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Abstract

This paper investigates a new learning formulation
called dynamic group sparsity. It is a natural extension of
the standard sparsity concept in compressive sensing, and is
motivated by the observation that in some practical sparse
data the nonzero coefficients are often not random but tend
to be clustered. Intuitively, better results can be achieved
in these cases by reasonably utilizing both clustering and
sparsity priors. Motivated by this idea, we have developed
a new greedy sparse recovery algorithm, which prunes data
residues in the iterative process according to both sparsity
and group clustering priors rather than only sparsity as in
previous methods. The proposed algorithm can recover sta-
bly sparse data with clustering trends using far fewer mea-
surements and computations than current state-of-the-art
algorithms with provable guarantees. Moreover, our algo-
rithm can adaptively learn the dynamic group structure and
the sparsity number if they are not available in the practical
applications. We have applied the algorithm to sparse re-
covery and background subtraction in videos. Numerous ex-
periments with improved performance over previous meth-
ods further validate our theoretical proofs and the effective-
ness of the proposed algorithm.

1. Introduction

The compressive sensing (CS) theory has shown that a
sparse signal can be recovered from a small number of its
linear measurements with high probability [4, 8]. Accord-
ing to CS, a sparse signalx ∈ Rn should be recovered from
the following linear random projections:

y = Φx + e, (1)

wherey ∈ Rm is the measurement vector,Φ ∈ Rm×n

is the random projection matrix,m ¿ n, and e is the
measurement noise. The CS theory is magnetic as it im-
plies that the signalx ∈ Rn can be recovered from only

m = O(klog(n/k)) measurements [4] if x is a k-sparse
signal, which means thatx ∈ Rn can be well approximated
usingk ¿ n nonzero coefficients under some linear trans-
form. It directly leads to the potential of cost saving in digit
data capturing. Although the encoding in data capturing
only involves simple linear projections, signal recovery re-
quires nonlinear algorithms to seek the sparsest signal from
the measurements. This problem can be formulated withl0

minimization:

x0 = argmin‖x‖0 while ‖y − Φx‖2 < ε (2)

where‖ · ‖0 denotes thel0-norm that counts the number of
nonzero entries andε is the noise level. This problem is NP-
hard. In the general case, no known procedure can correctly
find the sparsest solution more efficiently than exhausting
all subsets of the entries forx. One key problem in CS
is thus to develop efficient recovery algorithms with nearly
optimal theoretical performance guarantees.

One class of algorithms tries to seek the sparest solu-
tion by performing basis pursuit (BP) basedl1 minimization
using linear programming (LP) instead ofl0 minimization
[5, 8]. The l1-magic used a primal log-barrier approach to
perform l1 minimization [4]. A specialized interior-point
method is employed to solve large scale problems by using
l1 regularization [14]. Gradient Projection for Sparse Re-
construction (GPSR) is a fast convex relaxation algorithm
[11] to approximate the solution. Iterative greedy pursuit
is another well-known class of sparse recovery algorithms.
The earliest ones include the matching pursuit [15] and or-
thogonal matching pursuit (OMP) [23]. Their successors in-
clude the stagewise OMP (StOMP) [9] and the regularized
OMP (ROMP) [19]. While they are much faster than the
BP methods, they require more measurements for perfect
recovery and lack provable recovery guarantees. To close
this gap, the subspace pursuit (SP) [6] and the compressive
sampling matching pursuit (CoSaMP) [18] were proposed
recently by incorporating backward steps. They have simi-
lar theoretical recovery guarantees as that of the BP meth-
ods, while their computation complexity is comparable to



those of the greedy pursuit algorithms.
All of these algorithms do not consider sparse data pri-

