
1

Distinct Value Estimation on Peer-to-Peer Networks

Zubin Joseph

UT Arlington

zubin.joseph@uta.edu

Gautam Das

UT Arlington

gdas@cse.uta.edu

Leonidas Fegaras

UT Arlington

fegaras@cse.uta.edu

ABSTRACT

Peer-to-Peer networks have become very popular on the Internet,

with millions of peers all over the world sharing large volumes of

data. In the assistive healthcare sector, it is likely that P2P

networks will develop that interconnect and allow the controlled

sharing of patient databases of various hospitals, clinics, and

research laboratories. However, the sheer scale of these networks

has made it difficult to gather statistics that could be used for

building new features. In this paper, we present a technique to

obtain estimations of the number of distinct values matching a

query on the network. We evaluate the technique experimentally

and provide a set of results that demonstrate its effectiveness, as

well as its flexibility in supporting a variety of queries and

applications.

1. INTRODUCTION
Peer-to-Peer (P2P) networks are a highly popular medium for

sharing CPU processing power, storage space, and/or content in

the form of text documents and various forms of media. Some

applications such as Skype [12] even use such networks for Voice

over IP (VoIP) telephony. In the assistive healthcare sector, it is

likely that P2P networks will develop that interconnect and allow

the controlled sharing of patient databases of various hospitals,

clinics, and research laboratories. These networks usually operate

over the Internet and consist of thousands, and even millions of

peers that can be located anywhere in the world.

Additionally, P2P networks are designed to be scalable, fault-

tolerant and dynamic with no central point of failure. In the

unstructured peer-to-peer networks that we focus on in this paper,

peers do not make any assumptions about the location of other

peers, the data, or of the network topology. Each peer maintains

connections to a small set of neighbors that are usually accessed

over the Internet through their IP addresses.

Each peer on the network contributes resources that are accessible

by other peers on the network. This contribution is often in the

form of music files, especially in popular P2P networks such as

Gnutella [10] and KazaA [13]. All peers are considered ‘equal’, in

that they can be either servers or clients, depending on the

services or resources that they are providing or accessing.

Additionally, peers are free to join and leave the network at any

time.

Given the volatility of this architecture and the vast numbers of

participating peers, it is often difficult to keep track and gather

statistics of the large volumes of the data that is available on the

P2P network. In this paper, we focus on a technique that samples

a subset of peers in order to estimate the total number of distinct

tuples that match a query on the network.

The problem of distinct value estimation is well known in the

domain of databases. The capability of answering queries from

any peer allows trends and data mining to be inferred by making

use of density and duplication values – e.g., the spreading patterns

of certain diseases can be mined by gathering such statistics

across distributed health case databases. It is especially important

for query optimization, especially in the construction of

histograms [1, 4, 14, 15]. Histograms use the number of distinct

values of an attribute (in a table/bucket) to maintain statistics,

such as the density, which is the average number of duplicates per

distinct value.

1.1 Potential Applications
Currently, distinct value estimation techniques do not exist for

P2P networks. Having this type of statistics available would not

only allow histogram construction in the future, but would also

enable management, administration, monitoring, and report

generation capabilities to be built into such systems. For example,

on a healthcare P2P network, queries such as the total number of

distinct diseases in a geographical region, or the total number of

distinct patients suffering from a particular ailment could be

estimated for the entire network. This capability even allows

trends to be gathered by making use of density and duplication

values.

New and exciting new applications also become possible.

Consider a peer-to-peer network where each user at a peer submits

queries to the network or to a database. Distinct value estimation

can be used to assess the query logs of users and discover the

number of unique queries about a certain topic or subject. This

too, can be used to assess popularity of queries.

1.2 Challenges
The problem of distinct value estimation on unstructured peer to

peer networks is a new and, to the best of our knowledge, has not

been investigated to date.

Performing such estimations on P2P networks has many

challenges. One of the most apparent difficulties is that distinct

value estimation in a centralized data repository is known to be a

hard problem, as proved in [4]. A variety of estimators [4,1 4, 15]

exist, but currently none can provide guaranteed bounds for error

for a uniform-random sample of the tuples in the column of a

table [1].

2

Additionally, this problem is made more challenging by the fact

that our estimation is targeted toward queries executed on

unstructured peer-to-peer networks, where each peer only knows

information about its neighbors. More specifically, in this

architecture, no peer has knowledge of the topology of the P2P

network, the distribution of the data residing on the network , nor

of the location or sizes of all other peers on the network.

With constraints such as these, it is a challenge for a user at one of

these peers to obtain a uniform random sample to apply a distinct

value estimator. There is also an associated network cost in

accessing and retrieving samples from other nodes across the

network. This must be minimized to avoid long lag times before

users see the results of a distinct value approximation query.

The calculations for gathering such statistics may require

parameters such as the total size of the data available on the

network or the total number of nodes. Parameters such as these

may be largely unavailable at a peer, and may also need to be

approximated.

Distinct value estimation queries are typically made for one or

more attributes in a table. In a typical P2P network, such as

Gnutella, these attribute values have been shown to follow a

Zipfian distribution [30, 21], with duplicates residing on different

peers scattered throughout the network. This potential clustering

of similar data at neighboring peers adds another interesting

dimension to the problem. Furthermore, the distributions and

clustering levels vary depending on the attribute under

consideration. The range of queries that are possible makes

distinct value estimations even more compelling.

1.3 Overview of Our Algorithm
In this paper, we offer a technique of performing distinct value

estimations that is a novel combination of strategies from different

domains. Our algorithm operates as follows.

It executes a Metropolis-Hastings[3] random walk sampler on the

P2P network in order to randomly select peers from the entire set

of peers on the system. It then obtains a uniform-random data

sample from each selected peer. Then, using a block-level

sampling technique (called COLLAPSE [1]), it removes

duplicates from within a node-sample. After combining the

collapsed samples from multiple peers at the sink (the peer that

originated the query), it applies an existing distinct value

estimator by treating the entire sample as a single uniform-random

one.

1.4 Our Contributions
In this paper, we show that by leveraging these different

techniques, our algorithm for distinct value estimation is very

effective because:

• It does not require that peers exchange calculations or

knowledge of constants that govern algorithm behavior.

• It reduces the preprocessing time, and the number of

assumptions and approximations of P2P network

characteristics, such as the total size, number of nodes, etc.

