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ABSTRACT

This paper presents an algorithm to classify pixels in uter-
ine cervix images into two classes, namely normal and abnor-
mal tissues, and simultaneously select relevant features, using
group sparsity. Because of the large variations in image ap-
pearance due to changes of illumination, specular reflections
and other visual noise, the two classes have a strong overlap in
feature space, whether features are obtained from color or tex-
ture information. Using more features makes the classes more
separable and increases the segmentation’s quality, but also
its complexity. However, the properties of these features have
not been well investigated. In most cases, a group of features
is selected prior to the segmentation process; features with
minor contributions to the results are kept and add to the com-
putational cost. We propose feature selection as a significant
improvement in this problem. It provides a robust trade-off
between segmentation quality and computational complex-
ity. In this work we formulate the cervigram segmentation
problem as a feature-selection-based classification method,
and we introduce a regularization-based feature-selection al-
gorithm to leverage both the sparsity and clustering properties
of the features used. We implemented our method to automat-
ically segment the biomarker AcetoWhite (AW) regions in a
dataset of 200 images of the uterine cervix, for which manual
segmentation is available. We compare the performance of
several regularization-based feature-selection methods. The
experimental results demonstrate that on this dataset, our pro-
posed group-sparsity-based method gives overall better re-
sults in terms of sensitivity, specificity and sparsity.

Index Terms— segmentation, cervix image, biomarker
AcetoWhite, feature selection, group sparsity, classification

1. INTRODUCTION

Cervical cancer is the second most common cancer affecting
women worldwide and has a high mortality rate if not treated
timely. Thus early detection and high quality screening are
very important [18]. An effective approach to cervical can-
cer screening is based on the color changes of cervix tissues
when exposed to acetic acid. Abnormal tissues usually turn
white and look more opaque, which are termed Acetowhite
(AW). Since the texture, size and location of AW regions have

been shown to correlate with the pathologic grade of disease
severity, analyzing them is a significant part of the diagno-
sis. In this work, we present an algorithm to automatically
segment the AW regions in uterine cervix images. We use op-
tical cervigrams acquired by cervicography using specially-
designed cameras for the visual screening of the cervix. They
were collected for the National Cancer Institute (NCI) Gua-
nacaste project [8] and were digitized and maintained by the
National Library of Medicine (NLM) and NCI, to study the
correlation between visual features and the development of
pre-cancerous lesions. Accurate segmentation of AW regions
in cervigrams is useful for indexing and retrieval of the im-
ages and helpful for improving diagnosis. However, it is a
challenging problem in computer vision because of large vari-
ations in image appearance, caused by illumination variations
and specular reflections. As a result, the distributions of color
and texture features of AW and non-AW regions show signif-
icant overlap.

Many classification methods have been applied to seg-
ment the AW regions, such as K-means clustering [14],
Support Vector Machine (SVM) classifiers [7], supervised
learning based segmentation [12, 13] and sparse represen-
tations [20, 21]. Shape priors have also been proposed [3].
Non-convex regions [2] and AW regions [4] can also be used
via shape features. Their performances are promising, espe-
cially when increasing the number of features, using cervix
color and texture [9]. However, the intrinsic diversity among
images and the resulting overlap between feature distributions
of different classes, make it difficult to train a single classifier
that can perform tissue classification with low error on a large
image set. Another potential solution is to use a Multiple
Classifier System (MCS) [1], which trains a set of diverse
classifiers that disagree on their predictions and effectively
combines the predictions in order to reduce the classification
error, such as voting, AdaBoost, bagging and STAPLE [16].
But as mentioned in [15], the classifier ensemble methods
could improve performance only when the base classifiers are
sufficiently good, with at least 50% sensitivity and specificity.
This is an issue given that most base classifiers may have very
poor performance.

