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1 Introduction

In this paper we generalize to higher dimensions a result by Kenyon and Kenyon [2] on the problem
of adding short cuts to a polygonal chain on the plane, so that any two points on the chain are linked
by a path composed of the chain and the short cuts, whose length is at most a constant times their
Euclidean distance. More precisely, assume that we are given 2-dimensional polygonal chain, which
can be represented as an Euclidean graph G = (V, E). Let P(E) be the (infinite) set of points that
compose the edges in E. Let d(u,v) denote the Euclidean distance between two points u and v. Let
wit(E) denote the sum of the Euclidean lengths of the edges in E. We restate below a simpler version
of a theorem proved in [2].

Theorem 1 Given a 2-dimensional polygonal chain G = (V, E), a (possibly infinite) number of new
edges E' can be added between points in P(E) such that, (1) in the new structure there is a path
between any points u and v in P(E) of length at most t; - d(u,v), and (2) wi(E') < ¢1 - wi(E). Here
t; > 1 and ¢; > 0 are two absolute constants.

We refer to t; as the stretch factor and the new edges as the short cuts. There are several
interesting aspects to the above mentioned result. Firstly, though the number of segments added
may be infinite, the algorithm only outputs a finite length description of the set of short cuts. The
second aspect concerns the concept of finite precision. Suppose we only need to provide short cuts
between pairs of points that are at least some € > 0 distance apart. In this case, their algorithm can
be easily modified to only add a finite number of short cuts. The third aspect concerns a concept
stronger than finite precision, which we call finite extendibility. In this, it should be possible to obtain
a structure with smaller finite precision from one with a larger finite precision by simply adding more
segments, without having to remove the previous ones. The total weight of the resulting structure
should still be at most ¢; - w(E). The algorithm in [2] can easily be modified to achieve finite
extendibility.

Kenyon and Kenyon generalized their results to rectifiable curves on the plane, and also claim
that their scheme could be generalized to deal with the case of planar graphs. However, they left
open the problem of constructing short cuts for chains and Euclidean graphs in higher dimensional
space.

In this paper we prove the following theorem and thus solve the problem of constructing short
cuts for Euclidean graphs in higher dimensional space.
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Theorem 2 Given a k-dimensional connected Euclidean graph G = (V, E) and anyt > 1, a (possibly
infinite) number of short cuts E' can be added between points in P(E) such that, (1) in the new
structure there is a path between any points u and v in P(E) of length at most t - d(u,v), and (2)
wt(E') < ¢(t, k) - wi(E), where ¢(t,k) > 0 is a constant dependent on t and k.

We summarize the important aspects of our results.
1. Theorem 2 is a generalization of Theorem 1 to higher dimensions.

2. While Theorem 1 proves the existence of a positive stretch factor ¢;, Theorem 2 is true for any
given stretch factor ¢ > 1. Of course, the smaller the ¢, the larger the constant factor in the
total length bound of our short cuts.

3. In Section 2, we present an algorithm which adds short cuts such that the resulting structure
has a small total weight, but only provides short paths between pairs of points that are not “too
close” (finite precision). Unfortunately, it seems unlikely that this method can be modified to
achieve either the finite extendibility or the finite description requirements. Later, in Section 3
we describe a more robust algorithm for constructing a structure which achieves finite precision.
Moreover, this method can be easily modified to achieve either finite extendibility or finite
description.

4. Theorem 2 can be easily generalized to smooth curves in higher dimensional space.

5. The methods in [2] are heavily dependent on planar geometry, and considerably different ideas
are required to generalize the results to k-dimensional space. One of the main tools in our
results is the k-dimensional spanner algorithm developed in [1, 3]. Given a set V of n points
in k-dimensional space, and any ¢’ > 1, an Euclidean graph G = (V, E) is a t'-spanner if
between every u and v in V/, the shortest path in G has length at most ¢’ - d(u, v). The spanner
algorithm constructs a t'-spanner whose total edge length is at most ¢/(#, k) - wt(SMT(V)),
where SMT(V) is a Steiner minimum tree of V and ¢/(#,k) > 0 is a constant dependent on #'
and k.

