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Abstract— This paper proposes a sparsity driven shape reg-
istration method for occluded facial feature localization. Most
current shape registration methods search landmark locations
which comply both shape model and local image appearances.
However, if the shape is partially occluded, the above goal
is inappropriate and often leads to distorted shape results.
In this paper, we introduce an error term to rectify the
locations of the occluded landmarks. Under the assumption that
occlusion takes a small proportion of the shape, we propose
a sparse optimization algorithm that iteratively approaches
the optimal shape. The experiments in our synthesized face
occlusion database prove the advantage of our method.

I. INTRODUCTION

Automatic face registration plays an important role in
many face identification and expression analysis algorithms.
It is a challenging problem for real world images, because
various face shapes, expressions, poses and lighting condi-
tions greatly increase the complexity of the problem.

Many current shape registration algorithms are based on
statistical point distribution models. A shape is described
by 2D or 3D coordinates of a set of labeled landmarks.
These landmarks are predefined as points located on the
outline, or some specific positions (e.g., eyes pupils). These
algorithms work by modeling how the labeled landmarks
tend to move together as the shape varies. Cootes et al. [3][6]
first presented Active Shape Models (ASM) using linear
shape subspaces. This method assumes that the residuals
between model fit and images have a Gaussian distribution.
There have been many modifications to the classical ASM.
Cootes et al. [5] built shape models using a mixture of
Gaussian. Romdhani et al. [16] used Kernel PCA to generate
nonlinear subspaces. Other improvements including Rogers
and Graham [15], Van Ginneken et al. [8][11], Jiao et al.
[10], Li and Ito [12]. Milborrow et al. [14] etc. Cootes et al.
[4] also proposed Active Appearance Models, which merges
the shape and profile model of the ASM into a single model
of appearance, and itself has many descendants.

If parts of the shape are occluded, the unobservable
landmarks cannot find a correct match. The previous methods
based on ASM can not handle this problem because the
incorrect matches are projected into the shape space, which
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Fig. 1. Faces with occlusion

often leads to distorted shape results. Some other shape
models tried to alleviate this problem. Zhou et al. [18]
proposed a Bayesian inference solution based on tangent
shape approximation. Gu and Kanade [9] used a generative
model and EM-based algorithm to implement the maximum
a posterior. Felzenszwalb et al. [7] and Tan et al. [17] applied
pictorial structures which model the spacial relationship
between parts of objects. However, shape registration under
occlusions has not been directly modeled and is far from
being resolved.

In this paper, we propose a new shape registration method
to directly handle this problem. We extend the linear sub-
space shape model by introducing an error term to rectify the
locations of the occluded landmarks. With the assumption
that occlusion takes a small proportion of the shape, the
error term is constrained to be sparse. The proposed method
iteratively approximates the optimal shape. To quantitatively
evaluate the proposed method, we built three face datasets
with synthesized occlusions. Our experimental results prove
the advantage of our method.

The rest of this paper is organized as the follows. Section
2 presents the mathematical formulations and proposes our
algorithm. Section 3 illustrates experimental results. Section
4 concludes.

II. SPARSE SHAPE REGISTRATION

Given a shape containing N landmarks, the shape vector
S is defined by concatenating x and y coordinates of all the
landmarks.

S = [x1, y1, x2, y2, ..., xN , yN ]T (1)



We assume the shape is a linear combination of m shape
basis

S = S̄ + b1u1 + b1u1 + · · ·+ bmum (2)
= S̄ + Ub (3)

where U is a matrix with size n by m containing m shape
basis. b is a m by 1 vector for the coefficients. A shape
registration method seeks to locate landmarks complying
both the shape model and image features. If some landmarks
are occluded, the correct postion will not get a high responses
from the appearance templates. It means that, the high
response positions that best matching templates are not the
real positions of these landmarks. Therefore, these incorrect
positions should not be used for global shape matching.

We define an error term Se to directly model the occluded
landmark positions. The hidden shape vector S is the sum
of the shape estimate Ŝ and shape error Se.

S = Ŝ + Se (4)

The shape transformation parameters (scaling, rotation and
translation) are denoted by θ. The posterior likelihood of θ,
shape parameter b, hidden shape vector S, error Se given
image I is

p(θ, b, S, Se|I) ∝ p(θ)p(b)p(S|b)p(Se)p(I|θ, S, Se) (5)

the prior p(θ) can be considered as a constant, since there
is no preference for shape scale, orientation and location. We
take the negative logarithm of Equation (5). Now we aim to
minimize the following energy function.

