
Submitted to the Annals of StatistisTHE BENEFIT OF GROUP SPARSITYBy Junzhou HuangComputer Siene Department, Rutgers UniversityBy Tong ZhangStatistis Department, Rutgers UniversityThis paper develops a theory for group Lasso using a oneptalled strong group sparsity. Our result shows that group Lasso issuperior to standard Lasso for strongly group-sparse signals. Thisprovides a onvining theoretial justi�ation for using group sparseregularization when the underlying group struture is onsistent withthe data. Moreover, the theory predits some limitations of the groupLasso formulation that are on�rmed by simulation studies.1. Introdution. We are interested in the sparse learning problem for least squares regression.Consider a set of p basis vetors {x1, . . . ,xp} where xj ∈ R
n for eah j. Here, n is the sample size.Denote by X the n × p data matrix, with olumn j of X being xj . Given an observation y =

[y1, . . . , yn] ∈ R
n that is generated from a sparse linear ombination of the basis vetors plus astohasti noise vetor ǫ ∈ R

n:
y = Xβ̄ + ǫ =

d
∑

j=1

β̄jxj + ǫ,where we assume that the target oe�ient β̄ is sparse. Throughout the paper, we onsider �xeddesign only. That is, we assume X is �xed, and randomization is with respet to the noise ǫ (andthus the observation y). Note that we do not assume that the noise ǫ is zero-mean.De�ne the support of a sparse vetor β ∈ R
p as

supp(β) = {j : βj 6= 0},and ‖β‖0 = |supp(β)|. A natural method for sparse learning is L0 regularization:
β̂L0 = arg min

β∈Rp
‖Xβ − y‖2

2 subjet to ‖β‖0 ≤ k,where k is the sparsity. Sine this optimization problem is generally NP-hard, in pratie, one oftenonsider the following L1 regularization problem, whih is the standard onvex relaxation of L0:
β̂L1 = arg min

β∈Rp

[

1

n
‖Xβ − y‖2

2 + λ‖β‖1

]

,where λ is an appropriately hosen regularization parameter. This method is often referred to asLasso in the statistial literature.In pratial appliations, one often knows a group struture on the oe�ient vetor β̄ so thatvariables in the same group tend to be zeros or nonzeros simultaneously. The purpose of this paperis to show that if suh a struture exists, then better results an be obtained.1imsart-aos ver. 2007/09/18 file: group-v2.tex date: September 10, 2009
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2. Strong Group Sparsity. For simpliity, we shall only onsider non-overlapping groups inthis paper, although our analysis an be adapted to handle moderately overlapping groups (that is,eah feature is only overed by a onstant number of groups, and the resulting analysis depends onthis onstant).Assume that {1, . . . , p} = ∪m
j=1Gj is partitioned into m disjoint groups G1, G2, . . . , Gm: Gi∩Gj =

∅ when i 6= j. Moreover, throughout the paper, we let kj = |Gj |, and k0 = maxj∈{1,...,m} kj. Given
S ⊂ {1, . . . ,m} that denotes a set of groups, we de�ne GS = ∪j∈SGj .Given a subset of variables F ⊂ {1, . . . , p} and a oe�ient vetor β ∈ R

p, let βF be the vetorin R
|F | whih is idential to β in F . Similar, XF is the n × |F | matrix with olumns idential to Xin F .The following method, often referred to as group Lasso, has been proposed to take advantage ofthe group struture:(1) β̂ = arg min

β





1

n
‖Xβ − y‖2

2 +
m

∑

j=1

λj‖βGj
‖2



 .The purpose of this paper is to develop a theory that haraterizes the performane of (1). Weare interested in onditions under whih group Lasso yields better estimate of β̄ than the standardLasso.Instead of the standard sparsity assumption, where the omplexity is measured by the number ofnonzero oe�ients k, we introdue the strong group sparsity onept below. The idea is to measurethe omplexity of a sparse signal using group sparsity in addition to oe�ient sparsity.Definition 2.1. A oe�ient vetor β̄ ∈ R
p is (g, k) strongly group-sparse if there exists a set

S of groups suh that
supp(β̄) ⊂ GS , |GS | ≤ k, |S| ≤ g.The new onept is referred to as strong group-sparsity beause k is used to measure the sparsityof β̄ instead of ‖β̄‖0. If this notion is bene�ial, then k/‖β̄‖0 should be small, whih means thatthe signal has to be e�iently overed by the groups. In fat, the group Lasso method does notwork well when k/‖β̄‖0 is large. In that ase, the signal is only weak group sparse, and one needs touse ‖β̄‖0 to preisely measure the real sparsity of the signal. Unfortunately, suh information is notinluded in the group Lasso formulation, and there is no simple �x of this problem using variationsof group Lasso. This is beause our theory requires that the group Lasso regularization term isstrong enough to dominate the noise, and the strong regularization auses a bias of the order O(k)whih annot be removed. This is one fundamental drawbak whih is inherent to the group Lassoformulation.We shall mention that this paper fouses on the senario that eah group is �nite dimensional,and our analysis relies on the overall sparsity k. For some appliations, eah group may be anin�nite dimensional Hilbert spae, and the group Lasso an be used to learn ombinations of kernels(see [1, 5℄ for analysis and referenes). For suh problems, our analysis does not apply beause thesparsity k may be in�nity. Also in suh ase, Lasso annot be run and thus group Lasso will be theonly natural formulation.3. Related Work. The idea of using group struture to ahieve better sparse reovery per-formane has reeived muh attention. For example, group sparsity has been onsidered for si-multaneous sparse approximation [12℄ and multi-task ompressive sensing [4℄ from the Bayesian2



hierarhial modeling point of view. Under the Bayesian hierarhial model framework, data fromall soures ontribute to the estimation of hyper-parameters in the sparse prior model. The sharedprior an then be inferred from multiple soures. Although the idea an be justi�ed using standardBayesian intuition, there are no theoretial results showing how muh better (and under what kindof onditions) the resulting algorithms perform.In [11℄, the authors attempted to derive a bound on the number of samples needed to reoverblok sparse signals, where the oe�ients in eah blok are either all zero or all nonzero. In ourterminology, this orresponds to the ase of group sparsity with equal size groups. The algorithmonsidered there is a speial ase of (1) with λj → 0+. However, their result is very loose, and doesnot demonstrate the advantage of group Lasso over standard Lasso.In the statistial literature, the group Lasso (1) has been studied by a number of authors [1, 5, 7,8, 13℄. There were no theoretial results in [13℄. Although some theoretial results were developedin [1, 7℄, neither showed that group Lasso is superior to the standard Lasso. In partiular, although[7℄ is related to our work (in the sense that it also studies parameter estimation error), the analysisdoes not try to show the advantage of group Lasso over standard Lasso.The authors of [5℄ showed that group Lasso an be superior to standard Lasso when eah group isan in�nite dimensional kernel, by using an argument ompletely di�erent from ours (they relied onthe fat that meaningful analysis an be obtained for kernel methods in in�nite dimension). Theiridea annot be adapted to show the advantage of group Lasso in �nite dimensional senarios ofinterests suh as in the standard ompressive sensing setting. Therefore our analysis, whih fouseson the latter, is omplementary to their work.Another related work is [8℄, where the authors onsidered a speial ase of group Lasso in themulti-task learning senario, and showed that the number of samples required for reovering theexat support set may be smaller for group Lasso under appropriate onditions. The analysis is quitetight but with di�erent assumptions than what we make in this paper. That is, there are majordi�erenes between our analysis and their analysis. For example, the group formulation we onsiderhere is more general and inludes the multi-task senario as a speial ase. Moreover, we study signalreovery performane in 2-norm instead of the exat reovery of support set in their analysis. Thesparse eigenvalue ondition employed in this work is di�erent from the irrepresentable type onditionin their analysis (whih is required for exat support set reovery). Under our assumptions, eitherLasso nor group Lasso may be able to reover the exat support set.In the above ontext, the main ontribution of this work is the introdution of the strong groupsparsity onept, under whih a satisfatory theory of group Lasso is developed. Our result showsthat strongly group sparse signals an be estimated more reliably using group Lasso, in that itrequires fewer number of samples in the ompressive sensing setting, and is more robust to noise inthe statistial estimation setting.Finally, we shall mention that independent of the authors, results similar to those presented inthis paper have also been obtained in [6℄ with a similar tehnial analysis. However, while our paperstudies the general group Lasso formulation, only the speial ase of multi-task learning is onsideredin [6℄.4. Assumptions. The following assumption on the noise is important in our analysis. It ap-tures an important advantage of group Lasso over standard Lasso under the strong group sparsityassumption.Assumption 4.1 (Group noise ondition). There exist non-negative onstants a, b suh that forany �xed group j ∈ {1, . . . ,m}, and η ∈ (0, 1): with probability larger than 1−η, the noise projetion3



