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Abstract

This paper investigates a learning formulation calledstructured sparsity, which is a natural exten-
sion of the standard sparsity concept in statistical learning and compressive sensing. By allowing
arbitrary structures on the feature set, this concept generalizes the group sparsity idea that has
become popular in recent years. A general theory is developed for learning with structured spar-
sity, based on the notion of coding complexity associated with the structure. It is shown that if
the coding complexity of the target signal is small, then onecan achieve improved performance
by using coding complexity regularization methods, which generalize the standard sparse regu-
larization. Moreover, a structured greedy algorithm is proposed to efficiently solve the structured
sparsity problem. It is shown that the greedy algorithm approximately solves the coding complexity
optimization problem under appropriate conditions. Experiments are included to demonstrate the
advantage of structured sparsity over standard sparsity onsome real applications.

Keywords: structured sparsity, standard sparsity, group sparsity, tree sparsity, graph sparsity,
sparse learning, feature selection, compressive sensing

1. Introduction

We are interested in the sparse learning problem under the fixed design condition. Consider a
fixed set ofp basis vectors{x1, . . . ,xp} wherex j ∈ R

n for each j. Here,n is the sample size.
Denote byX the n× p data matrix, with columnj of X beingx j . Given a random observation
y = [y1, . . . ,yn] ∈ R

n that depends on an underlying coefficient vectorβ̄ ∈ R
p, we are interested in

the problem of estimatinḡβ under the assumption that the target coefficientβ̄ is sparse. Throughout
the paper, we consider fixed design only. That is, we assumeX is fixed, and randomization is with
respect to the noise in the observationy.
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We consider the situation that the true mean of the observationEy can be approximated by a
sparse linear combination of the basis vectors. That is, there exists a target vectorβ̄ ∈ R

p such that
eitherEy = Xβ̄ or Ey−Xβ̄ is small. Moreover, we assume thatβ̄ is sparse. Define the support of a
vectorβ ∈ R

p as
supp(β) = { j : β j 6= 0},

and‖β‖0 = |supp(β)|. A natural method for sparse learning isL0 regularization:

β̂L0 = arg min
β∈Rp

Q̂(β) subject to‖β‖0 ≤ s, (1)

wheres is the desired sparsity. For simplicity, unless otherwise stated, the objective function con-
sidered throughout this paper is the least squares loss

Q̂(β) = ‖Xβ−y‖2
2,

where‖ · ‖2 denotes the Euclidean norm.
Since this optimization problem is generally NP-hard, in practice, one often considers approxi-

mate solutions. A standard approach is convex relaxation ofL0 regularization toL1 regularization,
often referred to as Lasso (Tibshirani, 1996). Another commonly used approach is greedy algo-
rithms, such as the orthogonal matching pursuit (OMP) (Tropp and Gilbert,2007).

In practical applications, one often knows a structure on the coefficientvectorβ̄ in addition to
sparsity. For example, in group sparsity, one assumes that variables in thesame group tend to be
zero or nonzero simultaneously. The purpose of this paper is to study the more general estimation
problem under structured sparsity. If meaningful structures exist, we show that one can take advan-
tage of such structures to improve the standard sparse learning. Specifically, we study the following
natural extension ofL0 regularization to structured sparsity problems. It replaces theL0 constraint
in (1) by a more general termc(β), which we callcoding complexity. The precise definition will be
given later in Section 2, and some concrete examples will be given later in Section 4.

β̂constr= arg min
β∈Rp

Q̂(β) subject toc(β)≤ s. (2)

In this formulation,s is a tuning parameter. Alternatively, we may also consider the penalized
formulation

β̂pen= arg min
β∈Rp

[

Q̂(β)+λc(β)
]

, (3)

whereλ > 0 is a regularization parameter that can be tuned. Since (2) and (3) penalize the coding
complexityc(β), we shall call this approachcoding complexity regularization.

The optimization of either (2) or (3) is generally hard. For related problems,there are two com-
mon approaches to alleviate this difficulty. One is convex relaxation (L1 regularization to replaceL0

regularization for standard sparsity); the other is forward greedy selection (also called orthogonal
matching pursuit or OMP). We do not know any extensions ofL1 regularization like convex relax-
ation methods that can handle general structured sparsity formulations with provable performance
guarantees. In particular, the theoretical analysis in our companion paper (Huang and Zhang, 2010)
for group Lasso fails to yield meaningful bounds for more complex convexrelaxation methods that
are proposed for general structured sparsity formulations considered in this paper. For this reason,
we present an extension of the standard greedy OMP algorithm that can be applied to general struc-
tured sparsity problems, and more importantly, meaningful sparse recovery bounds can be obtained
for this algorithm. We call the resulting procedurestructured greedy algorithmor StructOMP, which
approximately solves (2). The details will be described later in Section 3.
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1.1 Related Work

The idea of using structure in addition to sparsity has been explored before. An example is group
structure, which has received much attention recently. For example, group sparsity has been con-
sidered for simultaneous sparse approximation (Wipf and Rao, 2007) andmulti-task compressive
sensing and learning (Argyriou et al., 2008; Ji et al., 2008) from the Bayesian hierarchical modeling
point of view. Under the Bayesian hierarchical model framework, data from all sources contribute
to the estimation of hyper-parameters in the sparse prior model. The shared prior can then be in-
ferred from multiple sources. He et al. recently extend the idea to the tree sparsity in the Bayesian
framework (He and Carin, 2009a,b). Although the idea can be justified using standard Bayesian
intuition, there are no theoretical results showing how much better (and under what kind of condi-
tions) the resulting algorithms perform. In the statistical literature, Lasso has been extended to the
group Lasso when there exist group/block structured dependencies among the sparse coefficients
(Yuan and Lin, 2006).

However, none of the above mentioned work was able to show advantage of using group struc-
ture. Although some theoretical results were developed in Bach (2008) and Nardi and Rinaldo
(2008), neither showed that group Lasso is superior to the standard Lasso. Koltchinskii and Yuan
(2008) showed that group Lasso can be superior to standard Lasso when each group is an infinite
dimensional kernel, by relying on the fact that meaningful analysis can beobtained for kernel meth-
ods in infinite dimension. Obozinski et al. (2008) considered a special case of group Lasso in the
multi-task learning scenario, and showed that the number of samples required for recovering the
exact support set is smaller for group Lasso under appropriate conditions. Huang and Zhang (2010)
developed a theory for group Lasso using a concept called strong group sparsity, which is a special
case of the general structured sparsity idea considered here. It wasshown in Huang and Zhang
(2010) that group Lasso is superior to standard Lasso for strongly group-sparse signals, which pro-
vides a convincing theoretical justification for using group structured sparsity. Related results can
also be found in Chesneau and Hebiri (2008) and Lounici et al. (2009).

While group Lasso works under the strong group sparsity assumption, it doesn’t handle the more
general structures considered in this paper. Several limitations of groupLasso were mentioned
by Huang and Zhang (2010). For example, group Lasso does not correctly handle overlapping
groups (in that overlapping components are over-counted); that is, a given coefficient should not
belong to different groups. This requirement is too rigid for many practical applications. To address
this issue, a method called composite absolute penalty (CAP) is proposed in Zhao et al. (2009)
which can handle overlapping groups. A satisfactory theory remains to bedeveloped to rigorously
demonstrate the effectiveness of the approach. In a related development, Kowalski and Torresani
(2009) generalized the mixed norm penalty to structured shrinkage, whichcan identify structured
significance maps and thus can handle the case of the overlapping groups. However, there were no
additional theory to justify their methods.

It is also worth pointing out that independent of this paper, two recent work (Jacob et al., 2009;
Jenatton et al., 2009) considered structured sparsity in the convex relaxation setting, and extended
group Lasso to more complicated sparse regularization conditions. These work complement the idea
considered in this paper, which focuses on a natural non-convex formulation of general structured
sparsity, as well as its greedy approximation. Again, since convex relaxation methods are more dif-
ficult to analyze in the structured sparsity setting with overlapping groups, asatisfactory theoretical
justification remains an open challenge. For example the analysis in our companion work (Huang
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and Zhang, 2010) on group Lasso does not correctly generalize to theabove mentioned convex
relaxation formulations because a straight-forward application leads to a bound proportional to the
number of overlapping groups covering a true variable. Unfortunately,at least for some of the struc-
tures considered in this paper (such as hierarchical tree structure), inorder to show the effectiveness
of using the extra structural information, we needΩ(log2(p)) groups to cover each variable, which
leads to a bound showing no benefits over standard Lasso if we directly apply the analysis of Huang
and Zhang (2010). It is worth noting that the lack of analysis doesn’t mean that formulations in Ja-
cob et al. (2009) and Jenatton et al. (2009) are ineffective. For example, some algorithmic techniques
are employed by Jenatton et al. (2009) to address the over-counting issue we mentioned above, but
the resulting procedures are non-trivial to analyze. In comparison the greedy algorithm is easier
to analyze and (being non-convex) doesn’t suffer from the above mentioned problem. Therefore
this paper focuses on developing a direct generalization of the popular OMP algorithm to handle
structured sparsity.