ors other than sparsity. However, in some practical appli-
cations, the nonzero sparse coefficients are often not ran-
domly distributed but group-clustered. They tend to cluster
into groups although these clustering group structures are
dynamic and unpredictable. (For example, the group num-
ber/size/location may be unknown.) A few attempts have
been made to utilize these group clustering priors for better
sparse recovery [1, 13, 24, 22, 26]. For simplicity, all of
them assume that the group structures (such as the group
number/size/location) are known before recovery. More-
over, they only consider the case where all groups share a
common nonzero coefficient support set1. These recovery
algorithms either do not have explicit bounds on the min-
imal number of measurements, or lack provable recovery
performance guarantees from noise measurements. While
their assumption of the block sparsity structure enables bet-
ter recovery from fewer measurements with less computa-
tion, it is not flexible enough to handle some practical sparse
data in which the group structures are unknown and only the
sparse group-clustering trend is known. Therefore, none of
them can handle dynamic group clustering priors, where we
do not know the group structure, and only know the sparsity
and group clustering trend.

In this paper, we extend the CS theory to efficiently han-
dle data with both sparsity and dynamic group clustering
priors. A dynamic group sparsity recovery algorithm is then
proposed based on the extended CS theory. It assumes that
the dynamic group clustering sparse signals live in a union
of subspaces [2] and proposes an approximation algorithm
in this union of subspaces to iteratively prune the signal es-
timations according to both sparsity and group clustering
priors. The group clustering trend implies that, if a point
lives in the union of subspaces, its neighboring points would
also live in this union of subspaces with higher probability,
and vice versa. By enforcing this constraints, the degrees
of freedom of the sparse signals have been significantly re-
duced to a narrower union of subspaces. It leads to sev-
eral advantages: 1) accelerating the signal pruning process;
2) decreasing the minimal number of necessary measure-
ments; and 3)improving robustness to noise and preventing
the recovered data from having artifacts. These advantages
enable the proposed algorithm to efficiently obtain stable
sparse recovery with far fewer measurements than previous
algorithms. Finally, we extended the proposed algorithm
to adaptively learn the sparsity numbers when they are not
exactly known in practical applications.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews the CS theory. The extended CS the-
ory and the proposed recovery algorithm are detailed in sec-

1The support set of sparse datax is defined as the set of indices corre-
sponding to the nonzero entries inx and denoted bysupp(x)

tion 3. Section 4 presents the experimental results when ap-
plying the proposed algorithm to sparse recovery and back-
ground subtraction respectively on both simulated and prac-
tical data. We conclude this paper in Section 5.

2. Theory Review

As we know, the decreasingly sorted coefficients of
many real signals rapidly decay according to the power
law. Thus, these signals can be well approximated or com-
pressed tok-sparse signals although they are not strictly
sparse. In CS, the signal capture and compression are inte-
grated into a single process [3, 8]. Thus, we do not capture
a sparse signalx ∈ Rn directly but rather capturem < n
linear measurementsy = Φx based on a measurement ma-
trix Φ ∈ Rm×n. Suppose the set ofk-sparse signalsx ∈ Rn

lives in the unionΩk of k-dimensional subspaces, the union
Ωk thus includesCk

n subspaces. To stably recover thek-
sparse signalx from m measurements, the measurement
matrixΦ is required to satisfy the Restricted Isometry Prop-
erty (RIP) [3].

Definition:(k-RIP) A matrixΦ ∈ Rm×n is said to have
k-restricted isometry property (k-RIP) with constantδk > 0
if, for all x in the unionΩk,

(1− δk) ‖ x ‖22≤‖ Φx ‖22≤ (1 + δk) ‖ x ‖22 (3)

While the sparse signalx lives in a union of subspaces
A ⊂ Rn, the k-RIP can be extended to theA-RIP [2]:

Definition:(A-RIP) A matrix Φ ∈ Rm×n is said to
haveA-restricted isometry property (A-RIP)with constant
δA(Φ) if, for all x living in the union of subspacesA

(1− δA(Φ)) ‖ x ‖22≤‖ Φx ‖22≤ (1 + δA(Φ)) ‖ x ‖22 (4)

Blumensath and Davies have proposed one theorem on
the sufficient condition for stable sparse recovery to guide
the minimal measurement numberm necessary for a sub-
gaussian random measurement matrix to have theA-RIP
with the given probability [2]:

Lemma 1: SupposeAk ⊂ Rn be the union ofL sub-
spaces of k-dimensions aligned withRn. For any t > 0,
if

m ≥ 2
cδAk

(log(2L) + klog(
12
δAk

) + t) (5)

then the subgaussian random matrixΦ ∈ Rm×n has the
A-RIP with constantδAk

, where0 < δAk
< 1 , andc > 0

only depends on theδAk
. The probability is at least1−e−t.

