Steiner points in a portion of this 
than a point v, u is said to be above v (and v is said to be 

hyperspherical shell is bounded by a constant. In fact, 
below u). Since Ei satisfies the isolation property, each 

Theorem 2.2 can be extended to prove the following 
edge e is associated with a hypercylinder B which does 

theorem, which is our most general version. 
not intersect with the rest of the edges. However the 

THEOREM 2.3. Let AU B be a set of points inside 
hypercylinders may intersect each other. To eliminate 
th’ is problem, we shrink each hypercylinder horizontally 

the unit hwwhere connected by a SMT- Let the by halving its radius. Each hypercylinder's surface 
minimum distance between a point in A and a point 
in B be d. Then there exists an edge of weight at least 

is composed of three pieces: each end is a (Ic - l)- 
d’ imensional 

cd, for some constant c < 1 on any path in the SMT 
hypersphere such that one is above the 

between a vertex in A and a vertex in B. 
other, and connecting the two is a (k - 1)-dimensional 
surface representing the vertical wall. 

Proof. The main ideas of the proof are as follows. We first transform T to T’ by replacing each edge 
Let CQ < a, < 1. Consider the union of hyperspheres of (u, v) of T by a vertical edge (u, w) and a horizontal edge 
radius aid around every point in A. Consider the union (w, w). Let hwt(T’) denote the weight of the horizontal 
of hyperspheres of radius (1 - cr,)d around every point edges of T’. Clearly hwt(T’) = O(wt(T’)) = O(wt(T)). 
in B. Using arguments similar to the proof of Theorem Partition Ei further into two groups Li and Ni. If there 
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is a connected portion of T’ completely contained within 
a hypercylinder B and touching both the upper and 
lower surfaces, then the corresponding edge belongs to 
Ni, otherwise it belongs to Li. We shall prove that 
wt(Ni) = O(wt(T’)) and Wt(Li) = O(hwt(T’)), which 
will suffice to prove the theorem. 

The first part is easy, because each edge in Ni can 
be charged to the portion of T’ contained within its 
hypercylinder. To prove the second part, consider the 
structure consisting of the tree T’ and the edges in Li. 
We proceed to remove (suitably selected) edges from Li 
one by one, and at each iteration restructure T’ such 
that, (1) it is still a Steiner tree for the endpoints of 
the remaining edges in Li, (2) it is composed of hori- 
zontal and vertical edges, (3) it does not have a con- 
nected portion completely contained in any remaining 
hypercylinder which touches both the upper and lower 
surfaces, and (4) the weight of its horizontal edges is 
smaller than the corresponding weight of the horizon- 
tal edges of the previous tree by an amount at least a 
constant times the weight of the edge removed. 

At any iteration, select the B whose upper hyper- 
sphere has the largest ~1 co-ordinate, and remove the 
corresponding edge (say e = (u, w) where u is above v). 
Consider the unbounded hypercylindrical region whose 
surface is formed by extending the vertical wall of B 
in both directions until infinity. Let TL be the maxi- 
mal connected portion of T’ that includes u and that 
lies completely within this region. Notice that the in- 
terior vertices of TL other than u have to be Steiner 
points, and cannot be endpoints of the remaining edges 
in Li. Let T: pierce the surface of this region at points 
u= {u1,212,..., u,}. Let ur be the unique point in U 
which lies along the path between u and v in T’. 

Our restructuring of T’ will proceed as follows. For 
each uj in U there is a corresponding u$ whose xi co- 
ordinate is the same as that of u, but the rest of the 
co-ordinates agree with those of Uj. Let U’ be the set 
of these corresponding points. Remove TL. Construct 
a (lc - 1)-dimensional restricted Steiner minimal tree 
S, connecting U’ with u. Add vertical edges between 
each uj and its corresponding us. Add the vertical edge 
(u,v). Remove the long edge (Theorem 1.4) along the 
path in S, between u and ul. It is easy to see that the 
new T’ satisfies all four properties. 

Thus at each iteration we can charge the removed 
edge to the difference in the horizontal weights of the 
successive trees. The process is then repeated for the 
next edge. We can therefore conclude that wt(L;) = 
O(hwt(T’)), which proves Theorem 1.2. 

Theorem 1.2. The theorem can also be strengthened 
so that all edges of E do not have to be isolated; only 
certain long edges need be. The details are omitted 
from this version of the paper. This property was 
the linchpin in devising an O(nlogn) time t-spanner 
construction with weight O(1) .wt(SMT) [2]; this latter 
result serves to prove Theorem 1.3. Extrapolating from 
our experience with the gap property, we expect that the 
isolation property too should prove useful in analyzing 
other Euclidean graphs. 

3.2 The Leapfrog Property. Here we strengthen 
the previous result by showing that a set of edges 
satisfying the leapfrog property has a small weight. 
The leapfrog property is defined as follows. Let d(u, V) 
denote the Euclidean distance between points u and v. 
Let E be a set of edges in L-dimensional space, and let 
t > 1 be a real number. E satisfies the leapfrog property 
if, for every subset S = {(ur, WI), . . . , (u,, v,)}, 

t’d(Ul,ZJl) < ed(Ui,vi) + 

i=2 

The isolation property is a special case of the leapfrog 
property. This is because for every subset of edges 

{(~lPJl),...,bm, w,)}, the empty hypercylinder of 
(ur , ~1) ensures that the leapfrog condition holds. 