In addition to the above mentioned work, other structures have also been explored in the liter-
ature. For example, so-called tonal and transient structures were considered for sparse decomposi-
tion of audio signals in Daudet (2004). Grimm et al. (2007) investigated positive polynomials with
structured sparsity from an optimization perspective. The theoretical result there did not address
the effectiveness of such methods in comparison to standard sparsity. The closest work to ours is a
recent paper by Baraniuk et al. (2010). In that paper, model basedsparsity was considered and the
structures comes from the predefined models. It is important to note that sometheoretical results
were obtained there to show the effectiveness of their method in compressive sensing. Moreover a
generic algorithmic template was presented for structured sparsity. A drawback of the template is
that it relies on finding the pruning of residue or signal estimates to a subsetof variables with small
structured complexity. These steps have to be specifically designed for different data models under
specialized assumptions. In this regard, while the algorithmic template is generic,the actual imple-
mentation for the pruning steps will be quite different for different types of structures (for example,
see Cevher et al., 2009a,b). In other words, it does not provide a common scheme to represent their
"models" for different structured sparsity data. Different structure representation schemes have to
be built for different "models". It thus remains as an open issue how to develop a general theory
for structured sparsity, together with a general algorithm based on a generic structure representa-
tion scheme that can be applied to a wide class of such problems. The Structured OMP algorithm,
which is proposed in this paper, is an attempt to address this issue. Although each type of structures
requires an appropriately chosen block set (see Section 3 and Section 4), the algorithmic implemen-
tation based on a generic structure representation scheme is the same for different structures. We
note that in general it is much easier to pick an appropriate block set than to design a new pruning
algorithm.

We see from the above discussion that there exists extensive literature oncombining sparsity
with structured priors, with empirical evidence showing that one can achieve better performance by
imposing additional structures. However, it is still useful to establish a general theoretical frame-
work for structured sparsity that can quantify its effectiveness, as well as an efficient algorithmic
implementation. The goal of this paper is to develop such a general theory that addresses the fol-
lowing issues, where we pay special attention to the benefit of structured sparsity over the standard
non-structured sparsity:

• quantifying structured sparsity;
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• the minimal number of measurements required in compressive sensing;

• estimation accuracy under stochastic noise;

• an efficient algorithm that can solve a wide class of structured sparsity problems with mean-
ingful sparse recovery performance bounds.

2. Coding Complexity Regularization

In structured sparsity, not all sparse patterns are equally likely. For example, in group sparsity, coef-
ficients within the same group are more likely to be zeros or nonzeros simultaneously. This means
that if a sparse coefficient vector’s support set is consistent with the underlying group structure, then
it is more likely to occur, and hence incurs a smaller penalty in learning. One contribution of this
work is to formulate how to define structure on top of sparsity, and how to penalize each sparsity
pattern. We then develop a theory for the corresponding penalized estimators (2) and (3).

2.1 Structured Sparsity and Coding Complexity

In order to formalize the idea of structured sparsity, we denote byI = {1, . . . , p} the index set of
the coefficients. Consider any sparse subsetF ⊂ {1, . . . , p}, we assign a cost cl(F). In structured
sparsity, the cost ofF is an upper bound of the coding length ofF (number of bits needed to
representF by a computer program) in a pre-chosen prefix coding scheme. It is a well-known fact
in information theory (e.g., Cover and Thomas, 1991) that mathematically, the existence of such a
coding scheme is equivalent to

∑
F⊂I

2−cl(F) ≤ 1.

From the Bayesian statistics point of view, 2−cl(F) can be regarded as a lower bound of the proba-
bility of F . The probability model of structured sparse learning is thus: first generate the sparsity
patternF according to probability 2−cl(F); then generate the coefficients inF .

Definition 1 A cost functioncl(F) defined on subsets ofI is called a coding length (in base-2) if

∑
F⊂I ,F 6= /0

2−cl(F) ≤ 1.

We give/0 a coding length 0. The corresponding structured sparse coding complexity of F is defined
as

c(F) = |F|+cl(F).

A coding lengthcl(F) is sub-additive if

cl(F ∪F ′)≤ cl(F)+cl(F ′),

and a coding complexity c(F) is sub-additive if

c(F ∪F ′)≤ c(F)+c(F ′).
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Clearly if cl(F) is sub-additive, then the corresponding coding complexityc(F) is also sub-
additive. Note that for simplicity, we do not introduce a trade-off between|F| and cl(F) in the
definition ofc(F). However, in real applications, such a trade-off may be beneficial: forexample
we may definec(F) = γ|F|+cl(F), whereγ is considered a tuning parameter in the algorithm.

Based on the structured coding complexity of subsets ofI , we can now define the structured
coding complexity of a sparse coefficient vectorβ̄ ∈ R

p.

Definition 2 Giving a coding complexity c(F), the structured sparse coding complexity of a coeffi-
cient vectorβ̄ ∈ R

p is
c(β̄) = min{c(F) : supp(β̄)⊂ F}.

We will later show that if a coefficient vector̄β has a small coding complexityc(β̄), then β̄
can be effectively learned, with good in-sample prediction performance (in statistical learning) and
reconstruction performance (in compressive sensing). In order to see why the definition requires
adding|F| to cl(F), we consider the generative model for structured sparsity mentioned earlier. In
this model, the number of bits to encode a sparse coefficient vector is the sumof the number of bits to
encodeF (which is cl(F)) and the number of bits to encode nonzero coefficients inF (this requires
O(|F|) bits up to a fixed precision). Therefore the total number of bits required is cl(F)+O(|F|).
This information theoretical result translates into a statistical estimation result: without additional
regularization, the learning complexity for least squares regression withinany fixed support setF
is O(|F|). By adding the model selection complexity cl(F) for each support setF , we obtain an
overall statistical estimation complexity ofO(cl(F)+ |F|). We would like to mention that the coding
complexity approach in this paper is related to but extends the Union-of-Subspaces model of Lu and
Do (2008), which corresponds to a hard assignment of cl(F) to be either a constantc or+∞.

While the idea of using coding based penalization is clearly motivated by the minimumde-
scription length (MDL) principle, the actual penalty we obtain for structuredsparsity problems is
different from the standard MDL penalty for model selection. Moreover, our analysis differs from
some other MDL based analysis (such as Haupt and Nowak, 2006) that only deals with minimization
over a countably many candidate coefficientsβ̄ (the candidates are chosen a priori). This difference
is important in sparse learning, and analysis as in Haupt and Nowak (2006) cannot be applied to
the estimators of (2) or (3). Therefore in order to prevent confusion,we avoid using MDL in our
terminology. Nevertheless, one may consider our framework as a naturalcombination of the MDL
idea and the modern sparsity analysis. We will consider detailed examples of cl(F) in Section 4.

2.2 Theory of Coding Complexity Regularization

We assume sub-Gaussian noise as follows.

Assumption 1 Assume that{yi}i=1,...,n are independent (but not necessarily identically distributed)
sub-Gaussians: there exists a constantσ ≥ 0 such that∀i and∀t ∈ R,

Eyi et(yi−Eyi) ≤ eσ2t2/2.

Both Gaussian and bounded random variables are sub-Gaussian usingthe above definition. For
example, if a random variableξ ∈ [a,b], thenEξet(ξ−Eξ) ≤ e(b−a)2t2/8. If a random variable is

Gaussian:ξ ∼ N(0,σ2), thenEξetξ ≤ eσ2t2/2.
The following property of sub-Gaussian noise is important in our analysis.Our simple proof

yields a sub-optimal choice of the constants.
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Proposition 3 Let P∈ R
n×n be a projection matrix of rank k, andy satisfies Assumption 1. Then

for all η ∈ (0,1), with probability larger than1−η:

‖P(y−Ey)‖2
2 ≤ σ2[7.4k+2.7ln(2/η)].

We also need to generalize sparse eigenvalue condition, used in the modernsparsity analysis. It
is related to (and weaker than) the RIP (restricted isometry property) assumption (Candes and Tao,
2005) in the compressive sensing literature. This definition takes advantage of coding complexity,
and can be also considered as (a weaker version of) structured RIP.We introduce a definition.

Definition 4 For all F ⊂ {1, . . . , p}, define

ρ−(F) = inf

{

1
n
‖Xβ‖2

2/‖β‖2
2 : supp(β)⊂ F

}

,

ρ+(F) =sup

{

1
n
‖Xβ‖2

2/‖β‖2
2 : supp(β)⊂ F

}

.

Moreover, for all s> 0, define

ρ−(s) = inf{ρ−(F) : F ⊂ I ,c(F)≤ s},
ρ+(s) =sup{ρ+(F) : F ⊂ I ,c(F)≤ s}.

In the theoretical analysis, we need to assume thatρ−(s) is not too small for somes that is
larger than the signal complexity. Since we only consider eigenvalues for submatrices with small
costc(β̄), the sparse eigenvalueρ−(s) can be significantly larger than the corresponding ratio for
standard sparsity (which will consider all subsets of{1, . . . , p} up to sizes). For example, for ran-
dom projections used in compressive sensing applications, the coding length c(supp(β̄)) is O(k ln p)
in standard sparsity, but can be as low asc(supp(β̄)) = O(k) in structured sparsity (if we can guess
supp(β̄) approximately correctly. Therefore instead of requiringn= O(k ln p) samples, we require
only O(k+ cl(supp(β̄))). The difference can be significant whenp is large and the coding length
cl(supp(β̄))≪ k ln p. An example for this is group sparsity, where we havep/k0 even sized groups,
and variables in each group are simultaneously zero or nonzero. The coding length of the groups are
(k/k0) ln(p/k0), which is significantly smaller thank ln p whenp is large (see Section 4 for details).

More precisely, we have the following random projection sample complexity bound for the
structured sparse eigenvalue condition. The theorem implies that the structured RIP condition is sat-
isfied with sample size n = O(k + (k/k0) ln(p/k0)) in group sparsity (wheres =
O(k+(k/k0) ln(p/k0))) rather thann= O(k ln(p)) in standard sparsity (wheres= O(k ln p)). For
hierarchical tree sparsity (see Section 4 for details), it requiresn= O(k) examples (withs= O(k)),
which matches the result of Baraniuk et al. (2010). Therefore Theorem 6 shows that in the com-
pressive sensing applications, it is possible to reconstruct signals with fewer number of random
projections by using structured sparsity.