For thek-sparse data recovery, we know thatAk ⊂ Rn is
the union ofL = Ck

n subspaces. Thus, this theorem directly
leads to the classic CS resultm = O(k + klog(n/k)).



3. Dynamic Group Sparsity

The success of sparse recovery in compressive sensing
motivates us to further observe the support set of the sparse
coefficients. Observations on some practical sparse data
show that the support sets often have the group clustering
trend with dynamic and unknown group structure. Intu-
itively, the measurement number bound may be further re-
duced if this trend can be dexterously utilized as sparsity
in convention CS. In this section, we propose a new algo-
rithm to seamlessly combine this prior with sparsity, which
is shown to enable better recovery results for this case with
less measurement requirement and lower computation com-
plexity.

3.1. Dynamic Group Sparse Data

Similar to the definition ofk-sparse data, we can define
dynamic group sparse data as follow:

Definition:(Gk,q-sparse data)A datax ∈ Rn is defined
as the dynamic group sparse data (Gk,q-sparse data) if it
can be well approximated usingk ¿ n nonzero coefficients
under some linear transforms and thesek nonzero coeffi-
cients are clustered intoq ∈ {1, · · · , k} groups.

From this definition, we can know thatGk,q-sparse data
only requires that the nonzero coefficients in the sparse data
have the group clustering trend and does not require to know
any information about the group size and location. In the
following, it will be further illustrated that the group num-
ber q is also not necessary to be known in our algorithm.
The group structures can be dynamic and unknown. Figure
1 shows a real sample ofGk,q-sparse data in a video surveil-
lance application. We can find that nonzero coefficients are
not randomly distributed but clustered spatially in the back-
ground subtracted image (Figure1 (b)) and the foreground
mask (Figure1 (c)). More specially, theR, G andB chan-
nels of the background subtracted image share a common
support set although the nonzero coefficients are spatially
clustered in each channel respectively.

(a) (b) (c) (d)

Figure 1.An example of dynamic group sparse data: (a) one video
frame, (b) the foreground image, (c) the foreground mask and (d)
the background subtracted image with the proposed algorithm.

Due to the additional dynamic clustering prior, the union
of subspaces containingGk,q-sparse data does not span all
k-dimensional subspaces of the unionΩk as in the conven-
tional CS [4, 8, 6, 18, 23]. The former is far narrower than
the latter in most cases. The dynamic group clustering prior
significantly reduces the degrees of freedom of the sparse

signal since it only permits certain combinations of its sup-
port set rather than all random combinations. This will
make it possible for us to decrease the minimal measure-
ment numberm for stable recovery. Therefore, we need to
develop a new theorem on the sufficient condition for stable
dynamic group sparse data recovery.

Lemma 2: SupposeGk,q-sparse datax ∈ Rn is known
to live inLk,q k-dimensional subspaces aligned toRn, and
Gk,q is the smallest union of thesek-dimension subspaces.
For anyt > 0, if

m = O(k + qlog(n/q)) (6)

then the subgaussian random matrixΦ ∈ Rm×n has the
A-RIP with constantδAk

, where0 < δAk
< 1. The proba-

bility is at least1− e−t.
Proof: According to Lemma 1, the key point of the proof

