Region Sampling: Continuous Adaptive Sampling
on Sensor Networks

Song Lin #!, Benjamin Arai #2, Dimitrios Gunopulos ##*, Gautam Das **

Department of Computer Science and Engineering, University of California, Riverside
tDepartment of Informatics, University of Athens
*Department of Computer Science and Engineering, The University of Texas at Arlington
lslinecs.ucr.edu
’parai@cs.ucr.edu
3dg@cs‘ucr.edu
4gdas@cse.uta.edu

Abstract— Satisfying energy constraints while meeting per-
formance requirements is a primary concern when a sensor
network is being deployed. Many recent proposed techniques
offer error bounding solutions for aggregate approximation but
cannot guarantee energy spending. Inversely, our goal is to bound
the energy consumption while minimizing the approximation
error. In this paper, we propose an online algorithm, Region
Sampling, for computing approximate aggregates while satisfying
a pre-defined energy budget. Our algorithm is distinguished by
segmenting a sensor network into partitions of non-overlapping
regions and performing sampling and local aggregation for each
region. The sampling energy cost rate and sampling statistics
are collected and analyzed to predict the optimal sampling plan.
Comprehensive experiments on real-world data sets indicate that
our approach is at a minimum of 10% more accurate compared
with the previously proposed solutions.

I. INTRODUCTION

Recent improvements in hardware technology have allowed
for wide-scale distribution of sensor networks in a variety
of settings. Inexpensive and small sensor devices have many
resource limitations that introduce new challenges for data
collection and aggregation in sensor networks. Among these
limitations, energy is usually the primary concern when de-
signing an in-network algorithm. This is because the sensor
devices are either powered via a limited power source (such
as batteries) where the total amount of expendable energy is
limited, or renewable sources (such as solar energy) that allow
continual use of energy but at a limited rate of consumption
[1].

There are numerous applications in data-mining for efficient
sampling techniques such as preserving data characteristics
that would be otherwise unobtainable through traditional exact
solutions. Distributed database sampling plays an important
role in revealing patterns and correlations in streaming data.
Traditional database research such as decision support and data
analysis often requires the building of high-level structures
such as mining models. Aggregation is useful for building such
models that can be later used for various mining techniques
(clustering, classification, etc.). In this paper, we are interested
in the continuous approximation of aggregates for long-term
monitoring in sensor networks that have a variety of real world

applications such as monitoring air pollution [2], wild life
habitats [3] and health conditions of residents [4]. In these
applications, there is usually a query node in the network
which continuously evaluates the aggregate query for all
sensors. This node is used to detect events occurring within
the monitored area and to notify the user to take actions
accordingly.

One possible solution for this continuous aggregation prob-
lem is to apply in-network aggregation algorithms (such as
TAG [5] or COUGAR [6]) to compute the exact result for
a given query. In TAG, each node aggregates all the sensor
data in a subtree and sends the aggregate results to its parent.
As the energy resources for sensor devices are usually very
limited, this approach may become infeasible for long-term
applications.

Since the energy consumption of the sensor network is
dominated by radio transmissions, there are two network traffic
reduction approaches to address the problem. One is to collect
the sensor data periodically instead of performing a query
continuously. This approach has drawbacks in that important
information may be missed or disregarded. Another solution to
the energy limitation problem is data sampling that performs
data collection and aggregation at every time moment, but only
a small fraction of the sensor data is accessed. In this approach,
there is usually a pre-defined energy budget which is defined
as the total network energy cost that can be utilized for each
round of data sampling. The size of the budget depends on
the total energy capacity of the sensor network and how many
times the user expects to issue a query over the network.
Example: Let us consider a sensor network with 6 sensors
and a query node as shown in Figure 1. At each timestamp
every sensor takes a reading and sends it back to the query
node. Suppose at some timestamp we take a reading from
each sensor to obtain the following values {2,2,4,4,8,10}.
If the energy budget of the network allows, we can obtain a
value from every sensor to obtain an exact average value of
5. Now assume we do not have enough energy budget and we
can only access at most 4 sensors. In order to meet the budget
constraint we can randomly sample 4 values from the network
(e.g. {51, 52,54, 56}) but this would give us an average value

. Query Node O Sampled Sensor Node O Non-sampled Sensor Node

Fig. 1. Data sampling in sensor networks

of 4.5 and 10% relative error. We can improve our estimation if
we realize that some sensors’ readings are similar. Suppose we
group the sensors together as follows R1 = {S1, 52}, R2 =
{53,554} and R3 = {S5, S6}, then randomly sampling from
each group gives us samples {{2}, {4, 4}, {10}}. If we scale
each respective group (i.e. we estimate each group as R1={2,
2}, R2={4,4}, R3={10,10}), we can get a new average value
of 5.33 reducing the relative error to 6.7%. Taking the example
one step further, we can vary the allocation of energy between
groups based upon the variance of sensor readings within each
group. Since groups R1 and R2 contain a variance of 0 we
need only a single reading from each of them (i.e. S1,53).
On the other hand, group R3 contains a higher variance so
we allocate more energy budget which allows for 2 readings
for group R3 (i.e. S55,56). This gives us a final value of 5
reducing the approximation error to 0.

The distances of sensors from the query node play an
important role in determining the energy cost of sending data
back to the query node, thus introducing a large variance
of sampling energy costs for different sensors. As shown in
Figure 1, sensors S5 and S6 are 2 hops away from the query
node and sensors S1, S2, S3 and S4 are able to communicate
with the query node directly. Therefore, it requires more
energy to sample a reading from sensors S5 and .S6 than from
other sensors. In order to increase the approximation accuracy,
we may prefer to sample the sensors near the query node as
we could obtain more samplings from them. But we may also
prefer to sample from sensors far away from the query node if
the data there are good sampling representatives. Considering
both the variance of sampling costs and the variance of
sampling goodness at different sensors, the challenge is the
distribution of the pre-defined energy budget in such a way that
the accuracy of the aggregate approximation over the sensor
network is maximized.