to the j-th group is bounded by:
‖(X⊤

Gj
XGj

)−0.5X⊤
Gj

(ǫ − Eǫ)‖2 ≤ a
√

kj + b
√

− ln η.The importane of the assumption is that the onentration term √− ln η does not depend on
k. This reveals a signi�ant bene�t of group Lasso over standard Lasso: that is, the onentrationterm does not inrease when the group size inreases. This implies that if we an orretly guess thegroup sparsity struture, the group Lasso estimator is more stable with respet to stohasti noisethan the standard Lasso.We shall point out that this assumption holds for independent sub-Gaussian noise vetors, where
et(ǫi−Eǫi) ≤ et2σ2/2 for all t and i = 1, . . . , n. It an be shown that one may hoose a = 2.8 and
b = 2.4 when η ∈ (0, 0.5). Sine a omplete treatment of sub-Gaussian noise is not important forthe purpose of this paper, we only prove this assumption under independent Gaussian noise, whihan be diretly alulated.Proposition 4.1. Assume the noise vetor ǫ are independent Gaussians: ǫi − Eǫi ∼ N(0, σ2

i ),where eah σi ≤ σ (i = 1, . . . , n). Then Assumption 4.1 holds with a = σ and b =
√

2σ.The next assumption handles the ase that true target is not exatly sparse. That is, we onlyassume that Xβ̄ ≈ Ey.Assumption 4.2 (Group approximation error ondition). There exist δa, δb ≥ 0 suh that forall group j ∈ {1, . . . ,m}: the projetion of error mean Eǫ to the j-th group is bounded by:
‖(X⊤

Gj
XGj

)−0.5X⊤
Gj

Eǫ‖2/
√

n ≤
√

kjδa + δb.As mentioned earlier, we do not assume that the noise is zero-mean. Hene Eǫ may not equalzero. In other words, this ondition onsiders the situation that the true target is not exatly sparse.It resembles algebrai noise in [15℄ but takes the group struture into aount. Similar to [15℄, wehave the following result.Proposition 4.2. Consider a (g, k) strongly group sparse oe�ient vetor β̄ suh that
1

n
‖Xβ̄ − Ey‖2

2 ≤ ∆2,and a0, b0 ≥ 0. Then there exists (g′, k′) strongly group sparse β̄′ suh that k′a2
0+g′b2

0 ≤ 2(ka2
0+gb2

0),
‖Xβ̄′ − Ey‖2 ≤ ‖Xβ̄ − Ey‖2, supp(β̄) ⊂ supp(β̄′), and for all group j:

‖(X⊤
Gj

XGj
)−0.5X⊤

Gj
(Xβ̄′ − Ey)‖2/

√
n ≤ (a0

√

kj + b0)∆/
√

ka2
0 + b2

0.The proposition shows that if the approximation error of β̄ is ∆ = ‖Xβ̄ − Ey‖2/
√

n, then wemay �nd an alternative target β̄′ with similar sparsity for whih we an take δa = a0∆/
√

ka2
0 + b2

0and δb = b0∆/
√

ka2
0 + b2

0 in Assumption 4.2. This means that in Theorem 5.1 below, by hoosing
a0 = a and b0 = b

√

ln(m/η), the ontribution of the approximation error to the reonstrution error
‖β̂− β̄‖2 is O(∆). Note that this assumption does not show the bene�t of group Lasso over standardLasso. Therefore in order to ompare our results to that of the standard Lasso, one may onsider4



the simple situation where δa = δb = 0. That is, the target is exatly sparse. The only reason toinlude Assumption 4.2 is to illustrate that our analysis an handle approximate sparsity.The last assumption is a sparse eigenvalue ondition, used in the modern analysis of Lasso (e.g.,[2, 15℄). It is also losely related to (and slightly weaker than) the RIP (restrited isometry property)assumption [3℄ in the ompressive sensing literature. This assumption takes advantage of groupstruture, and an be onsidered as (a weaker version of) group RIP. We introdue a de�nitionbefore stating the assumption.Definition 4.1. For all F ⊂ {1, . . . , p}, de�ne
ρ−(F ) = inf

{

1

n
‖Xβ‖2

2/‖β‖2
2 : supp(β) ⊂ F

}

,

ρ+(F ) = sup

{

1

n
‖Xβ‖2

2/‖β‖2
2 : supp(β) ⊂ F

}

.Moreover, for all 1 ≤ s ≤ p, de�ne
ρ−(s) = inf{ρ−(GS) : S ⊂ {1, . . . ,m}, |GS | ≤ s},
ρ+(s) = sup{ρ+(GS) : S ⊂ {1, . . . ,m}, |GS | ≤ s}.Assumption 4.3 (Group sparse eigenvalue ondition). There exist s, c > 0 suh that

ρ+(s) − ρ−(2s)

ρ−(s)
≤ c.Assumption 4.3 illustrates another advantage of group Lasso over standard Lasso. Sine weonly onsider eigenvalues for sub-matries onsistent with the group struture {Gj}, the ratio

ρ+(s)/ρ−(s) an be signi�antly smaller than the orresponding ratio for Lasso (whih onsid-ers all subsets of {1, . . . , p} up to size s). For example, assume that all group sizes are idential
k1 = . . . = km = k0, and s is a multiple of k0. For random projetions used in ompressive sensingappliations, only n = O(s + (s/k0) ln m) projetions are needed for Assumption 4.3 to hold. Inomparison, for standard Lasso, we need n = O(s ln p) projetions. The di�erene an be signi�antwhen p and k0 are large. More preisely, we have the following random projetion sample omplexitybound for the group sparse eigenvalue ondition. Although we assume Gaussian random matrix inorder to state expliit onstants, it is lear that similar results hold for other sub-Gaussian randommatries.Proposition 4.3 (Group-RIP). Suppose that elements in X are iid standard Gaussian randomvariables N(0, 1). For any t > 0 and δ ∈ (0, 1), let

n ≥ 8

δ2
[ln 3 + t + k ln(1 + 8/δ) + g ln(em/g)].Then with probability at least 1−e−t, the random matrix X ∈ R

n×p satis�es the following group-RIPinequality for all (g, k) strongly group-sparse vetor β̄ ∈ R
p,(2) (1 − δ)‖β̄‖2 ≤ 1√

n
‖Xβ̄‖2 ≤ (1 + δ)‖β̄‖2.5



5. Main Results. Our main result is the following signal reovery (2-norm parameter estima-tion error) bound for group Lasso.Theorem 5.1. Suppose that Assumption 4.1, Assumption 4.2, and Assumption 4.3 are valid.Take λj = (A
√

kj + B)/
√

n, where both A and B an depend on data y. Given η ∈ (0, 1), withprobability larger than 1 − η, if the following onditions hold:
• A ≥ 4maxj ρ+(Gj)