is to find the value or upper bound ofLk,q. After we obtain
its value or upper bound, we can directly obtain the upper
bound of the measurement numberm according to equation
5 in Lemma 1. Suppose the dimension of the sparse signal is
d. We know thatk nonzero coefficients ofGk,q-sparse data
x ∈ Rn have clustered intoq groups. Suppose that thei-th
group hasri nonzero coefficients. Thus,ri, i = 1, · · · , q
should be a natural number and their sum isk. Without loss
of generality, we can assume thatn coefficients ofx ∈ Rn

are divided intoq regions, where thei-th region hasnri

k
nonzero coefficients and every region is not overlapped with
other regions (Whilen/k is not an integer, we can round
them off and just keep their sum withn). Considering the
restrictions thatri, i = 1, · · · , q should be a natural number
and their sum isk, there areCq−1

k−1 possible combinations.

According to Stirling’s formula,Cq−1
k−1 ≤ eq(k/q)q−1. For

each combination, we divide the original problem intoq
small problems. For each small problem, it is equal to the
case where allri nonzero coefficients are clustered into one
group. Thus,Lri,1 ≤ nri

k (2d− 1)ri−1 for each small prob-
lem. Then, the number of all possible combinations for the
original problem is:

Lk,q ≤ (
q∏

i=1

(
nri

k
)(2d− 1)ri−1)Cq−1

k−1

≤ (
n

q
)q(2d− 1)k−qeq(k/q)q−1 (7)

If we do consider the overlapping problems between the
nonzero coefficients of neighboring regions, the number
of all allowed combinations ford-dimensionalGk,q-sparse
data should be further less than the right of this equation.
But the bound in equation7 is enough for our proof. Ac-
cording to equation5 in Lemma 1, we know:

m ≥ 2
cδAk

(log(2Lk,q) + klog(
12
δAk

) + t) (8)

Thus, we can easily obtainm = O(k + qlog(n/q)), which
proves the Lemma.



Lemma 2 shows that the number of measurements re-
quired for robustly recovering dynamic group sparsity data
is m = O(k + qlog(n/q)), which is a significant improve-
ment over them = O(k + klog(n/k)) that would be re-
quired by conventional CS recovery algorithms [4, 8, 18,
23]. While the group numberq is smaller, more improve-
ments can be obtained. Whileq is far smaller thank andk
is close tolog(n), we can getm = O(k). Note that, this is
a sufficient condition. If we know more priors about group
settings, we can further reduce this bound.

3.2. Dynamic Group Sparsity Recovery

Lemma 2 equips us to propose a new recovery algorithm
for dynamic group sparse data, namely dynamic group spar-
sity (DGS) recovery algorithm. From the introduction,
we know that only the SP [6] and the CoSaMP [18] have
better balance between theoretical guarantee and compu-
tation complexity among existing greedy recovery algo-
rithms. Actually, these two algorithms have a similar frame-
work. In this section, we demonstrate how to seamlessly in-
tegrate the dynamic group clustering prior into that frame-
work.

Our algorithm includes five main steps in each iteration:
1) pruning the residue estimation; 2) merging the support
sets; 3) estimating the signal by least square; 4) pruning the
signal estimation and 5) updating the signal/residue estima-
tion and support set. One can observe that it is similar to
that of SP/CoSaMP algorithms. The difference only exists
in the pruning process in step 1 and step 4. The modification
is simple. We prune the estimation in the step 1 and step 4
using DGS approximation pruning rather thank-sparse ap-
proximation, as we only need to search over subspaces of
Ak,q instead ofCk

n subspaces ofΩk. It directly leads to
fewer measurement requirement for stable data recovery.