Goal of the paper: We investigate the feasibility of continuous
approximation of aggregation queries in sensor networks given
an energy budget for query processing.

Our Approach: Our approach begins by segmenting the
network into several non-overlapping regions and performs
sampling within each region. Each region then computes
sample statistics, and sends the results back to the query node.
The query node combines the partial aggregates from each
region to approximate the query result. The sample statistics
along with the sampling energy cost for each region are
updated at the query node to compute the optimal sampling

plan for each region. As the regions offer different sampling
statistics and sensor-sampling cost, different sample rates will
be assigned to regions in order to maximize the approximation
accuracy while constraining the query processing cost within
a pre-defined budget. We summarize the contributions of this
paper as follows:

e« We propose the Bottom_up Partitioning algorithm to
partition the sensor network into regions for efficient
Region Sampling.

o We propose the Region Sampling algorithm to continu-
ously approximate aggregate queries in sensor networks
while constraining the network energy cost within a pre-
defined energy budget.

The rest of this paper is organized as follows. We describe
related sampling and approximation techniques for sensor
networks in Section II and present our problem definition in
Section III. We describe our framework in Section IV. We
introduce our approach in Section V. We provide extensive
experimental evaluations of our technique in Section VI, and
finally, in Section VII, we conclude this paper.

II. RELATED WORK

Energy efficiency for sensor networks has been an intense
area of research in recent years [7], [8], [9], [10], [5], [11],
[12], [13], [14], [15], [16], [17], [18]. Among these techniques,
various data collection approaches have been proposed such
as event detection [19], in-network aggregation [5], [6], dis-
tributed compression [13], model-based apporaches [17], [8],
and data sampling [10], [18].

Several techniques have been proposed to approximate
aggregate queries in sensor networks. One such approach is
approximation caching [12], [16]. The idea is to let the query
node store a cached value along with an update threshold for
each sensor; when a sensor notices that its value has sur-
passed the threshold, it sends an update message to the query
node. CONCH [16] also provides an efficient Spatio-Temporal
Suppression technique in which nearby sensors with small
difference in their values are also suppressed from updating.
A major problem with approximation caching is the large
energy overhead of the update message transmission when
many sensor readings do not stay within the update threshold.
In addition, the energy cost for query processing cannot be
constrained, which limits its feasibility for energy constraining
applications such as the continuous query processing in our
problem setting.

Another solution for aggregate approximation is to use
statistical model to capture the correlations of readings at
different sensors. The model-based approach [8] samples a
small fraction of the sensor data from the network and utilizes
the correlation model to estimate the non-sampled sensor
readings. The idea is to find the best set of sensors to sample,
such that the overall approximation error is minimized. This
best sampling set is computed by greedily selecting the sensor
that maximizes the estimation confidence of the correlation
model. A drawback of this approach is the large computational
overhead and large energy consumption. This is because as the

sensor data and their correlations evolve over time, the model
must be updated frequently in order to accurately represent the
correlation between the sensor data, thus limiting the practical
employment of this approach.

Stratified Sampling [20] is an efficient method for sampling
from a population. It groups members of the population
into several relatively homogeneous subgroups and performs
random sampling from each subgroup (stratum) independently.
The global aggregate result is a weighted combination of
all the partial aggregate results at each stratum. In Stratified
Sampling, however, it is assumed that the sampling cost of
retrieving a value is the same for all the strata, which is not
always true in sensor networks. In addition, Stratified Sampling
assumes uniform sampling within each stratum, which is usu-
ally difficult to be guaranteed in sensor network applications
as sensors may fail periodically or the communication between
sensors may be interrupted by obstacles. All these differences
limit the practical application of Stratified Sampling in sensor
networks.

Most likely the closest work to our own is Best-Effort Cache
[12], which is a communication constrained data caching
algorithm for synchronization between source data objects
and cached copies. However, Best-Effort Cache assumes the
sampling cost across all sensors is the same and its goal is to
minimize the average update divergence of objects over time,
which is different from our problem setting.

IIT. PROBLEM FORMULATION

Let S denote a sensor network of n sensors. Each sensor
generates a record r; (1 < ¢ < n) every € seconds and the
query node aggregates these records for query processing. Due
to the energy limitation of the sensor network, the energy cost
for each query processing is constrained by a budget B, which
prevents the query node from collecting all the sensor readings
and computing the exact aggregation result. Our problem can
be described as follows:

Given a network of n sensors, with a communication cost
matrix representing the communication distance between any
two sensors in the network, and a user-defined energy budget
B. Our goal is to partition the sensor network into k distinct
regions and determine a sampling schedule that continuously
approximates aggregate queries on the sensor network with
minimal approximation error while constraining the energy
cost for processing each query to the energy budget B.

In the following sections, we will show how to exploit the
variance of readings and sampling cost of individual sensors to
achieve a more accurate approximation. The basic idea is that
regions of sensors that have large variance in sensor readings
should be sampled more and the sensors with large sampling
cost should be sampled less frequently.

IV. FOUNDATIONS OF OUR APPROACH

In this section, we present the principles behind our ap-
proach for online aggregate approximation in sensor networks.

Specifically, we provide the energy cost model and error-
bounded sampling theorems that drive our algorithm.

A. Query Cost Measures

Since the energy consumption of the sensor network is dom-
inated by radio transmissions, we compute the total amount of
energy spent on transmission as the primary measurement for
the cost of a query. In our setting, a network of n sensors is
segmented into k non-overlapping regions, with each region
representing a fraction of the sensornet. More specifically, each
region has a region-head which samples data records from
sensors located in the region, aggregates these samples, and
transmits the local aggregates to the query node. We represent
the energy consumption from sampling and data transmission
for a region C; as

Etotal (Z) = Eregion (Z) + Enetwork (Z) (1)

where E,cgion () is the energy cost to sample data records
within the region and E,,ct0rk () is the cost to send aggregate
results from the region-head to the query node.