As with the scheme in [2], we do not analyze the running time of our algorithm, other than
showing that it runs in finite time. This is because the running time is very sensitive to the way the
edges of G are configured in space, and in the case of finite precision, also on the required tolerance.
For example, a pair of long, parallel edges will generate a lot of short cuts.

2 Achieving Finite Precision: The Grid Method

In this section we give an algorithm to achieve finite precision. It is quite straightforward; however
it is unlikely that it can be modified to achieve either finite extendibility or finite descriptions.

We use a procedure called grid. Given a line segment (u,v) and any § > 0, this procedure
introduces Steiner points w;,ws,...,w, along the segment (u,v), such that d(u,w;) = d(w;,w;) =
+++ = d(wp-1wp) = 4, and the last fragment d(wp, v) < 6.

Our algorithm works as follows. Suppose € > 0 is the required tolerance. Select § < ¢ - ( :: i)

and grid all the edges of the input graph G = (V, E). Let V' be the union of the original vertices and
the new Steiner points. Run the spanner algorithm on V' with parameter t’ = /1. Let the edges of
the spanner, E’, be the short cuts to be added to G.
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We first show that a stretch factor of ¢ is indeed achieved.

Lemma 1 Let u and v be two points on P(E) such that d(u,v) > €. Then there is a path between
them in the structure of length at most t - d(u, v).

Proof: Consider any pair of points 4 and v in P(F) such that d(u,v) > ¢ > - (:{’-ﬁ) We shall

show that in the new structure, there is a short path between u and v. Note that from u (resp.
v) one can get to a vertex in V', say u; (resp. v;), by traveling no more than §/2 distance along
the structure. But because of the spanner, there is a path from u; to v; of length < ¢’ - d(uy,v1) =
Vt-d(u1,v1) < V1-(d(u,v)+6). Thus, there a path between u and v of length < v/Z-(d(u,v)+6)+4.

Let this path have length z. Thus ?(:_,uj < ﬁi‘%‘%}@i’. That is, %%5 € T4 \/Eﬂ, 5. But
we have assumed that d(u,v) > 6 - (E‘—\%) Substituting in the right hand side of the above and
simplifying, we get 3(:75 <t. O

We next estimate the total weight of the short cuts.
Lemma 2 The total weight of the short cuts is at most ¢/(\/1, k) - wt(E).

Proof: wit(E’) < ¢/(t',k) - wt(SMT(V')), by the properties of the spanner. But wi(SMT(V’)) <
wt(E), since G' connects all points in V’. Thus, for any §, wt(E’) < ¢/(V%,k) - wt(E). That is,
c(t,k) = ¢'(V1, k), which proves the lemma. O

This algorithm cannot be easily modified to achieve finite extendibility. If a smaller precision is
later required, we cannot simply recompute from scratch and add new short cuts, because if we
do not remove the previous short cuts, the structure will eventually get too heavy. Secondly, if no
tolerance is allowed, it is not clear how the algorithm can be easily modified to output a finite length
description of the possibly infinite set of short cuts. A more complex algorithm which addresses all
these issues is presented in the next section.

3 Achieving Finite Precision, Extendibility, and Description

We present here another algorithm that achieves finite precision. Later we show how it can be easily
modified to achieve finite extendibility. We also show how to modify it to run without any tolerance
requirements, yet produce a finite description of the (possibly infinite) set of short cuts.

The algorithm takes as input a graph G = (V, E), a stretch factor ¢ > 1, and a tolerance € > 0.
The algorithm constructs short cuts to satisfy this tolerance.

Step 1: Preliminaries

Let I be the length of the shortest edge in G. As a preliminary step, we insert (at most) two Steiner
points u; and v; on each edge (u,v) of G, such that d(u,u;) = d(v,v;) = [/2. Let this set of Steiner
points be §. We may now imagine the graph to be composed of the vertices V U S, where each
original edge has been split into (at most) three new edges.
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Step 2: Pairs of Points on Non-Adjacent Edges

Consider the graph obtained in Step 1. Two edges are non-adjacent if they do not share a common
end point. Define the distance between a pair of non-adjacent edges as the length of the shortest
line connecting a point on each. Let 4 be the shortest such distance over all pairs of non-adjacent

edges. Select § such that § < v - (:_;%) Grid the edges of the graph using this §, and construct

a Vt-spanner for the vertices in V' U § and the new Steiner points formed by the gridding process.
Add the edges generated by the spanner as short cuts to the graph.