E = − log p(b)− log p(S|b)− log p(Se)− log p(I|θ, S, Se)(6)
= Eb + ES + ESe + EI (7)

We expand Equation (7).

Eb =
1

2
bTΛ−1b (8)

where Λ is the m by m diagonal matrix containing the
largest m eigenvalues of Σ. For simplicity, we consider
the shape model to be a single Gaussian distribution with
mean S̄ and covariance Σ−1. The shape basis U and Λ are
computed from SVD decomposition to the covariance matrix
Σ = UΛUT . We keep only the m eigenvectors as shape basis
and largest m eigenvalues in Λ. The single Gaussian model
can also be extended to a mixture of Gaussians following
methods from Gu et al.[9].

The shape energy ES can be written as

ES =
1

2
||S − Ub− S̄||2 (9)

=
1

2
||Ŝ + Se − Ub− S̄||2 (10)

We assume that the occluded landmarks takes only a small
proportion of all the landmarks, which means Se is sparse.
We define the energy term ESe

as the L1 norm of Se, with
a diagonal weighting matrix W .

ESe = λ · ||WSe||1 (11)

The image likelihood at each landmark position is assumed
to be independent to each other. So that

p(I|θ, S, Se) =

N∏
i=1

p(Ii|θ, S, Se) (12)

We also use a single Gaussian model for the appearance
at each landmark position. Thus the energy term EI can be
written as

EI =
1

2

N∑
i=1

(F (xi)− ui)TΣ−1i (F (xi)− ui) (13)

=
1

2

N∑
i=1

d(xi)
2 (14)

where F (xi) is the feature extracted at landmark position
xi from shape Ŝ; ui and Σi are the mean and covariance
of the Gaussian appearance model for landmark i. The
energy term can be simply written as a sum of Mahalanobis
distances d(xi).

A. Iterative Optimization

Now we aim to minimize the energy function E

E = Eb + ES + ESe
+ EI (15)

Firstly, we define Ep as the sum of Eb, ES and ESe

Ep(b, Se) =
1

2
bTΛ−1b+

1

2
||Ŝ+Se−Ub−S̄||2+λ · ||WSe||1

(16)
Ep is a convex function, which can be minimized by

gradient descent method. The first and second order partial
derivatives of Ep to b and Se are

∂(Eb + ES)

∂b
= Λ−1b− UT (Ŝ + Se − Ub− S̄) (17)

∂(Eb + ES)

∂Se
= Ŝ + Se − Ub− S̄ (18)

∂2Ep
∂b2

= (Λ−1 + I) (19)

∂2Ep
∂S2

e

= I (20)

The algorithm to minimize Ep is shown in Algorithm 1.

Algorithm 1 Minimize Ep = Eb + ES + ESe

1: b0 = UT (Ŝ − S̄), S0
e = 0

2: for k = 0 : kmax do
3: Compute L to be the largest eigenvalue of ∂2Ep

∂b2 .

4: bk+1 = bk − 1
L ·

∂Ep

∂b

5: S
k+ 1

2
e = Ske −

∂Ep

∂Se

6: Sk+1
e = max(|Sk+

1
2

e | − λ, 0) · sign(S
k+ 1

2
e )

7: end for

Secondly, we try to minimize EI . Notice that EI is a
discontinuous function. Traditional active shape model based



algorithms measure the image likelihood around the the
landmarks, and move the landmark to the new position which
has maximum response. For real world images, this method
is sensitive to noises. Instead of using the single maximum
response point, we use the kernel density estimation and
mean shift method to find the position best matching the
landmark.

Image gradient features are extracted at a set of n points
{xi,j}j=1...n around a landmark at point xi. we define
f(xi,j) as the square of Mahalanobis distance at point xi,j .

f(xi,j) = d(xi,j)
2 (21)

The kernel density estimation computed in the point x,
with kernel K and bank-width h, is given by

f̂h,K(x) =
1

C

n∑
j=1

f(xi,j) ·K(
x− xi,j

h
) (22)

Let G be profile of kernel K. When K is the normal
kernel, its profile G has the same expression. As shown in
[1], the gradient estimate at point x is proportional to the
density estimate in x computed with kernel G and the mean
shift vector computer with kernel G.

∇̂fh,K(x) = C · ˆfh,G(x) ·mh,G(x) (23)

The mean shift vector mh,G(x) is defined as

mh,G(x) =

∑n
j=1 xi,j · f(xi,j) ·G

(
||x−xi,j

h ||2
)

∑n
j=1 f(xi,j) ·G

(
||x−xi,j

h ||2
) −x (24)

The local minimum of EI can be acquired using gradient
descent. We take steps proportional to the negative of the
gradient, as shown in Algorithm 2.

