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ABSTRACT 

Peer-to-Peer networks have become very popular on the Internet, 

with millions of peers all over the world sharing large volumes of 

data. In the assistive healthcare sector, it is likely that P2P 

networks will develop that interconnect and allow the controlled 

sharing of patient databases of various hospitals, clinics, and 

research laboratories. However, the sheer scale of these networks 

has made it difficult to gather statistics that could be used for 

building new features. In this paper, we present a technique to 

obtain estimations of the number of distinct values matching a 

query on the network. We evaluate the technique experimentally 

and provide a set of results that demonstrate its effectiveness, as 

well as its flexibility in supporting a variety of queries and 

applications. 

 

1. INTRODUCTION 
Peer-to-Peer (P2P) networks are a highly popular medium for 

sharing CPU processing power, storage space, and/or content in 

the form of text documents and various forms of media. Some 

applications such as Skype [12] even use such networks for Voice 

over IP (VoIP) telephony. In the assistive healthcare sector, it is 

likely that P2P networks will develop that interconnect and allow 

the controlled sharing of patient databases of various hospitals, 

clinics, and research laboratories. These networks usually operate 

over the Internet and consist of thousands, and even millions of 

peers that can be located anywhere in the world.  

Additionally, P2P networks are designed to be scalable, fault-

tolerant and dynamic with no central point of failure. In the 

unstructured peer-to-peer networks that we focus on in this paper, 

peers do not make any assumptions about the location of other 

peers, the data, or of the network topology. Each peer maintains 

connections to a small set of neighbors that are usually accessed 

over the Internet through their IP addresses.  

Each peer on the network contributes resources that are accessible 

by other peers on the network. This contribution is often in the 

form of music files, especially in popular P2P networks such as 

Gnutella [10] and KazaA [13]. All peers are considered ‘equal’, in 

that they can be either servers or clients, depending on the 

services or resources that they are providing or accessing. 

Additionally, peers are free to join and leave the network at any 

time.  

Given the volatility of this architecture and the vast numbers of 

participating peers, it is often difficult to keep track and gather 

statistics of the large volumes of the data that is available on the 

P2P network. In this paper, we focus on a technique that samples 

a subset of peers in order to estimate the total number of distinct 

tuples that match a query on the network. 

The problem of distinct value estimation is well known in the 

domain of databases. The capability of answering queries from 

any peer allows trends and data mining to be inferred by making 

use of density and duplication values – e.g., the spreading patterns 

of certain diseases can be mined by gathering such statistics 

across distributed health case databases. It is especially important 

for query optimization, especially in the construction of 

histograms [1, 4, 14, 15]. Histograms use the number of distinct 

values of an attribute (in a table/bucket) to maintain statistics, 

such as the density, which is the average number of duplicates per 

distinct value. 

1.1 Potential Applications 
Currently, distinct value estimation techniques do not exist for 

P2P networks. Having this type of statistics available would not 

only allow histogram construction in the future, but would also 

enable management, administration, monitoring, and report 

generation capabilities to be built into such systems. For example, 

on a healthcare P2P network, queries such as the total number of 

distinct diseases in a geographical region, or the total number of 

distinct patients suffering from a particular ailment could be 

estimated for the entire network. This capability even allows 

trends to be gathered by making use of density and duplication 

values. 

New and exciting new applications also become possible. 

Consider a peer-to-peer network where each user at a peer submits 

queries to the network or to a database. Distinct value estimation 

can be used to assess the query logs of users and discover the 

number of unique queries about a certain topic or subject. This 

too, can be used to assess popularity of queries. 

1.2 Challenges 
The problem of distinct value estimation on unstructured peer to 

peer networks is a new and, to the best of our knowledge, has not 

been investigated to date.  

Performing such estimations on P2P networks has many 

challenges. One of the most apparent difficulties is that distinct 

value estimation in a centralized data repository is known to be a 

hard problem, as proved in [4]. A variety of estimators [4,1 4, 15] 

exist, but currently none can provide guaranteed bounds for error 

for a uniform-random sample of the tuples in the column of a 

table [1]. 
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Additionally, this problem is made more challenging by the fact 

that our estimation is targeted toward queries executed on 

unstructured peer-to-peer networks, where each peer only knows 

information about its neighbors.  More specifically, in this 

architecture, no peer has knowledge of the topology of the P2P 

network, the distribution of the data residing on the network , nor 

of the location or sizes of all other peers on the network.  

With constraints such as these, it is a challenge for a user at one of 

these peers to obtain a uniform random sample to apply a distinct 

value estimator.  There is also an associated network cost in 

accessing and retrieving samples from other nodes across the 

network. This must be minimized to avoid long lag times before 

users see the results of a distinct value approximation query. 

The calculations for gathering such statistics may require 

parameters such as the total size of the data available on the 

network or the total number of nodes. Parameters such as these 

may be largely unavailable at a peer, and may also need to be 

approximated.  

Distinct value estimation queries are typically made for one or 

more attributes in a table. In a typical P2P network, such as 

Gnutella, these attribute values have been shown to follow a 

Zipfian distribution [30, 21], with duplicates residing on different 

peers scattered throughout the network. This potential clustering 

of similar data at neighboring peers adds another interesting 

dimension to the problem. Furthermore, the distributions and 

clustering levels vary depending on the attribute under 

consideration. The range of queries that are possible makes 

distinct value estimations even more compelling. 

