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Abstract

Euclidean spanners are important data structures

in geometric algorithm design, because they pro-

vide a means of approximating the complete Eu-

clidean graph with only O(n) edges, so that the

shortest path length between each pair of points is

not more than a constant factor longer than the

Euclidean distance between the points. In many

applications of spanners, it is important that the

spanner possess a number of additional properties:

low tot al edge weight, bounded degree, and low

diameter. Existing research on spanners has con-

sidered one property or the other. We show that it

is possible to build spanners in optimal O (n log n)

time and O(n) space that achieve optimal or near

optimal tradeoffs between all combinations of these
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properties. We achieve these results in large part

because of a new structure, called the dumbbell tree

which provides a method of decomposing a spanner

into a constant number of trees, so that each of the

O(n2) spanner paths is mapped entirely to a path

in one of these trees.

1 Introduction

Let G = (V, E) be a weighted graph, and let

dG(u, v) be the length of a shortest path between

vertices u and v in G. Let t > 1 be any constant. A

subgraph G’ is a t-spanner for G if, for all pairs of

vertices u and v, dGl(u, v)/dG(u, v) < t. When V

is a set of n points in IRk, G is the complete graph,

and the length of edge (u, v) is the Euclidean dis-

t ante between these points, we call. G a complete

Euclidean graph and Gt a Euclidean t-spanner. For

the purposes of deriving asymptotic bounds, we as-

sume that the dimension k and the spanner factor t

are constants independent of n. It is known how to

construct a Euclidean t-spanner having O(n) edges

in O(nlogn) time [5, 13, 14].

Spanners are important geometrical structures,

since they provide a mechanism for approximating

the complete Euclidean graph in a much more eco-

nomical form. Of course, a spanner should have a

small number of edges (ideally O(n)), but for many

applications, it is quite important that the spanner

be endowed with other properties. These include

the following:

Low weight: The total sum of the edge lengths

in the spanner should be as smlall as possible.

The best that can be hoped for is some con-

stant times the weight of the minimum span-

ning tree, O(w(MST)).
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Bounded degree: The number of edges incident

to any vertex should be bounded.

Small spanner diameter: The spanner diame-

ter (or simply diameter) is defined as the

smallest integer D such that for any pair of

vertices, u and v, there is a t-spanner path

between u and v containing at most D edges.

For spanners of bounded degree the best that

can be hoped for is logarithmic diameter. In

some applications even smaller diameters may

be desirable, but this comes at the expense of

increasing degree.

A natural analogy can be made between span-

ners and a transportation network of roads con-

necting a large number of locations. Low weight

means that the amount of concrete needed to build

the roads is small, bounded degree means that no

location in the network has more than a bounded

number of roads incident to it, and small diame-

ter means that it is possible to describe any span-

ner path concisely. Existing work on spanners has

focused on achieving one property or the other.

However, a transportation network which achieves

small diameter by massively increasing total weight

is of little practical value. This suggests the impor-

tant question of whether there exist spanners that

simultaneously achieve some or all of these proper-

ties.

In this paper we present a strong positive answer

to this question. We present a number of new con-

structions for spanners. In almost all cases these

constructions are provably optimal from the per-

spectives of computation time, space, and perfor-

mance on the properties listed above. The prob-

lem is complicated by the fact that there are ob-

vious tradeoffs between these properties. (For ex-

ample, reducing diameter requires the creation of

long edges, which in turn increases total weight, or

may increase the number of edges needed in the

spanner. ) For this reason, we consider all possible

combinations of these properties.

The results of this paper arise from a number

of improved techniques in spanner constructions,

but one deserves particular mention. An important

data structure used in the construction of span-

ners is the well-separated pair decomposition, in-

troduced by Callahan and Kosaraju [4]. This struc-

ture represents the 0(n2) pairs of points using only

O(n) pairs of geometrically “well-separated” pairs

of subsets of points (definitions will be given later).

In this paper, we present a novel method of further

decomposing a well-separated pair decomposition

into a constant number of hierarchically organized

sets of well-separated pairs. (The constant depends

on the dimension and the separation factor. ) Using

this decomposition, we show that a class of span-

ners can be viewed as being the union of a con-

stant number of trees, which we call dumbbell trees.