The main reason for the poor performance of base clas-
sifiers is the feature-overlap problem. Since the samples that
are overlapped in one feature space may be separated in other



feature spaces, increasing the number of features can alleviate
the problem. This is generally one of the most effective ways
to improve the segmentation performance. However, one of
the main shortcomings of existing work is that feature selec-
tion has not been well investigated. Features are often prese-
lected from the beginning. These predefined features do not
equally or positively contribute to the segmentation perfor-
mance, while they still increase the computation complexity.
Thus pruning features without adversely affecting the perfor-
mance is an important task. Choosing the best base classi-
fiers [15], by selecting a subset of the training dataset based
on dissimilarity between probability functions, achieves great
improvement over previous methods. For the task at hand
however, the training set is expected to contain significantly
different images from test sets, due to the variety of conditions
of patients and imaging quality. As a result, it is preferable for
cervigram image segmentation to use a more general feature-
selection method, which would extract a subset of important
features from the entire dataset.

In this paper we formulate this cervigram segmentation
problem as a feature selection based classification problem,
and present a group sparsity based method to solve it. Our
method is based on two underlying observations. First, the
samples could be classified using only a few features. Since
more than enough features are used in our work and some
of them are redundant, a sparse set of selected features can
capture the class differences and increase classification speed.
Second, features in color or texture spaces are often mutu-
ally dependent. They tend to simultaneously either have or
not have an effect on the classification. Similar priors have
already been used in other machine learning applications,
such as image annotation [19] with good results. Thus, the
above observed priors motivate us to use a group sparcity
method [17], which is theoretically proven to improve classi-
fication performance under specific conditions list in [5], and
achieves great success in many signal recovery applications.

Our work leverages the special properties of cervigram
image features to improve segmentation performance. Sev-
eral types of features are used and compared, and they are au-
tomatically pruned based on group and sparsity priors to im-
prove cervigram image segmentation performance and accel-
erate speed. In Section 2 we detail the classification method.
In Section 3 we present our experiments and compare the per-
formance of different features as well as regularization-based
feature-selection methods. We present our conclusions and
future work in Section 4.

2. METHODOLOGY

Our segmentation algorithm includes two steps: training and
classification. The training step selects features based on both
sparsity and group clustering priors. These priors improve the
model’s robustness to noise. The method we use is a variation
of solutions to regularization problems, and is inspired by the

Table 1. Details of the training and classification steps of the
our method.

Training (computing weights)
Input: Feature matrix of training images, F ∈ Rm×p,
where m is the number of training samples, and each row
is a feature vector fi ∈ Rp, computed in a patch centered
on that pixel; classification target vector Y ∈ Rn, where
yi = 1 if pixel i is AW, and yi = −1 if it is non-AW.

Computation:
Generate groups G1 to Gm according to feature types.
Use Projected Gradient Method [11] (or other optimiza-
tion solvers) to solve (4)

Output: weight vector w ∈ Rp.

Classification
Input: Weight vector w ∈ Rp; feature vector of all m
pixels in the test image T ∈ Rm×p, where each row is a
feature vector ti ∈ Rp.

Computation:
Prune columns of T and w according to the zero elements
in w. The columns of T corresponding to zero elements
are removed: the sizes of T and w are reduced.
Loop: Iterate over the rows of T
y = ti · w
If y > 0

The ith pixel is positive (i.e. in an AW region)
Else

The ith pixel is negative (i.e. in the background)

Output: The classification result for all pixels.

recently proposed group sparsity in the compressive sensing
community. The classification step automatically prunes fea-
tures and classifies each pixel of the input images.

2.1. Problem Formulation

For the ith observation in the training set, the data yi is used
to indicate whether the sample is AW or not, and the feature
vector xi = (xi1, ..., xip) is extracted from the predefined
feature spaces to characterize the sample. We consider the
feature selection step as a regression problem, where Y =
(y1, ..., yn) ∈ Rn is the response and X = (x1, ..., xn) ∈
Rn×p is the regressor. All the responses are generated from a
sparse linear combination of the features adding a stochastic
noise vector ε ∈ Rn: Y = Xw + ε, where w is the weight
vector for different features.