1.3 Overview of Our Algorithm 
In this paper, we offer a technique of performing distinct value 

estimations that is a novel combination of strategies from different 

domains. Our algorithm operates as follows. 

It executes a Metropolis-Hastings[3] random walk sampler on the 

P2P network in order to randomly select peers from the entire set 

of peers on the system. It then obtains a uniform-random data 

sample from each selected peer. Then, using a block-level 

sampling technique (called COLLAPSE [1]), it removes 

duplicates from within a node-sample. After combining the 

collapsed samples from multiple peers at the sink (the peer that 

originated the query), it applies an existing distinct value 

estimator by treating the entire sample as a single uniform-random 

one. 

1.4 Our Contributions 
In this paper, we show that by leveraging these different 

techniques, our algorithm for distinct value estimation is very 

effective because: 

• It does not require that peers exchange calculations or 

knowledge of constants that govern algorithm behavior. 

• It reduces the preprocessing time, and the number of 

assumptions and approximations of P2P network 

characteristics, such as the total size, number of nodes, etc. 

• It minimizes the information that a node needs to maintain 

about its neighbors. 

• It is largely independent of the clustering and/or distribution 

characteristics of the data in the P2P network. 

• It allows the flexibility of changing distinct value estimators. 

• Its performance, in some cases, can approach that of a 

uniform random sample of the entire dataset of the network. 

The rest of this paper is organized as follows. In Section 2 we 

discuss related work. In Section 3 we discuss the key ideas that 

are leveraged in our eventual algorithm for computing distinct 

values over P2P databases. The actual algorithm is described in 

Section 4. In Section 5 we show how our algorithm can be applied 

to a P2P network to answer simple queries. In Section 6 we 

describe a comprehensive set of experiments that demonstrate the 

effectiveness of our approach. We conclude in Section 7. 

2. RELATED WORK 
A variety of search and node traversal techniques exist for peer to 

peer networks, both structured and unstructured. Many these are 

surveyed and described in great detail in [16, 17].  

A vast amount of studies have been done on random walks 

including [5, 24]. The Metropolis-Hastings algorithm is also 

discussed in [3], and is used to execute a random walk over 

documents indexed by a search engine. Alternatives are also 

suggested in [25], where the authors suggest the Random Weight 

Distribution method, which requires underlying support of the 

P2P network. The authors in [11] suggest an interesting 

modification to Metropolis-Hastings sampler that make it suitable 

for dynamic graphs. In this paper we only address static graphs. 

We leave handling highly dynamic cases as future work.  

Using sampling for estimating query results is a well known 

problem that has received a large amount of attention by Haas et 

al [32], Lipton et al [31] and Hou et al [22, 23]. Sampling has also 

been used for approximate query processing in centralized 

databases [1, 14, 35, 36, 24, 4]. 

Several authors have looked into approximation-type queries for 

P2P networks, including using random walks over the web in 

[18], and aggregations over unstructured P2P networks as in [2]. 

Alternative gossip-style techniques of computing aggregates have 

been suggested by [20], but require participation of every node in 

the system. Techniques utilizing structured peer-to-peer networks 

have addressed the problem of sampling random peers [19], as 

well as approximations [26], and there is a large body of work on 

these types of networks. In this paper we target unstructured P2P 

networks, which require a different approach. 

In statistical literature, cluster sampling is a concept considered 

similar to block-level sampling [1]. In this paper we consider this 

technique of sampling, originally proposed in [22, 23]. An 

analysis of block-level sampling as applied to databases is 

discussed in [1], where block-level estimates are used for 

histogram construction and distinct value estimation. Chaudhuri 

et al consider this in [14], and also suggest an optimal error 

distinct value estimator.  

Other Distinct Value Estimators have been proposed as well, such 

as the Adaptive Estimator [4], the Goodman Estimator [27] and 

other estimators in [15, 28, 29].  

3. FOUNDATIONS OF OUR APPROACH 
In this section, we provide the foundations of our approach to this 

novel problem. Our actual algorithm is discussed in the next 

section. 
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We model the P2P network as a graph G with peers as nodes and 

edges connecting nodes to their neighbors. We therefore refer to 

nodes and peers interchangeably throughout this paper. We 

assume that each peer Pi has a local database Di, and refer to the 

total data D on the network including duplicates, as a multi-set as 

it consists of the sets of data residing at each peer in the network. 

We consider SQL-like queries of the form “SELECT COUNT 

(DISTINCT *) FROM D WHERE <selection condition>”. As 

indicated in the introduction, such queries can be extremely 

important for statistics estimations in many emerging applications. 

Our objective is to obtain the best estimates of distinct values 

possible, preferably within a given bound on the cost (or latency) 

of executing the query. In general, the cost of query execution is 

dependent on the cost of traversing the network to sample peers, 

as well as the cost of sampling the local databases and sending the 

data back to the originating peer for the result estimation. 

3.1 Distinct Value Estimators 
We discuss two distinct value estimators, the Guaranteed-Error 

Estimator (GEE) [14] and the Adaptive Estimator [4].  Both of 

these estimators require a uniform-random sample and the counts 

(fi values) of the elements that occur i times in the sample of r 

elements. In order to estimate the total number of distinct 

elements ( D̂ ), both of these estimators only scale the number of 

single occurrences of elements in a uniform-random sample. 

Multiple occurrences of an element are not scaled. 