According to [16], we can then represent Eegion (7) as

)

where €,¢corg 1S the average energy overhead of transmitting
a sample record between nearby sensors in a hop, m; is the
number of records to sample in region C; and [; is the average
path length from a sensor in region C; to the region-head.
Similarly, the cost of data transmission between the region-
head and the query node can be represented as

ETeg'ion (Z) = €record X Mj X l;

3)

where meta represents the data message transferred from the
region-head to the query node, e, represents the energy
cost to transmit meta in a single hop and L; is the number
of hops from the region-head to the query node.

Enetwork(i) = €meta X Lz

B. Sampling for Average Queries

Suppose there are n; sensors in region C;, we can estimate
the average of the generated n; records by sampling m;
(m; < n;) records from it (z7, 25, ..., 2y;,). The average of
the sampled records y; (y; = >_7") «;/m;) can be taken as
an estimator of the exact average (y;) of all the n; records. We
define the sampling error threshold A; as the expected absolute

difference between the estimate average and the exact average:

A? = E[(y; — vi)?] 4

In this paper, we extend the Cross-Validation technique [21]
to compute the relationship between the error threshold A; and
the sample size ;. The Cross Validation Error (C'V E;) for the
average queries can be computed by randomly bi-partitioning
the /m,; samples into two halves S; and S; and compute

/ 2 / 2 / !

Y ==~ X Z S, Yiz = . X Z $,CVE; = lyin — yia| (5)

SESY SESy

C. Sampling for Median Queries

Given a set of n; numbers, the median query is to first sort
the numbers increasingly and then finding the middle number
of the sorted result. The approximation error for median query
is the distance between the true rank of the approximated
median and the rank of the exact median (1/2).

2
1 1

AZ_E v oLl
L~ n; 2
j€C;i,j<med’

(6)

According to [22], we can also compute the Cross Valida-
tion Error (C'V E;) for median queries by bi-partitioning the
m,; samples into two halves S7 and S5, find the median med;
of S1 and compute

CVE; = @)

N =

Z 2
s€S2,s<med; mi
With current sample size m; and current sampling statistics
CV E; (computed by (5) or (7)), we can approximate the
aggregate more accurately if we sample more records from
the region. In order to bound the approximation error by some
threshold A;, the number of records we need to sample from
the region is represented as follows [22],

— X
2 AZ
V. REGION SAMPLING ALGORITHM

()

m; =

In this section we develop an online Region Sampling
algorithm, that continuously approximates aggregation queries
in sensor networks. The Region Sampling algorithm segments
the sensor network into several non-overlapping regions, and
computes an optimal network-sampling plan to maximize the
query approximation accuracy. Our algorithm works in three
phases: 1) Region Construction, 2) Training, and 3) Online
Approximation. The region construction phase partitions the
network into several regions and selects a sensor in each region
as region-head. In the training phase, the region-head collects
training data from all the sensors in the region, computes
the sampling statistics (i.e. CVE) and sends them to the
query node. After the training phase, an online approximation
process is called every time moment when the sensors generate
new records. The query node computes the query result by
combining the local aggregates from all the regions and
updates the network sampling plan according to the sampling
statistics and sampling cost rate in different regions.

A. Region Construction

Once all the sensor nodes have been deployed into the
monitoring field, we partition the sensor-embedded area into
k non-overlapping cells', and define each one of these cells
as a region of the sensor network. We then use any energy-
aware sensor network algorithm (e.g. the clustering algorithms

ISection VI-E.3 will describe a method to find the best value of k
experimentally.

[23], [24]) to construct an energy efficient network topology
for communication between sensors within a region and com-
munication between regions.

After the region construction, each region selects a region-
head, which samples data records from the sensors within
the newly created region, computes the in-region aggregate
result from the collected data and sends the in-region aggregate
result back to the query node. Normally the region-head incurs
a greater energy cost than other sensor nodes, as it needs
to communicate with other sensors more frequently during
data sampling and result reporting to the query node. We
therefore need to spread the energy expense over all the
sensors in the network. We employ a dynamic scheme, where
the region-head is randomly rotated among the sensors in
the region. We assume that a new region-head is randomly
selected within each region after a time interval 7. We also
make the assumption (which follows established previous
work [23]) that all the sensors in each region are within a few
(typically 1-3) hops from each other, and therefore the cost
of communicating between two sensors in the same region is
constant.

It is easy to see that the partitioning of regions could

affect the accuracy of the sampling algorithm greatly. A good
partitioning scheme should group in the same region the
sensors with positions close to each other and having readings
similar to each other. In order to find the optimal partitioning
of the monitoring area into k regions, we utilize the training
data records collected from each sensor as prediction of the
future sensor readings and try to find the optimal region
partitioning accordingly. The region partitioning optimization
problem can be defined as below.
Problem 1 Given a network of N sensors, with sensor 1
having a training record r;. Also given a distance matrix
Dnxn with D(i,j) be the distance from sensor i to sensor
j. The goal is to segment the network of N sensors into
k regions and apply our Region Sampling algorithm on the
regions in such a way that the expected approximation error
for the (average) query is minimized.