In our framework, the regressor yi represents the classifi-
cation target, where yi = 1 if the ith pixel is in an AW region,
and yi = −1 if it is in a non-AW region. xi is the feature vec-
tor for the ith pixel, obtained from a patch centered around
that pixel. As an example, in the case where only each of the



Table 2. Comparison of color and texture features applied on this segmentation problem. Equal weights are used to combine
them together.

Features p σp q σq DCS σDCS
RGB (color) 0.502 0.050 0.803 0.037 0.515 0.072
HSV (color) 0.652 0.062 0.815 0.045 0.601 0.077
LAB (color) 0.484 0.053 0.834 0.037 0.503 0.067
Opponent (color) 0.502 0.050 0.813 0.036 0.515 0.072
Haar(texture) 0.403 0.061 0.724 0.045 0.435 0.062
All features 0.682 0.049 0.822 0.037 0.653 0.071

three RGB features are used, and the patch size is 5 × 5, we
have p = 3×5×5 and xi is a 1×75 vector. The actual features
used in our experiments are reported in Section 3. While we
should note here that more than enough features are used in
the training step, which is more than the number of samples,
thus, the linear system Xw = Y is underdetermined.

2.2. Group Sparsity Based Classification

The direct loss function to calculate w is the least square esti-
mate, which minimizes the residual sum of squared errors:

ŵ = argmin
w∈Rp

‖Xw − Y ‖22 (1)

where the analytical solution of w can be represented as
(XTX)−1XTY . However, the matrixXTX is singular since
the linear system is underdetermined, making the model un-
stable. Ridge regularization is widely used to alleviate this
problem, which can be written in the following format:

ŵ = argmin
w∈Rp

[
1

n
‖Xw − Y ‖22 + λ‖w‖2

]
(2)

where λ‖w‖2 is a restriction on the L2 norm of weight vec-
tor w, which increases the stability of the solution. But L2

norm does not encourage sparsity, which means it will per-
form poorly when irrelevant features are present in X .

Lasso is an often-used method to fulfill the sparsity
prior, which is different from ridge regularization only on
the penalty term:

ŵ = argmin
w∈Rp

[
1

n
‖Xw − Y ‖22 + λ‖w‖1

]
(3)

L1 norm is used by Lasso instead of L2 norm in ridge regular-
ization in the above function. The solutions produced can be
as sparse as with L0 regularization in some underdetermined
systems. However, as shown in Section 3, using this prior
alone can produce over-sparse solutions in our system, which
also adversely affects the overall performance.

Features have a natural group structure based on the dif-
ferent kinds of features such as RGB and Haar, etc. The fea-
tures in each group tend to have or not have effect since their

magnitudes are not independent. Based on this observation,
we add the group priority to this problem and reformulated it
as:

ŵ = argmin
w∈Rp

 1

n
‖Xw − Y ‖22 + λ

m∑
j=1

‖wGj
‖2

 (4)

where features are partitioned into m disjoint groups G1, G2,
..., Gm, and wGj

denotes the vector in RGj , which is iden-
tical to w in Gj . Both L1 and L2 norms are used in the
term λ

∑m
j=1 ‖wGj

‖2, where L2 norm is used among the
weights inside of the same group, while L1 norm is used
when summing the results between groups. As we known,
L2 norm does not induce parsimony, while L1 norm does.
So the weights are tend to be parsimony based on the group
structure. The algorithm framework and optimization proce-
dures are illustrated in Table 1. The weight w is produced
during the training stage by leveraging the group sparsity in
regularization techniques.

In the classification stage, if wj = 0, the jth element
in the feature vector xi does not have a contribution, there-
fore the jth bin in the feature vectors can be pruned directly.
Based on the pruned features and weights, the estimated clas-
sification target is obtained from the test image. Then a bi-
nary classifier is used to perform the classification. A tar-
get value above 0 classifies the corresponding pixel as AW,
while a value below 0 puts the pixel as non-AW. The compu-
tation complexity for classification is O(npnf ), where np is
the number of pixels in the testing image and nf is the number
of features. Thus reducing the number of features decreases
the computation complexity.