3.1.1 Guaranteed Error Estimator 
The Guaranteed Error Estimator (GEE) [4, 14] is an estimator 

with optimal error and a bias of at most )/1( qO  [1, 4, 14].  
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where fi is the number of distinct elements in the sample that 

occur i times. It requires that the value of n is known, where n is 

the size of the set that contains all the values of an attribute in a 

table, including all duplicates. In our case, n refers to the total 

number of data tuples in the entire network.  

3.1.2 Adaptive Estimator 
The Adaptive Estimator (AE) [4] is a heuristic estimator for the 

number of distinct values. It takes on the form: 

dKfD i +=ˆ  

where d is the number of distinct values in the sample, given 

by ∑
=

=
r

i

ifd
1

and K is an appropriate scaling factor that is 

computed from the sample. An important feature of AE is that 

unlike GEE, it does not require a value for n (the total size of the 

multi-set). 

3.1.3 Error Metrics 
In this paper, we define the estimation error according to the ratio-

error metric given in [4]: 

( )DDDDError /ˆ,ˆ/max=  

3.2 COLLAPSE 
The above estimators assume the availability of a uniform-random 

sample. However, as we have indicated earlier, obtaining a pure 

uniform random sample of a dataset distributed across an 

unstructured P2P network is extremely difficult. Consequently our 

approach is to obtain a random sample of the set of peers, and 

from the sampled peers, to obtain random samples of the local 

databases. To enable adapting the above estimators to work for 

such samples, we consider a technique proposed in [1] called 

COLLAPSE, which has been used in the context of distinct value 

estimation in centralized databases where the sampling is 

restricted to a uniform random sample of the disk blocks that 

constitute the underlying table.  

COLLAPSE operates by sampling blocks from the database. 

Duplicates of a value within a block-level sample are collapsed 

into just a single occurrence within the sample. The collapsed 

sample is then treated like a uniform random sample, and existing 

estimators, such as the GEE and AE, can be applied to the 

collective sample from randomly chosen blocks. Such an 

approach is particularly meaningful in our case as we can model 

the local databases at peers in a P2P network as the equivalent of 

disk blocks in a centralized repository. 

3.3 Network Traversal 
The focus of our paper lies in targeting our estimations to 

unstructured peer-to-peer networks. Our objective is to obtain the 

best estimates of distinct values possible with minimal traversal of 

the network. In this section, we review a few approaches that exist 

for traversing the network.  

3.3.1 Flooding 
A simple method of sampling the set of peers is to use flooding. 

The request initiator sends out messages to all its neighbors, 

which in turn pass the message on to their neighbors till the 

message spreads throughout the network to every node. Thus, the 

initiator will eventually visit every node in the system. However, 

flooding is highly unsuitable for larger networks and it places 

great load on participants and on the network [5] due to repeated 

messages and cycles. 

3.3.2 Random Walks 
A popular network traversal technique is to use a random walk, 

where each node picks out a random neighbor to pass its messages 

instead of passing the messages on to all its neighbors. This 

technique reduces the network load by an order of magnitude [5] 

as fewer messages are exchanged between nodes. Using the 

random walk technique, a chain of nodes is thus built as  

messages pass from one neighbor to the next. However, this 

process has a higher latency in returning results than flooding. 

Random walks are not an exhaustive technique, and operate on 

the assumption that tuples that match the query are common on 

the network. 

3.3.2.1 Random Walks and Clusters 
In real-world peer-to-peer networks it is inevitable that nodes 

form clusters. These clusters may have similar data residing on the 

network. Alternatively, these clusters may form because the nodes 

may all be in the same geographical area. The formation of 

clusters causes a problem because if there is a small cut between 
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clusters, then a random walk has a higher chance of accessing 

more nodes from within a cluster, rather than from across the 

entire network. 

The authors in [2] reduce the effect of this clustering by setting a 

jump size j for the walk, as shown in Figure 1. Only nodes that 

occur after j hops are taken into the sample. With more realistic 

jump sizes in real P2P networks, this has the effect of making the 

walk lose memory of recent neighbors since it reduces the 

correlation between successive sampled peers in the network.  

 

Figure 1:  Random Walker with jump size = 2 

3.3.2.2 Random Walks and Node Degree  
Different nodes in the network may have a different number of 

neighbors. In Gnutella, some peers may collect many neighbors 

(called ultrapeers) [16, 17]. Others may just maintain one link to a 

larger, well-connected node. Because of these differences in node 

degree, the random walk has a higher probability of traversing a 

node with large more than one with a smaller degree. This results 

in a non-uniform sample with a higher chance of duplicates of 

such nodes. 

The problem of varying node degree is addressed in [3] by 

making use of the random walk traversal technique. This 

technique makes use of the Metropolis-Hastings algorithm [7, 8]. 

It operates by changing the way a node chooses a neighbor to 

move to during the random walk process. The process is described 

as follows. 

Consider a node X with a total number of neighbors (edges) that is 

given by deg(X).  Assume that one of these neighbors is node Y, 

which has its own deg(Y) associated with it.  If X randomly 

chooses Y as the next node in the random walk then we define the 

probability that X will move to Y as: 









=
)deg(

)deg(
,1min),(

Y

X
YXr  

r(X,Y) is called the acceptance probability. Thus, once the node 

picks out its prospective next peer, it tosses a coin that comes up 

heads with a probability of r(X, Y). If it comes up heads it hops to 

the next node, otherwise it stays at the same peer and performs the 

coin toss again [3]. Thus, since r(X, Y) = 1 if deg(X) > deg(Y), the 

algorithm will always move towards an X and Y that satisfy this 

condition.  