Lemma 3 Let u and v be two points on non-adjacent edges. Then there is a path in the structure
of length at most t - d(u,v).

Proof: The proof is similar to the proof of Lemma 1 presented in the previous section. O

We next estimate the total weights of the short cuts added so far.
Lemma 4 The total weight of the short cuts is at most c'(v/1, k) - wt(E).

Proof: The weight of a Steiner minimum tree of the vertices in V U S and the Steiner points
generated in Step 2 is at most w#(E). So by spanner properties, the total weight of the short cuts is

at most ¢/(v/%,k) - wt(E). O

At this stage, the short cuts we have added provide short paths between all pairs of points
belonging to non-adjacent edges. We now add short cuts to provide short paths between all of pairs
of points belonging to adjacent edges.

Step 3: Pairs of Points on Adjacent Edges

Observe that we can immediately ignore those pairs of edges that share a common point in S. This
is because there is already a short path (a straight line) between pairs of points on such edges.
We next consider for each vertex v of V, the edges incident to it. Note that each edge has length

I/2. Select a small proper fraction a such that a < 'ﬁé Consider the decreasing geometric series

(1/2),(1/2)a,(1/2)d?,...,(1/2)a’, - -. Imagine an infinite series of nested concentric spheres centered
at v with these radii. For every edge e incident to v, let v, v;,...,v;,... correspond to the points of
intersection of each sphere’s surface with the edge. Let e; represent the subedge (v;,v;41), and E;
represent the set of these subedges (i.e., the fragments of all edges incident to v that lie between the
consecutive concentric spheres).

The algorithm proceeds by performing the following operations for each vertex v of V. (Intuitively,
for each vertex v we will compute a series of “concentric and overlapping” spanners, up to a certain
depth determined by the tolerance).

Let m be the smallest integer such that (//2)a™ + (I/2)a™"! < €. For each edge incident to v,
for i = 0,1,...,m, compute each intersection point »;. For i = 0,1,...m — 1, compute each set E;.
For i =0,1,...,m — 2, let the set F; be defined as F; = E; U E;;;. Let v; be the shortest distance

between all pairs of non-adjacent edges in F;. Select §; such that §; < 7; - (%) Grid the edges

of each F; using this §;, and construct a v/-spanner for the end vertices and the new Steiner points
of F; formed by the gridding process. Add the edges generated by the spanner as short cuts to the
graph.
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Note: A crucial observation is that these spanners will be scaled versions of one another; thus we
only need compute Fy, compute its spanner, and scale it in size as well as position to describe the
others. This has an important part to play when we address finite description concerns later.

Lemma 5 Let u and w be two points on adjacent edges incident to v, such that d(u,w) > €. Then
there is a path between them in the structure of length at most t - d(u,w).

Proof: The proof has several cases.

Case 1: (u and w both belong to the same F;). In a manner similar to the proof of Lemma 1, we
can show that there is a path from u to v in the structure of length at most /7 - d(u,w) (the only
difference is that we will be using v/% instead of ¢, /1 instead of v/%, and §; instead of §).

Since v/t < t, Lemma 5 is proved for this case.

Case 2: (u belongs to some E;, w belongs to some Ej, j > i + 1). Let w belong to e, where e
is an edge of the graph after Step 2. Consider v;42, the intersection point of this edge with the
sphere of radius (//2)a‘t2. Clearly v;42 belongs to F;, but does not belong to E;. We construct a
path from u to w as follows: use the spanner edges of F; to go from u to v;43, then go from v;;;
to w along e. Let the length of this path be z. Clearly z < d(u,vi42) - Vvt 4 d(viy2,w). That
is, z < (d(u,w) + d(w,vi42)) - VI + d(vi42,w). Dividing both sides by d(u,w) we get zrioy <

(1 +4 ;ut::-w 2 ) RS ﬂﬁ;—'ﬁ%’l. But it is also easy to verify that ﬂ;—‘(’%‘ﬁ < 1%;. Substituting in the
previous inequality, we get F(:_wj < (1 - —1-_9_'-5) Vi+ 2. If we substitute the value of o selected

earlier and simply, we get T(uz_wj < t, which proves Lemma 5 for this case.