• It minimizes the information that a node needs to maintain

about its neighbors.

• It is largely independent of the clustering and/or distribution

characteristics of the data in the P2P network.

• It allows the flexibility of changing distinct value estimators.

• Its performance, in some cases, can approach that of a

uniform random sample of the entire dataset of the network.

The rest of this paper is organized as follows. In Section 2 we

discuss related work. In Section 3 we discuss the key ideas that

are leveraged in our eventual algorithm for computing distinct

values over P2P databases. The actual algorithm is described in

Section 4. In Section 5 we show how our algorithm can be applied

to a P2P network to answer simple queries. In Section 6 we

describe a comprehensive set of experiments that demonstrate the

effectiveness of our approach. We conclude in Section 7.

2. RELATED WORK
A variety of search and node traversal techniques exist for peer to

peer networks, both structured and unstructured. Many these are

surveyed and described in great detail in [16, 17].

A vast amount of studies have been done on random walks

including [5, 24]. The Metropolis-Hastings algorithm is also

discussed in [3], and is used to execute a random walk over

documents indexed by a search engine. Alternatives are also

suggested in [25], where the authors suggest the Random Weight

Distribution method, which requires underlying support of the

P2P network. The authors in [11] suggest an interesting

modification to Metropolis-Hastings sampler that make it suitable

for dynamic graphs. In this paper we only address static graphs.

We leave handling highly dynamic cases as future work.

Using sampling for estimating query results is a well known

problem that has received a large amount of attention by Haas et

al [32], Lipton et al [31] and Hou et al [22, 23]. Sampling has also

been used for approximate query processing in centralized

databases [1, 14, 35, 36, 24, 4].

Several authors have looked into approximation-type queries for

P2P networks, including using random walks over the web in

[18], and aggregations over unstructured P2P networks as in [2].

Alternative gossip-style techniques of computing aggregates have

been suggested by [20], but require participation of every node in

the system. Techniques utilizing structured peer-to-peer networks

have addressed the problem of sampling random peers [19], as

well as approximations [26], and there is a large body of work on

these types of networks. In this paper we target unstructured P2P

networks, which require a different approach.

In statistical literature, cluster sampling is a concept considered

similar to block-level sampling [1]. In this paper we consider this

technique of sampling, originally proposed in [22, 23]. An

analysis of block-level sampling as applied to databases is

discussed in [1], where block-level estimates are used for

histogram construction and distinct value estimation. Chaudhuri

et al consider this in [14], and also suggest an optimal error

distinct value estimator.

Other Distinct Value Estimators have been proposed as well, such

as the Adaptive Estimator [4], the Goodman Estimator [27] and

other estimators in [15, 28, 29].

3. FOUNDATIONS OF OUR APPROACH
In this section, we provide the foundations of our approach to this

novel problem. Our actual algorithm is discussed in the next

section.

3

We model the P2P network as a graph G with peers as nodes and

edges connecting nodes to their neighbors. We therefore refer to

nodes and peers interchangeably throughout this paper. We

assume that each peer Pi has a local database Di, and refer to the

total data D on the network including duplicates, as a multi-set as

it consists of the sets of data residing at each peer in the network.

We consider SQL-like queries of the form “SELECT COUNT

(DISTINCT *) FROM D WHERE <selection condition>”. As

indicated in the introduction, such queries can be extremely

important for statistics estimations in many emerging applications.

Our objective is to obtain the best estimates of distinct values

possible, preferably within a given bound on the cost (or latency)

of executing the query. In general, the cost of query execution is

dependent on the cost of traversing the network to sample peers,

as well as the cost of sampling the local databases and sending the

data back to the originating peer for the result estimation.

3.1 Distinct Value Estimators
We discuss two distinct value estimators, the Guaranteed-Error

Estimator (GEE) [14] and the Adaptive Estimator [4]. Both of

these estimators require a uniform-random sample and the counts

(fi values) of the elements that occur i times in the sample of r

elements. In order to estimate the total number of distinct

elements (D̂), both of these estimators only scale the number of

single occurrences of elements in a uniform-random sample.

Multiple occurrences of an element are not scaled.

3.1.1 Guaranteed Error Estimator
The Guaranteed Error Estimator (GEE) [4, 14] is an estimator

with optimal error and a bias of at most)/1(qO [1, 4, 14].

∑
=

+=
r

j

jff
r

n
D

2

1
ˆ

where fi is the number of distinct elements in the sample that

occur i times. It requires that the value of n is known, where n is

the size of the set that contains all the values of an attribute in a

table, including all duplicates. In our case, n refers to the total

number of data tuples in the entire network.

3.1.2 Adaptive Estimator
The Adaptive Estimator (AE) [4] is a heuristic estimator for the

number of distinct values. It takes on the form:

dKfD i +=ˆ

where d is the number of distinct values in the sample, given

by ∑
=

=
r

i

ifd
1

and K is an appropriate scaling factor that is

computed from the sample. An important feature of AE is that

unlike GEE, it does not require a value for n (the total size of the

multi-set).

3.1.3 Error Metrics
In this paper, we define the estimation error according to the ratio-

error metric given in [4]:

()DDDDError /ˆ,ˆ/max=

3.2 COLLAPSE
The above estimators assume the availability of a uniform-random

sample. However, as we have indicated earlier, obtaining a pure

uniform random sample of a dataset distributed across an

unstructured P2P network is extremely difficult. Consequently our

approach is to obtain a random sample of the set of peers, and

from the sampled peers, to obtain random samples of the local

databases. To enable adapting the above estimators to work for

such samples, we consider a technique proposed in [1] called

COLLAPSE, which has been used in the context of distinct value

estimation in centralized databases where the sampling is

restricted to a uniform random sample of the disk blocks that

constitute the underlying table.

COLLAPSE operates by sampling blocks from the database.

Duplicates of a value within a block-level sample are collapsed

into just a single occurrence within the sample. The collapsed

sample is then treated like a uniform random sample, and existing

estimators, such as the GEE and AE, can be applied to the

collective sample from randomly chosen blocks. Such an

approach is particularly meaningful in our case as we can model

the local databases at peers in a P2P network as the equivalent of

disk blocks in a centralized repository.