Minimize F=B[(Y -v'?]= 3 55 (g
inimize = - =
—~ n’m;’
1<i<k
subject to
Z (erecord X mg X lz + emeta X L’L) =B
1<i<k

where m; is the sampling size we retrieve from region C;
and S? is the variance of training data in region C;, ; is the
average distance between two sensors in region C; and L; is
the average length from the region-head to the query node.
Problem 1 is a clustering problem and we will provide
a heuristic approach to approximate its solution. We use a
fast and approximate solution because, a) the exact solution
requires large computational overhead at the query node (with
time complexity exponential to the network size n); b) the
exact partitioning solution is only optimal for training data,

and may not be an optimal solution for new sensor data that
generated on the fly. Therefore a fast and approximate solution
is preferred in our case. Before presenting our approach, let
us first consider the following sub problem.
Problem 1.1 Suppose the regions Cy,Cs, ...Cy, have already
been created, which segment the network of N sensors into k
non-overlapping parts (with cardinality of n; for region C;).
Each sensor has a training reading r;. With energy budget B,
we approximate the average value of all the sensors’ training
reading ¥ = Z % by performing sampling from each
1<i<N
region. The goal is to find the best sampling size for each
region in such a way that the expected approximation error is
minimized.
n2S?
Minimize E[(Y =Y')’]= Y —-t,

(10
1<i<k v

subject to Z (€record X Mi X li + €meta X L;) = B.
1<i<k

where the meanings of the notations are the same as in

Problem 1. This problem is a constrained optimization problem

and it has a close form solution [25] as follows,

R
\//Tiz1gjgk (\/ /\jﬂj)
where \; = (n252)/(n?), ;= €recora X l; and 7 = B —
> 1<i<k (€meta X Li).
Considering Equation (11) and (9), we can rewrite the
Optimal Region Partitioning problem as

2
€record (Elgigk(nisi\/ﬁ))
n? B =3 1<j<i(€meta X Lj)

In this evaluation function F', n; is the number of sensors in
region C;, S? is the variance of sensor readings in region C;,
l; is the average distance between two sensors in region Cj
and L; is the average length from the region-head of region
C; to the query node.

As shown in the evaluation function, the goal of the re-
gion partitioning is to minimize both the variance of sensor
readings (5;) and the average distance between sensors ([;)
within each region. Here we propose a heuristic approach,
Bottom_up Partitioning, to approximate the optimal solution
quickly. Similar to agglomerative hierarchical clustering [26],
the idea is to initially segment the network of n sensors into
n regions with each region having a sensor in it. Then (n — k)
merging operations of regions are performed. In each merging
operation, we first find Candidate Region Pair by finding the
regions that are next to each other in the network topology
(i.e. there is at least one direct edge between a sensor in
one region and another sensor in the other region). Then we
merge the Candidate Region Pair into one larger region if
the merging introduces the least evaluation cost F'. After the
(n—k) merging operations, the resulted & regions are taken as
an approximation of the optimal partitioning of the network
and are therefore utilized for online query processing. The

(1)

mg

Minimize F =

Geographical Partitioning Bottom_up Partitioning
e vy =

Region 1)

Optimital Partitioning

-~ >
- Region 1
s g N

Region 2 |

Ea

b e e e ~. _Region2 _ -~

Fig. 2. Region partitioning approaches

time complexity of this approach is O(n?) as at most n — 1
region pairs (i.e. the number of edges in the network topology
which is a Minimum-cost Spanning Tree) are evaluated in each
round of merging operation and we perform (n — k) merging
operations totally.

Take Figure 2 as an example, Geographical Partitioning
segments the area into even-sized geographical cells and assign
each cell as a region. It is fast to compute but fails to provide
good accuracy for data sampling. The Optimal Partitioning
approach considers all the possible region configurations and
is able to find the best one that achieves the best sampling
accuracy. The computation for Optimal Partitioning, however,
is very slow. Our Bottom_up Partitioning algorithm considers
only nearby regions for merging (e.g. in the first round of
region merging, only sensors {S1, 52}, {52, 53}, {S3, 54},
{54, 55}, {54, S6} are considered as Candidate Region Pairs
for merging), which is both effective and efficient in comput-
ing a good partitioning of the network for data sampling.

B. The Training Phase

When a user initiates a continuous aggregate query, the
training phase is triggered to create the initial sampling plan
for the online query processing. It works as follows:

1) The region-head collects training data records from the
sensors in the region.

2) The region-head computes and sends to the query node
the sample statistics (CVE) of the training data for the
corresponding region.

3) Once the query node receives the sample statistics from
all the regions, it computes the initial sampling plan for
the network.

After the region construction process, the region-head dis-
patches a (usually large) fraction of sensors in the region to
measure their local environment and generate training data
records. Then the region-head collects the training data and
computes the CVE of them. The size and the CVE of the
training data are the sample statistics that are transmitted to
the query node.

In our settings, the total energy cost to process an aggregate
query is upper bounded by B,

Z Etotal (Z) S B

1<i<k

12)

Our objective is to create a sampling plan that determines the
best sample data size for each region such that the expected
approximation error for the query is minimized. Our optimal
sampling plan for average queries is constructed upon the
following theorem,

Theorem 1: We segment the sensor network S (of totally
n sensors) into k regions Cq,Cs,...Ck (S = U1<z<kC)
Each region C;(1 < i < k) has n;(1 < i < k) sensors
and a sampling error threshold A;(1 < i < k) for the average
query. If we combine the samples from all the regions as the
samples of S, the error threshold A for the average query
approximation in S is

2A2

>

1<i<k

13)

Considering Equation (8) and (13), we can get A? =
Zl<z<k S, where \; = (n2m;CV E?)/(2n?).
Taking Equatlon (1), (2), (3) and (12), we can get

Z Himi — T

1<i<k

:07

where [i; = €recora X l; and 7 = B — Z (Emeta % Li).
1<i<k

Problem 2. Given \;, u; and T, the objective is to find the

best value for valuable m; such that the approximation error

A is minimized.
s
Z Z* | subject to Z wim; — 71 = 0.