The DGS pruning algorithm is described in algorithm1.
There exist two prior-dependent parametersJy andJb. Jy

is the number of tasks if the problem can be represented as a
multi-task CS problem [13]. Jb is the block size if the inter-
ested problem can be modelled as a block sparsity problem
[1, 24, 22, 26]. Their default values are set as1, which is
the case of traditional sparse recovery in compressive sens-
ing. Moreover, there are two important user-tuning parame-
ters, the weightw of neighbors and the neighbor number
τ of each element in sparse data. In practice, it is very
straightforward to adjust them since they have the physi-
cal meanings. The first one controls the balance between
the sparsity prior and the group clustering prior. Whilew is
smaller/bigger, it means that the degree of dynamic group
clustering is lower/higher in the sparse signal. Generally,
they are set as0.5′s if there are not more knowledge about
that in practice. The parameterτ controls the number of
neighbors that can be affected by each element in sparse
data. Generally, it is good enough to set it as 2, 4 and 6 for

Algorithm 1.DGS approximation pruning
Input: x ∈ Rn{estimations}; k {the sparsity number};
Jy {task number}; Jb {block size}; Nx ∈ Rn×τ {values
of x’s neighbors}; w ∈ Rn×τ {weights for neighbors}; τ
{neighbor number}
Jx = JyJb;x ∈ Rn is shaped tox ∈ R n

Jx×Jx

Nx ∈ Rn×τ is shape toNx ∈ R
n

Jx×Jx×τ ;
for all i = 1, ..., n

Jx
do

Combing each entry with its neighbors

z(i) =
Jx∑

j=1

x2(i, j) +
Jx∑

j=1

τ∑
t=1

w2(i, t)N2
x(i, j, t)

end for
Ω ∈ R n

Jx×1 is set as indices corresponding to the largest
k/Jx entries ofz
for all j = 1, ..., Jx do

for all i = 1, ..., k
Jx

do

Obtain the final list
Γ((j − 1) k

Jx
+ i) = (j − 1) k

Jx
+ Ω(i)

end for
end for
Output: supp(x, k)← Γ

1D, 2D and 3D data respectively.

Up to now, we assume that we know the sparsity number
k of the sparse data before recovery. However, it is not al-
ways true in practical applications. For example, we do not
know the exact sparsity numbers of the background sub-
tracted images although we know they tend to be dynamic
group sparse. Motivated by the idea in [7], we develop a
new recovery algorithm called AdaDGS by incorporating
an adaptive sparsity scheme into the above DGS recovery
algorithm.

Suppose the range of the sparsity number is known to
be [kmin, kmax]. We can set the step size of sparsity num-
ber as4k. The whole recovery process is divided into
several stages, each of which includes several iterations.
Thus, there are two loops in AdaDGS recovery algorithm.
The sparsity number is initialized askmin before itera-
tions. During each stage (inner loop), we iteratively opti-
mize sparse data with the fixed sparsity numberkcurr until
the halting condition within the stage is true (for example,
the residue norm is not decreasing). We then switch to the
next stage after adding4k into the current sparsity number
kcurr (outer loop). The whole iterative process will stop
whenever the halting condition is satisfied. For practical
applications, there is a trade-off between the sparsity step
size4k and the recovery performance. Smaller step sizes
require more iterations and bigger step size may cause in-



Algorithm 2.AdaDGS Recovery
1: Input: Φ ∈ Rm×n{sample matrix}; y ∈ Rm{sample

vector};[kmin, kmax] {sparsity range}; 4k {sparsity
step size}

2: Initialization: residueyr = y; Γ = supp(x) = ∅;
sparse datax = 0; sparsity numberk = kmin

3: repeat
4: Perform DGS recovery algorithm with sparsity num-

berk to obtainx and the residue
5: if halting criterion falsethen
6: UpdateΓ, yr andk = k +4k
7: end if
8: until halting criterion true

9: Output: x = Φ†Γy

accuracy. The sparsity range depends on the applications.
Generally, it can be set as[1, n/3], wheren is the dimen-
sion of the sparse data. Algorithm2 describes the proposed
AdaDGS recovery algorithm.