3.3 Network Traversal
The focus of our paper lies in targeting our estimations to

unstructured peer-to-peer networks. Our objective is to obtain the

best estimates of distinct values possible with minimal traversal of

the network. In this section, we review a few approaches that exist

for traversing the network.

3.3.1 Flooding
A simple method of sampling the set of peers is to use flooding.

The request initiator sends out messages to all its neighbors,

which in turn pass the message on to their neighbors till the

message spreads throughout the network to every node. Thus, the

initiator will eventually visit every node in the system. However,

flooding is highly unsuitable for larger networks and it places

great load on participants and on the network [5] due to repeated

messages and cycles.

3.3.2 Random Walks
A popular network traversal technique is to use a random walk,

where each node picks out a random neighbor to pass its messages

instead of passing the messages on to all its neighbors. This

technique reduces the network load by an order of magnitude [5]

as fewer messages are exchanged between nodes. Using the

random walk technique, a chain of nodes is thus built as

messages pass from one neighbor to the next. However, this

process has a higher latency in returning results than flooding.

Random walks are not an exhaustive technique, and operate on

the assumption that tuples that match the query are common on

the network.

3.3.2.1 Random Walks and Clusters
In real-world peer-to-peer networks it is inevitable that nodes

form clusters. These clusters may have similar data residing on the

network. Alternatively, these clusters may form because the nodes

may all be in the same geographical area. The formation of

clusters causes a problem because if there is a small cut between

4

clusters, then a random walk has a higher chance of accessing

more nodes from within a cluster, rather than from across the

entire network.

The authors in [2] reduce the effect of this clustering by setting a

jump size j for the walk, as shown in Figure 1. Only nodes that

occur after j hops are taken into the sample. With more realistic

jump sizes in real P2P networks, this has the effect of making the

walk lose memory of recent neighbors since it reduces the

correlation between successive sampled peers in the network.

Figure 1: Random Walker with jump size = 2

3.3.2.2 Random Walks and Node Degree
Different nodes in the network may have a different number of

neighbors. In Gnutella, some peers may collect many neighbors

(called ultrapeers) [16, 17]. Others may just maintain one link to a

larger, well-connected node. Because of these differences in node

degree, the random walk has a higher probability of traversing a

node with large more than one with a smaller degree. This results

in a non-uniform sample with a higher chance of duplicates of

such nodes.

The problem of varying node degree is addressed in [3] by

making use of the random walk traversal technique. This

technique makes use of the Metropolis-Hastings algorithm [7, 8].

It operates by changing the way a node chooses a neighbor to

move to during the random walk process. The process is described

as follows.

Consider a node X with a total number of neighbors (edges) that is

given by deg(X). Assume that one of these neighbors is node Y,

which has its own deg(Y) associated with it. If X randomly

chooses Y as the next node in the random walk then we define the

probability that X will move to Y as:

=
)deg(

)deg(
,1min),(

Y

X
YXr

r(X,Y) is called the acceptance probability. Thus, once the node

picks out its prospective next peer, it tosses a coin that comes up

heads with a probability of r(X, Y). If it comes up heads it hops to

the next node, otherwise it stays at the same peer and performs the

coin toss again [3]. Thus, since r(X, Y) = 1 if deg(X) > deg(Y), the

algorithm will always move towards an X and Y that satisfy this

condition.

The Metropolis-Hastings algorithm gives a higher preference to

moving to nodes that have smaller degree (connectivity) than the

current node. Thus, this should balance out the fact that lower

connectivity nodes normally have a lower probability of being

accessed during a normal random walk.

4. OUR ALGORITHM
In this section, we discuss our method of estimating the number of

distinct values on an unstructured P2P network. This method uses

distinct value estimators on a sample that is built up from

executing a random walk on the network and sampling the local

databases of the visited peers.

We first discuss how we can apply COLLAPSE to the domain of

P2P networks.

4.1 Applying COLLAPSE to P2P Networks
We assume that a set of peers have already been sampled from the

network (the specifics of how this is done is discussed in the next

sub-section). Here we discuss how the local databases of these

nodes are sampled and COLLAPSE is applied to these records.

Figure 2: COLLAPSE on P2P Networks

Figure 2 describes how the data sampled from local databases of

visited peers are processed through the COLLAPSE algorithm.

For each peer, the duplicates are removed from all records that

pass the query selection condition, and the resulting dataset is sent

over the network to the peer that initiated the query (“sink”). A

distinct value estimator is then applied to the accumulated sample

records at the sink.

5

While COLLAPSE was originally applied to centralized

databases, it offers a variety of benefits that can also be applicable

to peer to peer networks.

Firstly, it is a simple algorithm that requires few additional input

parameters. It makes no assumption on the size of each block and

it can be applied to different-sized blocks. Since various node

sizes are possible in P2P networks, COLLAPSE could be applied

to the samples without any fundamental change. Since we can

choose how much to sample from each node, this would translate

to being able to access fewer nodes in total to build up a sample,

by sampling more from each node. This gives power and

flexibility to allow the algorithm to be applied in different cases.

The sample sizes can also change depending on network

conditions, since there is a cost associated with accessing nodes

and for retrieving samples from nodes.

Peers on a P2P network are more or less autonomous. They can

enter, leave or add and remove shared resources at any time.

Because any peer can potentially be an adversary, a proven and

robust algorithm that can handle this susceptibility is crucial.

COLLAPSE addresses this concern as it is designed to handle

such adversarial models [1].

Because COLLAPSE is designed to handle duplication of data

across blocks, it factors out the duplications within a block. This

preprocessing is important because in P2P networks, it is normal

for a node to have multiple records of the same distinct value (if

the query is to find distinct values). COLLAPSE eliminates

repeatedly counting a single peer that may have a lot of such

occurrences of the distinct value.

4.1.1 Node Sampling: Implementation Issues
Depending on the estimator used, the only variable that is

required is the total number of sampled records. This is tracked as

COLLAPSE executes. Thus, the overall sampling ratio is also

taken to be that of the original block sample before running

COLLAPSE [1].

If GEE is used for estimation, the value of n must be either

estimated from preprocessing or be specified for a particular

network/query. However, it should also be noted that AE does not

assume that we know n, so we do not have to estimate it in such a

preprocessing phase. This would also introduce an additional

error in our estimations.