Moreover, each of the O (nz) spanner paths arises as

the unique path between two leaves in one of these

trees. The fact that the O (n2 ) spanner paths can

be partitioned among a constant number of trees

is a rather remarkable fact in itself, and suggests a

great deal about special structure of these graphs.

Because of the importance of well-separated pair

decompositions to a variety of geometric problems,

we suspect that this decomposition may be of use to

other geometric problems. The idea of dumbbells

has appeared before [7], but their use in decompos-

ing spanner paths is new to this paper.

Here is a summary of the results in this paper.

All of the spanner constructions described below

run in optimal O (n log n) time and O(n) space for

any fixed dimension k.

Degree: We present an optimal O(n log n) time

construction for spanners of bounded degree.

This improves the best known algorithm,

due to Arya and Smid [3], which runs in

O(nlog~ n) time.

Weight: We present an optimal O(n log n) time

spanner construction that has optimal weight

O(W(MST)). This improves the best known

construction for spanners of low weight, which

was due to Das and Narasimhan [8], and which

runs in O (n log2 n) time.

Diameter: Arya, Mount and Smid [2] give ran-

domized and deterministic constructions of

spanners with O(n) edges and O(log n) span-

ner diameter. We show that it is possible to

achieve diameter a(n) + 2 with the same num-

ber of edges, where a(n) is the inverse of Ack-

ermann’s function. Furthermore, we present

a spectrum of tradeoffs between size and di-

amet er. For example, we construct spanners

of diameter 2 with O (n log n) edges, diameter
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3 with O(n log log n) edges, diameter 4 with

O(n log* n) edges, and so on. All these span-

ners have an optimal number of edges for the

given diameter.

Degree and weight: The low-weight construc-

tion mentioned already has bounded degree,

and hence provides an optimal solution to this

problem as well. There are no previous results

on this problem.

Weight and diameter: By using a new analy-

sis tool, we show that the deterministic low-

diameter construction of Arya, Mount and

Smid [2] has weight O(W(MST) log n) as well

as diameter O (log n). This combination is op-

timal. No simultaneous bounds were previ-

ously known.

Degree and diameter: We show how to con-

struct a spanner with bounded degree and

O(log n) diameter. This is optimal with re-

spect to both diameter bound and construc-

tion time. No simultaneous bounds were

known for this problem.

Degree, weight and diameter: We show how

to construct a spanner with bounded de-

gree, weight O ( w(JfSZ’) log2 n), and diameter

O(log n). No simultaneous bounds were previ-

ously known.

In summary, all of our results are optimal in terms

of providing the best tradeoffs between these prop-

erties, except for the spanner having simultane-

ously bounded degree, low weight, and low diam-

eter, which is possibly suboptimal by at most an

O(log n) factor in weight.

The rest of this paper is organized as follows. In

Section 2, we briefly recall the well-separated pair

decomposition. In Section 3, we define the dumb-

bell tree, and show that there exists a spanner that

can be decomposed into a constant number of such

trees. In Section 4, we give a simple optimal algo-

rithm for constructing a t-spanner of bounded de-

gree. In Section 5, we show that the spanner that

results from the well-separated pair decomposition

can be pruned in such a way that we get a spanner

of weight O(W(MST)). Section 6 considers span-

ners of low diameter. Our results of Section 3 imply

that it suffices to add edges to a constant number

of bounded degree trees in order to get a spanner

of low diameter. This is done by using a technique

due to Alon and Schieber[l]. In Section 7, we show

how to combine the dumbbell tree with topology

trees [10] in order to get a spanner of bounded de-

gree and O(log n) diameter. In Section 8, we show

that spanners that result from the well-separated

pair decomposition have weight O (w[MS2’) log n).

Combining this fact with a result of [2] gives a

t-spanner of weight O ( w(iMST) log n) and diame-

ter O (log n). Finally, in Section 9, we consider all

properties degree, weight and diameter simultane-

ously.

2 Split trees and well-separated

pairs

Virtually all of our spanner constructions will rely

on the notion of a split tree and a well-separated

pair decomposition of a set of points [4, 13, 14]. In

this section, we review these data structures.

A split tree is a tree that stems from a hierarchi-

cal decomposition of a point set into regions that

are k-dimensional rectangles of bounded aspect ra-

tio. There are a number of variants on a split tree.