1/2(a + δa
√

n),
• B ≥ 4maxj ρ+(Gj)

1/2(b
√

ln(m/η) + δb
√

n),
• β̄ is a (g, k) strongly group-sparse oe�ient vetor,
• s ≥ k + k0,
• Let ℓ = s − (k − k0) + 1, and gℓ = min{|S| : |GS | ≥ ℓ, S ⊂ {1, . . . ,m}}, we have

c2 ≤ ℓA2 + gℓB
2

72(kA2 + gB2)
,then the solution of (1) satis�es:

‖β̂ − β̄‖2 ≤
√

4.5

ρ−(s)
√

n
(1 + 0.25c−1)

√

A2k + gB2.The �rst four onditions of the theorem are not ritial, as they are just de�nitions and hoiesfor λj . The �fth assumption is ritial, whih means that the group sparse eigenvalue ondition hasto be satis�ed with some c that is not too large. In order to satisfy the ondition, ℓ should be hosenrelatively large as the right hand side is linear in ℓ. However, this implies that s also grow linearly. Itis possible to �nd s so that the ondition is satis�ed when c2 in Assumption 4.3 grows sub-linearlyin s. Consider the situation that δa = δb = 0. If the onditions of Theorem 5.1 is satis�ed, then
‖β̂ − β̄‖2

2 = O((k + g ln(m/η))/n).In omparison, The Lasso estimator an only ahieve the bound
‖β̂L1 − β̄‖2

2 = O((‖β̄‖0 ln(p/η))/n).If k/‖β̄‖0 ≪ ln(p/η) (whih means that the group struture is useful) and g ≪ ‖β̄‖0, then the groupLasso is superior. This is onsistent with intuition. However, if k ≫ ‖β̄‖0 ln(p/η), then group Lassois inferior. This happens when the signal is not strongly group sparse.Theorem 5.1 also suggests that if the group sizes are not even, then group Lasso may not workwell when the signal is ontained in small sized groups. This is beause in suh ase gℓ an besigni�antly smaller than g even with relatively large ℓ, whih means we have to hoose a large sand small c, implying a poor bound. This predition is on�rmed in Setion 7.2 using simulateddata. Intuitively, group Lasso favors large sized groups beause the 2-norm regularization for largegroup size is weaker. Adjusting regularization parameters λj not only fails to work in theory, butalso impratial sine it is unrealisti to tune many parameters. This unstable behavior with respetto uneven group size may be regarded as another drawbak of the group Lasso formulation.In the following, we present two simpli�ations of Theorem 5.1 that are easier to interpret. The�rst is the ompressive sensing ase, whih does not onsider stohasti noise.Corollary 5.1 (Compressive sensing). Suppose that Assumption 4.1 and Assumption 4.2 arevalid with a = b = δb = 0. Take λj = 4
√

kj maxj ρ+(Gj)
1/2δa. Let β̄ be a (k, g) strongly group-sparse6



signal, ℓ = k, and s = 2k + k0 − 1. If (ρ+(s) − ρ−(2s))/ρ−(s) ≤ 1/
√

72, then the solution of (1)satis�es:
‖β̂ − β̄‖2 ≤ 6

√
2 + 18

ρ−(s)
max

j
ρ+(Gj)

1/2δa
√

k.If δa = 0, then we an ahieve exat reovery. Moreover, Proposition 4.2 implies that we mayhoose a target with similar sparsity suh that δa
√

k = O(‖Xβ̄ − Ey‖2/
√

n). This implies a bound
‖β̂ − β̄‖2 = O(‖Xβ̄ − Ey‖2/

√
n).If we have even sized groups, the number of samples n required for Corollary 5.1 to hold (that is,

(ρ+(s) − ρ−(2s))/ρ−(s) ≤ 1/
√

72) is O(k + g ln(m/g)), where g = k/k0. In omparison, although asimilar result holds for Lasso, it requires sample size of order ‖β̄‖0 ln(p/‖β̄‖0). Again, group Lassohas a signi�ant advantage if k/‖β̄‖0 ≪ ln(p/‖β̄‖0), g ≪ ‖β̄‖0, and p is large.The following orollary is for even sized groups, and the result is simpler to interpret. For standardLasso, B = O(
√

ln p), and for group Lasso, B = O(
√

ln m). The bene�t of group Lasso is the divisionof B2 by k0 in the bound, whih is a signi�ant improvement when the dimensionality p is large.The disadvantage of group Lasso is that the signal sparsity ‖β̄‖0 is replaed by the group sparsity
k. This is not an artifat of our analysis, but rather a fundamental drawbak inherent to the groupLasso formulation. The e�et is observable, as shown in our simulation studies.Corollary 5.2 (Even group size). Suppose that Assumption 4.1 and Assumption 4.2 are valid.Assume also that all groups are of equal sizes: k0 = kj for j = 1, . . . ,m. Given η ∈ (0, 1), let

λj = (A
√

k0 + B)/
√

n,where A ≥ 4maxj ρ+(Gj)
1/2(a + δa

√
n) and B ≥ 4maxj ρ+(Gj)

1/2(b
√

ln(m/η) + δb
√

n). Let β̄ bea (k, k/k0) strongly group-sparse signal. With probability larger than 1 − η, if
6
√

2(ρ+(k + ℓ) − ρ−(2k + 2ℓ))/ρ−(k + ℓ) <
√

ℓ/kfor some ℓ > 0 that is a multiple of k0, then the solution of (1) satis�es:
‖β̂ − β̄‖2 ≤ ρ−(k + ℓ)−1(

√
4.5 + 4.5ℓ/k)

√

A2 + B2/k0

√

k/n.6. Parameter Estimation Lower Bound. The following parameter estimation lower boundapplies to all statistial estimators. In order to simplify the proof, we intentionally exlude the
Ω(k/n) term from the lower bound (see omments in the proof), as this is a well-known term fromthe lassial parametri statistis.Theorem 6.1. Given an n × p design matrix X, we de�ne ∀β̄ ∈ R

p the following probabilitydensity for y ∈ R
n:

pβ̄(y) =
1

(2π)n/2σn
e−‖y−Xβ̄‖2

2
/(2σ2).Let H(g, k) be the family of (g, k) strongly group-sparse signals in R

p with respet to a set of mpre-de�ned groups with even group size k0 = p/m, where k = gk0. Let β̂(y) ∈ R
p be an arbitrarystatistial estimator of β̄ based on y ∼ pβ̄. If g < m/2, then we have

sup
β̄∈H(g,k)

Ey∼pβ̄
‖X(β̂(y) − β̄)‖2

2 ≥ σ2 ρ−(2g)