- m; -
1<i<k 1<i<k

Minimize A% =

We can solve this constrained optimization problem by the
Lagrange multipliers method [25]. The solution for Problem
2 has a closed form as follows,

m; = TV
' \//Ti21§jgk (\/ /\jﬂj).

C. The Online Approximation Phase

(14)

After the training phase, the online approximation process
is called every time moment to answer continuous queries over
the sensor network. It works as follows:

1) The query node sends out the initial sampling plan to
all region-heads.

2) The region-head samples data records in the region
according to the sampling plan from the query node.

3) The region-head computes the in-region aggregate and
the CVE of all samples in the region and then sends
them back to the query node.

4) The query node combines the in-region aggregates and
outputs the answer.

5) The query node utilizes the reported CVE from each
region to set up the optimal sampling plan for the next
time moment. At the next time moment, the query node
sends out the new sampling plan to all the region-heads
and continues by returning to step 2.

The Online Approximation Phase uses the sampling plan
computed by the Training Phase as the initial sampling plan
The sampling plan is then updated every time moment a new
round of query execution is issued. The computation of the
optimal sampling plan is the same as stated for the training
phase. We can compute the optimal sampling plan for each
round of query processing by inputting into the sampling
plan computation procedure (as described in section V-B) the
sample statistics (CVE, m, etc) reported from the region-heads
at current time moment.

D. Computational Complexity

Our Region Sampling algorithm described above is im-
plemented at region-heads and the query node. For region-
heads, this includes the computation of the CVE and the
in-region aggregate from the samples (with time complexity
O(m), where m is the sample size of the region). The query
node computes the query result by integrating all the in-region
aggregates and utilizes equation (14) to compute the optimal
sampling plan for the next round of query processing. This
processing has the time complexity of O(k) where k is the
number of regions in the sensor network. Therefore the time
complexity of our algorithm is linear to the sampling size for
region-head and is linear to the region number for query node,
which is pretty cheap and can be easily applied to current
sensors with low computational capability.

E. Tolerance to Failures

In wireless sensor networks, the failures may occur so
frequently that the reliability becomes a major concern in the
designing of any query processing plan. Generally, there are
two types of failures in sensor networks: node failures and
link failures. The node failures are those failures due to the
malfunction of some sensor device. For example, the radio
of the sensor is out of order, or the battery of the sensor
is depleted. On the other hand, link failures occur where
there are some communication failures between two nearby
sensors. Link failures happen due to environmental changes
or emerging obstacles between the communicating sensors
eventually causing loss of messages.

For node failures, we employ a standard heartbeat technique
[27] as our failure tolerant strategies. The idea is to store
in each sensor a neighbor list indicating the membership of
neighboring adjacent nodes. At every time interval 7, every
sensor node in the network sends a small heartbeat message
to its neighbors. If all the links from some sensor fail, the
query node considers the sensor as failed sensor and will revise
the network topology by removing the failed node from the
network. As the aggregation results from the region-heads are
critical for the accuracy of the approximation, we utilize a
monitor-and-backup mechanism to recover from region-head
failures. The idea is to let the region-head randomly choose a
sensor (or multiple sensors) in the region as the backup sensor
and it sends a heart-beat message to the backup sensor in each
round of query processing. If the backup sensor doesn’t hear

T 0.3

T T
Random Sample --=--

T T T
Random Sample --=--

T T T
5 Random Sample ---+-- |

7 Region Sample —>— 0.25 Region Sample —>— | Region Sample —>—
* Model Sample -~ Model Sample ---&- Model Sample -~
—~ BT Cache Sample ---:- Cache Sample ---:- —~ 4 Cache Sample -----
9 NS 0.2 2 -
E < -
g s N o . 8 -8
0 BSG.- s - e] P SR - -
S 015 < - e 3 =
.% 4 w . B _% S s~ M oo X
s 0.1 s
3 2 7
7
2 0.05
1
1
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50 2 4 6 8 10 12 14 16 18 20
Energy Budget (%) Energy Budget (%) Data Size (k)
Fig. 3. Varying energy budget for average Fig. 4. Varying energy budget for median Fig. 5. Varying data size for average queries (B

queries (Intel data). queries (Intel data).

from the region-head, it will nominate itself as the region-
head and then perform data sampling and result reporting to
the sink.

In order to deal with link failures, we use a link redun-
dancy policy to improve reliability of data transmission. The
idea is to construct multiple routing trees for reliable data
transmission. In addition to the original routing topology,
each node randomly adds an alternative path for routing
to the region-head. Therefore, more alternative paths will
provide more reliability against link failures. Such kind of
link redundancy, which depends on the possibility that the
sensor generates alternative paths, is effective in overcoming
link failures, although it introduces communication overhead
and extra energy cost for query processing.

VI. EXPERIMENTAL EVALUATION

In this section, we present an extensive performance eval-
uation of the Region Sampling algorithm and four competing
sampling techniques using two real world data sets. Our goal
is to demonstrate that our Region Sampling algorithm can
efficiently execute approximate queries with high accuracy
with a given energy budget B.

A. Data Sets

We use two real world data sets for our experiments:

Intel: This data set is a trace of sensor readings collected
from 54 sensors in the Intel Research lab between February
and April, 2004.2 The sensors collected timestamped humidity,
temperature and voltage values in 31 second intervals. The data
was collected using the TinyDB in-network query processing
system, built on the TinyOS platform. We split the data set into
non-overlapping training and test data sets (with 1/20 used for
training), and create the initial query plan from the training
data.

Weather: This data set consists of atmospheric data col-
lected from 32 sites in the weather stations of Washington and
Oregon. Each of the 32 sites maintains the average temperature
on an hourly basis between 2003 and 2004. We use the data
from the first 30 days as the training data set and the remaining
as test traces.

Zhttp://berkeley.intel-research.net/labdata/

= 30%, Intel data).