We outline the fair split tree, due to Callahan and

Kosaraju [4]. Place a smallest-possible k-rectangle

R. about the point set V. The root of the split

tree is R.. Choose the longest side of R. and di-

vide it into two at its bisector. Rectangle R. is

therefore split into two smaller rectangles, RI and

R2. Then the left subtree of R. is the split tree for

RI n V, and the right subtree is the split tree for

Rz n V. The process is repeated until a single point

remains.

In order to simplify some of our arguments, it is

convenient to think of a fair split tree in an ideal

form, which we call the idealized box split tree. In

this tree, rectangles are k-dimensional hypercubes,

each split recursively into 2k identical hypercubes

of half the side length. Actual constructions will be

carried out using the fair split tree., but the ideal-

ized box split tree provides a clean way of concep-

tualizing the fair split tree for purpcmes of analysis.

Next we consider well-separated pair decompo-

sit ions. Let .s >0 be a constant. Two point sets A

and B are well separated if they can. be enclosed in

k-spheres of radius T, whose distance of closest ap-
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preach is at least sr. A well-separated pair decom-

position is a set of pairs of nonempty subsets of S,

{{ AI, BI}, {AZ, BZ},. . . . {An, Bin}}, such that (1)

the sets Ai and lli are disjoint, (2) for each pair

a, b ~ S, there is a unique pair {Ai, .Bi} such that

a E Ai and b c l?;, and (3) Ai and I?i are well-

separated. Callahan and Kosaraju use a split tree

to compute a set of O(s~n) well-separated pairs in

O(nlog n + s~n) time.

Given these well-separated pairs, Callahan and

Kosaraju show that a spanner can be constructed

easily. For each pair {A~, B;} in the well-separated

pair decomposition, choose arbitrary points, called

representatives, ai E Ai and bi < B;, and connect

a; and bi with an edge in the spanner. Similar

constructions were previously given by Vaidya[14]

and Salowe[13].

3 The dumbbell tree

One of the major difficulties in establishing the re-

sults of this paper is the lack of structure in well-

separated pair decompositions and the spanners

that are derived from them. Unlike the split tree,

well-separated pair decompositions do not possess

any obvious hierarchical structure. One of the ma-

jor innovations of this paper is the observation that

well-separated pair decompositions, and hence the

spanners derived from them, can be decomposed

into a constant number of hierarchically organized

structures. This greatly simplifies the analysis and

construction of spanners, by reducing problems on

general graphs to much simpler problems on trees.

This decomposition may have applications to a

number of other problems where sparse geometric

graphs are used.

Space does not permit a complete presentation

of the decomposition, but the intuition is rela-

tively straightforward. First observe that each

well-separated pair {Al, Bi} can be viewed as a ge-

ometrical object, consisting of two rectangles con-

t aining Ai and Bi, respectively, joined by a line

segment. The resulting shape, is called a durnb-

belt and the rectangles (or in fact, small perturba-

tions of these rectangles) are called the heads of the

dumbbell. The length of a dumbbell is defined as

the distance between the centers of its heads. The

size of a head is defined to be half its diameter.

Das, Heffernan and Narasimhan [7] introduced

the concept of the dumbbell. We claim that it is

possible to partition the set of dumbbells arising

from the well-separated pair decomposition into a

constant number of groups, such that within each

group, dumbbell heads are either disjoint, or one

dumbbell is nested entirely within the head of the

other dumbbell. In particular, we can show the

following (proofs will appear in the full paper):

Theorem 1 Consider the dumbbells resulting

from a well-separated pair decomposition of a set

of n points in dimension k with separation factor

s. In O(n) time it is possible to partition these

dumbbells into O(s)k classes, such that within each

class:

(1)

(2)

(3)

two dumbbells either have lengths that are

within a factor of 2 of one anotherj or else

they differ by a factor of at least s,

any two dumbbells within the same length

interval [x, 2x], are separated by a distance

greater than 2x/s, and

we may deform the heads of each dumbbell

(forming pseudo-dumbbells) such that a dumb-

bell of length x has a head of size at most 4x/s,

and such that the heads of any two pseudo-

dumbbells are either disjoint or else one is

nested within a head of the other.