32ρ+(2g)
[g ln((m − g)/g) − (g + 2) ln 4].7



It implies the following lower bound on the 2-norm parameter estimation error:
sup

β̄∈H(g,k)

Ey∼pβ̄
‖β̂(y) − β̄‖2

2 ≥ σ2 ρ−(2g)

96nρ+(2g)2
[g ln((m − g)/g) − (g + 2) ln 4].The theorem shows that under the sparse eigenvalue onditions, the advantage of group Lassoover standard Lasso is real. For standard sparsity, we take k0 = 1, and the parameter estima-tion lower bound is Ω(k ln(p/k)/n). Sine Lasso does not take advantage of group struture, itfollows that there exists a k-sparse signal for whih Lasso an only ahieve parameter estimationerror of Ω(k ln(p/k)/n), independent of the signal's group struture. In omparison, if this signalis (g, k) strongly group-sparse with respet to a pre-de�ned group struture, then the lower boundis Ω(g ln(m/g)/n). Sine the lassial parametri statistis implies that the lower bound for anystatistial estimator annot be better than Ω(k/n) with k features, we obtain a lower bound of

Ω((k + g ln(m/g))/n) under strong group-sparsity (with even group size), whih mathes our upperbound obtained for group Lasso. This means that group Lasso ahieves the optimal minimax ratefor 2-norm parameter estimation up to a onstant fator that depends on ρ+(·) and ρ−(·).Moreover, we note that in the setting of ompressive sensing, the RIP ondition at sparsity
k requires Ω(k ln(p/k)) random projetions. In general, Ω(k ln(p/k)) random projetions are alsoneeded in order to reonstrut a k-sparse signal. This laim follows from some lassial n-widthresults in approximation theory. However, similar results for group-sparsity is not simple to derive.Therefore we shall not inlude suh results here.7. Simulation Studies. We want to verify our theory by omparing group Lasso to Lasso onsimulation data. For quantitative evaluation, the reovery error is de�ned as the relative di�erene in2-norm between the estimated sparse oe�ient vetor βest and the ground-truth sparse oe�ient
β̄: ‖βest − β̄‖2/‖β̄‖2.The regularization parameter λ in Lasso is hosen with �ve-fold ross validation. In group Lasso,we simply suppose the regularization parameter λj = (λ

√

kj)/
√

n for j = 1, 2, ...,m. The regular-ization parameter λ is then hosen with �ve-fold ross validation. Here we set B = 0 in the formula
λj = O(A

√

kj + B). Sine the relative performane of group Lasso versus standard Lasso is similarwith other values of B, in order to avoid redundany, we do not inlude results with B 6= 0.7.1. Even group size. In this set of experiments, the projetion matrix X is generated by reatingan n× p matrix with i.i.d. draws from a standard Gaussian distribution N(0, 1). For simpliity, therows of X are normalized to unit magnitude. Zero-mean Gaussian noise with standard deviation
σ = 0.01 is added to the measurements. Our task is to ompare the reovery performane of Lassoand Group Lasso for these (g, k) strongly group sparse signals.7.1.1. With orret group struture. In this experiment, we randomly generate (g, k) stronglygroup sparse oe�ients with values ±1, where p = 512, k = 64 and g = 16. There are 128 groupswith even group size of k0 = 4. Here the group struture oinides with the signal sparsity: k = ‖β̄‖0.Figure 1 shows an instane of generated sparse oe�ient vetor and the reovered results byLasso and group Lasso respetively when n = 3k = 192. Sine the sample size n is only three timesthe signal sparsity k, the standard Lasso does not ahieve good reovery results, whereas the groupLasso ahieves near perfet reovery of the original signal.Figure 2(a) shows the e�et of sample size n, where we report the averaged reover error over 100random runs for eah sample size. Group Lasso is learly superior in this ase. These results show8



that the the group Lasso an ahieve better reovery performane for (g, k) strongly group sparsesignals with fewer measurements, whih is onsistent with our theory.
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Fig 1. Reovery results when the assumed group struture is orret. (a) Original data; (b) results with Lasso (reoveryerror is 0.3444); () results with Group Lasso (reovery error is 0.0419)To study the e�et of the group number g (with k �xed), we set the sample size n = 160 andthen hange the group number while keeping other parameters unhanged. Figure 2(b) shows thereovery performane of the two algorithms, averaged over 100 random runs for eah sample size. Asexpeted, the reovery performane for Lasso is independent to the group number within statistialerror. Moreover, the reovery results for group Lasso are signi�antly better when the group number
g is muh smaller than the sparsity k = 64. When g = k, the group Lasso beomes idential toLasso, whih is expeted. This shows that the reovery performane of group Lasso degrades when
g/k inreases, whih on�rms our theory.7.1.2. With inorret group struture. In this experiment, we assume that the known groupstruture is not exatly the same as the sparsity of the signal (that is, k > ‖β̄‖0). We randomlygenerate strongly group sparse oe�ients with values ±1, where p = 512, ‖β̄‖0 = 64 and g = 16.In the �rst experiment, we let k = 4‖β̄‖0, and use m = 32 groups with even group size of k0 = 16.Figure 3 shows one instane of the generated sparse signal and the reovered results by Lasso andgroup Lasso respetively when n = 3‖β̄‖0 = 192. In this ase, the standard Lasso obtains betterreovery results than the group Lasso. Figure 2(a) shows the e�et of sample size n, where we reportthe averaged reover error over 100 random runs for eah sample size. The group Lasso reoveryperformane is learly inferior to that of the Lasso. This shows that group Lasso fails when k/‖β̄‖0is relatively large, whih is onsistent with our theory.To study the e�et of k/‖β̄‖0 on the group Lasso performane, we keep ‖β̄‖0 �xed, and simplyvary the group size as k0 = 1, 2, 4, 8, 16, 32, 64 with k/‖β̄‖0 = 1, 1, 1, 2, 4, 8, 16. Figure 4(b) showsthe performane of the two algorithms with di�erent group sizes k0 in terms of reovery error. It9
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(b)Fig 2. Reovery performane: (a) reovery error vs. sample size ratio n/k; (b) reovery error vs. group number gshows that the performane of group Lasso is better when k/‖β̄‖0 = 1. However, when k/‖β̄‖0 > 1,the performane of group Lasso deteriorates.
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Fig 3. Reovery results when the assumed group struture is inorret. (a) Original data; (b) results with Lasso(reovery error is 0.3616); () results with Group Lasso (reovery error is 0.6688)7.2. Uneven group size. In this set of experiments, we randomly generate (g, k) strongly sparseoe�ients with values ±1, where p = 512, and g = 4. There are 64 uneven sized groups. Theprojetion matrix X and noises are generated as in the even group size ase. Our task is to omparethe reovery performane of Lasso and Group Lasso for (g, k) strongly sparse signals with ‖β̄‖0 = k.To redue the variane, we run eah experiment 100 times and report the average performane.In the �rst experiment, the group sizes of 64 groups are randomly generated and the g = 4 ative10
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(b)Fig 4. Reovery performane: (a) reovery error vs. sample size ratio n/k; (b) reovery error vs. group size k0groups are randomly extrated from these 64 groups. Figure 5(a) shows the reovery performaneof Lasso and group Lasso with inreasing sample size (measurements) in terms of reovery error.Similar to the ase of even group size, the group Lasso obtains better reovery results than thosewith Lasso. It shows that the group Lasso is superior when the group sizes are randomly uneven.
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(b)Fig 5. Reovery performane: (a) g ative groups have randomly uneven group sizes; (b) half of g ative groups aresingle element groups and another half of g ative groups have large group sizeAs disussed after Theorem 5.1, beause group Lasso favors large sized groups, if the signal isontained in small sized groups, then the performane of group Lasso an be relatively poor. Inorder to on�rm this laim of Theorem 5.1, we onsider the speial ase where 32 groups have largegroup sizes and eah of the remaining 32 groups has only one element. First, we onsider the asewhere half of g = 4 ative groups are extrated from the single element groups and the other halfof g = 4 ative groups are extrated from the groups with large size. Figure 5(b) shows the signalreovery performane of Lasso and group Lasso. It is lear that the group Lasso performs better,but the results are not as good as those of Figure 5(a).Moreover, Figure 6(a) shows the reovery performane of Lasso and group Lasso when all of the
g = 4 ative groups are extrated from large sized groups. We observe that the relative performaneof group Lasso improves. Finally, Figure 6(b) shows the reovery performane of Lasso and group11