3.3. AdaDGS Background Subtraction

Background subtraction is an important pre-processing
step in video monitoring applications. There exist a lot
of methods for this problem. The Mixture of Gaussians
(MoG) background model assumes the color evolution of
each pixel can be modelled as a MoG and are widely used
on realistic scenes [21]. Elgammal et al. [10] proposed
a non-parametric model for the background under similar
computational constraints as the MoG. Spatial constraints
are also incorporated into their model. Sheikh and Shah
consider both temporal and spatial constraints in a Bayesian
framework [20], which results in good foreground segmen-
tations even when the background is dynamic. The model in
[16] also uses a similar scheme. All these methods only im-
plicitly model the background dynamics. In order to better
handle dynamic scenes, some recent works [17, 27] explic-
itly model the background as dynamic textures. Most dy-
namic texture modeling methods are based on the Auto Re-
gressive and Moving Average (ARMA) model, whose dy-
namics is driven by a linear dynamic system (LDS). While
this linear model can handle background dynamics with cer-
tain stationarity, it will cause over-fitting for more complex
scenes.

The inspiration for our AdaDGS background subtraction
came from the success in online DT video registration based
on the sparse representation constancy assumption (SRCA)
[12]. The SRCA states that a new coming video frame
should be represented as a linear combination of as few
preceding image frames as possible. As a matter of fact,
the traditional brightness constancy assumption seeks that
the current video frame can be best represented by a sin-

gle preceding frame, while the SRCA seeks that the current
frame can be best sparsely represented by all preceding im-
age frames. Thus, the former can be thought as a special
case of SRCA.

Suppose a video sequence consists of framesI1, ..., In ∈
Rm. Without loss of generality, we can assume that back-
ground subtraction has already been performed on the first
t frames. LetA = [I1, ..., It] ∈ Rm×t. Denote the back-
ground image and the background subtracted image byb
andf , respectively, forIt+1. From the introduction in Sec-
tion 3.1, we know thatf is dynamic group sparse data with
unknown sparsity numberkf and group structure. Accord-
ing to SRCA, we haveb = Ax, wherex ∈ Rt should bekx-
sparse vector andkx << t. Let Φ = [A, I] ∈ Rm×(t+m),
whereI ∈ Rm×m is an identity matrix. Then, we have:

It+1 = Ax + f = [A, I]
[

x
f

]
= Φz (9)

wherez ∈ Rt+m is the DGS data with unknown sparsity
kx + kf . Background subtraction is thus formulated as the
following AdaDGS recovery problem:

(x0, f0) = argmin‖z‖0, ‖It+1 − Φz‖2 < ε (10)

which can be efficiently solved by the proposed AdaDGS
recovery algorithm. Similar ideas are used for face recogni-
tion robust to occlusion [25]. It is worth mentioning that the
coefficients inw corresponding to thex part are randomly
sparse while those corresponding tof are dynamic group
sparse. During the DGS approximation pruning, we thus
can set those coefficients in weightw for thex-related part
as zeros and those forf as nonzeros. Since we do not know
the sparsity numberkx andkf , we can set sparsity ranges
for them respectively and run the AdaDGS recovery algo-
rithm until the halting condition is true. Then, we can obtain
the optimized background subtracted imagef and back-
ground imageb = Ax. For long video sequences, it is im-
practical to build a model matrixA = [I1, ..., It] ∈ Rm×t,
wheret denotes the last frame number. In order to cope
with this case, we can set a time window width parameter
τ . We then build the model matrix,A = [It−τ+1, ..., It] ∈
Rm×(t−τ), for the(t+1) frame, which can avoid the mem-
ory requirement blast for a long video sequence. The com-
plete algorithm for AdaDGS based background subtraction
is summarized in Algorithm3.

4. Experiments

For quantitative evaluation, the recovery error is defined
to indicate the difference between the estimationxest and
the ground-truthx:‖xest − x‖2/‖x‖2. All experiments are
conducted on a3.2GHz PC in Matlab environment.