B. Comparison with Techniques

We evaluate the performance of Region Sampling and four
other query processing strategies as follows,

Random Sampling: This is a simple sampling strategy that
samples data records from each sensor node with the same
probability.

Model Sampling: The BBQ algorithm [8] constructs a
statistical model based upon the correlation of data between
sensors. It estimates readings at the non-sampled sensors
according to the values at the sampled sensors.

Cache Sampling: The Best-Effort Cache algorithm [12]
assigns to each object a priority according to its divergence
from the cached copy. With sampling constraints, Cache
Sampling only updates the objects with highest priorities.

Spatio-Temporal Sampling: This is the CONCH algorithm
[16] that utilizes a spatio-temporal suppression technique to
filter unnecessary messages in the network.

C. Performance Evaluation

In our experiments, the energy budget B (or cost C)
is defined as the percentage of energy in relation to the
total amount of energy required to sample every sensor in
the network. In the following subsections, we evaluate and
compare the performance of four energy bounding sampling
techniques (i.e. Region Sampling, Random Sampling, Model
Sampling and Cache Sampling) on the Intel dataset.?

1) Varying Energy Budget: We vary the energy budget B
for data sampling in each round and compute the average
sampling errors of the four sampling techniques. Figure 3 and
4 show that, for both average queries and median queries, all
methods provide better approximation accuracy as the energy
budget is increased. Region Sampling outperforms Random
Sampling and Cache Sampling in most cases. In addition,
when a large energy budget is given, Region Sampling out-
performs Model Sampling with a smaller estimation error.

2) Varying Sensor Data Size: As the sensor data records are
generated and sampled at each time moment, the generated
data size at each sensor increases as the time progresses.
In this subsection, we quantify the average approximation
accuracies of different sampling techniques with varied sensor

3We don’t compare with CONCH here as the energy cost C' for query
processing cannot be constrained in CONCH.

12 T T T

50

CONCH —+—

I Region Sampling (10%) ----
Region Sampling (20%) ---%-- ™
g | Region Sampling (30%) & <

40
Re

)

30

Region Sampling (10%) ----
Region Sampling (20%) ---%--

T
Random Sampling
Region Sampling

T T
CONCH —+—

Cache Sampling
CONCH

ion Sampling (30%) & 1000 £

20

Relative Error(%)
Energy Cost(%,

Standard Deviation of Sensor Energy Costs

1 2 3 4 5 6 7 8 9 1 2 3 4
Query Interval (X500)

Fig. 6. Approximation errors at different time
Intervals (Weather Data).

Fig. 7.
intervals (Weather Data).

7 ; 60

5 6 7 8 9
Query Interval (X500)

Query energy costs at different time

Fig. 8. Energy costs at different
(Weather Data).

sensors

T T
CONCH —+—

Region Sampling (20%) -->--
Region Sampling (30%) ---%--

Random Sampli;\g [N~
Region Sampling
Cache Sampling

CONCH
Model Sampling 7/

T T
CONCH —+—

1000 |

ion Sampling (40%) &

6 [~ Region Sampling (20%) --3--
Region Sampling (30%) ---%-- < . 50
5[Region Sampling (40%) & 7 g Re
2 /! e 9
e 4 5 kS 3 40
. o o S
2 3 X 5
8 - g 30
& -8 i

20

100

Standard Deviation of Sensor Energy Costs

1 2 3 4 5 6 7 8 9 1 2 3 4
Query Interval (X500)

Fig. 9. Query approximation errors at different
time intervals (Noisy Weather Data).

Fig. 10.

data sizes (i.e., we compute the average approximate errors
for the first 2000 tuples, the first 4000 tuples, etc). Figure 5
shows the approximation accuracies with different data sizes
given the fixed network energy budget B as 30%. It can be
concluded from these figures that Region Sampling always
outperforms Random Sampling and Cache Sampling. Region
Sampling outperforms Model Sampling when time progresses
(i.e. when the data size is larger). In addition, the performance
of Model Sampling degrades dramatically as time progresses.
This is because the correlation model is computed once in
the initialization phase and becomes stale as time progresses.
Our approach avoids this issue by reevaluating the state of the
regions for each round of query processing.

D. Energy Bounded Region Sampling

In the next experiment, we compare the performance of our
Region Sampling algorithm with the error-bounding technique
CONCH [16]. A very nice property of CONCH is that the
approximation accuracy can be easily bounded given the
update threshold. This fact is experimentally validated in
Figure 6 and 9 where we evaluate the approximation error
of CONCH (with a fixed update threshold) and three Region
Sampling plans (with different energy budget rates). As shown
in Figure 6 and 9, CONCH achieves a similar approximation
error for different time intervals and always achieves an error
of less than 5%, which is within the accuracy guaranteed by
the update threshold.

The disadvantage of CONCH is that it cannot predict or
constrain the energy cost it will spend in the network, which
makes it unsuitable for the settings where the total energy cost

5 6 7 8 9
Query Interval (X500)

Query energy costs at different time
intervals (Noisy Weather Data).

Fig. 11. Standard deviation of energy costs at
different sensors (Noisy Weather Data).

for each query has to be constrained. As shown in Figure 7 and
10, the energy cost C (as defined in Section VI-C) of CONCH
fluctuates greatly (i.e. 7%~30% in Figure 7 and 29%~42% in
Figure 10) as time progresses making it infeasible to reliable
bound the energy consumption. In contrast, Region Sampling
plans always effectively constrain the energy costs within the
pre-defined budgets.

Figures 6 and 7 suggest that with the same energy cost,
CONCH is better than Region Sampling. This is because the
Weather data set shows much stronger temporal correlation
(that CONCH takes advantage of) than spatial correlation (that
Region Sampling addresses). In those cases where sensor data
have less temporal correlation (as in the case of Noisy weather
data set which is generated by adding temporal noise into the
Weather data set), Region Sampling outperforms CONCH in
approximation accuracy. This fact is validated by Figure 9 and
10.