Lasso when all of the g = 4 ative groups are extrated from single element groups. It is obviousthat the group Lasso is inferior to Lasso in this ase. This on�rms the predition of Theorem 5.1that suggests that group Lasso favors large sized groups.
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(b)Fig 6. Reovery performane: (a) all g ative groups have large group size; (b) all g ative groups are single elementgroups8. Conlusion. In this paper we introdued a onept alled strong group sparsity that har-aterizes the signal reovery performane of group Lasso. In partiular, we showed that group Lassois superior to standard Lasso when the underlying signal is strongly group-sparse:
• Group Lasso is more robust to noise due to the stability assoiated with group struture.
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Z = XG(X⊤

GΣXG)−0.5, suh that Z⊤ΣZ = Ik×k. Let ξ = Z⊤(ǫ − Eǫ) ∈ R
k. Sine ∀v ∈ R

n,
‖(X⊤

GXG)−0.5X⊤
Gv‖2 = ‖(Z⊤Z)−0.5Z⊤v‖2,we have

‖(X⊤
GXG)−0.5X⊤

G (ǫ − Eǫ)‖2
2

ξ⊤ξ
≤ sup

v∈Rn

v⊤Z(Z⊤Z)−1Z⊤v

v⊤ZZ⊤v

= sup
u∈Rk

u⊤(Z⊤Z)−1u

u⊤u
= sup

u∈Rk

u⊤Z⊤ΣZu

u⊤(Z⊤Z)u

≤ sup
v∈Rn

v⊤Σv

v⊤v
≤ σ2.Therefore, we only need to show that with probability at least 1 − η for all η ∈ (0, 1):(3) ‖ξ‖2 ≤ a

√
k + b

√

− ln ηwith a = 1 and b =
√

2.To prove this inequality, we note that the ondition Z⊤ΣZ = Ik×k means that the ovarianematrix of ξ is Ik×,k. Therefore the omponents of ξ are k iid Gaussians N(0, 1), and the distribution of
‖ξ‖2

2 is χ2. Many methods have been suggested to approximate the tail probability of χ2 distribution.For example, a well-known approximation of ‖ξ‖2 is the normal N(
√

k − 0.5, 0.5), whih wouldimply a = b = 1 in (3). The weaker bound with a = 1 and b =
√

2 an be obtained through diretintegration. APPENDIX B: PROOF OF PROPOSITION 4.2We onsider the following group-greedy proedure starting with β̄(0) = β̄, and form (k(ℓ), g(ℓ))strongly group sparse β̄(ℓ) as follows for ℓ = 1, 2, . . .

• let r(ℓ−1) = Xβ̄(ℓ−1) − Ey,
• let j(ℓ) = arg maxj[‖(X⊤

Gj
XGj

)−0.5X⊤
Gj

r(ℓ−1)‖2/
√

kja2
0 + b2

0],
• let β̄(ℓ) = β̄(ℓ−1); and then reset its oe�ients in group Gj as β̄

(ℓ)
Gj

= β̄
(ℓ)
Gj

−(X⊤
Gj

XGj
)−1X⊤

Gj
r(ℓ−1),where j = j(ℓ). 13



It is not di�ult to hek that
‖r(ℓ−1)‖2

2 − ‖r(ℓ)‖2
2 = ‖(X⊤

Gj
XGj

)−0.5X⊤
Gj

r(ℓ−1)‖2
2,

k(ℓ) − k(ℓ−1) ≤ kj, g(ℓ) − g(ℓ−1) ≤ 1, with j = j(ℓ). Therefore if for all 0 ≤ ℓ ≤ t, we have
arg max

j

[

‖(X⊤
Gj

XGj
)−0.5X⊤

Gj
r(ℓ)‖2/

√

kja
2
0 + b2

0

]

≥ √
n∆/

√

ka2
0 + b2

0,then by summing over ℓ = 1, . . . , t, t + 1, we obtain
n∆2 =‖r(0)‖2

2 ≥
t+1
∑

ℓ=1

[‖r(ℓ−1)‖2
2 − ‖r(ℓ)‖2

2]

≥n
t+1
∑

ℓ=1

[(k(ℓ) − k(ℓ−1))a2
0 + (g(ℓ) − g(ℓ−1))b2

0]∆
2/(ka2

0 + b2
0)

≥n[(k(t+1) − k)a2
0 + (g(t+1) − g)b2

0]∆
2/(ka2

0 + b2
0).This implies that

k(t+1)a2
0 + g(t+1)b2

0 ≤ 2(ka2
0 + gb2

0).Therefore if we let t be the �rst time k(t+1)a2
0 + g(t+1)b2

0 > 2(ka2
0 + gb2

0), then there exists ℓ ≤ t,suh that β̄′ = β(ℓ) satis�es the requirement.APPENDIX C: PROOF OF PROPOSITION 4.3The following lemma is taken from [9℄.Lemma C.1. Consider the unit sphere Sk−1 = {x : ‖x‖2 = 1} in R
k (k ≥ 1). Given any

ε > 0, there exists an ε-over Q ⊂ Sk−1 suh that minq∈Q ‖x − q‖2 ≤ ε for all ‖x‖2 = 1, with
|Q| ≤ (1 + 2/ε)k.The following onentration result for χ2 distribution is similar to Proposition 4.1, and an beobtained from diret integration. We skip the detailed alulation. This is where the Gaussianassumption is used in the proof. A similar result holds for sub-Gaussian random variables.Lemma C.2. Let ξ ∈ R

n be a vetor of n iid standard Gaussian variables: ξi ∼ N(0, 1). Then
∀ǫ ≥ 0:

Pr
[|‖ξ‖2 −

√
n| ≥ ǫ

] ≤ 3e−ǫ2/2.The derivation of the following estimate employs a standard proof tehnique (for example, see[10℄).Lemma C.3. Suppose X is generated aording to Proposition 4.3. For any �xed set S ⊂
{1, . . . , p} with |S| = k and 0 < δ < 1, we have with probability exeeding 1 − 3(1 + 8/δ)ke−nδ2/8:(4) (1 − δ)‖β‖2 ≤ 1√

n
‖XSβ‖2 ≤ (1 + δ)‖β‖2for all β ∈ R

k. 14



Proof. It is enough to prove the onlusion in the ase of ‖β‖2 = 1. Aording to Lemma C.1,given ǫ1 > 0, there exists a �nite set Q = {qi} with |Q| ≤ (1 + 2/ǫ1)
k suh that ‖qi‖2 = 1 for all i,and mini ‖β − qi‖2 ≤ ǫ1 for all ‖β‖2 = 1.For eah i, Sine elements of ξ = XSqi are iid Gaussians N(0, 1), Lemma C.2 implies that ∀ǫ2 > 0:

Pr
[|‖XSqi‖2 −

√
n‖qi‖2| ≥

√
nǫ2

] ≤ 3e−nǫ2
2
/2.Taking union bound for all qi ∈ Q, we obtain with probability exeeding 1 − 3(1 + 2/ǫ1)

ke−nǫ2
2
/2:for all qi ∈ Q,

(1 − ǫ2) ≤
1√
n
‖XSqi‖2 ≤ (1 + ǫ2).Now, we de�ne ρ as the smallest nonnegative number suh that(5) 1√

n
‖XSβ‖2 ≤ (1 + ρ)for all β ∈ R

k with ‖β‖2 = 1. Sine for all ‖β‖2 = 1, we an �nd qi ∈ Q suh that ‖β − qi‖2 ≤ ǫ1,we have
‖XSβ‖2 ≤ ‖XSqi‖2 + ‖XS(β − qi)‖2 ≤ √

n(1 + ǫ2 + (1 + ρ)ǫ1),where we used (5) in the derivation. Sine ρ is the smallest non-negative onstant for whih (5)holds, we have √
n(1 + ρ) ≤ √

n(1 + ǫ2 + (1 + ρ)ǫ1),whih implies that
ρ ≤ (ǫ1 + ǫ2)/(1 − ǫ1).Now we hoose ǫ1 = δ/4 and ǫ2 = δ/2. Sine 0 < δ < 1, it is easy to see that ρ ≤ δ. This proves theupper bound. For the lower bound, we note that for all ‖β‖2 = 1 with ‖β − qi‖2 ≤ ǫ1, we have

‖XSβ‖2 ≥ ‖XSqi‖2 − ‖XS(β − qi)‖2 ≥ √
n(1 − ǫ2 − (1 + ρ)ǫ1),whih leads to the desired result.Proof of Proposition 4.3. For eah subset S ⊂ {1, . . . ,m} of groups with |S| ≤ g and

|GS | ≤ k, we know from C.3 that for all β suh that supp(β) ⊂ GS :
(1 − δ)‖β‖2 ≤ 1√

n
‖Xβ‖2 ≤ (1 + δ)‖β‖2with probability exeeding 1 − 3(1 + 8/δ)ke−nδ2/8.Sine the number of suh groups S an be no more than Cg

m ≤ (em/g)g , by taking the unionbound, we know that the group RIP in Equation (2) fails with probability less than
3(em/g)g(1 + 8/δ)ke−nδ2/8 ≤ e−t.
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APPENDIX D: TECHNICAL LEMMASThe following lemmas are adapted from [15℄ to handle group sparsity struture. Similar tehniquesan be found in [2℄. The �rst lemma is in [15℄.Lemma D.1. Let A = X⊤X/n, and let I and J be non-overlapping indies in {1, . . . , p}. Wehave
‖AI,J‖2 ≤

√

(ρ+(I) − ρ−(I ∪ J))(ρ+(J) − ρ−(I ∪ J)),where the matrix 2-norm is de�ned as ‖AI,J‖2 = sup‖u‖2=‖v‖2=1 |u⊤AI,Jv|.The next lemma uses the previous result to ontrol the ontribution of the non-signal part Gc ofan error vetor u to the produt u⊤
GAG,GcuGc .Lemma D.2. Given u ∈ R

p and S ⊂ {1, . . . ,m}. Consider ℓ ≥ 1 and de�ne
λ2
− = min







∑

j∈S′

λ2
j : |GS′ | ≥ ℓ







.Let S0 ⊂ {1, . . . ,m} − S ontain indies j of largest values of ‖uGj
‖2/λj (j /∈ S), and satis�es theondition ℓ ≤ |GS0

| < ℓ + k0. Let G = GS ∪ GS0
. Then

√

∑

j /∈S∪S0

‖uGj
‖2
2 ≤ (2λ−)−1

∑

j /∈S

λj‖uGj
‖2and

1

n

∣

∣

∣

∣

∣

∣

∑

j /∈S∪S0

u⊤
GX⊤

GXGj
uGj

∣

∣

∣

∣

∣

∣

≤ λ−1
− ρ̃+(|G|, ℓ + k0 − 1)‖uG‖2

∑

j /∈S

λj‖uGj
‖2,where ρ̃+(|G|, ℓ+k0−1) =

√

(ρ+(|G|) − ρ−(|G| + ℓ + k0 − 1))(ρ+(ℓ + k0 − 1) − ρ−(|G| + ℓ + k0 − 1)).Proof. Without loss of generality, we assume that S = {1, . . . , g}, and we assume that j > gis in desending order of ‖uGj
‖2/λj . Let S0, S1, . . . be the �rst, seond, et, onseutive bloks of

j > g, suh that ℓ ≤ |GSk
| < ℓ + k0 (exept for the last Sk). If we let Gk = GSk

, then:
∑

j /∈S∪S0

‖uGj
‖2
2 ≤





∑

j /∈S∪S0

λj‖uGj
‖2





[

max
j /∈S∪S0

‖uGj
‖2/λj

]

≤




∑

j /∈S∪S0

λj‖uGj
‖2





[

min
j∈S0

‖uGj
‖2/λj

]

≤




∑

j /∈S∪S0

λj‖uGj
‖2









∑

j∈S0

λj‖uGj
‖2/

∑

j∈S0

λ2
j





≤ [
∑

j /∈S λj‖uGj
‖2]

2

4λ2
−

.16



This proves the �rst inequality of the lemma. Note that the seond inequality follows from thedesending order of ‖uGj
‖2/λj for j > g. Similarly, we have

∑

k≥1

‖uGk‖2 =
∑

k≥1

√

∑

j∈Sk

‖uGj
‖2
2

≤
∑

k≥1

√

∑

j∈Sk

λj‖uGj
‖2

√

max
j∈Sk

‖uGj
‖2/λj

≤
∑

k≥1

√

∑

j∈Sk

λj‖uGj
‖2

√

min
j∈Sk−1

‖uGj
‖2/λj

≤
∑

k≥1

√

∑

j∈Sk

λj‖uGj
‖2

√

∑

j∈Sk−1

λj|uGj
‖2/

∑

j∈Sk−1

λ2
j

≤λ−1
−

∑

k≥1

√

∑

j∈Sk

λj‖uGj
‖2

√

∑

j∈Sk−1

λj|uGj
‖2

≤λ−1
−

∑

k≥1

1

2





∑

j∈Sk

λj‖uGj
‖2 +

∑

j∈Sk−1

λj|uGj
‖2





≤λ−1
−

∑

k≥0

∑

j∈Sk

λj‖uGj
‖2 = λ−1

−

∑

j /∈S

λj‖uGj
‖2.Therefore

n−1

∣

∣

∣

∣

∣

∣

∑

j /∈S∪S0

u⊤
GX⊤

GXGj
uGj

∣

∣

∣

∣

∣

∣

≤n−1
∑

k≥1

|u⊤
GX⊤

GXGkuGk |

≤n−1
∑

k≥1

‖X⊤
GXGk‖2‖uGk‖2‖uG‖2

≤ρ̃+(|G|, ℓ + k0 − 1)‖uG‖2

∑

k≥1

‖uGk‖2

≤ρ̃+(|G|, ℓ + k0 − 1)λ−1
− ‖uG‖2

∑

j /∈S

λj‖uGj
‖2.Note that Lemma D.1 is used to bound ‖X⊤

GXGk‖2. This proves the seond inequality of thelemma.The following lemma shows that the group L1-norm of the group Lasso estimator's non-signalpart is small (ompared to the group L1-norm of the parameter estimation error in the signal part).Lemma D.3. Let supp(β̄) ∈ GS for some S ⊂ {1, . . . ,m}. Assume that for all j:
λj ≥ 4ρ+(Gj)

