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ABSTRACT
This paper presents an algorithm using discriminative sparse
representations to segment tissues in optical images of the
uterine cervix. Because of the large variations in the im-
age appearance caused by the changing of illumination and
specular reflection, the different classes of color and texture
features in optical images are often overlapped with each
other. Using sparse representations they can be transformed
to higher dimension with sparse constraints and become more
linearly separated. Different from the previous reconstructive
sparse representation, the discriminative method considers
positive and negative samples simultaneously, which means
that these generated dictionaries can be discriminative and
perform better for their own classes but worse for the others.
New data can be reconstructed from its sparse representations
and positive and/or negative dictionaries. Classification can
be achieved based on comparing the reconstructive errors. In
the experiments we used our method to automatically seg-
ment the biomarker AcetoWhite (AW) regions in an archive
of the uterine cervix. Compared with the other general meth-
ods including SVM, nearest neighbor and reconstructive
sparse representations, our approach showed higher sensitiv-
ity and specificity.

Index Terms— segmentation, cervix image, biomarker
AcetoWhite, discriminative sparse representation, reconstruc-
tive errors, classification

1. INTRODUCTION

Segmentation of different regions of medical images can as-
sist doctors in making proper diagnosis. For example, the area
information and landmarks from segmentation is important in
many clinical cases [1]. In this work, we proposed an ap-
proach to automatically segment the biomarker AcetoWhite
(AW) regions in an image archive of the uterine cervix. These
images are optical cervigram images acquired by Cervicogra-
phy using specially-designed cameras for visual screening of
the cervix, and they were collected from the NCI Guanacaste
project [2] for the study of visual features correlated to the de-
velopment of precancerous lesions. The most important ob-
servation in a cervigram image is the AW region, which is
caused by whitening of potentially malignant regions of the
cervix epitheliuem, following application of acetic acid to the

cervix surface. Since the texture, size and location of AW re-
gions have been shown to correlate with the pathologic grade
of disease severity, accurate identification and segmentation
of AW regions in cervigrams have significant implications for
diagnosis and grading of cervical lesions. However, accurate
tissue segmentation in cervigrams is a challenging problem
because of large variations in image appearance caused by the
changing of illumination and specular reflection in pathology.
As a result, the color and texture features in optical images
are often overlapped with each other and not linearly separa-
ble (Fig. 1).

Previous work on cervigram segmentation has reported
limited success using K-means clustering, Gaussian Mixture
Models [3], Support Vector Machine (SVM) classifiers [4].
Shape priors are proposed [5], and non-convex regions are
also solved [6]. Although such shape information is applica-
ble to cervix boundary, it could not work well with AW since
AW regions may have arbitrary shapes. Supervised learning
based segmentation [7][8] holds promise, especially with in-
creasing number of features. However, because of the intrin-
sic diversity between images and the overlap between feature
distributions of different classes, it is difficult to learn a sin-
gle classifier that can perform tissue classification with low
error for a large image set. Using reconstructive sparse repre-
sentations [9] can alleviate the overlapping problem, but this
approach does not consider both positive (AW) and negative
(non-AW) samples together when generating each dictionary.
Thus the reconstructed dictionaries may induce noises and not
separate different classes well. Another potential solution is
to use a Multiple Classifier System (MCS) [10], which trains
a set of diverse classifiers that disagree on their predictions
and effectively combines the predictions in order to reduce
classification error. Voting, AdaBoost, bagging and STAPLE
[11] can be employed. A necessary condition for the above
ensemble methods is that all the base classifiers should pro-
vide sufficiently good performance, usually 50% or higher
sensitivity and specificity in order to support the ensemble.
However, there may be large variance in base classifier per-
formance. Some classifiers commonly have low sensitivity
(30% or lower). Wang [12][13] proposed a method to find the
best base classifier based on distance guided selection, which
achieves good results in a subset of the archive.

In this paper we focus on solving the problem by trans-



Fig. 1. Color distribution of AW and non-AW regions. Red
represents AW and blue represents non-AW. The left one de-
notes one sample. The right one denotes one hundred sam-
ples.

forming the data to higher dimension with sparse constraints.
Then the data can be more separated using sparse represen-
tations. Different from the reconstructive sparse represen-
tations [9], our approach considers all samples together for
each dictionary. The generated dictionary deals with different
classes discriminatively and performs better for its own class
and worse for other classes. Thus the method is named as dis-
criminative sparse representations [14]. The same as the re-
constructive method, finding the discriminative sparse repre-
sentation also consists of sparse coding and codebook update
(Section 2.2). After finding positive and negative dictionaries
from training images and computing sparse coefficients from
testing images, reconstructive error of each pixel is computed
and compared. The pixel is assigned to the class with lower
errors. Details of this method is explained in Section 2 and
experiments are shown in Section 3.

