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Abstract

Iris recognition is one of the most reliable personal identification meth-
ods. The potential requirement of obtaining high accuracy is that users sup-
ply iris images with good quality. It is thus necessary for an iris recognition
system to operate the possibly blurred iris images due to less cooperation of
users and camera with low resolution. This paper proposes a new algorithm
for resolution enhancement of iris images captured by the low resolution
camera in less cooperative situations. The prior probability relation between
the information of different frequency bands of iris features useful for recog-
nition is firstly learned. Then, it is incorporated into resolution enhancement
algorithms to recover the lost information for the seriously blurred images.
A large number of experiments on the CASIA iris database demonstrate the
validity of the proposed approach.
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1 Introduction

With current stress on security and surveillance, automatic personal identification in less
cooperative situations has been an important research topic. Iris recognition has been
studied for personal identification because of iris’ extraordinary structure (one example is
shown in Figure 1) and non-invasive characteristics [1][2][3][4][5]. Compared with other
biometrics such as face and fingerprints, iris is probably the most attractive [1][2].

There exist some successful commercial systems for iris recognition so far. However,
it should be noted that the iris diameter in an iris image must be at least 100 pixels for
recognition [3]. Current systems would normally work only if the iris images were taken
with the cooperative users from a short distance. This means that these systems greatly
depend on the cooperation of the users to capture iris images with good quality. Hence,
a problem naturally arises: how can we keep the iris recognition systems working nor-
mally if there are only lower resolution iris images? One effective solution is to improve
resolution by means of super-resolution image enhancement.

Many approaches have been proposed for image resolution enhancement [6][7][8][9]
[10][11][12]. In general, these methods may be roughly classified into reconstruction-
based methods and learning-based methods.Relatively speaking, the latter can obtain bet-
ter results than the former [13]. Learning-based methods try to recognize local features



Figure 1: An iris sample

of a low resolution image and then to retrieve the most likely high-frequency information
from given samples. It is believed that lost high frequency information can be restored if
enough example images are provided. But, common learning-based methods will intro-
duce fake high frequency which has undesirable effects on subsequent iris recognition. So
in our modified method, only information useful for recognition is learned and enhanced.
Experimental results demonstrate the validity of the proposed approach.

The remainder of this paper is organized as follows. Related work is summarized in
Section 2. Section 3 describes the proposed algorithm in details. Experimental results are
presented in Section 4, and Section 5 concludes this paper.

2 Related Work

2.1 Iris Recognition

Much work has been done in iris recognition. Daugman used multi-scale quadrature
wavelets to extract texture phase structure information of the iris and Hamming distance
for classification [1][2]. Wildes et al. represented the iris texture with a Laplacian pyra-
mid constructed with four different resolution levels and used normalized correlation for
verification [3]. Boles et al. calculated a zero-crossing representation of 1D wavelet
transform at a few scales of a virtual circle on an iris image to characterize an iris [4].
Our earlier work adopted a bank of circular symmetric filters to extract the local texture
features of the iris [5].

However, all such work depends greatly on a restricted condition that high-quality iris
image must be captured. If the iris images were captured in a less cooperative situation,
their details would inevitably been lost. Especially, this can greatly affect the perfor-
mance of recognition. Therefore, how to improve the resolution of iris images becomes
an important issue in iris recognition.

2.2 Super-Resolution

In computer vision, super resolution is generally thought as inferring the missing high-
resolution image from the low-resolution image [13][14]. The interest has been driven by
a variety of applications such as video surveillance, remote sensing and medical imaging.
In general, all these methods are classified to reconstruction based methods [6][7][8][9]
and learning based methods [10][11][12].

Tsai and Huang [6] first proposed a super resolution method which processed im-
ages in frequency domain. Sauer and Allebach [7] modeled super resolution as an in-
terpolation problem with non-uniformly sampled data. Irani and Peleg [8] proposed an



iterated back-projection (IBP) method to obtain the high-resolution image by simulating
the imaging process via warping so that the difference between the observed and simu-
lated low-resolutions was minimized. Stevenson [9] introduced a maximum-a-posteriori
(MAP) method for resolution enhancement. All these methods only make use of weak
priors for resolution enhancement.