Proposition 5 (Structured-RIP) Suppose that elements in X are iid standard Gaussian random
variables N(0,1). For any t> 0 andδ ∈ (0,1), let

n≥ 8
δ2 [ln3+ t +sln(1+8/δ)].
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Then with probability at least1−e−t , the random matrix X∈R
n×p satisfies the following structured-

RIP inequality for all vector̄β ∈ R
p with coding complexity no more than s:

(1−δ)‖β̄‖2 ≤
1√
n
‖Xβ̄‖2 ≤ (1+δ)‖β̄‖2. (4)

Although in the theorem, we assume Gaussian random matrix in order to state explicit constants,
it is clear that similar results hold for other sub-Gaussian random matrices. Note that the proposed
generalization of RIP extends related results in compressive sensing andstatistics (Baraniuk et al.,
2010; Huang and Zhang, 2010).

The following result gives a performance bound for constrained coding complexity regulariza-
tion in (2). The 2-norm parameter estimation bound‖β̂− β̄‖2 requires thatρ−(·) > 0 (otherwise,
the bound becomes trivial). For random design matrixX, the lower-bound in (4) is thus needed.

Theorem 6 Suppose that Assumption 1 is valid. Consider any fixed targetβ̄ ∈ R
p. Then with

probability exceeding1−η, for all ε ≥ 0 andβ̂ ∈ R
p such that:Q̂(β̂)≤ Q̂(β̄)+ ε, we have

‖Xβ̂−Ey‖2 ≤ ‖Xβ̄−Ey‖2+σ
√

2ln(6/η)+2(7.4σ2c(β̂)+4.7σ2 ln(6/η)+ ε)1/2.

Moreover, if the coding scheme c(·) is sub-additive, then

nρ−(c(β̂)+c(β̄))‖β̂− β̄‖2
2 ≤ 10‖Xβ̄−Ey‖2

2+37σ2c(β̂)+29σ2 ln(6/η)+2.5ε.

This theorem immediately implies the following result for (2):∀β̄ such thatc(β̄)≤ s,

1√
n
‖Xβ̂constr−Ey‖2 ≤

1√
n
‖Xβ̄−Ey‖2+

σ√
n

√

2ln(6/η)+
2σ√

n
(7.4s+4.7ln(6/η))1/2,

‖β̂constr− β̄‖2
2 ≤

1

ρ−(s+c(β̄))n
[

10‖Xβ̄−Ey‖2
2+37σ2s+29σ2 ln(6/η)

]

.

Although for simplicity this paper does not consider the problem of estimatingρ−(s+ c(β̄)), it is
possible to estimate it approximately (for example, using ideas of d’Aspremontet al., 2008). We
can generally expectρ−(s+ c(β̄)) = O(1) by assuming that the sample size is sufficiently large
according to Proposition 5. The result immediately implies that as sample sizen→ ∞ ands/n→
0, the root mean squared error prediction performance‖Xβ̂−Ey‖2/

√
n converges to the optimal

prediction performance infc(β̄)≤s‖Xβ̄ −Ey‖2/
√

n. This result is agnostic in that even if‖Xβ̄ −
Ey‖2/

√
n is large, the result is still meaningful because it says the performance of the estimator̂β

is competitive to the best possible estimator in the classc(β̄)≤ s.
In compressive sensing applications, we takeσ = 0, and we are interested in recoveringβ̄

from random projections. For simplicity, we letXβ̄ = Ey = y, and our result shows that the con-
strained coding complexity penalization method achieves exact reconstruction β̂constr= β̄ as long as
ρ−(2c(β̄))> 0 (by settings= c(β̄)). According to Proposition 5, this is possible when the number
of random projections (sample size) reachesn= O(c(β̄)). This is a generalization of corresponding
results in compressive sensing (Candes and Tao, 2005). As we have pointed out earlier, this num-
ber can be significantly smaller than the standard sparsity requirement ofn = O(‖β̄‖0 ln p), if the
structure imposed in the formulation is meaningful.

As an example, for group sparsity (see Section 4), we considerm pre-defined groups, each of
size k0. If the support ofβ̄ is covered byg of the m groups, we know from Section 4 that the
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complexity can be defined ass= glog2(2m)+gk0. In comparison, the standard sparsity complexity
is given bys= ‖β̄‖0 log2(2p), which may be significantly larger ifg ≪ ‖β̄‖0 (that is, the group
structure is meaningful). It can be shown that the group-Lasso estimator may also achieve the group
sparsity complexity ofs= glog2(2m) + gk0 (Huang and Zhang, 2010; Lounici et al., 2009), but
the result for group-Lasso requires a stronger condition involving structured-RIP. Note that the first
bound in Theorem 6 does not require any RIP assumption, while the second bound only requires a
very weak dependency of the formρ−(·)> 0. In contrast, the required dependency for group Lasso
is significantly stronger, and details can be seen in Huang and Zhang (2010), Lounici et al. (2009)
and Nardi and Rinaldo (2008). Although the result for the coding complexity estimator (2) is better
due to weaker RIP dependency, we shall point out that it doesn’t meanthat for group sparsity, we
should use (2) instead of group-Lasso in practice. This is because solving (2) requires non-convex
optimization, while group-Lasso is a convex formulation. This is why we will consider an efficient
algorithm to approximately solve (2) in Section 3.

Similar to Theorem 6, we can obtain the following result for (3). A related result for standard
sparsity under Gaussian noise can be found in Bunea et al. (2007).

Theorem 7 Suppose that Assumption 1 is valid. Consider any fixed targetβ̄ ∈ R
p. Then with

probability exceeding1−η, for all λ > 7.4σ2 and a≥ 7.4σ2/(λ−7.4σ2), we have

‖Xβ̂pen−Ey‖2
2 ≤ (1+a)2‖Xβ̄−Ey‖2

2+(1+a)λc(β̄)+σ2(10+5a+7a−1) ln(6/η).

Unlike the result for (2), the prediction performance‖Xβ̂pen−Ey‖2 of the estimator in (3) is compet-
itive to (1+a)‖Xβ̄−Ey‖2, which is a constant factor larger than the optimal prediction performance
‖Xβ̄−Ey‖2. By optimizingλ anda, it is possible to obtain a similar result as that of Theorem 6.
However, this requires tuningλ, which is not as convenient as tunings in (2). Note that both results
presented here, and those in Bunea et al. (2007) are superior to the more traditional least squares
regression results withλ explicitly fixed (for example, theoretical results for AIC). This is because
one can only obtain the form presented in Theorem 6 by tuningλ. Such tuning is important in real
applications.

3. Structured Greedy Algorithm

In this section, we describe a generalization of the OMP algorithm for standard sparsity. Our gen-
eralization, which we refer to as structured greedy algorithm or simply StructOMP, takes advantage
of block structures to approximately solve the structured sparsity formulation(2). It would be
worthwhile to mention that the notion of block structures here is different from block sparsity in
model-based compressive sensing (Baraniuk et al., 2010).

Note that in this algorithm, we assume thatc(F) is relatively easy to compute (up to a constant)
for any givenF . For this purpose, we may use a relatively easy to compute upper bound ofc(F).
For example, for graph structured sparsity described later in Section 4, we may simply use the right
hand side of Proposition 11 as the definition ofc(F). If the maximum degree of a graph is small,
we can simply usec(F) = gln(p)+ |F|, whereg is the number of connected components inF . For
practical purposes, a multiplicative constant in the definition ofc(F) is not important because it can
be absorbed into the tuning parameters.
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3.1 Algorithm Description

The main idea of StructOMP is to limit the search space of the greedy algorithm to small blocks. We
will show that if a coding scheme can be approximated with blocks, then StructOMP is effective.
Additional discussion of block approximation can be found in Section 4.

Formally, we consider a subsetB ⊂ 2I . That is, each element (which we call a block or a
base block) ofB is a subset ofI . We callB a block set ifI = ∪B∈BB and all single element
sets{ j} belong toB ( j ∈ I ). Note thatB may contain additional non single-element blocks. The
requirement ofB containing all single element sets is for notational convenience, as it implies that
every subsetF ⊂ I can be expressed as the union of blocks inB. Mathematically this requirement
is non-important because we may simply assign∞ coding length to single-element blocks, which is
equivalent to excluding these single element sets.

Input: (X,y), B ⊂ 2I , s> 0
Output:F(k) andβ(k)

let F(0) = /0 andβ(0) = 0
for k= 1,2, . . .

selectB(k) ∈ B to maximize progress (∗)
let F(k) = B(k)∪F(k−1)

let β(k) = argminβ∈Rp Q̂(β) subject to supp(β)⊂ F(k)

if (c(β(k))> s) break
end

Figure 1: Structured Greedy Algorithm

In Figure 1, we are given a set of blocksB that contains subsets ofI . Instead of searching all
subsetsF ⊂ I up to a certain complexity|F|+c(F), which is computationally infeasible, we search
only the blocks restricted toB. It is assumed that searching overB is computationally manageable.
In practice, the computational cost is linear in the number of base blocks|B|.

At each step(∗), we try to find a block fromB to maximize progress. It is thus necessary to
define a quantity that measures progress. Our idea is to approximately maximizethe gain ratio:

Q̂(β(k−1))− Q̂(β(k))

c(β(k))−c(βk−1)
,

which measures the reduction of objective function per unit increase of coding complexity. This
greedy criterion is a natural generalization of the standard greedy algorithm, and essential in our
analysis. For least squares regression, we can define the gain ratio asfollows:

φ(B) =
‖PB−F(k−1)(Xβ(k−1)−y)‖2

2

c(B∪F(k−1))−c(F(k−1))
, (5)

where
PF = XF(X

⊤
F XF)

+X⊤
F

is the projection matrix to the subspaces generated by columns ofXF . Here(X⊤
F XF)

+ denotes the
Moore-Penrose pseudo-inverse.
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More precisely, for least squares regression, at each step(∗) of Figure 1, we select a blockB(k)

that satisfies the condition
φ(B(k))≥ νmax

B∈B
φ(B) (6)

for someν ∈ (0,1]. We may regardν as a fixed approximation ratio (to ensure the quality of
approximate optimization) that will appear in our analysis, although the algorithmdoes not have to
pick ν a priori.