As previous described, the peers are selected during the random

walk. They can have different sized databases, samples, and

collapsed samples. The collapsed samples from every chosen peer

are brought together at the query initiator (sink). The sink also

keeps track of the original sizes before collapsing the samples.

4.2 Sub-Sampling Strategies at Nodes
Some nodes in the peer-to-peer network may have too many

tuples to be able to send all of their data across the network to the

query initiator (sink). Thus, it becomes necessary to sub-sample at

each sampled node’s local repository. It is important that this

node sample be a uniform and random as well.

An important factor to consider is the size of this sample. Since

different nodes have different sizes, it is not possible to have a

constant size for the sample as this would result in a non-uniform

sample of the multi-set. This is intuitive, because if sample size is

s and node A is of size s and node B is of size 10s, then the

probability of selecting a tuple at node A is 1, but at node B it is

0.1. This means that not all tuples have the same chance of

entering the sample.

The connectivity of nodes also poses a problem to the sampling,

since well connected nodes may be picked out for sampling more

often. In approximating aggregation queries over P2P networks,

the authors in [2] have suggested scaling the contributions from

such nodes. This reasoning cannot be applied to distinct value

estimation easily as the estimators work on samples that cannot be

scaled. An alternative is to reduce the number of samples taken

from nodes with high degree. A dynamic sampling ratio such as

this poses several challenges and makes it harder to assess the

overall sampling ratio and guarantee a bias-free sample.

We opt for a simple sub-sampling technique that uses a constant

sampling ratio for nodes sampled during a random walk. This

ensures that all tuples residing on sampled nodes are sub-sampled

in a fair manner. Thus, larger nodes that may have a significant

effect on the rest of the network contribute correspondingly larger

samples so that more tuples from such nodes can be represented in

the sample.

As previously discussed, an underlying assumption for

COLLAPSE to be applied effectively in databases is that blocks

are chosen randomly. Thus the selection of nodes for applying

COLLAPSE in a P2P network must be as close to random as

possible, despite the challenges that arise from the varying

connectivity of nodes. To address this, we adopt the use of a

random walk sampler that uses the Metropolis-Hastings algorithm

[3].

4.3 Metropolis-Hastings Network Traversal
By using the Metropolis-Hastings random walker [3], we aim to

obtain a uniform-random sample of nodes from the set of all

nodes in the P2P system.

The technique operates upon the assumption of a fixed

relationship between the degree and the probability of visiting a

peer [11]. This is especially valid since networks such as Gnutella

may have ultrapeers that are accessed more frequently during

random walks due to their high connectivity.

Instead of scaling contributions based on connectivity as in [2],

using the Metropolis-Hastings controls the path of the walker so

that a higher preference is given to moving towards nodes with

lower connectivity. The outcome of this is a set of random peers

that are not necessarily selected because they have high

connectivity. This provides our algorithm with the ability to use a

constant node sampling ratio across all nodes so that all selected

nodes can be processed in a similar manner with the same

parameters. This simplifies the operation of our algorithm.

Because this algorithm still operates using a random walk, which

is a Markov chain, there is a correlation between the selected

nodes since they are along a chain of neighbors. The effect of this

is controlled to some degree by using the burn-in period

parameter.

While the jump size j samples nodes that occur every j hops, the

burn-in period b samples the current node after the outcome of b

coin-tosses (see [3, 7, 8]. Depending on the result of each coin

toss, the walk may or not move to the next peer, and the actual

number of hops between sampled nodes ranges between 0 and b.

6

Setting a higher burn-in period also makes it less likely that the

random walker will get stuck sampling nodes with a cluster.

The Metropolis-Hasting method does not require knowledge of

any global constants or external settings, other than the burn-in

period. All information required at a node to execute the walk,

such as the degree of neighbors, can be stored locally or retrieved

using a simple query to neighbors. This feature eliminates the

need to inform all nodes of system settings.

4.3.1 Random Walk Sampler: Implementation Issues
The optimal value of the burn-in period must be set depending on

the application and the topology of the P2P network. It should be

large enough to reduce the correlation between sampled nodes.

However the larger the number, the higher the latency and wait

times due to the increased number of hops between successive

sampled nodes.

The random walker must also be designed carefully so that it has a

stopping condition; otherwise it would continue executing

infinitely.

A simple solution is to execute the walk until the total

accumulated sample size reaches a specified ratio of the total data

size on the network. As in the GEE estimator (3.1.1), this assumes

that n is known.

When using estimators such as AE that do not require a value for

n, it may be preferable to assign a threshold to the random walk.

The threshold T operates by assuming we have a cost function

combining the time and network costs of accessing a node (via the

random walk) and similar costs for retrieving samples across the

network from source to sink. Once we model this overall cost of

sampling nodes using the walker, the user can define an

acceptable threshold at which the walk terminates, i.e., once the

cost exceeds the threshold. This approach gives the user the

additional flexibility to customize the walker to sample more

nodes with a lower sampling ratio or, conversely, fewer nodes

with a larger sampling ratio.

4.4 Pseudo-code
We provide simple pseudo-code that defines our algorithm. We

first provide the code for the random walk sampler. We do not

include details of algorithms of existing work such as COLLAPSE

[1], the Metropolis-Hastings sampler [3], nor distinct value

estimators.

The random walk is executed over the P2P network, starting with

the query initiator node. Note that the sample_size variable is the

accumulated value of the original node sample sizes, before

applying COLLAPSE. Only the collapsed sample is used in the

estimation.

The pseudo-code for the random walk is provided in Figure 3.

Inputs:

Rdata : sampling ratio for multiset
Rnode : sub-sampling ratio for

 local repository
n : size of multiset
b : burn-in period
sink : initial node in random walk

Variables:

sample_size : total size of data samples
 before applying COLLAPSE

p2p_sample : total sample from sampled
 nodes
curr : current node in random walk

Methods:

getNextMH(curr,b) {
Get next node according to Metropolis-
Hastings, using burn-in period b

}

run_estimator(sample, orig_size) {

Estimates distinct values in sample
with orig_size (size without running
COLLAPSE)

}

Algorithm:

1: curr = sink;
2: while(sample_size < n * Rdata)
3: {
4: curr = getNextMH(curr,b);
5: sample(curr, Rnode);
6: update sample_size;
7: update p2p_sample;
8: }
9: run_estimator(p2p_sample, sample_size);

Figure 3: Pseudo-code for P2P network traversal

In Figure 4, we provide code for the sampling procedure at a

node. The inputs have been described already in Figure 3.