Case 3: (w is within the sphere of radius (I/2)a™). We have assumed that d(u,w) > €. From the
way m has been selected earlier, it is clear that u has to be outside the sphere of radius (1/2)a™"1.
Assume u belongs to an edge of E;, i < m — 1. Let v;42 be the intersection of the original edge on
which w lies and the sphere of radius (//2)a**2. Clearly u and v;42 both belong to F;. We construct
a path from u to w as follows: use the spanner edges of F; to go from u to v;;2, then go from v;4,
to w along e. Let the length of this path be z. In a manner similar to Case 2, it can be shown that
Wz_wf < t, which proves Lemma 5 for this final case. O

We next estimate the weight of the short cuts created in Step 3.

Lemma 6 The total weight of the short cuts created in Step 3 is at most c"(t,k) - wt(E), where
c"'(t,k) is a function of t and k.

Proof: Let us consider any vertex v of the original graph. Let H be the set of edges adjacent to it
after Step 1 (each such edge has length 1/2). Let H; be the portions of these edges that are within
the sphere of radius (I/2)a’. Clearly wi(H;) = o - wt(H).

Consider any F;. It is clear that wi(F;) < wi(H;). In Step 3, each F; is gridded with Steiner
points, and then a spanner is created for these points. But H; is itself a Steiner tree for these points.
Thus the weight of the spanner for F; is < ¢/(v/2, k)-wt(H;). Thatis, < o' -¢/(v/2, k)-wt(H). Summing
overi=0,1,...,m — 2, we see that the weight for all the short cuts added when considering vertex

v is a geometric series whose sum is < (T_IT&) -c!(v/,k) - wt(H). Finally, if we sum this over all the
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vertices, we see that the total weight of all short cuts added in Step 3 is no more than ¢”(t, k) - wit(E),
where ¢"/(t, k) is some function of ¢ and k. O

We now investigate how to achieve finite extendibility. Assume that the above algorithm has
been originally run with a tolerance of ¢ > 0. If later an even smaller tolerance is required, say
€1 < ¢, we only need to add more short cuts. This is done as follows.

We recompute a new and larger m,, defined to be the smallest integer such that (I/2)a™ +
(1/2)a™ =1 < €. For every vertex v, we do the following. For i = m —2,...,m; — 2, compute new
sets F;, and for each such set, compute a spanner as described earlier in Step 3. The edges of all
these new spanners are then added as new short cuts to the structure.

It is easy to see that the new structure will still have a stretch factor of ¢ (but with the additional
capability of handling smaller tolerances). Moreover, the weight will still remain within a constant
multiple of wt(E), since it will be upper bounded by the geometric series summation described earlier
in Lemma 6.

Let us now address the problem of finite description of the output. In this case, there is no € in
the input, hence no integer m is computed by the algorithm to bound the terms in the geometric
series. Thus it may seem that the algorithm will have to compute an infinite number of spanners
in Step 3, one for each F; in the infinite series. But as we have observed earlier, these spanners
are simply scaled copies of one another. Thus a finite description of the set of short cuts can be
achieved by computing the spanner for Fp, and specifying the geometric series (by simply specifying
a, the ratio of successive terms), which determines the positions and sizes of the succeedingly smaller
spanners.

Incidently, the above observations formally prove Theorem 2.

4 Generalization to Smooth Curves

Our problem for Euclidean graphs can be easily generalized to smooth curves in k-dimensional space.
As in [2], given a smooth curve S, define 8 > 0 so that any disk of diameter less than 3 intersects
S in a connected set, and in any disk of diameter 8 centered on a point of S, the curve S does not
deviate much from a straight line. We omit the details, but essentially since the curve looks locally
flat, we can grid it with a parameter § which will be dependent on ¢ and 3 (similar to what was done
in Step 2 of the previous section). A spanner of the grid points, then, defines the short cuts.
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