The reason to allow approximate maximization in (6) is that our practical implementation of
StructOMP maximizes a simpler quantity

φ̃(B) =
‖X⊤

B−F(k−1)(Xβ(k−1)−y)‖2
2

c(B∪F(k−1))−c(F(k−1))
, (7)

which is more efficient to compute (especially when blocks are overlapping). Since the ratio

‖X⊤
B−F(k−1)r‖2

2/‖PB−F(k−1)r‖2
2

is bounded betweenρ+(B) andρ−(B) (these quantities are defined in Definition 4), we know that
maximization ofφ̃(B) leads to an approximate maximization ofφ(B) with ν ≥ ρ−(B)/ρ+(B). That
is, maximization of (7) in our practical StructOMP implementation corresponds to an approximate
maximization in (6). Moreover,ν only appears in our analysis, and it does not appear explicitly in
our implementation.

Note that we shall ignoreB∈ B such thatB⊂ F(k−1), and just let the corresponding gain to be
0. Moreover, if there exists a base blockB 6⊂ F(k−1) but c(B∪F(k−1)) ≤ c(F(k−1)), we can always
selectB and letF(k) = B∪F(k−1) (this is because it is always beneficial to add more features into
F(k) without additional coding complexity). We assume this step is always performed if such a
B∈ B exists. The non-trivial case isc(B∪F(k−1))> c(F(k−1)) for all B∈ B; in this case bothφ(B)
andφ̃(B) are well defined.

3.2 Convergence Analysis

It is important to understand that the block structure is only used to limit the search space in the
structured greedy algorithm. However, our theoretical analysis shows that if in addition, the un-
derlying coding scheme can be approximated by block coding using base blocks employed in the
greedy algorithm, then the algorithm is effective in minimizing (2). Although one does not need to
know the specific approximation in order to use the greedy algorithm, knowingits existence (which
can be shown for the examples discussed in Section 4) guarantees the effectiveness of the algorithm.
It is also useful to understand that our result does not imply that the algorithm won’t be effective if
the actual coding scheme cannot be approximated by block coding.

We shall introduce a definition before stating our main results.

Definition 8 GivenB ⊂ 2I , define

ρ0(B) = max
B∈B

ρ+(B), c0(B) = max
B∈B

c(B)

and

c(β̄,B) = min

{

b

∑
j=1

c(B̄ j) : supp(β̄)⊂
b⋃

j=1

B̄ j (B̄ j ∈ B);b≥ 1

}

.
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The following theorem shows that ifc(β̄,B) is small, then one can use the structured greedy algo-
rithm to find a coefficient vectorβ(k) that is competitive tōβ, and the coding complexityc(β(k)) is
not much worse than that ofc(β̄,B). This implies that if the original coding complexityc(β̄) can be
approximated by block complexityc(β̄,B), then we can approximately solve (2).

Theorem 9 Suppose the coding scheme is sub-additive. Considerβ̄ andε such that

ε ∈ (0,‖y‖2
2−‖Xβ̄−y‖2

2]

and

s≥ ρ0(B)c(β̄,B)
νρ−(s+c(β̄))

ln
‖y‖2

2−‖Xβ̄−y‖2
2

ε
.

Then at the stopping time k, we have

Q̂(β(k))≤ Q̂(β̄)+ ε.

By Theorem 6, the result in Theorem 9 implies that

‖Xβ(k)−Ey‖2 ≤ ‖Xβ̄−Ey‖2+σ
√

2ln(6/η)+2σ
√

7.4(s+c0(B))+4.7ln(6/η)+ ε/σ2,

‖β(k)− β̄‖2
2 ≤

10‖Xβ̄−Ey‖2
2+37σ2(s+c0(B))+29σ2 ln(6/η)+2.5ε

ρ−(s+c0(B)+c(β̄))n
.

The result shows that in order to approximate a signalβ̄ up to accuracyε, one needs to use
coding complexityO(ln(1/ε))c(β̄,B). Now, consider the case thatB contains small blocks and
their sub-blocks with equal coding length, and the actual coding scheme can be approximated (up
to a constant) by block coding generated byB; that is,c(β̄,B) = O(c(β̄)). In this case we need
O(sln(1/ε)) to approximate a signal with coding complexitys. For this reason, we will extensively
discuss block approximation in Section 4.

In order to improve forward greedy procedures, backward greedystrategies can be employed,
as shown in various recent works such as Zhang (2011). For simplicity,we will not analyze such
strategies in this paper. It is worth mentioning that in practice, greedy algorithm is often adequate.
In particular theO(ln(1/ε)) factor vanishes for a weakly sparse target signalβ̄, where the magnitude
of its coefficients gradually decrease to zero. This concept has been considered in previous work
such as Donoho (2006) and Baraniuk et al. (2010). In such case, we may choose an appropriate
optimal stopping point to avoid theO(ln(1/ε)) factor. In fact, practitioners often observe that OMP
can be more effective than Lasso for weakly sparse target signals (in spite of stronger theoretical
results for Lasso with strongly sparse target signals). This will be confirmed in our experiments
as well. Without cluttering the main text, we leave the detailed analysis of StructOMPfor weakly
sparse signals to Appendix F. Our analysis is the first theoretical justification of this empirical
phenomenon.

4. Structured Sparsity Examples

Before giving detailed examples, we describe a general coding scheme calledblock coding, which
is an expansion of Definition 8. The basic idea of block coding is to define a coding scheme on
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a small number of base blocks (a block is a subset ofI ), and then define a coding scheme on all
subsets ofI using these base blocks.

Consider block setB ⊂ 2I . We assume that every subsetF ⊂ I can be expressed as the union
of blocks inB. Let cl0 be a code length onB:

∑
B∈B

2−cl0(B) ≤ 1,

we define cl(B) = cl0(B)+1 for B∈ B. It not difficult to show that the following cost function on
F ⊂ I is a coding length

clB(F) = min

{

b

∑
j=1

cl(B j) : F =
b⋃

j=1

B j (B j ∈ B)

}

.

This is because

∑
F⊂I ,F 6= /0

2−cl(F) ≤ ∑
b≥1

∑
Bℓ∈B:1≤ℓ≤b

2−∑b
ℓ=1 cl(Bℓ) ≤ ∑

b≥1

b

∏
ℓ=1

∑
Bℓ∈B

2−cl(Bℓ) ≤ ∑
b≥1

2−b = 1.

We call the coding scheme clB block coding. It is clear from the definition that block coding is
sub-additive.

From Theorem 9 and the discussions thereafter, we know that under appropriate conditions, a
target coefficient vector with a small block coding complexity can be approximately learned using
the structured greedy algorithm. This means that the block coding scheme hasimportant algorithmic
implications. That is, if a coding scheme can be approximated by block coding with a small number
of base blocks, then the corresponding estimation problem can be approximately solved using the
structured greedy algorithm.

For this reason, we shall pay special attention to block coding approximationschemes for ex-
amples discussed below. In particular, a coding scheme cl(·) can be polynomially approximated
by block coding if there exists a block coding scheme clB with polynomial (in p) number of base
blocks inB, such that there exists a positive constantCB independent ofp:

clB(F)≤CB cl(F).

That is, up to a constant, the block coding scheme clB() is dominated by the coding scheme cl().
While it is possible to work with blocks with non-uniform coding schemes, for simplicity ex-

amples provided in this paper only consider blocks with uniform coding, whichis similar to the
representation used in the Union-of-Subspaces model of Lu and Do (2008).

4.1 Standard Sparsity

A simple coding scheme is to code each subsetF ⊂ I of cardinalityk usingk log2(2p) bits, which
corresponds to block coding withB consisted only of single element sets, and each base block has
a coding length cl0 = log2 p. This corresponds to the complexity for the standard sparse learning.

A more general version is to consider single element blocksB = {{ j} : j ∈ I}, with a non-
uniform coding scheme cl0({ j}) = c j , such that∑ j 2

−c j ≤ 1. It leads to a non-uniform coding
length onI as

cl(B) = |B|+ ∑
j∈B

c j .
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In particular, if a featurej is likely to be nonzero, we should give it a smaller coding lengthc j , and
if a feature j is likely to be zero, we should give it a larger coding length. In this case, a subset
F ⊂ I has coding length cl(F) = ∑ j∈F(1+c j).

4.2 Group Sparsity

The concept of group sparsity has appeared in various recent work, such as the group Lasso in Yuan
and Lin (2006) or multi-task learning in Argyriou et al. (2008). Consider apartition ofI = ∪m

j=1G j

into m disjoint groups. LetBG contain them groups{G j}, andB1 containp single element blocks.
The strong group sparsity coding scheme is to give each element inB1 a code-length cl0 of ∞,
and each element inBG a code-length cl0 of log2m. Then the block coding scheme with blocks
B = BG ∪B1 leads to group sparsity, which only looks for signals consisted of the groups. The
resulting coding length is: cl(B) = glog2(2m) if B can be represented as the union ofg disjoint
groupsG j ; and cl(B) = ∞ otherwise.

Note that if the support of the target signalF can be expressed as the union ofg groups, and
each group size isk0, then the group coding lengthglog2(2m) can be significantly smaller than the
standard sparsity coding length of|F| log2(2p) = gk0 log2(2p). As we shall see later, the smaller
coding complexity implies better learning behavior, which is essentially the advantage of using
group sparse structure. It was shown by Huang and Zhang (2010) that strong group sparsity defined
above also characterizes the performance of group Lasso. Therefore if a signal has a pre-determined
group structure, then group Lasso is superior to the standard Lasso.

An extension of this idea is to allow more general block coding length for cl0(G j) and cl0({ j})
so that

m

∑
j=1

2−cl0(G j )+
p

∑
j=1

2−cl0({ j}) ≤ 1.