2. METHODOLOGY

2.1. Framework

Fig. 2 illustrates the algorithm framework. In the training
stage, ground truth is obtained by clinical experts. 5 by 5 im-
age patches on the ground truth are labeled as positive ones,
while the others are negative ones. These patches are fed
into general sparse models such as K-SVD to generate corre-
sponding dictionaries. Then these reconstructive dictionaries
are employed by the discriminative sparse model to calculate
discriminative dictionaries. Both of the sparse models consist
of the sparse coding and codebook update stages. Then using
these two dictionaries, the sparse coding step is applied on
patches extracted from testing images to compute two sets of
sparse coefficients. Based on the coefficients and correspond-
ing dictionaries, reconstructive errors are calculated and com-
pared for classification. Details of the discriminative sparse
model will be discussed in Section 2.2.

2.2. Discriminative learned dictionaries

The objective of general sparse representation is to find D and
X by minimizing the following equation,

min
D,X
{‖Y −DX‖2F } subject to ∀i, ‖xi‖0 ≤ L, (1)

where Y represents signals (image patches here), D is the
overcomplete dictionary, X is the sparse coefficients, ‖ · ‖0 is
l0 norm counting the nonzero entries of a vector and ‖ · ‖F

Fig. 2. The algorithm framework. Rectangles denote algo-
rithm, and diamonds represent data.

is Frobenius norm. Denote yi as the ith column of Y , xi as
the ith column of X , then yi and xi are the ith signal vec-
tor and coefficient vector respectively, with dimensionality
D ∈ Rn×k, yi ∈ Rn and xi ∈ Rk. Given a signal yi and
a dictionary D, the approximation of the sparse coefficient xi

can be found using greedy algorithms [15]. Then the signal
can be reconstructed from D and xi. The residual is repre-
sented as

R(yi, D) = ‖yi −Dxi‖22. (2)

Using K-SVD algorithm [16] we can obtain two dictio-
naries for positive patches and negative patches separately,
denoted as D+ and D− respectively. The simplest strategy to
use dictionaries for discrimination is to compare the errors of
a new patch y reconstructed by D+ and D− and choose the
smaller one as its type, which is shown in (3).

type = arg min
i=+,−

{‖y −Dix‖22} subject to ‖x‖0 ≤ L. (3)

It is also called reconstructive sparse method, which has
been used to segment cervigram images [9]. In this method,
positive and negative dictionaries are trained from positive
and negative data separately. For example, positive dictio-
nary only depends on positive data, so it attempts to recon-
struct better for positive ones but not worse for negative ones,
which may induce noises. The discriminative sparse method
solves this problem by leveraging the logistic function,

Cλ
i (f+, f−) = log

 ∑
j∈{+,−}

e−λ(fj−fi)

 , i ∈ {+,−},

(4)

which is close to zero when the input fi is smaller. Increasing
the value of λ provides a higher penalty cost for each mis-
classification, which means more discriminative the model is.
Instead of minimizing function 1, the discriminative model
solves the following one,

min
Dj,j∈{+,−}

∑
i∈{+,−}

Cλ
i ({R(yl, Dj)}) + λγR(yl, Di). (5)

The first half represents discriminative errors, and the sec-
ond half denotes reconstructive ones. γ controls the trade-off



Input: Two dictionaries Di ∈ Rn×k, i ∈ {+,−} calcu-
lated from K-SVD, M input data yl ∈ Rn and coefficients
x ∈ Rk×MN

Output: Di and X
Loop: Repeat until convergence
For i = +,−, for j = 1 . . . k, update d, the j-th column
of Di, and sparse coefficients
• Select the set of patches using d, denote as

ω ← {l ∈ 1 . . .M |xli[j] 6= 0}
• For each patch l in ω, compute residual rl = yl−Dixli

• Compute weight wl according to (7) for all patches
• Compute the new d by calculating the eigenvector of

(6)
• Compute the new coefficients xli

• Update Di and X using d and xli

Table 1. The algorithm of the discriminative sparse model.

between reconstruction and discrimination. The higher value
of γ, the more reconstructive this model is. The optimization
procedure is similar to the ideas of K-SVD. When updating
d, the j-th atom of the dictionary i, it allows its correspond-
ing coefficients to change. The method can be formalized as
an eigenvalue problem, where new d is the eigenvector corre-
sponding to the largest eigenvalue of∑

p∈{+,−}

∑
l∈Sp∩ω

wl(rl + xli[j]d)(rl + xli[j]d)T , (6)

where ω is the set of patches that uses d, the j-th column of
Di. rl is the residual of patch l, rl = yl − Dixli. Sp means
classification type p, positive or negative. The weight wl is
calculated from the logistic function,

wl =
∂Cλ

i

∂fp

(
{R(yl, Dj)}j∈{+,−}

)
+ λγ1p(i), (7)

where 1p(i) is equal to 1 if i = p and 0 otherwise. The algo-
rithm is listed in Table 1.