The Metropolis-Hastings algorithm gives a higher preference to 

moving to nodes that have smaller degree (connectivity) than the 

current node. Thus, this should balance out the fact that lower 

connectivity nodes normally have a lower probability of being 

accessed during a normal random walk.  

4. OUR ALGORITHM  
In this section, we discuss our method of estimating the number of 

distinct values on an unstructured P2P network. This method uses 

distinct value estimators on a sample that is built up from 

executing a random walk on the network and sampling the local 

databases of the visited peers.  

We first discuss how we can apply COLLAPSE to the domain of 

P2P networks. 

4.1 Applying COLLAPSE to P2P Networks 
We assume that a set of peers have already been sampled from the 

network (the specifics of how this is done is discussed in the next 

sub-section). Here we discuss how the local databases of these 

nodes are sampled and COLLAPSE is applied to these records. 

 

 

Figure 2: COLLAPSE on P2P Networks 

Figure 2 describes how the data sampled from local databases of 

visited peers are processed through the COLLAPSE algorithm. 

For each peer, the duplicates are removed from all records that 

pass the query selection condition, and the resulting dataset is sent 

over the network to the peer that initiated the query (“sink”).  A 

distinct value estimator is then applied to the accumulated sample 

records at the sink. 
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While COLLAPSE was originally applied to centralized 

databases, it offers a variety of benefits that can also be applicable 

to peer to peer networks.  

Firstly, it is a simple algorithm that requires few additional input 

parameters. It makes no assumption on the size of each block and 

it can be applied to different-sized blocks. Since various node 

sizes are possible in P2P networks, COLLAPSE could be applied 

to the samples without any fundamental change. Since we can 

choose how much to sample from each node, this would translate 

to being able to access fewer nodes in total to build up a sample, 

by sampling more from each node. This gives power and 

flexibility to allow the algorithm to be applied in different cases. 

The sample sizes can also change depending on network 

conditions, since there is a cost associated with accessing nodes 

and for retrieving samples from nodes. 

Peers on a P2P network are more or less autonomous. They can 

enter, leave or add and remove shared resources at any time. 

Because any peer can potentially be an adversary, a proven and 

robust algorithm that can handle this susceptibility is crucial. 

COLLAPSE addresses this concern as it is designed to handle 

such adversarial models [1].  

Because COLLAPSE is designed to handle duplication of data 

across blocks, it factors out the duplications within a block. This 

preprocessing is important because in P2P networks, it is normal 

for a node to have multiple records of the same distinct value (if 

the query is to find distinct values). COLLAPSE eliminates 

repeatedly counting a single peer that may have a lot of such 

occurrences of the distinct value. 

4.1.1 Node Sampling: Implementation Issues  
Depending on the estimator used, the only variable that is 

required is the total number of sampled records. This is tracked as 

COLLAPSE executes. Thus, the overall sampling ratio is also 

taken to be that of the original block sample before running 

COLLAPSE [1]. 

If GEE is used for estimation, the value of n must be either 

estimated from preprocessing or be specified for a particular 

network/query. However, it should also be noted that AE does not 

assume that we know n, so we do not have to estimate it in such a 

preprocessing phase. This would also introduce an additional 

error in our estimations. 

As previous described, the peers are selected during the random 

walk. They can have different sized databases, samples, and 

collapsed samples. The collapsed samples from every chosen peer 

are brought together at the query initiator (sink). The sink also 

keeps track of the original sizes before collapsing the samples. 

4.2 Sub-Sampling Strategies at Nodes 
Some nodes in the peer-to-peer network may have too many 

tuples to be able to send all of their data across the network to the 

query initiator (sink). Thus, it becomes necessary to sub-sample at 

each sampled node’s local repository. It is important that this 

node sample be a uniform and random as well. 

An important factor to consider is the size of this sample. Since 

different nodes have different sizes, it is not possible to have a 

constant size for the sample as this would result in a non-uniform 

sample of the multi-set. This is intuitive, because if sample size is 

s and node A is of size s and node B is of size 10s, then the 

probability of selecting a tuple at node A is 1, but at node B it is 

0.1. This means that not all tuples have the same chance of 

entering the sample. 

The connectivity of nodes also poses a problem to the sampling, 

since well connected nodes may be picked out for sampling more 

often. In approximating aggregation queries over P2P networks, 

the authors in [2] have suggested scaling the contributions from 

such nodes. This reasoning cannot be applied to distinct value 

estimation easily as the estimators work on samples that cannot be 

scaled. An alternative is to reduce the number of samples taken 

from nodes with high degree. A dynamic sampling ratio such as 

this poses several challenges and makes it harder to assess the 

overall sampling ratio and guarantee a bias-free sample. 

We opt for a simple sub-sampling technique that uses a constant 

sampling ratio for nodes sampled during a random walk. This 

ensures that all tuples residing on sampled nodes are sub-sampled 

in a fair manner. Thus, larger nodes that may have a significant 

effect on the rest of the network contribute correspondingly larger 

samples so that more tuples from such nodes can be represented in 

the sample. 