Algorithm 3.AdaDGS Background Subtraction
1: Input: The video sequenceI1, ..., In, the numbert

which means1st ∼ tth have been performed back-
ground subtraction, the time window widthτ ≤ t

2: for all j = t + 1, ..., n do
3: SetA = [Ij−τ , ..., Ij−1] and formΦ = [A, I]
4: Sety = Ij and the sparsity ranges/step-sizes
5: (x0, f0) = AdaDGS(Φ, y)
6: end for
7: Output: Background subtracted images

4.1. 1D Simulated Signals

In the first experiment, we randomly generate a1D
G(k, q)-sparse signal with values±1, wheren = 512,
k = 64 andq = 4. The projection matrixΦ is generated
by creating am × n matrix with i.i.d. draws of a Gaussian
distribution N(0; 1), and then the rows ofΦ are normal-
ized to the unit magnitude. Zero-mean Gaussian noise with
standard deviationσ = 0.01 is added to the measurements.
Figure2 shows one generated signal and its recovered re-
sults by different algorithms whenm = 3k = 192. As
the measurement numberm is only 3 times of the sparsity
numberk, both of other algorithms can not obtain good re-
covery results, whereas the DGS obtains almost perfect re-
covery results with the least running time. To study how
the measurement numberm effects the recovery perfor-
mance, we change the measurement number and record the
recovery results by different algorithms. To reduce the ran-
domness, we execute the experiment 100 times for each of
the measurement numbers in testing each algorithm. Fig-
ure3 shows the performance of 5 algorithms with increas-
ing measurements in terms of the recovery error and run-
ning time. Overall, the DGS obtains the best recovery per-
formance with the least computation; the recovery perfor-
mance of GPSR, SPGL1-Lasso and SP is close; and the
l1−norm minimization based GPSR and SPGL1-Lasso re-
quire more computation than greedy algorithms such as the
OMP, SP and our DGS. In the three greedy algorithms, the
OMP has the worst recovery performance. All these ex-
perimental results are consistent with our theorem: the pro-
posed DGS algorithm can achieve better recovery perfor-
mance for DGS data with far few measurements and less
computation complexity.

4.2. 2D Color Images

To validate the proposed recovery algorithm on 2D im-
ages, we randomly generate a2D G(k, q)-sparse color
image by putting four digits in random locations, where
n = H ∗ W = 48 ∗ 48, k = 152 andq = 4. The pro-
jection matrixΦ and noises are generated with the similar
method as that for 1D signal. TheG(k, q)-sparse color im-
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Figure 2.Recovery results of 1D data. (a) Original data; (b) GPSR
(error is 0.5173 and time is 0.1847 seconds); (c) SPGL1-Lasso
(error is 0.4021 and time is 1.1497 seconds); (d) OMP (error is
1.0270 and time is 0.1422 seconds);(e) SP (error is 0.6143 and
time is 0.1100 seconds);(f) DGS recovery (error is 0.0178 and time
is 0.0605 seconds).
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Figure 3.Recovery errors vs. measurement numbers: a) recovery
errors; (b) running times

age has a special property: the R, G and B channels share
a common support set, while the nonzero coefficients have
dynamic group clustering trends within each channel. Thus,
the recovery of DGS color images can be considered as a
3-task CS recovery problem. As for the input parameters
of DGS in this case, we just need to setJy as3 and keep
other default parameters unchanged. Considering the MCS
is specially designed for multi-task CS problems, we will
compare it with DGS and SP. Figure4 shows one example
2D G(k, q)-sparse color image and the recovered results by
different algorithms whenm = 440. Figure5 shows the
performance of the three algorithm, averaged over 100 ran-
dom runs for each sample size. The DGS achieves the best
recovery performance with far less computation. It is easily
understood because DGS exploits three priors for recovery:
(1) the three color channels share a common support set,
(2) there are dynamic group clustering trends within each
color channel and (3) sparsity prior exists in each channel;
thus it achieves better results than MCS, which only uses
two priors. The SP is the worst since it only uses one prior.
This experiment clearly demonstrates: the more valid priors
are used for sparse recovery, the more accurate results we
can achieve. That is the main reason why DGS, MCS and
SP obtained the best, good and the worst recovery results.



Figure5 (b) shows the comparison of running times by the
three algorithms. It is not surprising that the running times
with DGS are always far less than those with MCS and a
little less than those with SP for all measurement numbers.