Variables:

orig_sample : original uniform-random
 sample of data at a node
orig_size : size of original sample
col_sample : sample after running

 COLLAPSE

Algorithm:

1: Sample(curr, Rnode) {
2: orig_sample = uniform-random sample;
3: orig_size = size of orig_sample;
4: col_sample = collapsed orig_sample;
5: return orig_size, col_sample;
6: }

Figure 4: Pseudo-code for sampling a node

Because random walks can be slow to yield results as they

traverse the network, we can increase the response time by having

multiple walkers running at the same time over the network. This

can be a possible addition to our algorithm because assembling of

node samples can be concurrently built from multiple sources.

7

4.5 Assumptions
Our algorithm operates upon various assumptions and constraints.

We summarize these.

As with any random walk, we assume that tuples that match the

query are frequent enough to be discovered by a random walk in

order to perform distinct value estimation. We also assume that

the data on the network does not change too much during the

execution of the random walk.

Depending on the random walk stopping condition and the

estimator, it may be required to know the total size of the network,

or the total number of nodes. This may be available, assumed, or

approximated in a preprocessing phase. This may introduce

substantial errors into the system.

We also assume that the network cost of retrieving tuple attributes

from sampled nodes is low. If this is not the case, more advanced

stopping conditions such as the threshold technique can be used.

5. DISCUSSION
In this section we discuss the capabilities of our algorithm as well

as the expected performance for different queries on varying P2P

network topologies and applications. We show that the behavior

of the algorithm can be customized to suit requirements by

changing the values of the available input parameters.

5.1 Supporting Different P2P Network

Characteristics
Since different topologies can form for unstructured P2P

networks, it is important that our algorithm be able to handle a

variety of clustering and connectivity scenarios that may arise.

As discussed previously, the use of the Metropolis-Hastings

algorithm handles possible variations in the connectivity of nodes.

Also, increasing of the burn-in period reduces the effects of node

clustering. However, it is important to bear in mind that a larger

burn-in period translates to longer wait times as the sampler

converges to a uniform random sample.

It must be noted that the smaller the diameter of the P2P network,

the faster a random sample is obtained [33]. This is intuitive since

sampled peers can thus be further apart on opposite ends of the

network (in terms of hops) and are less likely to be stuck in the

same locality or cluster.

The authors in [33] also suggest possible modifications to the

Metropolis-Hastings algorithm for attaining required node

sampling distributions. They also show the suitability of the

algorithm for several interesting applications and topologies.

Thus considering the design of the Metropolis-Hastings algorithm

and the effect of changing the burn-in period, one can design the

random walk to suit a variety of applications. Possible

enhancements such as transition probabilities [33] can also give

some nodes preference during the walk if this is required by

applications.

Network costs associated with running the random walker also

vary according to the type and scale of the network, the size of

samples and various other factors.

As described earlier, our algorithm allows the node sampling ratio

to be set for a walk. By tuning this value, one can set an

appropriate sampling ratio that balances the cost of accessing

nodes and the cost of retrieving samples from these nodes via the

network. A smaller sampling ratio has the effect of producing

smaller samples from nodes, reducing the time taken in

transferring samples to the sink. However a consequence of this is

that more samples need to be accessed from more nodes, and the

random walk becomes longer. Conversely, for larger sampling

ratios, the length and cost of accessing nodes in the random walk

reduces, but because of the high sampling ratio, large-size nodes

may have correspondingly large samples that are expensive to

transfer to the sink.

Thus, depending on the specific application, the network, its

scale, the distribution of node sizes, and the overall sampling ratio

of the entire multi-set, it may thus be possible to design a walker

with an optimal sampling ratio that minimizes overall network

cost and wait times.

5.2 Supporting Different Data Distributions
Supporting distinct value estimation for different data

distributions naturally depends heavily on the estimator that is

used. Assuming we have an appropriately configured random

walk that yields a uniform-random sample, we expect

performance comparable to a random sample of nodes taken from

the set of nodes in the system. We now analyze some of the

parameters that model a data distribution, and assess how our

algorithm will be affected for different types of distributions.

5.2.1 Effect of Clustering of Data
The amount of clustering of the data on the network changes the

way estimation will be performed with our algorithm.

In perfect clustering, similar data is generally found within the

same node or within the locality around the node. In low

clustering cases, data is mixed and distributed across the network,

resulting in less of a correlation between the data and its location

on the network. The worst performance is expected for the first

case, as each node produces a collapsed sample with a relatively

small quantity of distinct values. Since the distinct values

estimators use the original size of the sample before COLLAPSE,

the estimator gains less information from the sample and the

estimate has more error.

The performance of distinct value estimation using our algorithm

increases as clustering reduces and duplicates are scattered more

across the network. Samples from less clustered data, result in a

sample that picks up more values (and their frequencies). This

translates to a higher quality sample. Estimators scale these counts

more accurately to produce a better approximation of the answer.

5.2.2 Effect of Data Skew
The skew specifies the shape of the frequency distribution curve.

Highly skewed data has a small ratio of elements with very high

frequencies in the multi-set, and a higher ratio of lower-frequency

elements in the sample.

For high skew data, our random walk has a lower chance of

sampling the rarer elements in the multi-set. The sample will

instead have a lot of occurrences of high-frequency values that are

duplicates across many nodes. This affects the quality of the

sample and the distinct value estimator becomes more erroneous.

Obviously, our algorithm handles data distributions with less

skew well. These correspond to increasingly uniform

distributions, where it is easier to get accurate samples.

8

6. EXPERIMENTATION
In this section, we provide experimental validation of our

proposed approach. We have implemented the algorithms to run

on both synthetic and real-world network topologies, with

different network sizes, different data distributions and various

clustering levels.

6.1 IMPLEMENTATION
Our algorithm was implemented in Java (Sun JRE 1.5.0) and

carried out on Dual 3.00GHz Intel Xeon processors with 2GB

RAM using the graph generation framework, JUNG [6]. The Java

Runtime Environment was set to a maximum allowable heap size

of 300MB.