As previously discussed, an underlying assumption for 

COLLAPSE to be applied effectively in databases is that blocks 

are chosen randomly. Thus the selection of nodes for applying 

COLLAPSE in a P2P network must be as close to random as 

possible, despite the challenges that arise from the varying 

connectivity of nodes. To address this, we adopt the use of a 

random walk sampler that uses the Metropolis-Hastings algorithm 

[3]. 

4.3 Metropolis-Hastings Network Traversal  
By using the Metropolis-Hastings random walker [3], we aim to 

obtain a uniform-random sample of nodes from the set of all 

nodes in the P2P system.  

The technique operates upon the assumption of a fixed 

relationship between the degree and the probability of visiting a 

peer [11]. This is especially valid since networks such as Gnutella 

may have ultrapeers that are accessed more frequently during 

random walks due to their high connectivity. 

Instead of scaling contributions based on connectivity as in [2], 

using the Metropolis-Hastings controls the path of the walker so 

that a higher preference is given to moving towards nodes with 

lower connectivity. The outcome of this is a set of random peers 

that are not necessarily selected because they have high 

connectivity. This provides our algorithm with the ability to use a 

constant node sampling ratio across all nodes so that all selected 

nodes can be processed in a similar manner with the same 

parameters. This simplifies the operation of our algorithm. 

Because this algorithm still operates using a random walk, which 

is a Markov chain, there is a correlation between the selected 

nodes since they are along a chain of neighbors. The effect of this 

is controlled to some degree by using the burn-in period 

parameter.  

While the jump size j samples nodes that occur every j hops, the 

burn-in period b samples the current node after the outcome of b 

coin-tosses (see [3, 7, 8]. Depending on the result of each coin 

toss, the walk may or not move to the next peer, and the actual 

number of hops between sampled nodes ranges between 0 and b. 
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Setting a higher burn-in period also makes it less likely that the 

random walker will get stuck sampling nodes with a cluster. 

The Metropolis-Hasting method does not require knowledge of 

any global constants or external settings, other than the burn-in 

period. All information required at a node to execute the walk, 

such as the degree of neighbors, can be stored locally or retrieved 

using a simple query to neighbors. This feature eliminates the 

need to inform all nodes of system settings. 

4.3.1 Random Walk Sampler: Implementation Issues 
The optimal value of the burn-in period must be set depending on 

the application and the topology of the P2P network. It should be 

large enough to reduce the correlation between sampled nodes. 

However the larger the number, the higher the latency and wait 

times due to the increased number of hops between successive 

sampled nodes.  

The random walker must also be designed carefully so that it has a 

stopping condition; otherwise it would continue executing 

infinitely.  

A simple solution is to execute the walk until the total 

accumulated sample size reaches a specified ratio of the total data 

size on the network. As in the GEE estimator (3.1.1), this assumes 

that n is known.  

When using estimators such as AE that do not require a value for 

n, it may be preferable to assign a threshold to the random walk. 

The threshold T operates by assuming we have a cost function 

combining the time and network costs of accessing a node (via the 

random walk) and similar costs for retrieving samples across the 

network from source to sink. Once we model this overall cost of 

sampling nodes using the walker, the user can define an 

acceptable threshold at which the walk terminates, i.e., once the 

cost exceeds the threshold. This approach gives the user the 

additional flexibility to customize the walker to sample more 

nodes with a lower sampling ratio or, conversely, fewer nodes 

with a larger sampling ratio. 

4.4 Pseudo-code 
We provide simple pseudo-code that defines our algorithm. We 

first provide the code for the random walk sampler. We do not 

include details of algorithms of existing work such as COLLAPSE 

[1], the Metropolis-Hastings sampler [3], nor distinct value 

estimators.  

The random walk is executed over the P2P network, starting with 

the query initiator node. Note that the sample_size variable is the 

accumulated value of the original node sample sizes, before 

applying COLLAPSE. Only the collapsed sample is used in the 

estimation. 

The pseudo-code for the random walk is provided in Figure 3. 

 

 
Inputs: 

Rdata  : sampling ratio for multiset  
Rnode  : sub-sampling ratio for       

  local repository  
n  : size of multiset 
b  : burn-in period 
sink  : initial node in random walk 

 
Variables: 

sample_size : total size of data samples  
  before applying COLLAPSE 

p2p_sample : total sample from sampled      
   nodes 
curr : current node in random walk 
 
Methods: 

getNextMH(curr,b) { 
Get next node according to Metropolis-  
Hastings, using burn-in period b 

} 
 
run_estimator(sample, orig_size) { 

Estimates distinct values in sample  
with orig_size (size without running 
COLLAPSE) 

} 
 
Algorithm: 

 
1:  curr = sink; 
2:  while(sample_size < n * Rdata) 
3:  { 
4:       curr = getNextMH(curr,b); 
5:       sample(curr, Rnode); 
6:       update sample_size; 
7:       update p2p_sample; 
8:  } 
9:  run_estimator(p2p_sample, sample_size); 
 

Figure 3: Pseudo-code for P2P network traversal 

 

In Figure 4, we provide code for the sampling procedure at a 

node. The inputs have been described already in Figure 3. 

 

 

Variables: 

orig_sample : original uniform-random          
               sample of data at a node 
orig_size : size of original sample 
col_sample : sample after running  

  COLLAPSE 
 

Algorithm:  

 
1:  Sample(curr, Rnode) { 
2:     orig_sample = uniform-random sample;              
3:     orig_size = size of orig_sample; 
4:     col_sample = collapsed orig_sample; 
5:     return orig_size, col_sample; 
6:  } 
 

Figure 4: Pseudo-code for sampling a node 

Because random walks can be slow to yield results as they 

traverse the network, we can increase the response time by having 

multiple walkers running at the same time over the network. This 

can be a possible addition to our algorithm because assembling of 

node samples can be concurrently built from multiple sources.  
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4.5 Assumptions 
Our algorithm operates upon various assumptions and constraints. 