This leads to non-uniform coding of the groups, so that a group that is more likely to be nonzero
is given a smaller coding length. If feature setF can be represented as the union ofg groups
G j1, . . . ,G jg, then its coding length is cl(F) = g+∑g

j=1cl0(G j).

Figure 2: Group sparsity: nodes are variables, and black nodes are selected variables

Group sparsity is a special case of graph sparsity discussed below. Figure 2 shows an example
of group sparsity, where the variables are represented by nodes, and the selected variables are rep-
resented by black nodes. Each pre-defined group is represented asa connected components in the
graph, and the example contains six groups. Two groups, the first and the third from the left, are se-
lected in the example. The number of selected variables (black nodes) is seven. Therefore we have
g= 2 and|F|= 7. If we encode each group uniformly, then the coding length is cl(F) = 2log2(12).
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4.3 Hierarchical Sparsity

One may also create a hierarchical group structure. A simple example is wavelet coefficients of a
signal (Mallat, 1999). Another simple example is a binary tree with the variablesas leaves, which
we describe below. Each internal node in the tree is associated with three options: only left child,
only right child, or both children; each option can be encoded in log23 bits.

Given a subsetF ⊂ I , we can go down from the root of the tree, and at each node, decide
whether only left child contains elements ofF , or only right child contains elements ofF , or both
children contain elements ofF . Therefore the coding length ofF is log23 times the total number
of internal nodes leading to elements ofF . Since each leaf corresponds to no more than log2 p
internal nodes, the total coding length is no worse than log23log2 p|F|. However, the coding length
can be significantly smaller if nodes are close to each other or are clustered. In the extreme case,
when the nodes are consecutive, we haveO(|F|+ log2 p) coding length. More generally, if we
can order elements inF asF = { j1, . . . , jq}, then the coding length can be bounded as cl(F) =
O(|F|+ log2 p+∑q

s=2 log2minℓ<s| js− jℓ|).
If all internal nodes of the tree are also variables inI (for example, in the case of wavelet

decomposition), then one may consider feature setF with the following property: if a node is
selected, then its parent is also selected. This requirement is very effective in wavelet compression,
and often referred to as the zero-tree structure (Shapiro, 1993). Similar requirements have also been
applied in statistics (Zhao et al., 2009) for variable selection and in compressive sensing (Baraniuk
et al., 2010). The argument presented in this section shows that if we require F to satisfy the zero-
tree structure, then its coding length is at mostO(|F|), without any explicit dependency on the
dimensionalityp. This is because one does not have to reach a leave node. Figure 3 shows an
example of hierarchical sparsity, where the nodes of the tree are variables, and black nodes indicate
those variables that are selected. The total number of selected variables (number of black nodes)
is |F| = 8. This example obeys the requirement that if a node is selected, then its parent is also
selected. Therefore the complexity is measured byO(|F|).

Figure 3: Hierarchical sparsity: nodes are variables, and black nodes are selected variables

The tree-based coding scheme discussed in this section can be polynomially approximated by
block coding using no more thanp1+δ base blocks (δ > 0). The idea is similar to that of the image
coding example in the more general graph sparsity scheme which we discussnext.
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4.4 Graph Sparsity

We consider a generalization of the hierarchical and group sparsity ideas by employing a (directed
or undirected) graph structureG on I . To the best of our knowledge, this general structure has not
been considered in any previous work.

In graph sparsity, each variable (an element ofI ) is a node ofG but G may also contain ad-
ditional nodes that are not variables. In order to take advantage of the graph structure, we favor
connected regions (that is, nodes that are grouped together with respect to the graph structure). The
following result defines a coding length on graphs based on the underlying graph structure. We
leave its analysis to Appendix A.

Proposition 10 Let G be a graph with maximum degree dG. There exists a constant CG ≤ 2log2(1+
dG) such that for any probability distribution q on G (∑v∈Gq(v) = 1 and q(v) ≥ 0 for v ∈ G), the
following quantity (which we call graph coding) is a coding length on2G:

cl(F) =CG|F|+g−
g

∑
j=1

max
v∈Fj

log2(q(v)),

where F⊂ 2G can be decomposed into the union of g connected components F= ∪g
j=1Fj .

Note that graph coding is sub-additive. As a concrete example, we consider image processing,
where each image is a rectangle of pixels (nodes); each pixel is connected to four adjacent pixels,
which forms the underlying graph structure. We may takeq(v) = 1/p for all v∈ G, wherep= |G|
is the number of variables. Proposition 10 implies that ifF is composed ofg connected regions,
then the coding length isglog2(2p)+2log2(5)|F|, which can be significantly better than standard
sparse coding length of|F| log2(2p). For example, Figure 4 shows an image grid, where nodes are
variables and selected variables are denoted by black nodes. In this example, the selected variables
have two connected components (that is,g= 2): one in the top-left part, and the other in the bottom-
right part of the grid. The total number of selected variables (the number of black nodes) is|F|= 11.

Figure 4: Graph sparsity: nodes are variables, and black nodes are selected variables

Note that group sparsity is a special case of graph sparsity, where each group is one connected
region, as shown in Figure 2. We may also link adjacent groups to form the more general line-
structured sparsity as in Figure 2. The advantage of line structure over group structure is that we do
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not need to know the specific group divisions a priori as in Figure 2. From Proposition 10, similar
coding complexity can be obtained as long asF can be covered by a small number of connected
regions. Tree-structured hierarchical sparsity is also a special caseof graph sparsity with a single
connected region containing the root (we may takeq(root) = 1). In fact, one may generalize this
concept as follows. We consider a special case of sparse sparsity where we limitF to be a connected
region that contains a fixed starting nodev0. We can simply letq(v0) = 1, and the coding length of
F is O(|F|), which is independent of the dimensionalityp. This generalizes the similar claim for
the zero-tree structure described earlier.

Figure 5: Line-structured sparsity: nodes are variables, and black nodes are selected variables

The following result shows that under uniform encoding of the nodesq(v) = 1/p for v ∈ G,
general graph coding schemes can be polynomially approximated with block coding. The idea is to
consider relatively small sized base blocks consisted of nodes that are close together with respect to
the graph structure, and then use the induced block coding scheme to approximate the graph coding.

Proposition 11 Let G be a graph with maximum degree dG, and p= |G|. Consider any numberδ >
0 such that L= δ log2 p is an even integer. LetB be the set of connected nodes of size up to L; that is,
B∈B is a connected region in G such that|B| ≤ L. Then there exists a constant CG ≤ 2log2(1+dG),
such that|B| ≤ p1+CGδ. If we consider the uniform code-lengthcl0(B) = (1+CGδ) log2 p for all
B∈ B, then the induced block-coding schemeclB satisfies

clB(F)≤ g(1+CGδ) log2 p+2(CG+δ−1)|F|.

where g is the number of connected regions in F.

The result means that graph sparsity can be polynomially approximated with a block coding
scheme if we letq(v) = 1/p for all v∈ G. As we have pointed out, block approximation is useful
because the latter is required in the structured greedy algorithm which we propose in this paper.

Note that a refined result holds for hierarchical sparsity (where we have q(root) = 1) using
block approximation that does not explicitly depend on log2 p. In this case, for each tree depth
ℓ = 1,2,3, . . ., we can restrict the underlying tree upto depthℓ, and apply Proposition 11 on the
restricted tree. Using this idea, the coding length forF depends explicitly on the maximum depth
of F in the tree instead of log2 p.

4.5 Random Field Sparsity

Let zj ∈ {0,1} be a random variable forj ∈ I that indicates whetherj is selected or not. The most
general coding scheme is to consider a joint probability distribution ofz= [z1, . . . ,zp]. The coding
length forF can be defined as− log2 p(z1, . . . ,zp) with zj = I( j ∈ F) indicating whetherj ∈ F or
not.

Such a probability distribution can often be conveniently represented as a binary random field
on an underlying graph. In order to encourage sparsity, on average, the marginal probabilityp(zj)
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should take 1 with probability close toO(1/p), so that the expected number ofj ’s with zj = 1
is O(1). For disconnected graphs (zj are independent), the variableszj are iid Bernoulli random
variables with probability 1/p being one. In this case, the coding length of a setF is |F| log2(p)−
(p−|F|) log2(1−1/p)≈ |F| log2(p)+1. This is essentially the probability model for the standard
sparsity scheme. In a more sophisticated situation, one may also letE(zj) to grow with sample size
n. This is useful in non-parametric statistics.

We note that random field model has been considered in Cevher et al. (2009a). For many such
models, it is possible to approximate a general random field coding scheme withblock coding by
using approximation methods in the graphical model literature. However, such approximations are
problem specific, and the details are beyond the scope of this paper.

5. Experiments

The purpose of these experiments is to demonstrate the advantage of structured sparsity over stan-
dard sparsity. We compare the proposed StructOMP to OMP and Lasso, which are standard algo-
rithms to achieve sparsity but without considering structure (Tibshirani, 1996; Tropp and Gilbert,
2007). For graph sparsity, the choice ofc(F) is simplyc(F) = glog2 p+ |F|, whereg is the number
of connected regions ofF . This is adequate based on the discussion in Section 3. However, as
pointed out after Definition 1, a better method is to usec(F) = glog2 p+ γ|F|, where we tuneγ
appropriately. We observe that in practice, such tuning often improves performance. Nevertheless,
in our experiments, we only report results with fixedγ = 1 for simplicity. This also means our ex-
periments only demonstrate the advantage of StructOMP very conservatively without fine-tuning.
The base blocks used in StructOMP are described in each experiment. Parameters (such ass in
StructOMP orλ in Lasso) are tuned by cross-validation on the training data. We test various aspects
of our theory to check whether the experimental results are consistent withthe theory. Although
in order to fully test the theory, one should also verify the RIP (or structured RIP) assumptions, in
practice this is difficult to check precisely (however, it is possible to verifyit approximately using
ideas of d’Aspremont et al., 2008). Therefore in the following, we shallonly study whether the ex-
perimental results are consistent with what can be expected from our theory, without verifying the
detailed assumptions. The experimental protocols follow the setup of compressive sensing, where
the original signals are projected using random projections, with noise added. Our goal is to recover
the original signals from the noise corrupted projections.