The nesting of dumbbells provides us with a tree

structure, which we call a dumbbell tree. The im-

portant fact about the dumbbell tree decomposi-

tion is that spanners can be derived from the well-

separated pair decomposition which inherit this

structure. Thus, they can be viewed as consisting

of the union of a constant number of trees. Further-

more, we show that each spanner path is mapped

entirely to one tree. Our main result is summarized

in the following theorem:

Theorem 2 Given a set V of n points in dimen-

sion k, and given t >1, a forest consisting of O(1)

rooted binary trees can be built in O (n log n) time

and O(n) space, having the following properties:

(1) For each tree in the forest, there is a 1-1 cor-

respondence between the leaves of this tree and

the points of V.
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(2)

(3)

The

Each internal node has a unique representative

point, which can be selected arbitrarily from

the points in any of its descendent leaves.

Given any two points u, v e V, there is a

tree T of the forest, so that the path formed

by walking from representative to representa-

tive along the unique path in T between these

nodes, is a t-spanner path for u and v.

constant factors for the number of trees, pre-

processing ti(e and space are O (Sk log-s), whe;e .s

is O(k/(t – l)). With the addition of an augment-

ing data structure of size O(n), we can compute a t-

spanner path between any two points in O(p+log n)

time, where p is the number of edges on the path.

4 Spanners of bounded degree

In this section, we prove the following general re-

sult, which will be used to construct in O(n log n)

time a t-spanner of bounded degree.

Theorem 3 Let V be a set of n points in IRk

and let t’ > t > 1. Let G be a t-spanner for

V and assume that the edges of G can be di-

rected such that each point has outdegree at most a,

In O(n log n) time, we can construct a t’-spanner

for V in which each point has degree bounded by

O(a (et/(t’ – t))k-l), for some constant c.

In order to prove this result, we need the notion

of single-sink spanner. Let V be a set of points in

IRk, let z be a point of V, and let t >1. A directed

graph having the points of V as its vertices is called

an x-single-sink t-spanner for V if for every point

y in V there is a t-spanner path from y to z.

Let 8 be a fixed angle such that O < 6 < 7r/4

and l/(cos 0 – sin 19) ~ t. Let C be a collection

of k-dimensional cones such that (i) each cone has

its apex at the origin, (ii) each cone has angular

diameter at most d, and (iii) the union of these

cones covers IRk. For each point p 6 IRk and C c C,

let C’Pbethe cone C+p:={a+p:a CC’}.

Now consider the set V and the point z. Let n

be the size of V. For each C G C, let Vc be the

set of all points of V \ {z} that are contained in

the cone CZ. If a point is cent ained in more than

one cone, then we put it in only one subset. If a

subset Vc cent ains more than n/2 points, then we

partition it (arbitrarily) into two subsets Vc,l and

Vc,z, each of size at most n/2.

The z-single-sink t-spanner for V is obtained as

follows. For each subset VC—or in case this set

cent ains more than n/2 points, for each subset Vc,i,

i = 1, 2—we take a point y in this subset that is

closest to x, and we add an edge from y to z. Then

we recursively construct a y-single-sink t-spanner

for this subset. The recursion stops if a subset has

size one,

Using exactly the same analysis as in [12], it fol-

lows that the graph is a single-sink t-spanner.

Lemma 1 Let V be a set of n points in Etk, let

x E V, and let t > 1. In O(nlogn)l timej we can

construct an x-single-sink t-spanner for V, such

that each point has outdegree at most 1 and indegree

bounded by O((c/(t – l))k-l),for some constant c.

Now we are ready to give the transformation that

will prove Theorem 3. Let V be a set of n points

in IRk and let t’> t > 1. Let G be ii, t-spanner for

V and assume that the edges of G can be directed

such that each point has out degree :at most a. We

denote this directed version of G by ~.

For each point x of V, we do the following. Con-

sider all points of V that have an edge in ~ towards

x. Let W be the set of these points. We replace

all edges from W to x by an z-single-sink (t’/t)-

spanner for the set W U {x}.

This gives a directed graph do. We remove

the direction from each edge and call the result-

ing graph Go. We claim that Go is a t’-spanner for

V in which each point has a degree bounded by a

constant.

To prove this, let p and q be any two points of V.

There is a t-spanner path p = PO, PI, P2, . . . . pm = q

in G between p and q. Consider any edg~ {pi, pi+l}

on this path. Assume w.1.o.g. that in G this edge

is directed from pi to p;+l. The directed graph Go

contains a p;+l-single-sink (t’/t)-spanner with p; as

one of its vertices. Hence, in the graph Go there

is a (t’/t)-spanner path between pi and p;~l. The

concatenation of all these paths has length at most

-Z:;l(t’/O lPiPi+ll < (t’/t) t Ipql : t’ Ipql.