(a) (b) (c) (d)

Figure 4.Recovery results of a 2D color image: (a) original color
image, (b) recovered image with MCS [13] (error is 0.8399 and
time is 29.2656 seconds), (c) recovered image with SP [6] (error is
0.7605 and time is 1.6579 seconds) and (d) recovered image with
DGS (error is 0.1176 and time is 1.0659 seconds).
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Figure 5.Recovery performance: a) errors; (b) running times

4.3. Background Subtraction

Background subtracted images are typicalG(k, q)-
sparse data. They generally correspond to the interested
foreground objects. Compared with the whole scene, they
tend to be not only spatially sparse but also cluster into
dynamic groups, although the sparsity number and group
structures are not known. As we know, the sparsity number
must be provided in most of current recovery algorithms,
which make them impractical for this problem. In contrast,
the proposed AdaDGS can apply well to this task since it
not only can automatically learn the sparsity number and
group structures but also is a fast enough greedy algorithm.

The first experiment is designed to validate the advantage
of the AdaDGS model. We test the proposed algorithm on
Zhong’s dataset [27]. The background subtracted images
can be directly obtained with the proposed AdaDGS. The
corresponding binary mask of these images are obtained
with the simple threshold. The Zhong’results with robust
Kalman model are also shown for comparisons. Figure6
shows the results. Note that all results with AdaDGS are
not post-processed with morphological operations and the
results are directly the solutions of the optimization prob-
lem in Equation10. It is clear that our AdaDGS pro-
duces clean background subtracted images, which shows
the advantages of the DGS model. Figure7 and Figure

8 show the background subtraction results on two other
videos [10, 17]. Note that our results without postprocess-
ing can compete with others with postprocessing. The re-
sults show the proposed AdaDGS model can handle well
highly dynamic scenes by exploiting the effective sparsity
optimization scheme.

(a)  Original (b)  AdaDGS (c)  AdaDGS (d)  Robust Kalman

Figure 6.Results on the Zhong’s dataset (a) original frame, (b)
background subtracted image with AdaDGS, (c) the binary mask
with AdaDGS and d) with robust Kalman model [27]

(a)  Original (b)  AdaDGS (c)  KDE (d)  MoG

Figure 7.Results on the Elgammal’s dataset. (a) original frame,
(b) with AdaDGS, (c) with KDE model [10] (d) with MoG [21]

(a) Orignial (b) AdaDGS (c) Monnet etc (d) MoG

Figure 8.Results on Monnet’s dataset. (a) original frame, (b) with
AdaDGS, (c) with Monnet’s method [17] and (d) with MoG [21]

4.4. Discussion

All experimental results show the proposed algorithms
gain marked improvement over previous algorithms when
DGS priors are available. From a practical perspective, the
proposed DGS/AdaDGS can recover DGS data with higher
accuracy and lower computational complexity from fewer
measurements. From a theoretical point of view, Lemma
2 offers a stronger guarantee for DGS/AdaDGS to achieve



stable recovery. Moreover, we provide a generalized frame-
work for priors-driven sparse data recovery algorithms. Us-
ing different input parameter settings, it can perform sparse
recovery, multi-task sparse recovery, group/block sparse re-
covery, DGS recovery, and adaptive DGS recovery, respec-
tively. Group structure and sparsity number are not must-
knows for our algorithm, which makes it flexible and ap-
plicable in many practical applications; as far as we know,
this property of our algorithm is unique among all existing
sparse recovery algorithms.

5. Conclusions

In this paper, we extend the theory of CS to efficiently
handle dynamic group sparse data. Based on this ex-
tended theory, the proposed algorithm can stably recover
dynamic group-sparse data using far fewer measurements
and less computation than the current state-of-the-art al-
gorithms with provable guarantees. It has been applied to
sparse recovery and background subtraction on both simu-
lated and practical data. Experimental results demonstrate
the performance guarantee of the proposed algorithm and
show marked improvement over previous algorithms.
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