2.3. Tracing regions

Since there is no shape information considered, the resulting
areas are usually disconnected. Inspired by the edge linking
stage of Canny edge detector, similar procedure can also be
applied to the area. (3) can be rewritten as

error = ‖y −D−x‖22 − ‖y −D+x‖22. (8)

When error < 0, the testing data is assigned to the nega-
tive samples. Otherwise it is positive. However, due to noise,
there may be positive instances below the threshold (0). Thus
similar to Canny edge detector, two thresholds T1 > T2 can
be predefined. In the first pass, T1 = 0 is used as the threshold
and classification is performed. This procedure is the same as
Section 2.2. In the second pass, T2 < 0 is set as the new
threshold. The errors of neighboring points of the first re-
sults are checked, and the points with error > T2 are merged
into the positive samples. With ideal thresholds, the discon-
nectivity problem can be alleviated. However, the value of
T2 highly depends on the application and is found by brute

Sensitivity Specificity
SVM (RBF) 50.24% 63.59%
Nearest Neighbor 55.62% 69.18%
Reconstructive 62.71% 75.85%
Discriminative 71.15% 81.67%

Table 2. Performance comparison between 4 classifiers, in
terms of sensitivity and specificity.

force currently. Starting from 0, T2 is decreased in a small
step each time. The sensitivity and specificity are computed
in each step. The parameters causing the best performance
are chosen. More sophisticated approach is left for future in-
vestigation.

3. EXPERIMENTS

The method was implemented in Matlab R2009a and tested
on a 2.40 GHz Intel Core2 Quad computer with 8G RAM.
Cervigram images from the NCI/NLM archive with multiple-
expert boundary markings were available for training and val-
idation purposes. 100 images of diverse appearance were se-
lected for training and testing. To maximally mix the samples,
10 image is used for testing and validation and the remaining
90 ones are used for training. The mean sensitivity and speci-
ficity were reported. Different color spaces including RGB,
HSV and Lab were tested. HSV was chosen since it was
slightly better. Each patch was a 5 by 5 square centered in
the pixel and was concatenated H, S and V information into
single vectors (75 by 1, n = 75). Gaussian mask or Lapla-
cian filter can be applied on each patch as a preprocessing.
We chose the sparse factor L = 6 and dictionaries of size
k = 256. In each image 1,000 patches are randomly selected
from both AW and non-AW regions, 500 for each. Overall
90,000 patches are generated from the training images. 10
iterations of K-SVD and 30 iterations of the discriminative
model were performed.

The values of λ and γ are also critical for the stability and
efficiency [14]. To automatically choose the value of λ that
gives the best result in term of classification performance, we
can change the value of λ in an ascending series. Starting
from a low value for λ, it is possible to check every few iter-
ations whether increasing this value provides a better classifi-
cation rate. For γ one has to set it large enough to ensure the
stability of the scheme, but as small as possible to enforce the
discriminative power. We can vary the value of γ by building
a descending series and updating the same way as for λ, gives
stability to the algorithm.

Our method was compared with SVM, nearest neighbor
and reconstructive sparse representations. SVM failed to han-
dle so many patches since it would consume most memories
and couldn’t converge. Thus the data for SVM was down
sampled. Instead of feeding image patches into SVM, we
also trained SVM using sparse coefficients. Nearest neighbor
method was also time and space consuming because of the
large training set. Sparse representation was more efficient
with 20 seconds for each iteration and less than 1GB RAM
because of its sparsity. Some qualitative results are presented



Fig. 3. Results of different algorithm applied on two images. 1st column: original image; 2nd column: ground truth; 3rd col-
umn: SVM with radial basis function kernel; 4th column: 1 nearest neighbor; 5th column: reconstructive sparse representations:
6th column: discriminative sparse representations.

in Fig. 3. Table 2 shows the results of different classifiers
measured by sensitivity and specificity. SVM with radial ba-
sis kernels generally performs better than linear and polyno-
mial kernels. Thus it is chosen in this comparison experiment.
Since the distributions of image patches are highly overlapped
(Fig. 1), SVM still underperforms the classification task. The
reconstructive sparse model achieves good results, but it still
has many noises from non-AW regions. The reason is that the
K-SVD algorithm is not discriminative and there is no region
information considered. The positive dictionary only attempts
to reconstruct better for positive ones but not worse for neg-
ative ones. Thus there are false alarms in non-AW regions.
The discriminative sparse model can alleviate this problem
by considering both positive and negative patches together.