Consider the directed graphs G and do. It fol-

lows from Lemma 1 that the outdegrees of both

these graphs are the same. Hence, each point

in Go has outdegree at most a. Let x be any
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point of V. We bound the indegree of x in co.

This graph contains an z-single-sink spanner hav-

ing ~((~) ~-1) = o((fi)~-l) edges with sink

z. Now let y be any point such that G contains an

edge from z to y. (There are at most Q such points

y,) Then x occurs in a y-single-sink spanner, and it

has indegree bounded by O((ct/(t’ – t))~-l ) in this

spanner. Hence, in the directed graph do, point z

has indegree bounded by 0((1 + a) (et/(t’– t))~-l ).

This proves that in the undirected f-spanner Go,

each point has a degree bounded by a constant.

This proves Theorem 3. It turns out that several

known spanners have the property that their edges

can be directed such that each point has bounded

outdegree. For example, for any O < @ < ~/4, the

9-graph (see [12, 2]) is a t-spanner fort ~ l/(cos 0–

sin t?). This spanner is directed already and each

point has outdegree bounded by 0((c/6)~-1). It

can be constructed in O(n log~–l n) time.

Spanners based on well-separated pair decom-

positions also have the property we need. Essen-

tially, the construction is to enumerate O(n) sets of

“box pairs .“ For each well-separated pair of boxes

{A, B}, choose an arbitrary point a ~ A and b G B

and add an edge {a, b] to the spanner. This edge

is directed from a to b if the parent box of A is not

larger than the parent box of B, then the result-

ing graph has bounded outdegree. (For details, see

Callahan and Kosaraju [5].) The entire graph can

be constructed in O(n log n) time.

Now we can prove the main result of this sec-

tion. Let V be any set of n points in 11%~and let

to > 1. To construct a to-spanner for V having

bounded degree, we set t = & and t’ = to. In

O(n log n) time, we construct a t-spanner G sat-

isfying the condition of Lemma 3. Then we apply

the given transformation and obtain the desired to-

spanner. This proves:

Theorem 4 Let V be a set of n points in ELk and

let t > 1. In O(n log n) time, we can construct a

t-spanner for V in which each point has a degree

that is bounded by a constant only depending on t

and k.

5 Spanners of low weight

In this section, we give an O(n log n) time construc-

tion of a t-spanner that has weight 0( w(JIST)). In

order to bound the weight of this graph, we use a

theorem from Das, Narasimhan and Salowe[9].

Let c >0 be a constant, let A be a set of edges,

and let e G A be an edge of weight 1. If it is possible

to place a cylinder 1? of radius and height c. 1 each,

such that the axis of B is a subedge of e and B n
(A\ {e}) = 0, then e is said to be isolated. The set

A has the isolation property if all edges are isolated.

Theorem 5 ([9]) If A has the isolation property,

then w(A) = O(W(MST)), where MST is a mini-

mum spanning tree with respect to the endpoints of

A.

It is easy to see that in the definition of the iso-

lation property, one can replace the cylinder with a

sphere, box, etc., without affecting the above the-

orem.

The low-weight spanner is constructed in the fol-

lowing way. Let C be a cone, and let E(C) be the

set of edges in the box well-separated pair construc-

tion, that, when translated such that one of their

endpoints coincide with the apex of C, lie inside

of C’. We change the endpoints of an edge to en-

sure that the edge does not intersect the interior of

the convex hull of the points within the respective

boxes. These endpoints are chosen from among the

points with maximum or minimum coordinates in a

particular dimension. For each point p, mark edge

e E E(C) if it is the shortest edge in E(C) with

one endpoint in a box ancestor of p. The spanner

G1 consists of the union of the marked edges.

We claim that G1 is a spanner and that its edges

satisfy the isolation property. The fact that G1 is

a spanner can be proved by a straightforward in-

duction proof. To show that G1 has the isolation

property, we use some of the pruning techniques of

Das, Heffernan, and Narasimhan[7]. We may as-

sume that edges have been placed into a constant

number of groups so that each edge has either ap-

proximately the same length or differs in length by

a sufficiently large amount (but bounded by a con-

st ant factor).