1/2‖(X⊤
Gj

XGj
)−1/2X⊤

Gj
ǫ‖2/

√
n.Then the solution of (1) satis�es:

∑

j /∈S

λj

∥

∥

∥β̂Gj

∥

∥

∥

2
≤ 3

∑

j∈S

λj‖β̄Gj
− β̂Gj

‖2.17



Proof. The �rst order ondition is:(6) 2X⊤X(β̂ − β̄) − 2X⊤ǫ +
m

∑

j=1

λjnvj = 0,where vj = β̂Gj
/

∥

∥

∥β̂Gj

∥

∥

∥

2
when β̂Gj

6= 0; ‖vj‖2 ≤ 1 and supp(vj) ⊂ Gj when β̂Gj
= 0. It implies that

β̂⊤vj = ‖β̂Gj
‖2, |(β̂ − β̄)⊤vj| ≤ ‖(β̂ − β̄)Gj

‖2.By multiplying both sides by (β̂ − β̄)⊤, we obtain
0 ≥ −2(β̂ − β̄)⊤X⊤X(β̂ − β̄) = −2(β̂ − β̄)⊤X⊤ǫ +

m
∑

j=1

λjn(β̂ − β̄)⊤vj.Therefore
∑

j /∈S

λj

∥

∥

∥β̂Gj

∥

∥

∥

2

≤
∑

j∈S

λj‖β̄Gj
− β̂Gj

‖2 + 2(β̂ − β̄)⊤X⊤ǫ/n

≤
∑

j∈S

λj‖β̄Gj
− β̂Gj

‖2 + 2
m

∑

j=1

ρ+(Gj)
1/2‖(β̂ − β̄)Gj

‖2‖(X⊤
Gj

XGj
)−1/2X⊤

Gj
ǫ‖2/

√
n

≤
∑

j∈S

λj‖β̄Gj
− β̂Gj

‖2 + 0.5
m

∑

j=1

λj‖(β̂ − β̄)Gj
‖2.Note that the last inequality follows from the assumption of the lemma. By simplifying the aboveinequality, we obtain the desired bound.The following lemma bounds parameter estimation error by ombining the previous two lemmas.Lemma D.4. Let supp(β̄) ∈ GS for some S ⊂ {1, . . . ,m}. Consider ℓ ≥ 1 and let s = |GS | +

ℓ + k0 − 1. De�ne
λ2
− = min







∑

j∈S′

λ2
j : |GS′ | ≥ ℓ







,

ρ̃+(s, s − |Gs|) =
√

(ρ+(s) − ρ−(2s − |GS |))(ρ+(s − |GS |) − ρ−(2s − |GS |)).If for all j:
λj ≥ 4ρ+(Gj)

1/2‖(X⊤
Gj

XGj
)−1/2X⊤

Gj
ǫ‖2/

√
n,and

6
ρ̃+(s, s − |Gs|)

ρ−(s)
≤ λ−

√

∑

j∈S λ2
j

,then the solution of (1) satis�es:
‖(β̂ − β̄)‖2 ≤ 1.5

ρ−(s)



1 + 1.5λ−1
−

√

∑

j∈S

λ2
j





√

∑

j∈S

λ2
j .18



Proof. De�ne S0 as in Lemma D.2. Let G = ∪j∈S∪S0
Gj . By multiplying both sides of (6) by

(β̂ − β̄)⊤G, we obtain
2(β̂ − β̄)⊤GX⊤

GX(β̂ − β̄) − 2(β̂ − β̄)⊤GX⊤ǫ +
∑

j∈S∪S0

λjn(β̂ − β̄)⊤Gj
vj = 0.Similar to the proof in Lemma D.3, we use the assumptions on λj to obtain:(7) 4n−1(β̂ − β̄)⊤GX⊤

GX(β̂ − β̄) +
∑

j∈S0

λj

∥

∥

∥β̂Gj

∥

∥

∥

2
≤ 3

∑

j∈S

λj‖β̂Gj
− β̄Gj

‖2.Now, Lemma D.2 implies that
(β̂ − β̄)⊤GX⊤

GX(β̂ − β̄)

≥(β̂ − β̄)⊤GX⊤
GXG(β̂ − β̄)G − ρ̃+(s, s − |GS |)λ−1

− n‖(β̂ − β̄)G‖2

∑

j /∈S

λj‖(β̂ − β̄)Gj
‖2.By applying Lemma D.3, we have

n−1(β̂ − β̄)⊤GX⊤
GX(β̂ − β̄)

≥ρ−(G)‖(β̂ − β̄)G‖2
2 − 3ρ̃+(s, s − |GS |)λ−1

− ‖(β̂ − β̄)G‖2

∑

j∈S

λj‖(β̂ − β̄)Gj
‖2

≥ρ−(G)‖(β̂ − β̄)G‖2
2 − 3ρ̃+(s, s − |GS |)λ−1

−

√

∑

j∈S

λ2
j‖(β̂ − β̄)G‖2

2

≥0.5ρ−(G)‖(β̂ − β̄)G‖2
2.The assumption of the lemma is used to derive the last inequality. Now plug this inequality into(7), we have

‖(β̂ − β̄)G‖2
2 ≤ 1.5ρ−(G)−1

∑

j∈S

λj‖β̂Gj
− β̄Gj

‖2 ≤ 1.5ρ−(G)−1
√

∑

j∈S

λ2
j‖(β̂ − β̄)G‖2.This implies

‖(β̂ − β̄)G‖2
2 ≤ 2.25ρ−(G)−2

∑

j∈S

λ2
j .Now Lemma D.2 and Lemma D.3 imply that

‖(β̂ − β̄)‖2
2 − ‖(β̂ − β̄)G‖2

2 ≤0.25λ−2
−





∑

j /∈S

λj‖(β̂ − β̄)Gj
‖2





2

≤2.25λ−2
−





∑

j∈S

λj‖(β̂ − β̄)Gj
‖2





2

≤2.25λ−2
−

∑

j∈S

λ2
j‖(β̂ − β̄)G‖2

2.By ombining the previous two displayed inequalities, we obtain the lemma.19



APPENDIX E: PROOF OF THEOREM 5.1Assumption 4.1 implies that with probability larger than 1 − η, uniformly for all groups j, wehave
‖(X⊤

Gj
XGj

)−0.5X⊤
Gj

(ǫ − Eǫ)‖2 ≤ a
√

kj + b
√

ln(m/η).It follows that with the hoie of A, B, and λj , λj ≥ 4ρ+(Gj)
1/2‖(X⊤

Gj
XGj

)−1/2X⊤
Gj

ǫ‖2/
√

n for all
j. Moreover, assumptions of the theorem also imply that ρ̃+(s, s − |GS |) ≤ ρ+(s) − ρ−(2s), and

ρ̃+(s, s − |GS |)
ρ−(s)

≤ ρ+(s) − ρ−(2s)