Recently, Freeman [10] incorporated the relationship between middle frequency and
high frequency of example images as prior information, and then the Belief propagation
algorithm was used to infer a high resolution image from a given low resolution image.
Recently, he further introduced a one-pass algorithm for the same problem [11]. Hertz-
mann [12] proposed an analogy method. Using only a pair of images as training data,
he transformed an input image into the resulting image, which has the same relation as
the training pair. These learning-based methods obtained significantly better results than
existing reconstruction-based algorithms.

However, when these learning-based methods fully learn the intensity prior between
all bands of images, some fake high information will be inevitably introduced into the
synthesized high resolution image though these information can give us good visual ef-
fect. For our iris recognition scenario, they will deteriorate the recognition performance
of the overall system. In this paper, we propose a modified learning-based method which
can only enhance the high frequency information useful for recognition. We will discuss
our approach in detail in the following sections.

3 Algorithm

The proposed learning-based resolution enhancement algorithm is primarily inspired by
the recent work of Freeman [10][11]. For iris images, Freeman’s method can not ef-
fectively improve the recognition performance in a less cooperative situation although
the resulting images by his algorithm show good visual effect. Different from Freeman’s
algorithm [11], our algorithm is developed mainly for the purpose of improving the recog-
nition rate rather than enhancing the visual effect. We thus use iris features extracted by
a Circular Symmetric Filter [5](instead of intensity of images as used by Freeman)to ex-
press the local relation between low frequency information and high frequency informa-
tion. Such processing can greatly improve the accuracy and efficiency of iris recognition.

In the subsection below, we provide a brief introduction to our method for iris recog-
nition, including image preprocessing and feature representation. More attention is paid
how to construct the relation between low and high frequency feature information by
training and incorporate this relation into inference of high frequency information.

3.1 Preprocessing

As shown in Figure 2a, an iris image contains not only the regions of iris but also eye-
lid, pupil, etc. In non-cooperative situations, any changes of the users may result in the
possible variations of the iris size. Also, the intensity of an iris image is not uniformly
distributed because of the illumination variations. For reducing the influence of these
factors, the original images should be preprocessed to localize and and normalize the iris.

We can approximately regard the inner and outer boundaries of an iris as circles. Iris
localization includes simple filtering, edge detection and Hough transform [5]. Figure 2b
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Figure 2: Iris image preprocessing. (a) Original iris image, (b) Localized iris image, (c)
Normalized iris image

shows one example of iris localization. We can find that the iris is exactly localized in the
image.

The size of the iris in an image is usually affected by many factors such as different
subjects and illumination. To achieve accurate recognition results, compensating these
changes is necessary. We thus anti-clockwise map the iris ring to a rectangular block of
iris texture, with a fixed size. The example of iris normalization is shown in Figure 2c.
More details of preprocessing may be found in [5].

3.2 Filtering

Because our task is to infer lost information for iris recognition and the recognition results
are only affected by iris features, we only concern iris feature information in the whole
image. In addition, the majority of useful information of an iris is in a frequency band
of 3 octave [2]. A bank of circular symmetric filters can thus be constructed to capture
them [5]. The circular symmetric filter (CSF) is developed on the basis of Gabor filters,
but there are some differences between them. The former is modulated by a circular
symmetric sinusoidal function, while the latter is modulated by an oriented sinusoidal
function [5][15]. A CSF is defined as follows:

G(x,y,z) =
1

2πσxσy
exp−1

2
(

x2

σ2
x

+
y2

σ2
y
)M(x,y, f ) (1)

M(x,y, f ) = cos(2π f (
√

x2 + y2)) (2)

where M(x, y, f) is the modulated function, f is the frequency of the sinusoidal function. σ x

and σy are the space constants of the Gaussian envelope along the x and y axis respectively.
We can obtain a band-pass filter with a specific center frequency by setting the frequency
parameter f. The choice of the parameters in (1) is similar to that of [5]. The circular
symmetric filter can capture the information of an image in a specific frequency band,
whereas it can not provide orientation information because of its circular symmetry. Here,
we utilize the CSF to filter iris images for acquiring iris features.



3.3 Training

This step is crucial for the proposed algorithm because the relation between the low-
resolution image and the high-resolution image is learned in this step. The training set is
composed of the search vector and the high-resolution patch of iris feature. The search
vector is composed of the low-resolution patch of iris feature and the overlapped region
of the high-resolution patch.