In the experiments, we use Lasso-modified least angle regression (LARS/Lasso) as the solver of
Lasso (B. Efron and Tibshirani, 2004). In order to quantitatively compare performance of different
algorithms, we use recovery error, defined as the relative differencein 2-norm between the estimated
sparse coefficient vector̂βest and the ground-truth sparse coefficientβ̄: ‖β̂est− β̄‖2/‖β̄‖2. Our
experiments focus on graph sparsity, with several different underlying graph structures. Note that
graph sparsity is more general than group sparsity; in fact connected regions may be regarded as
dynamic groups that are not pre-defined. However, for illustration, weinclude a comparison with
group Lasso using some 1D simulated examples, where the underlying structure can be more easily
approximated by pre-defined groups. Since additional experiments involving more complicated
structures are more difficult to approximate by pre-defined groups, we exclude group-Lasso in those
experiments.

All experiments were conducted on a 2.4GHz PC in Matlab. The code for ourimplementation
of StructOMP can be obtained fromhttp://ranger.uta.edu/~huang/Downloads.htm. In the
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simulation experiments, we usek to denote the sparsity (number of nonzeros) of the true signal, and
this should not be confused with the number of iterationsk which we used earlier in the description
of the StructOMP algorithm.

5.1 Simulated 1D Signals with Line-Structured Sparsity

In the first experiment, we randomly generate a 1D structured sparse signal with values±1, where
data dimensionp = 512, sparsity numberk = 64 and group numberg = 4. The support set of
these signals is composed ofg connected regions. Here, each component of the sparse coefficient
is connected to two of its adjacent components, which forms the underlying graph structure. The
graph sparsity concept introduced earlier is used to compute the coding length of sparsity patterns
in StructOMP. The projection matrixX is generated by creating ann× p matrix with i.i.d. draws
from a standard Gaussian distributionN(0,1). For simplicity, the rows ofX are normalized to unit
magnitude. Zero-mean Gaussian noise with standard deviationσ = 0.01 is added to the measure-
ments. Our task is to compare the recovery performance of StructOMP to those of OMP, Lasso and
group Lasso for these structured sparsity signals under the frameworkof compressive sensing.

Figure 6 shows one instance of generated signal and the corresponding recovered results by
different algorithms whenn= 160. Since the sample sizen is not big enough, OMP and Lasso do
not achieve good recovery results, whereas the StructOMP algorithm achieves near perfect recovery
of the original signal. We also include group Lasso in this experiment for illustration. We use
predefined consecutive groups that do not completely overlap with the support of the signal. Since
we do not know the correct group size, we just try group Lasso with several different group sizes
(gs=2, 4, 8, 16). Although the results obtained with group Lasso are better than those of OMP
and Lasso, they are still inferior to the results with StructOMP. As mentioned, this is because the
pre-defined groups do not completely overlap with the support of the signal, which reduces the
efficiency. In StructOMP, the base blocks are simply small connected line segments of size gs=3:
that is, one node plus its two neighbors. This choice is only for simplicity, and italready produces
good results in our experiments. If we include larger line segments into the base blocks (e.g.,
segments of size gs=4,5, etc), one can expect even better performancefrom StructOMP.

To study how the sample sizen effects the recovery performance, we vary the sample size and
record the recovery results by different algorithms. To reduce the randomness, we perform the
experiment 100 times for each sample size. Figure 7(a) shows the recovery performance in terms
of Recovery Error and Sample Size, averaged over 100 random runsfor each sample size. As
expected, StructOMP is better than the group Lasso and far better than the OMP and Lasso. The
results show that the proposed StructOMP can achieve better recovery performance for structured
sparsity signals with less samples. Figure 7(b) shows the recovery performance in terms of CPU
Time and Sample Size, averaged over 100 random runs for each sample size. The computation
complexities of StructOMP and OMP are far lower than those of Lasso and Group Lasso.

It is worth noting that the performance of StructOMP is less stable than the other algorithms
when the sample sizen is small. This is because for randomly generated design matrix, the struc-
tured RIP condition is only satisfied probabilistically. For smalln, the necessary structured RIP
condition can be violated with relatively large probability, and in such case StructOMP does not
have much advantage (at least theoretically). This implies the relatively largevariance. The effect
is much less noticeable with weakly sparse signal in Figure 11(a) because the necessary structured
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RIP condition is easier to satisfied for weakly sparse signals (based on our theory). Therefore the
experimental results are consistent with our theory.
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Figure 6: Recovery results of 1D signal with strongly line-structured sparsity. (a) original data;
(b) recovered results with OMP (error is 0.9921); (c) recovered results with Lasso (er-
ror is 0.8660);; (d) recovered results with Group Lasso (error is 0.4832 with group size
gs=2); (e) recovered results with Group Lasso (error is 0.4832 with group size gs=4);(f)
recovered results with Group Lasso (error is 0.2646 with group size gs=8);(g) recovered
results with Group Lasso (error is 0.3980 with group size gs=16); (h) recovered results
with StructOMP (error is 0.0246).

To study how the additive noise affects the recovery performance, we adjust the noise powerσ
and then record the recovery results by different algorithms. In this case, we fix the sample size at
n= 3k= 192, and perform the experiment 100 times for each noise level tested. Figure 8(a) shows
the recovery performance in terms of Recovery Error and Noise Level,averaged over 100 random
runs for each noise level. As expected, StructOMP is also better than the group Lasso and far better
than the OMP and Lasso. Figure 8(b) shows the recovery performancein terms of CPU Time and
Noise Level, averaged over 100 random runs for each sample size. The computational complexities
of StructOMP and OMP are lower than those of Lasso and Group Lasso.

To further study the performance of the StructOMP, we also compare it to twoother methods
for structured sparsity including OverlapLasso (Jacob et al., 2009) and ModelCS (Baraniuk et al.,
2010) using the implementations available from the web. For fair comparisons,the same structures
are used in OverlapLasso, ModelCS and StructOMP. As mentioned before, in these experiments,
we use small connected line segments of size gs=3 (including one node plus itstwo neighbors) as
base blocks in StructOMP. Therefore in OverlapLasso, the groups arealso connected line segments
of size gs=3; in ModelCS, this structure leads to the model assumption that if one node is nonzero,
then its two neighbors has a high probability of being nonzeros. Figure 9(a) shows the recovery
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Figure 7: Recovery performance: (a) Recovery Error vs. Sample Size Ratio(n/k); (b) CPU Time
vs. Sample Size Ratio(n/k)
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Figure 8: Recovery performance in terms of Noise Levels: (a) Recovery Error vs. Noise Level; (b)
CPU Time vs. Noise Level
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performance in terms of Recovery Error and Sample Size, averaged over 100 random runs for each
sample size. At least for this problem, StructOMP achieves better performance than OverlapLasso
and ModelCS, which shows that the proposed StructOMP algorithm can achieve better recovery
performance than other structured sparsity algorithms for some problems. Figure 9(b) shows the
recovery performance in terms of CPU Time and Sample Size, averaged over 100 random runs for
each sample size. Although it is difficult to see from the figure, the computational complexity of
StructOMP is lower than that of ModelCS (about half CPU time) and are far lower than that of
OverlapLasso, at least based on the implementation of Jacob et al. (2009).
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Figure 9: Performance Comparisons between methods related with structured spar-
sity(OverlapLasso (Jacob et al., 2009), ModelCS (Baraniuk et al., 2010), StructOMP):
(a) Recovery Error vs. Sample Size Ratio(n/k); (b) CPU Time vs. Sample Size Ratio
(n/k)

Note that Lasso performs better than OMP in the first example. This is because the signal is
strongly sparse (that is, all nonzero coefficients are significantly different from zero). In the second
experiment, we randomly generate a 1D structured sparse signal with weak sparsity, where the
nonzero coefficients decay gradually to zero, but there is no clear cutoff. One instance of generated
signal is shown in Figure 10 (a). Here,p = 512 and all coefficient of the signal are not zeros.
We define the sparsityk as the number of coefficients that contain 95% of the image energy. The
support set of these signals is composed ofg = 2 connected regions. Again, each element of the
sparse coefficient is connected to two of its adjacent elements, which formsthe underlying 1D line
graph structure. The graph sparsity concept introduced earlier is used to compute the coding length
of sparsity patterns in StructOMP. The projection matrixX is generated by creating ann× p matrix
with i.i.d. draws from a standard Gaussian distributionN(0,1). For simplicity, the rows ofX are
normalized to unit magnitude. Zero-mean Gaussian noise with standard deviation σ = 0.01 is added
to the measurements.

Figure 10 shows one generated signal and its recovered results by different algorithms when
k = 32 andn= 48. Again, we observe that OMP and Lasso do not achieve good recovery results,
whereas the StructOMP algorithm achieves near perfect recovery of the original signal. As we do
not know the predefined groups for group Lasso, we just try group Lasso with several different
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group sizes (gs=2, 4, 8, 16). Although the results obtained with group Lasso are better than those
of OMP and Lasso, they are still inferior to the results with StructOMP. In order to study how the
sample sizen effects the recovery performance, we vary the sample size and recordthe recovery
results by different algorithms. To reduce the randomness, we performthe experiment 100 times
for each of the sample sizes.