We now show that edge e = (a, b) has the iso-

lation property. Edge e corresponds to some well-

separated pair, say {A, B}, in the idealized box

split tree. Note that the length w(e) of e is re-

lated by a constant factor to the diameter d of

these boxes. Place a box @ of diameter d about
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the center point of e; we first claim that ~ does not

cent ain any points.

To show this, edge e is present because there is

some point p < A, say, for which (a, b) is a shortest

well-separated pair in direction C. If there was a

point q in ~, this would imply that p and q would

be in a well-separated pair. However, the length

of this well-separated pair would be smaller than

w(e), and it would be in the direction of C. (We

note that this new well-separated pair edge may

be in a nearby cone as well; this detail can be fixed

using some pruning techniques. )

We now claim that at most a constant number

of edges intersect a slightly-shrunken version of /3.

Suppose that an edge that is significantly shorter

than w(e) intersects /3. Then we can shrink ~ by

a small amount. Note there are no points inside of

~, so ,0 will not be shrunken by more than a small

percentage.

Suppose that an edge e’ = (a’, 6’) that is sig-

nificantly longer than w(e) intersects @. Then, if

the idealized box A’ containing a’ is sufficiently far

away, any point in A’ would be in a well-separated

pair with a, and the edge corresponding to this

well-separated pair would be shorter than w(e’)

and in approximately the same direction. (Again,

the proof is only sketched. Note that this is where

we need to choose the box representatives in a care-

ful way.)

Finally, consider an edge that has approximately

the same length as w(e). Then these edges must

correspond to idealized boxes within distance w(e)

of A or B. Packing arguments that use the fact that

w(e) is related to the width of A imply that there

are only a constant number of idealized boxes in

this area. Therefore, there are only at most a con-

stant number of edges that can intersect ~. Again,

using the decomposition technique of Das et al. [7],

one can partition the group of edges into a constant

number of edge sets, each possessing the isolation

property. The following theorem is proved.

Theorem 6 In any dimension, jor any t > 1, t-

spanner G1 can be constructed in O (n log n) time,

and it has weight O(W(MST)).

Our construction actually has bounded degree as

well. This is because any set of edges possessing the

isolation property has bounded degree (a straight-

forward proof ). We therefore have the following:

Corollary 6.1 In any dimension and for any t >

1, t-spanner GI can be constructed in O(n log n)

time, and it has weight O(W(MST)) and bounded

degree.

6 Spanners of small diameter

We first consider the case of the l-dimensional

spanner, and then we show that a,ll the higher-

dimensional cases are closely related to the 1-

dimensional case.

In the l-dimensional case, the input is a set of

n points on a line, and the output is a graph with

small diameter. Surprisingly, a useful construction

has already been discovered. It was devised by

Alon and Schieber[l]. Among other results, this

construction implies that there is a linear-sized 1-

spanner with diameter a(n) + 2.

Here are the essential aspects of the Alon and

Schieber construction (they are tailcmed somewhat

to enhance the analogy to our probllem). Suppose

we want a spanner of diameter d that contains as

few edges as possible. Alon and Schieber divide up

the point set into 1 pieces, each piece of size n/4.

For each piece, recursively construct a spanner of

diameter d; this accounts for spanner paths within

the pieces. In order to account fclr the spanner

paths between the pieces, select the points in each

group with smallest and largest values. Each of the

points in a particular group are connected directly

with the two group representatives; the represen-

tatives themselves are connected with a spanner of

diameter d – 2.

The number of edges T(n, d) used in the Alon

and Schieber construction is given by the recur-

rence:

T(n, d) = O(n) -t

T(n, 1) = 0(n2).

By choosing the values

T(21, d – 2) + fI’(n/(, d)

of 4 appropriately, it is pos-

sible to show that T(n, 2) = O(nlog n), T(n, 3) =

O(nloglog n), T(n,4) = O(nlog” n), and so on. It

is also possible to show that the diameter is a(n)+2

if one allows only O(n) edges.

In order to generalize this idea to the k-

dimensional case, we use the fact that there exists

a spanner which can be represented as the union of

a constant number of bounded degree trees. (See
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Theorem 2.) Let T be one of these trees. We

construct a modified version of T whose degree

is bounded by a constant, and we endow it with

some additional geometric properties. Specifically,

this modified dumbbell tree T’ is a tree whose ver-

tices are original points and whose edges are Eu-

clidean edges. The import ant geometric property

of T’ is the following: if a pair of points a and b are

in a well-separated pair that actually appears as a

dumbbell in T, then the path between a and b in

T’ is a t-spanner path.