4. CONCLUSIONS

In this paper we proposed a classifier based on the discrimi-
native sparse representations to segment tissues in optical im-
ages of the uterine cervix. Different from the reconstructive
method, discriminative method considers all samples simul-
taneously and discriminatively for each dictionary. Thus the
generated dictionaries perform better. Our method was com-
pared with the reconstructive sparse representations and other
general learning methods, and showed higher sensitivity and
specificity. In the future, we would like to combine SVM
and sparse representations together, to alleviate the problem
caused by the sensitivity of parameters.

5. REFERENCES

[1] G. Zimmerman, S. Gordon, and H. Greenspan, “Automatic
landmark detection in uterine cervix images for indexing in a
content-retrieval system,” in ISBI, 2006, pp. 1348–1351.

[2] J. Jeronimo, L. Long, L. Neve, M. Bopf, S. Antani, and
M. Schiffman, “Digital tools for collecting data from cervi-
grams for research and training in colposcopy,” in Colposcopy,
J Low Gen Tract Disease, 2006, pp. 16–25.

[3] S. Gordon, G. Zimmerman, R. Long, S. Antani, J. Jeronimo,
and H. Greenspan, “Content analysis of uterine cervix images:
Initial steps towards content based indexing and retrieval of
cervigrams,” in SPIE, Medical Imaging: Image Processing,
2006, pp. 2037–2045.

[4] X. Huang, W. Wang, Z. Xue, S. Antani, L. R. Long, and
J. Jeronimo, “Tissue classification using cluster features for
lesion detection in digital cervigrams,” in SPIE, Medical Imag-
ing: Image Processing, 2008.

[5] S. Gordon, S. Lotenberg, and H. Greenspan, “Shape priors
for segmentation of the cervix region within uterine cervix im-
ages,” in SPIE, Medical Imaging: Image Processing, 2008.

[6] S. Gordon and H. Greenspan, “Segmentation of non-convex
regions within uterine cervix images,” in ISBI, 2007.

[7] J. Shotton, J.Winn, C. Rother, and A. Criminisi, “Joint ap-
pearance, shape and context modeling for multi-class object
recognition and segmentation,” in ECCV, 2006.

[8] F. Schroff, A. Criminisi, and A. Zisserman, “Singlehistogram
class models for image segmentation,” in ICVGIP, 2006.

[9] S. Zhang, J. Huang, W. Wang, X. Huang, and D. Metaxas,
“Cervigram image segmentation based on reconstructive
sparse representations,” in SPIE, Medical Imaging: Image Pro-
cessing, 2010.

[10] Y. Artan and X. Huang, “Combining multiple 2v-svm classi-
fiers for tissue segmentation,” in ISBI, 2008, pp. 488–491.

[11] S. K. Warfield, K. H. Zou, and W. M. Wells, “Simultaneous
truth and performance level estimation (staple): An algorithm-
for the validation of image segmentation,” in IEEE Trans. on
Medical Imaging, 2004, pp. 903–921.

[12] W. Wang and X. Huang, “Distance guided selection of the best
base classifier in an ensemble with application to cervigram
image segmentation,” in MMBIA, 2009.

[13] W. Wang, X. Huang, Y. Zhu, D. Lopresti, L. R. Long, S. An-
tani, Z. Xue, and G. Thoma, “A classifier ensemble based on
performance level estimation,” in ISBI, 2009.

[14] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Dis-
criminative learned dictionaries for local image analysis,” in
CVPR, 2008, pp. 1–8.

[15] J. A. Tropp, “Greed is good: Algorithmic results for sparse
approximation,” in IEEE Trans. Inf. Theory, 2004, pp. 2231–
2242.

[16] M. Aharon, M. Elad, , and A. Bruckstein, “K-svd: An algo-
rithm for designing overcomplete dictionaries for sparse rep-
resentation,” in IEEE Trans. Signal Process, 2006, pp. 4311–
4322.


	 Introduction
	 Methodology
	 Framework
	 Discriminative learned dictionaries
	 Tracing regions

	 Experiments
	 Conclusions
	 References