We sketch the proof of Theorem 1 .l. It is a 
generalization of the S-dimensional proof that appears 
in [7], and we shall assume the reader is familiar with 
that proof. 

Proof. Essentially, every edge is associated with a 
pair of small hypercylindrical regions at either ends. 
These regions together with the edge define a dumb- 
bell. It is shown that the set of edges can be partitioned 
in such a way that the dumbbells in each group Ei are 
almost parallel, and in addition satisfy the nested prop- 
erty, i.e either two dumbbells are disjoint, or one dumb- 
bell is completely contained in one of the hypercylinders 
of the other dumbbell. 

Let the k co-ordinate axes be named x1,22,. . . xk, 
and w.1.o.g. let the 21 axis be parallel to the edges of 
Ei. We generalize the proof in [7] as follows. Construct 
a SMT of the endpoints of Ei and transform this to a 
tree T’ by replacing each tree edge with a vertical edge 
and a horizontal edge. Partition Ei into two groups, the 
lateral group Li and the non-lateral group Ni, exactly as 
in [7]. The weight analysis of the non-lateral group does 
not need generalization. However, we need to generalize 
the analvsis of the lateral group to higher dimensions. 

It is easy to see that in the definition of the 
isolation property, we can replace the hypercylinder 
by a hypersphere, hypercube etc., without affecting 
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Consider the analysis of the lateral group as de- 
scribed in [7]. The proof is by induction, where at ev- 
ery iteration the current shortest dumbbell e = (~L,z)) 
is removed, and T’ is restructured to connect the re- 
maining endpoints. It is shown that the removed edge 
can be charged to the difference in weight between the 
two trees. Using the terminology in [7], let TL be the 
maximal connected portion of T’ that includes u and 
that lies wholly within the dumbbell head centered at 
u. A similar piece TL lies around vertex w. Let the piece 
TL pierce the vertical wall of the hypercylinder at ZL at 
pointsU= {‘LL~,u~,..., uk}. Let ui be the unique point 
in U which lies along the path between u and v in T’. 

Instead of doing the restructuring as described in 
[7] (which only works for 3-dimensions), our restructur- 
ing of T’ will proceed as follows (which is very similar 
to our proof of Theorem 1.2). For each ZL~ in U there 
is a corresponding u; whose ~1 co-ordinate is the same 
as that of u, but the rest of the co-ordinates agree with 
those of uj. Let U’ be the set of these corresponding 
points. Remove TL. Construct a (k - I)-dimensional 
restricted Steiner minimal tree S, connecting U’ with 
u. Add vertical edges between each uj and its corre- 
sponding ui. Add the vertical edge (u, v). Remove the 
long edge (Theorem 1.4) along the path in S, between 
u and ul. 

Thus at each iteration we can charge the removed 
edge to the difference in the horizontal weights of the 
successive trees. The process is then repeated for the 
next edge. We can therefore conclude that wt(Li) = 
O(hwt(T’)), which proves Theorem 1.1. 

Since the greedy algorithm ([4, 71) produces t- 
spanners with the leapfrog property, this also serves to 
prove Theorem 1.3. 

4 Conclusions and Open Problems. 

In this paper, we have proved the existence of long 
edges in Steiner minimal trees connecting restricted 
sets of points. We have demonstrated the usefulness 
of these results in the geometric analysis of the weight 
of a set of edges in k-dimensional space satisfying some 
spatial constraints. As an application, we solve the open 
problem of proving that small weight t-spanners can be 
constructed for points in k-dimensional space. Some 
interesting open problems follow. 

A recent paper ([13]) studies the problem of con- 
structing on-line algorithms for the traveling salesperson 
problem. It is unknown whether there exists a constant- 
competitive algorithm for the on-line traveling salesper- 
son problem under the fixed graph scenario for points in 
k-dimensional space. Perhaps some of the techniques in 
this paper can be applied in resolving this problem. 

Some of the off-line heuristics for the TSP problem, 
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most notably the Lin-Kernighan heuristic, have not 
been satisfactorily analyzed in the Euclidean setting. 
It is intriguing whether the suboptimal tour is no more 
than a constant factor longer than the optimal. It would 
be interesting to study whether our results give more 
insight into the heuristic. 

In the construction of sparse t-spanners, very tight 
results have been obtained in reducing the number of 
edges. In [6] it has been shown that, given any 6 > 1, 
t-spanners can be constructed which have at most 72. S 
edges. The corresponding problem in weight is still 
open, i.e. given y > 1, are there t-spanners with weight 
wt( MST) . y? 

We believe that other applications of the Steiner 
tree properties as well as the isolation property are very 
likely. In addition, Steiner tree properties are interesting 
in their own right, and need to be explored further. 
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