6.1.1 Generation of P2P Networks
The P2P networks for running the algorithm are simulated by

loading real-world topologies obtained from existing and highly

popular unstructured peer-to-peer networks. The topologies that

we loaded were collected from the Gnutella P2P network. They

were obtained from actual data [37]. Our simulator loaded a total

of 24278 peers with a total of 62391 edges in the system. A total

of over 16.1 million integers were allocated to the nodes to run

the simulations.

Each node is allotted a data set size that indicates the number of

integers (tuples) stored at the node. These sizes ranged between

300 and 1500 tuples. The distribution of sizes is Zipfian [30] and

several input parameters (described below) are used to control the

shape and properties of the distribution. It is our intuition that this

models the fact that different nodes have different sizes and that

there are usually fewer nodes with very large databases and more

nodes with smaller sizes.

6.1.2 Generation of Node Databases
We use single-attribute tuples for the node databases. A

configurable number of distinct values (integers) are generated

and duplicated so that they follow a Zipfian distribution. These

numbers are stored in a sorted ‘multi-set’ which contains the

entire data for the whole P2P system. Its total size depends on the

parameters provided when generating node sizes (as described in

section 6.1.1). The multi-set is then partitioned so that each node

is allocated the correct number of tuples. This partitioning is done

as the network is traversed using a breadth first search.

In order to simulate different levels of clustering – where the data

in and around a node is similar – we shuffle the data in the multi-

set before allocation. A highly shuffled multi-set has a lower level

of clustering. This approach is adapted from [2].

The approach for generating data for the nodes follows the

intuition that the distribution of distinct values, files follows

Zipf’s Law [5, 21, 30]. Some values tend to be very popular

compared to others. Additionally, depending on the application,

neighbors may share highly similar data. Each node may also

contain mostly unique elements, with few duplicates residing in

other nodes. Correlations such as these are modeled using the

clustering technique described above.

6.2 Input Parameters
A variety of input parameters allow many different scenarios to be

simulated to test our algorithm and its performance. These

parameters affect the properties of the P2P network and the data

that is distributed on the network. The operation of the algorithm

can also be controlled with a separate set of parameters. They are

described in the following section.

6.2.1 P2P Network Parameters
These parameters control the node sizes as they are allocated to all

nodes in the graph. The actual data is generated and allocated to

the nodes afterwards.

• Node Data Size Skew (zsize): This parameter controls the

slant of the frequency distribution of the data sizes allotted to

a node. The skew ranges between 0 and 1. Lower values

indicate increasingly uniform (flat) Zipfian distributions.

• Maximum and Minimum Node Data Sizes: These sizes

specify the highest and lowest possible number of tuples that

are allocated to nodes on the network.

• Number of Steps in Node Data Sizes: The range of allowed

data sizes is divided into evenly-spaced steps of increasing

sizes, ranging from the minimum to the maximum allowable

size. The step size is given by:

(max_size – min_size)/num_steps

Each node is allocated a data size at a step. Expressed

simply, it is the distinct number of sizes generated within the

range of permissible node sizes.

6.2.2 Node Database Generation Parameters
These parameters control the properties of the distribution of

tuples on the entire P2P network. These tuples are modeled as

integers in our implementation.

• Number of Distinct Values: This is the number of distinct

data values that are distributed across the network.

• Data Distribution Skew (zdata): The distinct values are

duplicated to follow a Zipfian frequency distribution. The

skew value controls the shape of this distribution. The

number ranges from 0 to 1. Lower values correspond to

increasingly flat (uniform) distributions. Larger values have

distributions that slant more steeply since a few elements will

be duplicated far more than others.

• Cluster Level (C): The Cluster level indicates the level of

mixing that is performed on the sorted data before it is

allocated to the nodes on the P2P network. This value ranges

from 0 to 1. A Cluster Level of 0 performs no mixing, and

this corresponds to a perfectly clustered network, where each

node and its neighbors hold very similar data. As the

clustering level tends towards 1, the data is mixed entirely

before it is spread onto the network.

6.2.3 Algorithm Input Parameters
The following parameters control the way that our algorithm runs.

• Burn-In Period (B): This is the Metropolis-Hastings

algorithm parameter that controls the number of times that

the coin is tossed before a node is sampled. The coin toss

decides whether to move to a node or not. Thus, successive

sampled nodes on the random walk may be between 0 and B

hops apart based on the outcomes of these decisions.

9

• Node Sub-Sampling Ratio (rnode): This is the sampling ratio

for the local repository of a node. It allows the sample size

from a node to be larger for nodes that contain more tuples.

• Data Sampling Ratio (rdata): This is the overall sampling

ratio of the data on the entire network. It can provide a

stopping condition for the random walk by keeping track of

the total sample size as samples are accumulated during the

walk.

• Threshold (T): The threshold can be set as a stopping

condition for a random walk. It requires the definition of a

function that models the cost of accessing and retrieving

samples from nodes on the walk.

6.3 Evaluation Metrics
Evaluation of the algorithms can be done by assessing the ratio

error of the estimates. The ideal estimator has a ratio error of 1.

Other evaluation metrics could include the number of node

samples, the total number of samples collected and the number of

messages exchanged.

6.4 Experiments and Results
We compare the results of running a random walk (while using

Metropolis-Hastings) with burn-in period of 10 with a simple

random node sample from of the set of nodes in the system. This

helps in assessing the quality of our traversal method.

We also compare with a uniform random sample of the data, taken

directly from the set of all numbers in the multi-set. This helps us

to assess the estimators to see how close we can get our algorithm

to match performance on a uniform-random sample.

All tests are carried out by averaging the results from 10 runs of

the algorithm.

6.4.1 Node Sub-Sample Ratio
Figure 5 shows the effect of changing the sub-sampling ratio at a

node. The overall multi-set data sampling ratio (Rdata) is set at

3%, with a skew parameter of 0.5 and a clustering level (Cl) of

0.7. The number of distinct elements on the system is held at

500,000 and we use AE to estimate the number of distinct values

using different sampling ratios.

We observe that at lower data sample ratios, the error of the

random walk and the random node sample methods approach that

of the random data sample from the multi-set.