We summarize these. 

As with any random walk, we assume that tuples that match the 

query are frequent enough to be discovered by a random walk in 

order to perform distinct value estimation. We also assume that 

the data on the network does not change too much during the 

execution of the random walk. 

Depending on the random walk stopping condition and the 

estimator, it may be required to know the total size of the network, 

or the total number of nodes. This may be available, assumed, or 

approximated in a preprocessing phase. This may introduce 

substantial errors into the system. 

We also assume that the network cost of retrieving tuple attributes 

from sampled nodes is low. If this is not the case, more advanced 

stopping conditions such as the threshold technique can be used. 

5. DISCUSSION 
In this section we discuss the capabilities of our algorithm as well 

as the expected performance for different queries on varying P2P 

network topologies and applications. We show that the behavior 

of the algorithm can be customized to suit requirements by 

changing the values of the available input parameters. 

5.1 Supporting Different P2P Network 

Characteristics 
Since different topologies can form for unstructured P2P 

networks, it is important that our algorithm be able to handle a 

variety of clustering and connectivity scenarios that may arise.   

As discussed previously, the use of the Metropolis-Hastings 

algorithm handles possible variations in the connectivity of nodes. 

Also, increasing of the burn-in period reduces the effects of node 

clustering. However, it is important to bear in mind that a larger 

burn-in period translates to longer wait times as the sampler 

converges to a uniform random sample. 

It must be noted that the smaller the diameter of the P2P network, 

the faster a random sample is obtained [33]. This is intuitive since 

sampled peers can thus be further apart on opposite ends of the 

network (in terms of hops) and are less likely to be stuck in the 

same locality or cluster. 

The authors in [33] also suggest possible modifications to the 

Metropolis-Hastings algorithm for attaining required node 

sampling distributions. They also show the suitability of the 

algorithm for several interesting applications and topologies. 

Thus considering the design of the Metropolis-Hastings algorithm 

and the effect of changing the burn-in period, one can design the 

random walk to suit a variety of applications. Possible 

enhancements such as transition probabilities [33] can also give 

some nodes preference during the walk if this is required by 

applications. 

Network costs associated with running the random walker also 

vary according to the type and scale of the network, the size of 

samples and various other factors.  

As described earlier, our algorithm allows the node sampling ratio 

to be set for a walk. By tuning this value, one can set an 

appropriate sampling ratio that balances the cost of accessing 

nodes and the cost of retrieving samples from these nodes via the 

network. A smaller sampling ratio has the effect of producing 

smaller samples from nodes, reducing the time taken in 

transferring samples to the sink. However a consequence of this is 

that more samples need to be accessed from more nodes, and the 

random walk becomes longer. Conversely, for larger sampling 

ratios, the length and cost of accessing nodes in the random walk 

reduces, but because of the high sampling ratio, large-size nodes 

may have correspondingly large samples that are expensive to 

transfer to the sink.  

Thus, depending on the specific application, the network, its 

scale, the distribution of node sizes, and the overall sampling ratio 

of the entire multi-set, it may thus be possible to design a walker 

with an optimal sampling ratio that minimizes overall network 

cost and wait times. 

5.2 Supporting Different Data Distributions 
Supporting distinct value estimation for different data 

distributions naturally depends heavily on the estimator that is 

used. Assuming we have an appropriately configured random 

walk that yields a uniform-random sample, we expect 

performance comparable to a random sample of nodes taken from 

the set of nodes in the system. We now analyze some of the 

parameters that model a data distribution, and assess how our 

algorithm will be affected for different types of distributions. 

5.2.1 Effect of Clustering of Data 
The amount of clustering of the data on the network changes the 

way estimation will be performed with our algorithm.  

In perfect clustering, similar data is generally found within the 

same node or within the locality around the node. In low 

clustering cases, data is mixed and distributed across the network, 

resulting in less of a correlation between the data and its location 

on the network. The worst performance is expected for the first 

case, as each node produces a collapsed sample with a relatively 

small quantity of distinct values. Since the distinct values 

estimators use the original size of the sample before COLLAPSE, 

the estimator gains less information from the sample and the 

estimate has more error. 

The performance of distinct value estimation using our algorithm 

increases as clustering reduces and duplicates are scattered more 

across the network. Samples from less clustered data, result in a 

sample that picks up more values (and their frequencies). This 

translates to a higher quality sample. Estimators scale these counts 

more accurately to produce a better approximation of the answer. 

5.2.2 Effect of Data Skew 
The skew specifies the shape of the frequency distribution curve. 

Highly skewed data has a small ratio of elements with very high 

frequencies in the multi-set, and a higher ratio of lower-frequency 

elements in the sample. 

For high skew data, our random walk has a lower chance of 

sampling the rarer elements in the multi-set. The sample will 

instead have a lot of occurrences of high-frequency values that are 

duplicates across many nodes. This affects the quality of the 

sample and the distinct value estimator becomes more erroneous. 