Finally we want to find how the sampling energy costs
is distributed between the different sensors. With 32 weather
sensors each having 4500 data records, we first fix the update
threshold (5%) and run CONCH algorithm to find the total
network energy cost C' of CONCH (which cannot be predicted
or bounded beforehand). We then use this cost C' as the energy
budget for other approaches and try to evaluate how the energy
cost C are distributed at different sensors. It can be concluded
from Figure 8 and 11 that Random Sampling is able to balance
energy spending in the network in the best way as it always
samples sensors randomly. Region Sampling, which increases
the approximation accuracy of Random Sampling, is also able

5
T T T T
Optimal Partitioning ----- B
Bottom-up Partitioning -3~
Geographical Partitioning ---®--

- 4

Relative Error (%)
%
Relative Error (%)

B
s

Bt S

20 25 30 35

Energy Budget (%)

40 45 50 15

Fig. 12. Varying energy budget. Fig. 13.

20

Number of sensors in the network (n)

Varying network size.

T T T T T T
Optimal Partitioning ---+-- 14 Bottom-up Partitioning KXXJ
Bottom-up Partitioning ---&@---
Geographical Partitioning ---&---] 12
2 1 \x 4
8
B 5 o8 4
""""""" - e N
T 06 ook =
3 N~
[i4
R S 0.4 [.
02 4
[
25 30 1 2 3 4 5 6 7 8 9

Number of regions (k)

Varying region number.

T
B=10% EXX3
B=30'

T T
. FR=10% —+—
" Ny FR=20% --%--]

B=50"

~ FR=30% %

N FR=40%
FR=50% - -0~

(%)

Relative Error (%)
Relative Error (%)

i
W

60

Node Failure Rate (%)

Fig. 15. Varying node failure rates and query
energy budget B.

to balance the energy costs at different sensors very well. The
Cache Sampling and CONCH approaches are not efficient in
energy balancing as they only samples those sensors with high
priorities or with new reading surpassing the threshold. Model
Sampling, which always accesses the best sampling sensor set
(computed by the correlation model in the initialization phase)
and never samples other sensors, provides the worst energy
balancing among different sensors.

E. Impact of Region Partitioning

As stated in Section V-A, the partitioning of regions affects
the performance of our Region sampling algorithm. In this
subsection, we compare the performance of three region
partitioning algorithms, Optimal Partitioning, Bottom_up Par-
titioning and Geographical Partitioning, for average queries
on the Intel data set with the same network settings. As we
have described in Section V-A, Optimal Partitioning performs
brute-force enumeration of all possible partitioning of regions
and find the one with the smallest evaluation value. Bottom_up
Partitioning keeps evaluating and merging small nearby sub-
regions into a bigger region until the total region number
(k) has been reached. Geographical Partitioning segments the
network into k£ even-sized geographical cells and takes each
cell as a region.

1) Varying Energy Budget: We vary the energy budget for
data sampling and compute the average sampling errors of the
three partitioning techniques. We can conclude from Figure
VI-C.2 that, the sampling errors decrease for all three algo-
rithms when the sampling budget increases, as more samples
can be retrieved from the network for more accuracy approx-

Time Instance

Fig. 16. Recovery from region-head failures.

5 N
ﬁrﬁu 2 k- -
s R o
e
f ¥ i ’
| S U e
4 5 — =
4 \\\
80 100 120 140 20 30 40 50 60 70 8 90 100
Link Redundancy (%)
Fig. 17. Varying link redundancy and link

failure rate (FR).

imation of the all the sensor data. Optimal Partitioning and
Bottom_up Partitioning outperform Geographical Partitioning
in all cases. This is due to the fact that they consider both
network topology and data variance in the region construction
process.

2) Varying Network Size: We also evaluate the performance
of three partitioning algorithms with varied network size. Fig-
ure 13 shows the approximation errors of these techniques with
a fixed networks energy budget of 30%. It can be concluded
that the performance of Bottom_up Partitioning is close to
that of Optimal Partitioning and they both greatly outperform
Geographical Partitioning. This validates our remark that
Bottom_up Partitioning is efficient for large sensor networks.

3) Varying Number of Regions: We evaluate the perfor-
mance of Bottom_up Partitioning with varied number of re-
gions k. Figure 14 shows that with increasing value of k,
the approximation error decreases and then increases. This
can be explained by considering both the in-region sampling
budget F,q4ion and the meta data overhead between region-
heads and the query node FE,ctwork. With increased k, the
average region size becomes smaller and the average distance
between a sensor to its region-head is smaller. Therefore it
is cheaper to sample a reading from a sensor and we can
sample more readings to increase approximation accuracy
given the same F,4ion. On the other hand, the overhead
of meta data transmission FE, csyorr increases with larger
k. This will decrease the energy budget F,cgion that can
be used for in-region sampling. The choice of best region
number k has to deal with the tradeoff between the average in-
region sensor distance and overhead of meta data transmission.

After evaluating the approximation accuracy of Bottom_up
Partitioning with different values of k, we choose the best
k that provides the minimal approximation error. Then we
use the corresponding partitioning associated with the best &
and apply the Region Sampling algorithm to approximate the
aggregate queries on the fly.

F. Dealing with Failures

We evaluate our Region Sampling algorithm in case of
both node failures and link failures. Figure 15 shows the
approximation errors of average queries for varying node
failure rates and different energy budgets. It can be concluded
that with increasing node failure rate, the approximation error
decreases under the same energy budget. This is because the
number of “live” (non-failure) sensors decreases as failure rate
increases, and on the other hand, the sample size does not
change as the energy budget B is fixed. Therefore, the sample
will include a larger fraction of the “live” sensors’ data and
approximate the query more accurately. Such effects of the
node failures are more obvious when B is large, which is
validated in Figure 15.