The actual construction of T’ is done in the fol-

lowing way. A dumbbell A in T contains several

children dumbbells Al, Az, . . . . Am and several iso-

lated points PI, p2, . . .pj. Consider these isolated

points to be degenerate dumbbells and therefore

children of A. This possibly large set of edges will

be replaced by a tree T’” whose degree is bounded

by a constant, described below.

For each box in Ai, choose a representative

point. Let tree T“ be the minimal tree (with re-

spect to edge inclusion) in the fair-split tree that

connects these representative points. This tree T“

is a Steiner tree: it consists of original points (the

represent ative points), Steiner points (degree-3 ver-

tices), and paths connecting these two types of

points. T’” is the tree that results from replacing

each of the paths in Tti with a single edge.

The proof that T’ has the t-spanner path prop-

erty stems from the fact that the children dumb-

bells are much smaller than the parent dumbbell

and the fact that the diameter of a box is halved

in the fair-split tree within a constant number of

levels. A detailed proof is omitted.

We apply a construction akin to the one of

Alon and Schieber to shortcut the paths. Let

P = Z1, X2,. . .,aj be a path in T’. By the trian-

gle inequality, any path P’ = X1, ZP(2), ZP(3), . . . . xj,

where 1 < p(2) < p(3) < . . . < j has length

less than or equal to the length of P. Appropri-

ate shortcuts, therefore, have spanner properties.

The details of how these shortcuts are constructed

is omitted.

Theorem 7 For any t >1, and any dimension k,

there is a t-spanner containing O (n) edges and con-

structible in O(n log n) time with diameter a(n) +2.

If one allows more space, the diameter can be

reduced. Here are some of our results.

Theorem 8 For any t >1, and any dimension k,

1.

2

3.

7

there is a t-spanner containing O(n log n)

edges and constructible in O (n log n) time with

diameter 2,

there is a t-spanner containing O(n log log n)

edges and constructible in O (n log n) time with

diameter 3,

there is a t-spanner containing O(n log* n)

edges and constructible in O (n log n) time with

diameter 4.

Spanners of bounded degree

and small diameter

Theorem 9 For any t > 1, and any dimension

k, in O(n log n) time, a t-spanner whose degree is

bounded by a constant and whose diameter is at

most O (log n) can be constructed.

Our low-diameter constructions of the previous

section have high degree. On the other hand, it is

difficult to bound the diameter of our bounded-

degree constructions. Note, however, that our

diameter results are closely related to the one-

dimensional results.

Consider the following strategy to produce a

spanner of O (log n) diameter and bounded degree

for a set of n points on a horizontal line. Without

loss of generality, assume that n is a power of 2 and

that they are numbered O through n – 1 from left

to right.

Include an edge (i, i + 1), O ~ i < n. The result-

ing graph is a spanner, but its diameter is n – 1.

Select the set of even-numbered points, 0,2,4,...,

and connect them by a set of edges, (2i, 2i + 2),

O ~ i < n/2. Repeat this process. The resulting

set of edges has log n diameter, but several of the

points have degree log n as well.

In order to reduce the degree, note that O (log n)

diameter would have been preserved if the odd-

numbered points were chosen at the second “level,”

or if either 2i or 2i+ 1 was “promoted” to the second

level. A similar statement can be made at the l-th

level (2~i through 2t(i + 1) – 1 can be promoted). If

one is careful about alternating “promotions ,“ the
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resulting structure, reminiscent of a bounded de-

gree skip-list, has bounded degree and logarithmic

diameter.

In order to generalize this proof to all dimen-

sions, we need to apply the same strategy to trees,

specifically the modified dumbbell tree of Section

6. Here, the appropriate analogue to the leveling

idea seems to be Frederickson’s topology trees[lO].

We provide a rough outline of the method and

the properties we need to maintain. Suppose we

have a rooted tree T whose degree is bounded by

a constant. Furthermore, assume that every leaf

node has a unique label and that any internal node

can be labeled with the label of an arbitrary leaf

node. The first step is to choose representatives

for the nodes in T. To do this, we propagate leaf

labels. A node chooses one of the propagated labels

and propagates the other up the tree. Each label

is used at most twice, once at a leaf, and once at

an internal node.