Obviously, our algorithm handles data distributions with less 

skew well. These correspond to increasingly uniform 

distributions, where it is easier to get accurate samples. 
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6. EXPERIMENTATION 
In this section, we provide experimental validation of our 

proposed approach. We have implemented the algorithms to run 

on both synthetic and real-world network topologies, with 

different network sizes, different data distributions and various 

clustering levels. 

6.1 IMPLEMENTATION 
Our algorithm was implemented in Java (Sun JRE 1.5.0) and 

carried out on Dual 3.00GHz Intel Xeon processors with 2GB 

RAM using the graph generation framework, JUNG [6]. The Java 

Runtime Environment was set to a maximum allowable heap size 

of 300MB. 

6.1.1 Generation of P2P Networks 
The P2P networks for running the algorithm are simulated by 

loading real-world topologies obtained from existing and highly 

popular unstructured peer-to-peer networks. The topologies that 

we loaded were collected from the Gnutella P2P network. They 

were obtained from actual data [37].  Our simulator loaded a total 

of 24278 peers with a total of 62391 edges in the system. A total 

of over 16.1 million integers were allocated to the nodes to run 

the simulations.  

Each node is allotted a data set size that indicates the number of 

integers (tuples) stored at the node. These sizes ranged between 

300 and 1500 tuples. The distribution of sizes is Zipfian [30] and 

several input parameters (described below) are used to control the 

shape and properties of the distribution. It is our intuition that this 

models the fact that different nodes have different sizes and that 

there are usually fewer nodes with very large databases and more 

nodes with smaller sizes.  

6.1.2 Generation of Node Databases 
We use single-attribute tuples for the node databases. A 

configurable number of distinct values (integers) are generated 

and duplicated so that they follow a Zipfian distribution. These 

numbers are stored in a sorted ‘multi-set’ which contains the 

entire data for the whole P2P system. Its total size depends on the 

parameters provided when generating node sizes (as described in 

section 6.1.1). The multi-set is then partitioned so that each node 

is allocated the correct number of tuples. This partitioning is done 

as the network is traversed using a breadth first search. 

In order to simulate different levels of clustering – where the data 

in and around a node is similar – we shuffle the data in the multi-

set before allocation. A highly shuffled multi-set has a lower level 

of clustering. This approach is adapted from [2]. 

The approach for generating data for the nodes follows the 

intuition that the distribution of distinct values, files follows 

Zipf’s Law [5, 21, 30]. Some values tend to be very popular 

compared to others. Additionally, depending on the application, 

neighbors may share highly similar data. Each node may also 

contain mostly unique elements, with few duplicates residing in 

other nodes. Correlations such as these are modeled using the 

clustering technique described above. 

6.2 Input Parameters 
A variety of input parameters allow many different scenarios to be 

simulated to test our algorithm and its performance. These 

parameters affect the properties of the P2P network and the data 

that is distributed on the network. The operation of the algorithm 

can also be controlled with a separate set of parameters. They are 

described in the following section. 

6.2.1 P2P Network Parameters 
These parameters control the node sizes as they are allocated to all 

nodes in the graph. The actual data is generated and allocated to 

the nodes afterwards. 

• Node Data Size Skew (zsize): This parameter controls the 

slant of the frequency distribution of the data sizes allotted to 

a node. The skew ranges between 0 and 1. Lower values 

indicate increasingly uniform (flat) Zipfian distributions. 

• Maximum and Minimum Node Data Sizes: These sizes 

specify the highest and lowest possible number of tuples that 

are allocated to nodes on the network. 

• Number of Steps in Node Data Sizes: The range of allowed 

data sizes is divided into evenly-spaced steps of increasing 

sizes, ranging from the minimum to the maximum allowable 

size. The step size is given by:  

(max_size – min_size)/num_steps 

Each node is allocated a data size at a step. Expressed 

simply, it is the distinct number of sizes generated within the 

range of permissible node sizes.  

6.2.2 Node Database Generation Parameters 
These parameters control the properties of the distribution of 

tuples on the entire P2P network. These tuples are modeled as 

integers in our implementation. 

• Number of Distinct Values: This is the number of distinct 

data values that are distributed across the network. 

• Data Distribution Skew (zdata): The distinct values are 

duplicated to follow a Zipfian frequency distribution. The 

skew value controls the shape of this distribution. The 

number ranges from 0 to 1. Lower values correspond to 

increasingly flat (uniform) distributions. Larger values have 

distributions that slant more steeply since a few elements will 

be duplicated far more than others. 

• Cluster Level (C): The Cluster level indicates the level of 

mixing that is performed on the sorted data before it is 

allocated to the nodes on the P2P network. This value ranges 

from 0 to 1. A Cluster Level of 0 performs no mixing, and 

this corresponds to a perfectly clustered network, where each 

node and its neighbors hold very similar data.  As the 

clustering level tends towards 1, the data is mixed entirely 

before it is spread onto the network. 

6.2.3 Algorithm Input Parameters 
The following parameters control the way that our algorithm runs. 

• Burn-In Period (B): This is the Metropolis-Hastings 

algorithm parameter that controls the number of times that 

the coin is tossed before a node is sampled. The coin toss 

decides whether to move to a node or not. Thus, successive 

sampled nodes on the random walk may be between 0 and B 

hops apart based on the outcomes of these decisions. 
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• Node Sub-Sampling Ratio (rnode): This is the sampling ratio 

for the local repository of a node. It allows the sample size 

from a node to be larger for nodes that contain more tuples. 