ρ−(s)
≤ c ≤

√

ℓA2 + gℓB2

6
√

2(kA2 + gB2)
≤ λ−

6
√

∑

j∈S λ2
j

.Note that we have used ∑

j∈S′[A2kj + B2] ≤ n
∑

j∈S′ λ2
j ≤ 2

∑

j∈S′[A2kj + B2].Therefore the onditions of Lemma D.4 are satis�ed. Its onlusion implies that
‖(β̂ − β̄)‖2 ≤ 1.5

ρ−(s)



1 + 1.5λ−1
−

√

∑

j∈S

λ2
j





√

∑

j∈S

λ2
j

≤ 1.5

ρ−(s)

(

1 +
1

4c

)
√

∑

j∈S

λ2
j

≤ 1.5

ρ−(s)

(

1 +
1

4c

)

√

2(A2k + B2g)/n.This proves the theorem. APPENDIX F: PROOF OF THEOREM 6.1First, we reall the standard de�nition of KL divergene:
DKL(pβ̄ ||pβ̂) =

∫

y

pβ̄(y) ln(pβ̄(y)/pβ̂(y))dy.Our proof relies on the following lower bound result, with an appropriately hosen B ⊂ H(g, k) tobe determined later. Although the bound is related to other standard lower-bound tehniques suhas Fano's inequality, it is easier to apply for our purpose. The lemma itself is a speial ase of amore general lower bound theorem in [14℄ with uniform prior on B; it is a diret translation usingour notations.Lemma F.1. Consider an arbitrary �nite set B ⊂ R
p and let N = |B|. For an arbitrary estimator

β̂(y) ∈ R
p of β̄ from y ∼ pβ̄, we have

1

N

∑

β̄∈B

Ey∼pβ̄
‖X(β̄ − β̂(y))‖2

2 ≥ 0.5 sup

{

ǫ : inf
β̄′∈Rp

ln
N

|{β̄ ∈ Rp : ‖X(β̄ − β̄′)‖2
2 < ǫ}| ≥ 2∆B + ln 4

}

,where ∆B = N−2 ∑

β̄,β̄′∈B DKL(pβ̄||pβ̄′).The following result relates KL-divergene and in-sample predition error.Lemma F.2. We have
DKL(pβ̄||pβ̂) =

‖X(β̄ − β̂)‖2
2

2σ2
.20



Proof. By de�nition, we have
DKL(pβ̄||pβ̂) =

∫

y∈Rn
pβ̄(y) ln(pβ̄(y)/pβ̂(y))dy

=

∫

y∈Rn

1

(2π)n/2σn
e−‖y−Xβ̄‖2

2
/(2σ2) × ‖y − Xβ̂‖2

2 − ‖y − Xβ̄‖2
2

2σ2
dy

=
‖X(β̂ − β̄)‖2

2

2σ2
,whih implies the lemma.The following result is used to de�ne a set B in order to apply Lemma F.1.Lemma F.3. Given positive integer g < m/2. Let N be the largest number suh that there existsubsets S1, . . . , SN ⊂ {1, . . . ,m}: |Sj| = g and |Si − Sj| ≥ g for i 6= j. Then we have

ln N ≥ 0.5g ln((m − g + 1)/(4g)).Proof. Let S0 be a subset of {1, . . . ,m} of ardinality g, hosen uniformly at random withoutreplaement. Then for eah j = 1, . . . , N :
P [|S0 − Sj| < g] =

∑

ℓ>g/2 Cℓ
gC

g−ℓ
m−g

Cg
m

=
∑

ℓ>g/2

Cℓ
g

g!

(g − ℓ)!

(m − g)!2

m!(m + ℓ − 2g)!

≤
∑

ℓ>g/2

Cℓ
gg

ℓ (m − g)g−ℓ

(m − g + 1)g
≤

∑

ℓ>g/2

Cℓ
g(g/(m − g + 1))g/2

≤2g(g/(m − g + 1))g/2.Sine N is the largest, for any S0, there exists j suh that |S0 − Sj| < g. It follows that
1 = P [∃j : |S0 − Sj| < g] ≤

N
∑

j=1

P [|S0 − Sj | < g] ≤ N(4g/(m − g + 1))g/2.This implies the desired bound.Now, we an apply Lemma F.1 with the following B. Let δ = σ
√

(2nρ+(2g))−1 ln(N/4), where
N = |B|. We hoose B ⊂ H(g, k) suh that eah β̄ ∈ B has omponents β̄j ∈ {0, δ/

√
k}. Moreover,we assume that any two di�erent elements β̄, β̄′ ∈ B satisfy the separation ondition ‖β̄ − β̄′‖2 ≥ δ.Lemma F.3 implies that we an �nd suh a set B (for eah j in Lemma F.3, we de�ne a orresponding

β̄ ∈ B with supp(β̄) = GSj
) so that N = |B| ≥ (m − g + 1)0.5g/(4g)0.5g .We observe that B has the property that for any two di�erent elements β̄, β̄′ ∈ B:

ρ−(2g)
nδ2

2σ2
≤ nρ−(2g)

‖β̄ − β̄′‖2
2

2σ2
≤ ‖X(β̄ − β̄′)‖2

2

2σ2
≤ nρ+(2g)

‖β̄ − β̄′‖2
2

2σ2
≤ ρ+(2g)

nδ2

σ2
.Therefore, in Lemma F.1, we have

∆B ≤ sup
β̄,β̄′∈B

DKL(pβ̄||pβ̄′) = sup
β̄,β̄′∈B

‖X(β̄ − β̄′)‖2
2

2σ2
≤ ρ+(2g)

nδ2

σ2
≤ 0.5 ln(N/4).21



This means if we pik ǫ = nρ−(2g)δ2/4 in Lemma F.1, then ∀β̄′ ∈ R
p: |{β̄ ∈ B : ‖X(β̄ − β̄′)‖2

2 <
ǫ}| ≤ 1 and thus

1

N

∑

β̄∈B

Ey∼pβ̄
‖X(β̄ − β̂(y))‖2

2 ≥ 0.5ǫ = σ2 ρ−(2g)

16ρ+(2g)
ln(N/4),whih proves the �rst lower-bound of the theorem.Note that the estimator β̂(y) does not have to be in H(g, k). In order to see that the �rst lowerbound implies the seond lower bound, let β̂′(y) be the best 2-norm approximation of β̂(y) in

H(g, k) (i.e., keeping the g groups of β̂(y) with largest values). Then simple algebra implies that
‖β̂(y) − β̄‖2

2 ≥ ‖β̂′(y) − β̄‖2
2/3 ≥ (3nρ+(2g))−1‖X(β̂′(y) − β̄)‖2

2. Now the �rst lower-bound of thetheorem, applied to ‖X(β̂′(y) − β̄)‖2
2, implies the desired lower bound for ‖β̂(y) − β̄‖2

2.Finally, we observe that the above de�nition of B only onsiders the e�et of hoosing g outof m groups. We intentionally skipped the e�et of estimating oe�ients within any seleted kfeatures to simplify the alulation. From the proof of Lemma F.3, it is not hard to see that wean inorporate this e�et and inrease ln N to Ω(k + g ln(m/g)). This will give an improved lowerbound.Computer Siene DepartmentRutgers UniversityPisataway,NJ 08854, USAjzhuang�eden.rutgers.edu Statistis DepartmentRutgers UniversityPisataway,NJ 08854, USAtzhang�stat.rutgers.edu
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