We then perform a layering approach, grouping

sets of nodes into a single node at the next layer.

An important issue is the maintenance of a tree

whose maximum degree is bounded by a constant

at every level.

Given this layered tree, labels are again dis-

tributed so that no label is used more than a con-

stant number of times. Roughly, the labeling pro-

cedure ensures that points (corresponding to the

labels) have degree bounded by a constant, and

the leveling process ensures that the path has link-

distance O (log n). Full details will be included in

the final paper.

8 Spanners of low weight and

small diameter

We use the following spanner construction, due to

Arya, Mount, and Smid[2]: Start with a fair-split

tree, and designate some nodes as heavy and some

as light. A node is heavy if it cent ains more points

in its subtree than its sibling, and it is light other-

wise (if both subtrees contain an equal number of

points, the left child is heavy and the right child

is light). We use this designation to determine box

representatives for the well-separated pairs; specifi-

cally, a parent box inherits the representative of its

heavy child. Arya et al. [2] show that if the repre-

sentatives are chosen in this way, then the resulting

spanner has diameter O (log n).

We now show that the weight of well-separated

pair constructions is O(ZO(MST) log n), which is

tight [11]. This improves the results of Lenhof et

al. [11], who prove that the sum D of the diameters

of the boxes in a box split tree is O(W(MST) log2 n)

and that the length of the well-separated pair edges

is O(D). Our techniques can be used to show that

D = O(w(MST)logn).

Rather than focus on the split tree, we focus

on the dumbbell tree. Recall the gap property

of Chandra et al. [6]: A set of edges E has the

gap property if for every pair el and e2, the dis-

tance between the closest endpoints of el and e2”

is at least the length of the smaller edge. Chan-

dra et al. prove that if E has the gap property,

W(E) = O(w(iwsz’)logn).

In our case, let E be the set of well-separated

edges represented by a dumbbell tree. We show

that there is a set of edges El ~ E such that El

has the gap property and w(E’) = El(w(E)). This

proves that w(E) = O(W(MST) Iogn).

To select E’, initially let E’ = E, and consider

any pair of edges el and e2 in E’. l[f they violate

the gap property, remove the shorter one, say el,

and continue with E’ \ {el }. Eventually, E’ will

have the gap property.

In order to show that w(E’) = @(w(E)), build

the following directed forest: when e-l is eliminated

because of e2, direct an edge from e2 to el. Note

that only the root e of a tree t(e) in the forest

will remain in E’, so we want to show that w(e) =

@(w(t(e))).

Consider the children of edge e’ in t(e). Re-

call the length grouping property c~f Theorem 1.

The children of e’ are of length i~pproximat ely

c%. w(e’), where i > 0 indicates the length group,

and O < c << 1 is a constant, From dumbbell tree

properties, only a constant number & of edges of

length 1 may be within a distance 1 of a fixed point,

so the number of children of e’ in group i is at most

2(, f for each endpoint. The parameter c can be

chosen independently off, so that ~c < 1/2. It fol-

lows that the total weight of the children of e’ is at

most fi~w(e’). This implies that w(t(e)) s ~,

where 6 = &~, which in turn implies the main

theorem in this section,
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Theorem 10 For any t > 1, and any dimen-

sion k, there is a t-spanner, constructible in

O(n log n) time, with O(log n) diameter and weight

o(w(MsT)logn).

9 Spanners of bounded degree,

low weight and small diameter

It turns out that our bounded degree, O(log n)

diameter spanner also possesses some interest-

ing weight properties. Our analysis above shows

that the sum of the diameters D of the boxes

in an appropriate box split tree construction is

0( w(MST) log n), so one layer of the construc-

tion has weight O ( W( MST) log n). Since there are

O(log n) layers, the weight is O(W(MSZ’) log2 n).

We conclude with the following result:

Theorem 11 For any t > 1, and any dimension

k, there is a t-spanner, constructible in O(n log n)

time, with bounded degree, O(log n) diameter, and

weight O(W(MSZ’) log2 n).

Conjecture 1 For any t >1, and any dimension

k, there is a t-spanner, constructible in O(n log n)

time, with bounded degree, O (log n) diameter, and

weight O(W(MSZ’) log n).
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