Figure 11(a) shows the recovery performance in terms of Recovery Error and Sample Size,
averaged over 100 random runs for each sample size. As expected, StructOMP algorithm is superior
in all cases. What’s different from the first experiment is that the recovery error of OMP becomes
smaller than that of Lasso. This result is consistent with our theory, which predicts that if the
underlying signal is weakly sparse, then the relatively performance of OMP becomes comparable
to Lasso. Figure 11(b) shows the recovery performance in terms of CPUTime and Sample Size,
averaged over 100 random runs for each sample size. The computational complexities of StructOMP
and OMP are far lower than those of Lasso and Group Lasso.
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Figure 10: Recovery results of 1D weakly sparse signal with line-structured sparsity. (a) original
data; (b) recovered results with OMP (error is 0.5599); (c) recovered results with Lasso
(error is 0.6686); (d) recovered results with Group Lasso (error is 0.4732 with group size
gs=2); (e) recovered results with Group Lasso (error is 0.2893 with group size gs=4);(f)
recovered results with Group Lasso (error is 0.2646 with group size gs=8);(g) recovered
results with Group Lasso (error is 0.5459 with group size gs=16); (h) recovered results
with StructOMP (error is 0.0846).
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Figure 11: Recovery performance for 1D Weak Line-Sparsity: (a) Recovery Error vs. Sample Size
Ratio(n/k); (b) CPU Time vs. Sample Size Ratio(n/k)

5.2 2D Image Compressive Sensing with Tree-structured Sparsity

It is well known that 2D natural images are sparse in a wavelet basis. Their wavelet coefficients
have a hierarchical tree structure, which is widely used for wavelet-based compression algorithms
(Shapiro, 1993). Figure 12(a) shows a widely used example image with size64×64: cameraman.
Note that we use a reduced image instead of the original for computational efficiency since the
experiments is run many times with different random matrices. This reduction should not affect the
relative performance among various algorithms.

In this experiment, each 2D wavelet coefficient of this image is connected to itsparent co-
efficient and child coefficients, which forms the underlying hierarchicaltree structure (which is
a special case of graph sparsity). In our experiment, we choose Haar-wavelet to obtain its tree-
structured sparsity wavelet coefficients. The projection matrixX and noises are generated with the
same method as that for 1D structured sparsity signals. OMP, Lasso and StructOMP are used to
recover the wavelet coefficients from the random projection samples respectively. Then, the inverse
wavelet transform is used to reconstruct the images with these recoveredwavelet coefficients. Our
task is to compare the recovery performance of the StructOMP to those of OMP and Lasso under
the framework of compressive sensing.

For Lasso, we use identical regularization parameter for all coefficients(without varying reg-
ularization parameters based on bands or tree depth). For StructOMP, a simple block-structure is
used, where each block corresponds to a node in the tree, plus its ancestors leading to the root. This
corresponds to settingδ = 0 in Proposition 11. We use this block set for efficiency only because the
number of blocks is only linear inp.

Figure 12 shows one example of the recovered results by different algorithms with sparsity
numberk = 1133 and sample sizen = 2048. It shows that StructOMP obtains the best recovered
result. Figure 13(a) shows the recovery performance in terms of Sample Size and Recovery Error,
averaged over 100 random runs for each sample size. The StructOMP algorithm is better than both
Lasso and OMP in this case. Since real image data are weakly sparse, the performance of standard
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OMP (without structured sparsity) is similar to that of Lasso. Figure 13(b) shows the recovery
performance in terms of Sample Size and CPU Time, averaged over 100 random runs for each
sample size. The computational complexity of StructOMP is comparable to that of OMP and lower
than that of Lasso.

(a) (b) (c) (d)

Figure 12: Recovery results with sample sizen= 2048: (a) cameraman image, (b) recovered image
with OMP (error is 0.1886; CPU time is 46.16s), (c) recovered image with Lasso (error is
0.1670; CPU time is 60.26s) and (d) recovered image with StructOMP (error is0.0375;
CPU time is 48.99s)
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Figure 13: Recovery performance for 2D wavelet tree sparsity: (a) Recovery Error vs. Sample Size;
(b) CPU Time vs. Sample size

5.3 Background Subtracted Images for Robust Surveillance

Background subtracted images are typical structure sparsity data in static video surveillance appli-
cations. They generally correspond to the foreground objects of interest. Unlike the whole scene,
these images are not only spatially sparse but also inclined to cluster into groups, which corre-
spond to different foreground objects. Thus, the StructOMP algorithm can obtain superior recovery
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from compressive sensing measurements that are received by a centralized server from multiple
and randomly placed optical sensors. In this experiment, the testing video is downloaded from
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/. The background subtracted images are
obtained with the software (Zivkovic and Heijden, 2006). One sample image frame is shown in Fig-
ure 14(a). The support set of 2D images is thus composed of several connected regions. Here, each
pixel of the 2D background subtracted image is connected to four of its adjacent pixels, forming
the underlying graph structure in graph sparsity. We randomly choose 100 background subtracted
images as test images.

Note that color images have three channels. We can consider three channels separately and per-
form sparse recovery independently for each channel. On the other hand, since in this application,
three channels of the color background subtracted image share the same support set, we can enforce
group sparsity across the color channels for each pixel. That is, a pixel in the color image can be
considered as a triplet with three color intensities. We will thus consider both cases in our compar-
isons. In the latter case, we simply replace OMP and Lasso by Group OMP (which has also been
studied by Lozano et al., 2009) and Group Lasso respectively.

(a) (b) (c) (d)

Figure 14: Recovery results with sample sizen = 900: (a) the background subtracted image, (b)
recovered image with OMP (error is 1.1833), (c) recovered image with Lasso (error is
0.7075) and (d) recovered image with StructOMP (error is 0.1203)

In this experiment, we firstly consider the 3 color channel independently, and use OMP, Lasso
and StructOMP to separately recover each channel. The results shown inFigure 14 demonstrates
that the StructOMP outperforms both OMP and Lasso in recovery. Figure 15(a) shows the recovery
performance as a function of increasing sample size ratios. It demonstrates again that StructOMP
significantly outperforms OMP and Lasso in recovery performance on video data. Comparing to
the image compression example in the previous section, the background subtracted images have a
more clearly defined sparsity pattern where nonzero coefficients are generally distinct from zero
(that is, stronger sparsity); this explains why Lasso performs better thanthe OMP on this particular
data. The results is again consistent with our theory. Figure 17(b) showsthe recovery performance
in terms of Sample Size and CPU Time, averaged over 100 random runs for each sample size. The
computational complexity of StructOMP is again comparable to that of OMP and lower than that of
Lasso.

If we consider a pixel as a triplet in the background subtracted image, we replace OMP and
Lasso by Group OMP and Group Lasso (across the color channels), and compare their perfor-
mance to StructOMP. The results in Figure 16 indicate that StructOMP is still superior, although

3396



LEARNING WITH STRUCTUREDSPARSITY

2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
R

ec
ov

er
y 

E
rr

or

Sample Size Ratio (n / k)

 

 

OMP
Lasso
StructOMP

(a)

2 2.5 3 3.5 4

10
1

10
2

C
P

U
 T

im
e 

(S
ec

on
d)

Sample Size Ratio (n / k)

 

 

OMP
Lasso
StructOMP

(b)

Figure 15: Recovery performance: (a) Recovery Error vs. Sample Size; (b) CPU Time vs. Sample
size

as expected, the recovery performance of Group OMP (or Group Lasso) improves that of OMP
(or Lasso). Figure 17(a) shows the recovery performance as a function of increasing sample size
ratios. It demonstrates again that StructOMP outperforms Group OMP and Group Lasso in this
application. Figure 17(b) shows the recovery performance in terms of Sample Size and CPU Time,
averaged over 100 random runs for each sample size. The computational complexity of StructOMP
is again comparable to that of Group OMP and lower than that of Group Lasso.

(a) (b) (c) (d)

Figure 16: Recovery results with sample sizen = 600: (a) the background subtracted image, (b)
recovered image with Group OMP (error is 1.1340), (c) recovered imagewith Group
Lasso (error is 0.6972) and (d) recovered image with StructOMP (erroris 0.0808)

6. Discussion

This paper develops a theory for structured sparsity where prior knowledge allows us to prefer
certain sparsity patterns to others. Some examples are presented to illustrate the concept. The

3397



HUANG, ZHANG AND METAXAS

1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
R

ec
ov

er
y 

E
rr

or

Sample Size Ratio (n / k)

 

 

Group OMP
Group Lasso
StructOMP

(a)

1.5 2 2.5 3 3.5 4

10
1

10
2

C
P

U
 T

im
e 

(S
ec

on
d)

Sample Size Ratio (n / k)

 

 

Group OMP
Group Lasso
StructOMP

(b)

Figure 17: Recovery performance: (a) Recovery Error vs. Sample Size; (b) CPU Time vs. Sample
size

general framework established in this paper includes the recently popularized group sparsity idea as
a special case.

In structured sparsity, the complexity of learning is measured by the coding complexityc(β̄)≤
‖β̄‖0+ cl(supp(β̄)) instead of‖β̄‖0 ln p which determines the complexity in standard sparsity. Us-
ing this notation, a theory parallel to that of the standard sparsity is developed. The theory shows
that if the coding length cl(supp(β̄)) is small for a target coefficient vector̄β, then the complexity
of learningβ̄ can be significantly smaller than the corresponding complexity in standard sparsity.
Experimental results demonstrate that significant improvements can be obtained on some real prob-
lems that have natural structures.

The structured greedy algorithm presented in this paper is the first efficient algorithm proposed
to handle the general structured sparsity learning. It is shown that the algorithm is effective under
appropriate conditions. Future work include additional computationally efficient methods such as
convex relaxation methods (e.g.L1 regularization for standard sparsity, and group Lasso for strong
group sparsity) and backward greedy strategies to improve the forwardgreedy method considered
in this paper.