Algorithm 2 Minimize EI
1: for i = 1 : N do
2: for k = 0 : kmax do
3: Compute ∇̂fh,K(xki ) using equation (23)

4: xk+1
i = xki − ∇̂fh,K(xki )

5: end for
6: end for

To minimize E, we alternately run Algorithm 1 and
Algorithm 2. Our algorithm is shown in Algorithm 3.

III. EXPERIMENT

To evaluate our algorithm, we create a synthesized face
occlusion database using face images from AR [13] database.
The AR database contains frontal face images from 126
people. Each person has 26 images with different expres-
sions, occlusions and lightening conditions. We select 509
face images from section 1,2,3,5 and use the 22 landmark
positions provided by T.F.Cootes [2] as the ground truth. The
landmark positions are shown in Fig. 2.

The occlusion masks are designed to simulate the occlu-
sions most frequently seen in real world. As shown in Fig.

Algorithm 3 Sparse Shape Optimization
1: Compute θ using detection result
2: Initial status b0 = 0, Se = 0, S = S̄, Ŝ = S̄, Ŝ′ =
Mθ(Ŝ)

3: repeat
4: Run Algorithm 2 to optimize Ŝ′

5: Compute transformation parameter θ matching Ŝ′ to
S̄

6: Ŝ = M−1θ (Ŝ′)

7: Run Algorithm 1 to optimize b and Se
8: Ŝ′ = Mθ(S̄ + Ub)

9: until Ŝ′ converges

Fig. 2. Face image with 22 landmarks

3. We design three types of masks: A cap mask is put above
the eyes but occludes all eye brow regions; A hand mask is
put on mouth which also occludes nose tip and part of chin;
And a scarf mask is applied to occlude the mouth and chin.
These masks are carefully located at the same position for
all faces. By putting masks on clear face images, we still
know the ground truth positions of all occluded landmarks,
which is convenient for quantitative evaluation.

The shape registration result for one testing image is
shown in Fig. 4. The ground truth positions are marked using
red stars. The result of ASM is shown in blue lines and the
result of our method is shown in green lines. On the right side
is the sparse shape error recovered during one iteration. The
sparse coefficients on the left side are corresponding to the
landmarks at contour of chin. And the ones on the right side
are corresponding to the landmarks in mouth. In this figure,
the landmark indexes are different from Fig. 2, because we
use a linear shape model containing more landmarks than
the ground truth.

In order to assess the localization precision, we apply the
normalized error metric similar to Jesorsky et al. [?]. The
normalized error for each point is defined as the Euclidean
distance from the ground truth, normalized by the distance
between eye centers. This metric is scale invariant.
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Fig. 2. Face image with 22 landmarks

Fig. 3. Faces with artificial occlusion
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Fig. 3. Faces with artificial occlusion

We compare our algorithm with the Milborrow’s extended
Active Shape Model [14], which was reported better per-
formance than traditional ASM methods. The results are
shown in Fig. 5. On the hat occlusion dataset, our method
has significantly better localization accuracy for landmarks
6,7,8,9, which are the four landmarks at the ends of eye
brows. On the hand occlusion dataset, our method has much
better accuracy for landmarks 3,4,18,19 which are occluded
landmarks on mouth, and landmarks 15, 16, 17 which are oc-
clude landmarks on nose. On the scarf occlusion dataset, our
method gets much better accuracy for landmarks 3,4,18,19
which are occluded landmarks on mouth, and landmarks
20,21,22 which are occluded landmarks on chins.

In all the three datasets, we decrease the normalized error
of the occluded landmarks to level of 0.2, which is close
to the error level of the non-occluded landmarks. The speed
of our method is about 20 percent slower than Milborrow’s
extended ASM, because of extra cost to compute gradients.
We set the maximum number of iterations kmax to be 2 in
Algorithm 1 and 2. Our experiments with larger kmax do not
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have significant better accuracy. We show more localization
results in Fig. 6. The ground truth positions are marked as
red stars. The ASM results are shown in blue lines and our
results are shown in green lines.

IV. CONCLUSION

In this paper, we propose a sparsity driven shape regis-
tration method for occluded facial feature localization. By
introducing a sparse error term into the linear shape model,
our algorithm is more robust for feature localization, espe-
cially for the occluded landmarks. Extensive experiments in
our synthesized face occlusion database prove the advantage
of our method. Our future work includes creating more
occlusion testing scenarios, and extend our algorithm to
mixture shape models.
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