3. EXPERIMENTS

3.1. Experimental Settings

Our dataset consists of 200 cervigram images of diverse ap-
pearance from the NCI/NLM archive with corresponding
multiple-expert boundary markings. 20 images are used for
testing and validation and the remaining 180 ones are used
for training. Four color spaces are tested, namely RGB, HSV,
LAB and Opponent color space [10]. Haar features are used
as the texture information. For each pixel, the feature vector



Table 3. Comparison of feature selection methods applied on this segmentation problem.

Methods p σp q σq DCS σDCS Sparsity
No regularization 0.601 0.035 0.663 0.031 0.478 0.102 0 %
L1 regularization 0.668 0.051 0.671 0.093 0.511 0.122 76 %
L2 regularization 0.675 0.060 0.704 0.069 0.533 0.118 2 %
Group sparsity (proposed) 0.693 0.053 0.725 0.185 0.617 0.123 60 %

consists of these color and texture features computed in a
patch centered around that pixel. In addition to our proposed
group sparsity method, we also implement the L1 and L2 reg-
ularization, as well as no regularization. The tuning parameter
λ is chosen by cross validation. Note that non-regularization
methods do not depend on the tuning parameter. All our
implementations are done in Matlab R2009a.

3.2. Evaluation of Features

Table 2 compares the segmentation performance of different
color and texture features. The mean and standard devia-
tion of sensitivity p, specificity q and dice similarity coef-
ficient (DSC) are reported. The performances of different
features are dissimilar. HSV performs better than other color
spaces, and color information achieves better results than tex-
ture. Generally, using single features does not perform well
since the feature distributions of AW and non-AW regions are
highly overlapped. Combining different types of features al-
leviates this problem. These experimental results confirm the
earlier discussion on the importance of increasing the number
of features.

3.3. Evaluation of Regularization Methods

Table 3 compares different regularization based feature se-
lection methods applied on this cervigram segmentation
problem. The sparsity is reported, which is defined as the
percentage of zero elements. The comparisons include non-
regularization, L1, L2 and group sparsity based regulariza-
tion.

Least squares without regularization under-performs on
this dataset since the linear system X can be singular or un-
derdetermined. L1, L2 and group sparsity achieve better per-
formance because the regularization terms improve the stabil-
ity of the system. Group sparsity procudes the best results on
this dataset since it leverages both sparsity and clustering pri-
ors and the clustering prior contributes to the stability of the
model. The solution obtained with L1 regularization is more
sparse than the one of the group sparsity. The reason is that
L1 method can arbitrarily prune features, while group sparsity
has structure constraints. Generally group sparsity achieves a
good tradeoff between performance and sparsity. Using this
method can decrease the computational complexity without
adversely affecting the performance.

4. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a group-sparsity-based feature-
selection method to automatically segment cervigram images
and simultaneously select relevant features. This algorithm
leverages both sparsity and clustering priors to prune the fea-
tures. Compared to other regularization methods, it shows
higher overall performance in this context, in terms of sen-
sitivity and specificity. Since an increasing number of fea-
tures are used in variant kinds of segmentation applications,
this algorithm may also be applicable for other segmentation
tasks. Future works will improve the feature selection algo-
rithm by considering structured sparsity [6], and combine our
method with smoothness-enforcing segmentation algorithms.
The structure sparsity focuses on more general structured in-
formation, which is not limited to a fixed group structure.
The features in cervigram images have strong local correla-
tions inside each group. Taking advantage of this property
may further improve the performance of our classifier. Mean-
while, our feature selection methods could also be embedded
in other more general two-label segmentation methods that
enforce local consistency of pixel labels, such as graph-cuts
or level sets.
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