In addition to node failure, we also evaluate the performance
of our region-head backup mechanism as described in Section
V-E. We set the failure rate for the region-head as 5% and run
our Region Sampling algorithm for 140 consecutive queries.
As shown in Figure 16, whenever there is a region-head
failure, the approximation error will increase sharply as the
sink cannot receive the local aggregate result from the failed
region-head. After that the impact of region-head failure is
recovered effectively as the backup sensor would replace the
failed sensor as a new region-head and the sampling task is
performed efficiently.

Finally, Figure 17 shows that our link redundancy mech-
anism can deal with link failures efficiently. With increased
link redundancy, we can recover from link failures more
effectively. However, more link redundancy introduces more
energy consumption (e.g. With 30% link redundancy, 30%
more energy are required for data transmission) and thus the
choice of the redundancy is a tradeoff between the energy
consumption and the reliability of data transmission.

VII. CONCLUSIONS

We proposed Region Sampling, an efficient online sampling
algorithm for those applications where the energy cost for
query processing has to be constrained by a pre-defined
budget. Unlike previous works, Region Sampling segments
the sensor network into several non-overlapping regions and
performs sampling and local aggregation in each region
respectively. The sampling energy cost rate and statistical
information from past queries are collected and analyzed to
compute the optimal sampling plan for future queries. Compre-
hensive experiments on real world data sets show that Region
Sampling is both efficient and practical for approximating
continuous aggregate queries in sensor networks.

ACKNOWLEDGMENT

The work of D. Gunopulos was supported by grants NSF
I1S-0534781 and Health-e-Child. The work of G. Das was
supported by unrestricted gifts from Microsoft Research and
start-up funds from the University of Texas, Arlington.

REFERENCES

[11 F. Simjee, D. Sharma, and P. H. Chou, “Everlast: long-life,
supercapacitor-operated wireless sensor node,” in SenSys, 2005, p. 315.

[2] W. Tsujita, H. Ishida, and T. Moriizumi, “Dynamic gas sensor network
for air pollution monitoring and its auto-calibration,” in IEEE Sensors,
2004, pp. 56 — 59.

[3] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in WSNA, 2002.

[4] R. Jafari, A. Encarnacao, A. Zahoory, F. Dabiri, H. Noshadi, and
M. Sarrafzadeh, “Wireless sensor networks for health monitoring,” in
Mobiguitous, 2005, pp. 479-481.

[5] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “Tag: a tiny
aggregation service for ad-hoc sensor networks,” in OSDI, 2002.

[6] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks,” SIGMOD Rec., 2002.

[7] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate aggregation
techniques for sensor databases,” in ICDE, 2004.

[8] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong,
“Model-driven data acquisition in sensor networks,” in VLDB, 2004.

[9]1 A. Deshpandey, S. Nathz, P. B. Gibbons, and S. Seshan, “Cache-and-

query for wide area sensor databases,” in SIGMOD, 2003, pp. 503-514.

Y. Kotidis, “Snapshot queries: Towards data-centric sensor networks,”

in ICDE, 2005.

C. Olston, B. T. Loo, and J. Widom, “Adaptive precision setting for

cached approximate values,” in SIGMOD, 2001.

C. Olston and J. Widom, “Best-effort cache synchronization with source

cooperation,” in SIGMOD, 2002, pp. 73-84.

S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed compression

in a dense sensor network,” IEEE Signal Processing Magazine, vol. 1,

2002.

A. Sharaf, J. Beaver, A. Labrinidis, and K. Chrysanthis, “Balancing

energy efficiency and quality of aggregate data in sensor networks,” The

VLDB Journal, vol. 13, no. 4, pp. 384-403, 2004.

A. Silberstein, R. Braynard, C. S. Ellis, K. Munagala, and J. Yang,

“A sampling-based approach to optimizing top-k queries in sensor

networks.” in /CDE, 2006, p. 68.

A. Silberstein, R. Braynard, and J. Yang, “Constraint chaining: on

energy-efficient continuous monitoring in sensor networks,” in SIGMOD,

June 2006.

M. Li, D. Ganesan, and P. J. Shenoy, “Presto: Feedback-driven data

management in sensor networks,” in NSDI, 2006.

R. Willett, A. Martin, and R. Nowak, “Backcasting: adaptive sampling

for sensor networks,” in IPSN, 2004, pp. 124-133.

C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva,

“Directed diffusion for wireless sensor networking,” ACM Trans. Net-

working, vol. 11, no. 1, pp. 2-16, 2003.

W. G. Cochran, Sampling Techniques. John Wiley & Sons, New York,

NY, 1977.

S. Chaudhuri, G. Das, and U. Srivastava, “Effective use of block-level

sampling in statistics estimation,” in SIGMOD, 2004, pp. 287-298.

B. Arai, G. Das, D. Gunopulos, and V. Kalogeraki, “Approximating

aggregations in peer-to-peer databases.” in ICDE, 2006.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-

efficient communication protocol for wireless microsensor networks,”

in HICSS, vol. 8, 2000.

O. Younis and S. Fahmy, “Heed: A hybrid, energy-efficient, distributed

clustering approach for ad hoc sensor networks,” IEEE Trans. on Mobile

Computing, vol. 03, no. 4, pp. 366-379, 2004.

D. P. Bertsekas, “Constrained optimization and lagrange multiplier

methods,” Academic Press, 1982.

S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,

vol. 32, no. 3, pp. 241-254, 1967.

S. C. Wang and S. Y. Kuo, “Communication strategies for heartbeat-

style failure detectors in wireless ad hoc networks,” in DSN, 2003, p.

361.

(10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]
[26]

[27]