For constructing the training database, we first blur the iris images and scale them
down. Then, we can utilize an interpolation method to create a low-pass image of the
original image. The interpolated image is degraded in a manner corresponding to the
degradation we plan to undo in the process of inferring. The high-frequency band is
constituted by the difference between the interpolated version and the original version.
Using the CSF, we can obtain iris feature information of the interpolated image as the
medium band information. Figure 3 (a) shows a low-resolution iris image, (b) shows the
initial cubic interpolated image of low-resolution, (c) shows the high-resolution version
of the image, (d) shows the high frequency image and (e) shows the filtered medium
frequency image.

(a)

(b)

(c)

(d)

(e)

Figure 3: The iris image samples for training

After we have processed the images according to the above steps, we break the built
images into patches. Each low-resolution patch is associated with a high- resolution one,
centered on the same pixel. In addition, each high-resolution patch overlaps with other
neighborhood patches by several pixels. We model the spatial relationships between these
patches using a Markov Network [16].

Based on the knowledge of the MRF model, we propose a fundamental assumption
that the high frequency information of an iris image only depends on the feature informa-
tion of interpolated image. This assumption allows the algorithm to be able to work only
in two bands. We also assume that the local image contrast does not affect the relation
between the two working bands.

Each patch is normalized by a local contrast normalization method , which the high-
resolution and low-resolution patches are divided by a local energy. Then, we undo the
normalization after the matching process to acquire the right high-frequency patch of the
input. Normalization can reduce the variability and increase the efficiency of the training
set.

The following summarizes the major steps of training data :

1. First, remove the high frequency information and leave an intermediate image for
each image in the training set.



2. Construct an iris feature image by filtering the intermediate image using a CSF. The
feature image is thought as the medium frequency information for learning.

3. Use a local contrast normalization method to normalize both the high-resolution
and the low-resolution patches.

4. Extract patches from the normalized medium frequency image and the correspond-
ing high frequency image. The patches from the medium frequency image and the
corresponding patches from the high frequency image are concentric.

5. Build an index between the vector Xk and the vector Yk. Here, Xk denotes the high
frequency patches, Yk denotes the medium frequency information and k denotes the
number of the patches in the database.

6. Use the vector Xk and the vector Yk to build the search vector. The search vector is
composed of the low-resolution patch of the iris feature and the overlapped region
of the high-resolution patch.

3.4 Inference of high frequency information

This step first obtains the interpolated version of the low-resolution image by cubic inter-
polation. Then, we can extract the medium frequency information from the interpolated
image with a CSF. Broken into patches, the medium frequency image is scanned in a
raster-scan order to predict the high-resolution patches at each stage. Finally, the corre-
sponding high-resolution patches predicted from the training set are added to the original
test patches. The output is the sum of the high frequency information predicted from the
training set and the original test image.

The process of inferring is based on spatial and frequency constraints. The frequency
constraint is that the predicted high-resolution patch of iris feature must be linked to a
low-resolution patch of iris feature in the training set which should be close to the low-
resolution test patch of iris feature. The spatial constraint is that the newly predicted
high-resolution patch of iris feature should match with the previously predicted one. A
weighting factor is used to control the relative importance of these constraints. The flow
chart is shown in Figure 4.

For a typical patch X in the medium frequency information of an input image, we
always can find a low-resolution patch in the training set to match it. The match process
uses L1 distance because the iris recognition uses this distance to produce the feature
vector, which is the average absolute deviation (AAD) of each patch [5]. It is defined as
follows:

V =
1
N

(∑
N
| f (x,y)−m|) (3)

where N is the number of the pixels in the image patch, m is the mean of this patch, and
f (x, y) is the value of iris feature image at point (x, y). The match function to determine
the optimal matching patch is given by

MK = ‖V −VK‖ (4)
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Figure 4: The flow chart of our algorithm

However, only using this function, we can not find the plausible high-resolution patch
for each patch of the input image. According to the spatial constraint, to ensure spatial
consistency between adjacent patches, we should repeatedly infer patches at their border.
A weighting factor α is controlled to adjust the relative importance of two constraints.
The whole function is described by:

WK(x) = MK + αHK (5)

Hk measures the sum-squared difference of intensity value in the overlapped regions.
We can resolve it with an approximation procedure.It is summarized as follows:

1. Scale the test image up by cubic interpolation.

2. Filter the interpolation image of the input by the CSF to make its features.

3. Break the obtained medium frequency image in a raster-scan order, and normalize
the low-resolution patches by a local contrast normalization method.