• Data Sampling Ratio (rdata): This is the overall sampling 

ratio of the data on the entire network. It can provide a 

stopping condition for the random walk by keeping track of 

the total sample size as samples are accumulated during the 

walk.  

• Threshold (T): The threshold can be set as a stopping 

condition for a random walk. It requires the definition of a 

function that models the cost of accessing and retrieving 

samples from nodes on the walk. 

6.3 Evaluation Metrics 
Evaluation of the algorithms can be done by assessing the ratio 

error of the estimates. The ideal estimator has a ratio error of 1. 

Other evaluation metrics could include the number of node 

samples, the total number of samples collected and the number of 

messages exchanged. 

6.4 Experiments and Results 
We compare the results of running a random walk (while using 

Metropolis-Hastings) with burn-in period of 10 with a simple 

random node sample from of the set of nodes in the system. This 

helps in assessing the quality of our traversal method.  

We also compare with a uniform random sample of the data, taken 

directly from the set of all numbers in the multi-set. This helps us 

to assess the estimators to see how close we can get our algorithm 

to match performance on a uniform-random sample.  

All tests are carried out by averaging the results from 10 runs of 

the algorithm.  

6.4.1 Node Sub-Sample Ratio 
Figure 5 shows the effect of changing the sub-sampling ratio at a 

node. The overall multi-set data sampling ratio (Rdata) is set at 

3%, with a skew parameter of 0.5 and a clustering level (Cl) of 

0.7. The number of distinct elements on the system is held at 

500,000 and we use AE to estimate the number of distinct values 

using different sampling ratios. 

We observe that at lower data sample ratios, the error of the 

random walk and the random node sample methods approach that 

of the random data sample from the multi-set.  

Average Ratio Error(AE) vs. Node Sampling Ratio
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Figure 5: Average Ratio Error vs. Node Sampling Ratio 

6.4.2 Data Sample Ratio 
Figure 6 shows the effect of varying the overall data sampling 

ratio for the multi-set. As expected at lower values (0.5%), the 

ratio-error is very high. It improves significantly and all three 

sampling strategies have comparable results with the sampling 

ratio greater than 1.5%. 

The result is obtained with a node sub-sampling ratio (Rnode) of 

0.5. 
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Figure 6: Average Ratio Error vs. Data Sampling Ratio 

 

6.4.3 Clustering Level 
Figure 7 shows the effect of varying the clustering level of the 

data. A cluster level of 0 indicates perfectly clustered data and the 

expected high ratio error can be observed. The quality of the 

estimation improves significantly very rapidly. This demonstrates 

the importance of clustering in our sampling scheme.  
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Average Ratio Error (AE) vs. Clustering Level
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Figure 7: Average Ratio Error vs. Clustering Level  

6.4.4 Data Skew 
To demonstrate the performance of the algorithm with different 

distributions, we vary the skew of the data as shown in Figure 8. 

This shows how, for higher skews beyond 0.8, the ratio-error 

increases greatly. 
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Figure 8: Average Ratio Error vs. Zipf Data Skew 

 

6.4.5 Number of Distinct Values 
We provide two graphs here to demonstrate the operation of both 

the GE estimator and AE.  

The AE graph shown in Figure 9 is obtained by varying the 

number of distinct values on the network between 100,000 and 

1,000,000. 

Figure 10 shows the graph obtained for the GE estimator, while 

varying the number of distinct values between 10,000 and 

100,000. Note that far fewer distinct elements were used for 

estimations using GEE as it produces poor results at a higher 

number of distinct results. This is expected, since GEE is a biased, 

optimal error estimator. 
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Figure 9: Average Ratio Error vs. Number of Distinct 

Elements using the Adaptive Estimator 

 

Average Ratio Error (GEE) vs. Number of Distinct Values
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Figure 10: Average Ratio Error vs. Number of Distinct 

Elements using the Guaranteed Error Estimator 

 

6.4.6 Burn-In Period 

Average Ratio Error (AE) vs. Burn-In Period
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Figure 11: Average Ratio Error vs. Burn-In Period 
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Figure 11 shows the effect of executing the random walk with 

different burn-in periods set. As seen from the results, the ratio-

error becomes increasingly close to that of a random sample as the 

burn-in increases. This is because the sampled nodes become 

increasingly less correlated as the burn-in period increases. 

7. CONCLUSION AND FUTURE WORK 
In this paper we address a new and interesting problem with 

unique challenges.  We offer a way of combining different 

strategies to come up with an algorithm that has a ratio error 

comparable to uniform-random node samples, and in some 

conditions, even comparable to uniform-data samples. It also 

opens up numerous possibilities for future work. 

Distinct value estimation for dynamic graphs could be studied for 

P2P network environments which change rapidly during the 

execution of a random walk.  

Similarly, ways of predicting how much to sample from the P2P 

network could warrant further study. The challenges of this are 

well known, considering the difficulty in predicting error in 

distinct value estimates. 

Another area for future work is to model the network costs of 

accessing and retrieving samples from nodes. The ability to do 

this will allow optimization of input parameters for the algorithm, 

and will also offer a means of predicting when to bound the 

random walk. 

Being able to get distinct values estimations also paves the way 

for future work in histogram construction and query optimization 

on peer-to-peer networks. This is could be an emerging area due 

to the rapid increase in popularity of P2P networks and the 

possible paradigm shift away from traditional client-server 

models. 
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