Average Ratio Error(AE) vs. Node Sampling Ratio

Rdata = 3%, Skew =0.5, Cl = 0.7, Num Distinct = 500K

0.95

1.15

1.35

1.55

1.75

1.95

2.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Node Sampling Ratio

A
v
e
ra
g
e
 R
a
ti
o
 E
rr
o
r

Random Walk

Random Node Sample

Data Sample

Figure 5: Average Ratio Error vs. Node Sampling Ratio

6.4.2 Data Sample Ratio
Figure 6 shows the effect of varying the overall data sampling

ratio for the multi-set. As expected at lower values (0.5%), the

ratio-error is very high. It improves significantly and all three

sampling strategies have comparable results with the sampling

ratio greater than 1.5%.

The result is obtained with a node sub-sampling ratio (Rnode) of

0.5.

Average Ratio Error (AE) vs. Data Sampling Ratio

Cl=0.7, Rnode = 0.5, Skew=0.5, Num Distinct = 500K

0

1

2

3

4

5

6

7

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Data Sampling Ratio

A
v
e
ra
g
e
 R
a
ti
o
 E
rr
o
r

Random Walk (AE)

Random Node Sample

(AE)

Data Sample (AE)

Figure 6: Average Ratio Error vs. Data Sampling Ratio

6.4.3 Clustering Level
Figure 7 shows the effect of varying the clustering level of the

data. A cluster level of 0 indicates perfectly clustered data and the

expected high ratio error can be observed. The quality of the

estimation improves significantly very rapidly. This demonstrates

the importance of clustering in our sampling scheme.

10

Average Ratio Error (AE) vs. Clustering Level

Rdata=2.5%, Rnode=0.5, Skew=0.8, Num Distinct = 250K

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Clustering Level

A
v
e
ra
g
e
 R
a
ti
o
 E
rr
o
r Random Walk (AE)

Random Node Sample (AE)

Data Sample (AE)

Figure 7: Average Ratio Error vs. Clustering Level

6.4.4 Data Skew
To demonstrate the performance of the algorithm with different

distributions, we vary the skew of the data as shown in Figure 8.

This shows how, for higher skews beyond 0.8, the ratio-error

increases greatly.

Average Ratio Error (AE) vs. Data Skew

Cl=0.4, Rdata=2.5%, Rnode=0.5, Number Distinct=250K

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zipf Data Skew

A
v
e
ra
g
e
 R
a
ti
o
 E
rr
o
r

Random Walk (AE)

Random Node Sample (AE)

Data Sample (AE)

Figure 8: Average Ratio Error vs. Zipf Data Skew

6.4.5 Number of Distinct Values
We provide two graphs here to demonstrate the operation of both

the GE estimator and AE.

The AE graph shown in Figure 9 is obtained by varying the

number of distinct values on the network between 100,000 and

1,000,000.

Figure 10 shows the graph obtained for the GE estimator, while

varying the number of distinct values between 10,000 and

100,000. Note that far fewer distinct elements were used for

estimations using GEE as it produces poor results at a higher

number of distinct results. This is expected, since GEE is a biased,

optimal error estimator.

Average Ratio Error (AE) vs. Number of Distinct Values

Rdata = 2.5%, Rnode =0.5, Cl = 0.7, Skew = 0.5

0.5

1

1.5

2

2.5

3

3.5

4

10
0K

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K

10
00
K

Number of Distinct Elements

A
v
e
ra
g
e
 R
a
ti
o
 E
rr
o
r

Random Walk (AE)

Random Node Sample (AE)

Data Sample (AE)

Figure 9: Average Ratio Error vs. Number of Distinct

Elements using the Adaptive Estimator

Average Ratio Error (GEE) vs. Number of Distinct Values

Skew = 0.7, Cl = 0.7, Rdata=2.5%, Rnode=0.5

0

0.5

1

1.5

2

2.5

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Number of Distinct Values

A
v
e
ra
g
e
 R
a
ti
o
 E
rr
o
r

Random Walk (GEE)

Random Node Sample

(GEE)

Data Sample (GEE)

Figure 10: Average Ratio Error vs. Number of Distinct

Elements using the Guaranteed Error Estimator

6.4.6 Burn-In Period

Average Ratio Error (AE) vs. Burn-In Period

Skew = 0.5, Rdata=2.5%, Rnode=0.5, Cl=0.7

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 3 5 7 9 11 13 15 17 19

Burn In Period

A
v
e
ra
g
e
 R
a
ti
o
 E
rr
o
r

Random Walk (AE)

Random Node Sample (AE)

Data Sample (AE)

Figure 11: Average Ratio Error vs. Burn-In Period

11

Figure 11 shows the effect of executing the random walk with

different burn-in periods set. As seen from the results, the ratio-

error becomes increasingly close to that of a random sample as the

burn-in increases. This is because the sampled nodes become

increasingly less correlated as the burn-in period increases.

7. CONCLUSION AND FUTURE WORK
In this paper we address a new and interesting problem with

unique challenges. We offer a way of combining different

strategies to come up with an algorithm that has a ratio error

comparable to uniform-random node samples, and in some

conditions, even comparable to uniform-data samples. It also

opens up numerous possibilities for future work.

Distinct value estimation for dynamic graphs could be studied for

P2P network environments which change rapidly during the

execution of a random walk.

Similarly, ways of predicting how much to sample from the P2P

network could warrant further study. The challenges of this are

well known, considering the difficulty in predicting error in

distinct value estimates.

Another area for future work is to model the network costs of

accessing and retrieving samples from nodes. The ability to do

this will allow optimization of input parameters for the algorithm,

and will also offer a means of predicting when to bound the

random walk.

Being able to get distinct values estimations also paves the way

for future work in histogram construction and query optimization

on peer-to-peer networks. This is could be an emerging area due

to the rapid increase in popularity of P2P networks and the

possible paradigm shift away from traditional client-server

models.

8. REFERENCES
[1] Chaudhuri, S., Das, G., and Srivastava, U. Effective Use of

Block-Level Sampling in Statistics Estimation. SIGMOD

2004 (Paris, France, June 13-18, 2004)

[2] Arai, B., Das, G., Gunopulos, D., and Kalogeraki, V.

Approximating Aggregation Queries in Peer-to-Peer

Networks. ICDE 2006 (April 3-8, Atlanta, GA, 2006)

[3] Bar-Yossef, Z. and Gurevich, M. Random Sampling from a

Search Engine’s Index. International World Wide Web

Conference Committee 2006 (Edinburgh, Scotland, May 23-

26, 2006).

[4] Charikar, M., Chaudhuri, S., Motwani, R., and Narasayya, V.