4. Scan over each low-resolution patches. Use (3) to find 200 patch pairs from the
training set whose feature vectors are most close to the input patch at each step.

5. Use (4) to select the best matching pair from this sub-set patch pairs.

6. Reverse the normalization for the predicted high-resolution patch and add it to the
correspondingoutput patch. The average pixel values are used in overlapped region.

7. Acquire the desired super-resolution image by adding the high frequency image to
the test image.



4 Experimental results

Our experiments are conducted with a large number of iris images in the CASIA data
set (unlike fingerprint and face, there is no reasonably sized public-domain iris database).
The CASIA iris image database contains 134-class iris images. The total number of iris
images is 1088. They are from 109 different volunteers and captured by a digital optical
sensor in two different stages. Since image enhancement is only one of the important
parts of an iris recognition method, the proposed method is evaluated by analyzing the
recognition performance changes of our previous recognition algorithm [5] with different
enhancement methods.

We randomly select 37-class of iris images to form the training data, and other 97-
class iris images to form the test data. For each iris class in test data, we randomly choose
one iris image captured in the first stage as reference image, and other iris images taken
in the second stage serve as test samples. Each sample is separately degraded by convolu-
tion with three Gaussian kernels and down-sampled to three low-resolution images. The
blur degree of the third sequence is relatively maximal. Then, we respectively set these
three sequences of degraded images as three groups of test images in order. These three
sequence are arranged according to their degradation degree. In this paper, we choose 7
x 7 ( pixels) as the patch size and 2 pixels as the the number of overlapping pixels. Then,
the training set contains 45,288 patches.

Figure 5 shows the comparison results of an example in terms of visual effect. Both
our result and Freeman’s result obtain more impressive visual effects than interpolation
result. In whole images, there is not obvious difference between Freeman’s result and
our result. However, from corresponding patches shown in Figure 5(a), 5(b), 5(c) and
5(d), we can see that they are different. The enhancement result of our algorithm is more
similar to original high resolution patch than those of Freeman’s method.

(a) (b)

(c) (d)

Figure 5: The comparative results in visual effects. (a) original, (b) interpolation result of
low-resolution input, (c) Freeman’ result, (d) our result

Table 1 gives the identification results. From it, we can see that our algorithm can
obtain the best identification result. Moreover, with the increase of blur degree of the
iris image, our algorithm obtains more steady recognition result when the accuracy of
the recognition results of both the interpolation method and Freeman’s method decrease



rapidly.
Figure 6 describes the verification results. With the increase of the blur degree, our

algorithm always seems to be more advantageous than others. Experimental results show
our algorithm can improve the robustness of iris recognition and is much better than Free-
man’s algorithm in the area of iris image resolution enhancement.

Table 1: Correct classification rates
Group Interpolation Freeman Our Algorithm Original

Group1 73.56% 97.70% 98.86% 100%
Group2 44.83% 81.61% 96.56% 100%
Group3 35.63% 56.32% 89.66% 100%
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Figure 6: Verification results. (FAR vs FRR)

5 Conclusion

This paper proposes an algorithm to enhance the iris image so that iris images with poor
quality can be accepted by an operational iris recognition system. This algorithm predicts
the prior relation between iris feature information of different bands and incorporates this
prior into the process of iris image enhancement. Experiment results have shown that
this algorithm is successful in both visual effect and recognition rate. Compared with a
recent algorithm proposed by Freeman in the area of learning-based super resolution, this
algorithm has greatly improved the recognition rate of iris recognition systems. A most
important factor that contributes to the good performance of this algorithm is that only
those of feature information useful for recognition are processed in learning.

In future work, we should extend our experiments on a larger database. All of our
results are based on simply registered iris images [5]. We can attempt to apply different
registration methods (such as phase-correlation motion estimation [17]) to improve the
experiment results. We also plan to use real iris images with poor quality to test the
proposed algorithm.
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