Towards Estimation Error Guarantees for Distinct Values. In

Proceedings of the ACM Symposium on the Principles of

Database Systems, 2000.

[5] Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. Search

and Replication in Unstructured Peer-to-Peer Networks, ICS

2002, (June 22-26, 2002, New York, New York, USA)

[6] Java Universal Network/Graph Framework (JUNG) Website.

http://jung.sourceforge.net.

[7] Metropolis, N., Rosenbluth A,, Rosenbluth, M., Teller, A.,

and Teller,E.. Equations of state calculations by fast

computing machines. J. of Chemical Physics, 21:1087–1091,

1953.

[8] W. Hastings. Monte Carlo sampling methods using Markov

chains and their applications. Biometrika, 57(1):97–109,

1970.

[9] M. Ripeanu. Peer-to-peer architecture case study: Gnutella

network. In Proceedings of International Conference on

Peer-to-peer Computing, August 2001.

[10] Gnutella Development website: rfc-gnutella.sourceforge.net

[11] Stutzbach, D., Rejaie, R., Duffield N., Sen, S., and Willinger,

W. On Unbiased Sampling for Unstructured Peer-to-Peer

Networks. Internet Measurement Conference (IMC) 2006

(October 25–27, 2006, Rio de Janeiro, Brazil)

[12] Baset, S.A., and Schulzrinne, H. An analysis of the Skype

peer-to-peer Internet telephony protocol. Technical Report

CUCS-039-04, Computer Science Department, Columbia

University, September 2004.

[13] KazaA website: kazaa.com

[14] S. Chaudhuri, R. Motwani, and V. Narasayya. Random

sampling for histogram construction: How much is enough?

In Proc. of the 1998 ACM SIGMOD, pages 436–447, 1998.

[15] P. Haas, J. Naughton, P. Seshadri, and L. Stokes. Sampling-

based estimation of the number of distinct values of an

attribute. In Proc. of the 1995 Intl. Conf. on Very Large Data

Bases, pages 311–322, Sept. 1995.

[16] Tsoumakos, D., and Roussopoulos, N. - A Comparison of

Peer-to-Peer Search Methods In Proceedings of the Sixth

International Workshop on Web and Databases, San Diego,

California (June 12-13, 2003)

[17] Androutsellis-Theotokis, S., and Spinellis, D. A Survey of

Peer-to-Peer Content Distribution Technologies. ACM

Computing Surveys, 36(4):335-371, December 2004.

[18] Bar-Yossef, Z., Berg, A., Chien, S., Fakcharoenphol, J., and

Weitz, D. Approximating Aggregate Queries about Web

Pages via Random Walks. In Proceedings of the 26th

International Conference on Very Large Data Bases

(September 10 - 14, 2000).

[19] King, V. and Saia, J. 2004. Choosing a random peer. In

Proceedings of the Twenty-Third Annual ACM Symposium

on Principles of Distributed Computing (St. John's,

Newfoundland, Canada, July 25 - 28, 2004)

[20] Kempe, D., Dobra, A., and Gehrke, J. 2003. Gossip-Based

Computation of Aggregate Information. In Proceedings of

the 44th Annual IEEE Symposium on Foundations of

Computer Science (October 11 - 14, 2003).

[21] Ganesan, P., Bawa, M., Garcia-Molina, H. Online balancing

of range-partitioned data with applications to peer-to-peer

systems .In Conference on Very Large Databases (VLDB)

2004 (Toronto, Canada, August 31 - September 3 2004)

[22] Hou, W., Ozsoyoglu, G., and Dogdu, E. Error-Constrained

COUNT Query Evaluation in Relational Databases. In Proc

of the 1991 ACM SIGMOD, pages 278–287, 1991.

[23] Hou, W., Ozsoyoglu, G., and Taneja, B.. Statistical

estimators for relational algebra expressions. In Proc. of the

1988 ACM Symp. on Principles of Database Systems, pages

276–287, Mar 1988.

12

[24] Gkantsidis, C., Mihail, M., and Saberi, A. Random Walks in

Peer-to-Peer Networks. In INFOCOM, 2004

[25] Awan, A., Ferreira, R.A., Jagannathan, S., and Grama, A.

Distributed Uniform Sampling in Unstructured Peer-to-Peer

Networks. In Hawaii International Conference on System

Sciences, 2006.

[26] Ntarmos, N., Triantafillou, P., Weikum, G., Counting at

Large: Efficient Cardinality Estimation in Internet-Scale

Data Networks, In the 22nd International Conference on

Data Engineering (ICDE'06), 2006.

[27] L. Goodman. On the estimation of the number of classes in a

population. Annals of Math. Stat., 20:572–579, 1949.

[28] K. Burnham and W. Overton. Robust estimation of

population size when capture probabilities vary among

animals. Ecology, 60:927–936, 1979.

[29] Shlosser A. On estimation of the size of the dictionary of a

long text on the basis of a sample. Engrg. Cybernetics,

19:97–102, 1981.

[30] Zipf, G. E. Human Behavior and the Principle of Least

Effort. Addison-Wesley Press, Inc., 1949.

[31] Lipton, R., Naughton, J., and Schneider D. Practical

selectivity estimation through adaptive sampling. In Proc. Of

the 1990 ACM SIGMOD, pages 1–11, 1990.

[32] Haas, P. and Swami, A. Sequential sampling procedures for

query size estimation. In Proc. of the 1992 ACM SIGMOD,

pages 341–350, 1992.

[33] Zhong, M. and Shen, K. Random walk based node sampling

in self-organizing networks. SIGOPS Oper. Syst. Rev. 40, 3

(Jul. 2006), 49-55.

[34] Le Fessant, F., Handurukande, S., Kermarrec, A.-M., and

Massoulié, L. Clustering in Peer-to-Peer File Sharing

Workloads. 3rd Intl. Workshop on Peer-to-Peer Systems

IPTPS 2004

[35] Babcock, B, Chaudhuri, S., and Das, G. Dynamic Sample

Selection for Approximate Query Processing. SIGMOD

Conference 2003: 539-550.

[36] Chaudhuri, S., Das, G., Datar, M., Motwani, R., and

Narasayya, V.. Overcoming Limitations of Sampling for

Aggregation Queries. ICDE 2001: 534-542.

[37] Details omitted due to double-blind reviewing.