Appendix A. Proof of Proposition 10 and Proposition 11

Proof of Proposition 10.
First we show that we can encode all connected regionsF (that is, withg= 1) using no more

than

CG|F|−max
v∈F

log2q(v) (8)

bits. We consider the following procedure to encodeF : first, we pick a nodev∗ from F achieving
−maxv∈F log2q(v), which requires−maxv∈F log2q(v) bits. We then pushv∗ into a stackS. We
encode the remaining nodes inF using the following algorithm: until the stackS is empty, we take
the top elementv out of the stackS, and do the following
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(a) Encode the number of neighbors ofv in F that has not been visited so far, with no more than
log2(1+dG) bits.

(b) For each neighborv′ of v in F that has not been visited, we encode it (i.e., the associated edge
betweenv andv′) with no more than log2dG bits. We then pushv′ into the stackS.

SinceF is connected, after this procedure finishes (the stack becomes empty), wehave visited
all nodes inF . Since step (a) can be invoked only|F| times, the total number of bits in step (a) is no
more than|F| log2(1+dG). The number of bits in step (b) is no more than the number of nodes inF
(except for nodev∗) times the bits to encode each node, which is no more than(|F|−1) log2(1+dG).
Therefore the total number of bits in step (a) and (b) is less thanCG|F|. This proves (8).

For g > 1, we may encode each connected componentFj of F sequentially, using number of
bits according to (8). Then after encoding each connected regionFj , we use 1 bit to encode whether
j = g or not (that is, whether we should stop or encode an additional connected component). This
gives the formula in Proposition 10.

Proof of Proposition 11.
We first prove the following two lemmas.

Lemma 12 Given a positive even integer L. Let F be a connected region of G such that|F| ≥ L+1.
Then it is possible to partition F as the union of two connected regions F1 and F2 such that: F=
F1∪F2, |F1∩F2|= 1, and

• eithermin(|F1|, |F2|)≥ 0.5L+1;

• or 0.5L+1≤ |F1| ≤ L.

Proof We consider the following algorithm. Start with a nodev of F and setF1 = {v} and let
u1 = v. Repeat the following procedure

(a) If |F1| ≥ 0.5L+1, then exit the procedure with the currentF1 andF2 = (F −F1)∪{u1}.

(b) If F −F1 is connected: letv be a node inF −F1 that is connected toF1. We addv to F1, and
setu1 = v. We then repeat the procedure (a)(b)(c).

(c) If F −F1 is not connected:(F −F1)∪{u1} is connected by construction. Merge the smallest
connected component ofF −F1 into F1. Repeat the procedure (a)(b)(c).

Clearly the procedure eventually will end at step (a) because each iteration |F1| is increased by at
least 1. When it ends,F1∩F2 = {u1}. Moreover, there were two possible scenarios in the previous
iteration:

(1) Step (b) was invoked. That is,|F1| was increased by 1 in the previous iteration, and hence
|F1|= 0.5L+1≤ L. Moreover,F2 is connected.

(2) Step (c) was invoked. Still,F2 is connected by the construction ofu1. If |F1| was increased
by no more thanL/2 in the previous step (c), then|F1| ≤ L and the lemma holds. Otherwise,
F−F1 has more thanL/2 nodes because this scenario implies that even the smallest connected
component has more thanL/2 nodes in the previous step (c). Therefore in this case we have
|F2|> 0.5L+1.
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Lemma 13 Given a positive even integer L. Any connected region F such that|F| ≥ 0.5L+1 can
be covered by at most2(|F|−1)/L connected regions, each of size no more than L.

Proof We fix L and prove the claim by induction on|F|. If 0.5L+1≤ |F | ≤ L, thenF is covered
by itself, and the claim is trivial. IfL < |F| ≤ 1.5L, then by Lemma 12, we can partitionF into two
connected regions, each≤ L. Therefore the claim also holds trivially.

Now assume that the claim holds for|F| ≤ k with k ≥ 1.5L. For F such that|F| = k+1, we
apply Lemma 12 and partition it into two regionsF = F1∪F2 such that min(|F1|, |F2|) ≥ 0.5L+1
and |F1|+ |F2| = |F|+1. Therefore by the induction hypothesis, we can cover eachFj ( j = 1,2)
by 2(|Fj | −1)/L connected regions, each of size no more thanL. It follows that the total number
of connected regions to cover bothF1 andF2 is no more than 2(|F1|+ |F2|−2)/L = 2(|F|−1)/L,
which completes the induction.

We are now ready to prove Proposition 11. First, from (8), we know thatCG|B|+ log2 p is a
coding-length for connected regionsB∈ B. Therefore

2−(CGL+log2 p)|B| ≤ ∑
B∈B

2−(CG|B|+log2 p) ≤ 1.

This implies that|B| ≤ p1+CGδ.
Since Lemma 13 implies that each connected componentFj of F can be covered by 1+2(|Fj |−

1)/L connected regions fromB, we have clB(Fj) ≤ (1+2(|Fj |−1)/L)(1+CGδ) log2 p under the
uniform coding onB. By summing over the connected components, we obtain the desired bound.

Appendix B. Proof of Proposition 3

Lemma 14 Consider a fixed vectorx ∈ R
n, and a random vectory ∈ R

n with independent sub-
Gaussian components:Eet(yi−Eyi) ≤ eσ2t2/2 for all t and i, then∀ε > 0:

Pr
(∣

∣

∣
x⊤y−Ex⊤y

∣

∣

∣
≥ ε

)

≤ 2e−ε2/(2σ2‖x‖2
2).

Proof Let sn =∑n
i=1(xiyi −Exiyi); then by assumption,E(etsn+e−tsn)≤ 2e∑i x

2
i σ2t2/2, which implies

that Pr(|sn| ≥ ε)etε ≤ 2e∑i x
2
i σ2t2/2. Now let t = ε/(∑i x

2
i σ2), we obtain the desired bound.

The following lemma is taken from Pisier (1989).

Lemma 15 Consider the unit sphere Sk−1 = {x : ‖x‖2 = 1} in R
k (k ≥ 1). Given anyε > 0, there

exists anε-cover Q⊂ Sk−1 such thatminq∈Q‖x−q‖2 ≤ ε for all ‖x‖2 = 1, with |Q| ≤ (1+2/ε)k.

B.1 Proof of Proposition 3

According to Lemma 15, givenε1 > 0, there exists a finite setQ= {qi} with |Q| ≤ (1+2/ε1)
k such

that‖Pqi‖2 = 1 for all i, and mini ‖Pz−Pqi‖2 ≤ ε1 for all ‖Pz‖2 = 1. To see the existence ofQ,

3400



LEARNING WITH STRUCTUREDSPARSITY

we consider a rotation of the coordinate system (which does not change 2-norm) so thatPz is the
projection ofz∈ R

n to its firstk coordinates in the new coordinate system. Lemma 15 can now be
directly applied to the firstk coordinates in the new system, implying that we can pickqi such that
Pqi = qi .

For eachi, Lemma 14 implies that∀ε2 > 0:

Pr
(∣

∣

∣
q⊤i P(y−Ey)

∣

∣

∣
≥ ε2

)

≤ 2e−ε2
2/(2σ2).

Taking union bound for allqi ∈ Q, we obtain with probability exceeding 1−2(1+2/ε1)
ke−ε2

2/2σ2
:

∣

∣

∣
q⊤i P(y−Ey)

∣

∣

∣
≤ ε2

for all i.
Let z= P(y−Ey)/‖P(y−Ey)‖2, then there existsi such that‖Pz−Pqi‖2 ≤ ε1. We have

‖P(y−Ey)‖2 =z⊤P(y−Ey)

≤‖Pz−Pqi‖2‖P(y−Ey)‖2+ |q⊤i P(y−Ey)|
≤ε1‖P(y−Ey)‖2+ ε2.

Therefore

‖P(y−Ey)‖2 ≤ ε2/(1− ε1).

Let ε1 = 2/15, andη = 2(1+2/ε1)
ke−ε2

2/2σ2
, we have

ε2
2 = 2σ2[(4k+1) ln2− lnη],

and thus

‖P(y−Ey)‖2 ≤
15
13

σ
√

2(4k+1) ln2−2lnη.

This simplifies to the desired bound.

Appendix C. Proof of Proposition 5

We use the following lemma from Huang and Zhang (2010).

Lemma 16 Suppose X is generated according to Proposition 5. For any fixed set F⊂ I with |F|= k
and0< δ < 1, we have with probability exceeding1−3(1+8/δ)ke−nδ2/8:

(1−δ)‖β‖2 ≤
1√
n
‖XFβ‖2 ≤ (1+δ)‖β‖2

for all β ∈ R
k.
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C.1 Proof of Proposition 5

Since cl(F) is a coding length, we have (for any fixedγ < 1)

∑
F :|F |+cl(F)≤s

(1+8/δ)|F| ≤ ∑
F :|F |+γcl(F)≤s

(1+8/δ)|F|

≤∑
F

(1+8/δ)s−γcl(F) = (1+8/δ)s∑
F

2−cl(F) ≤ (1+8/δ)s,

where in the above derivation, we takeγ = 1/ log2(1+8/δ).
For eachF , we know from Lemma 16 that for allβ such that supp(β)⊂ F :

(1−δ)‖β‖2 ≤
1√
n
‖Xβ‖2 ≤ (1+δ)‖β‖2

with probability exceeding 1−3(1+8/δ)|F|e−nδ2/8.

We can thus take the union bound overF : |F|+ cl(F) ≤ s, which shows that with probability
exceeding

1− ∑
F :|F |+cl(F)≤s

3(1+8/δ)|F|e−nδ2/8,

the structured RIP in Equation (4) holds. Since

∑
F :|F |+cl(F)≤s

3(1+8/δ)|F|e−nδ2/8 ≤ 3(1+8/δ)se−nδ2/8 ≤ e−t ,

we obtain the desired bound.

Appendix D. Proof of Theorem 6 and Theorem 7

Lemma 17 Suppose that Assumption 1 is valid. For any fixed subset F⊂ I , with probability1−η,
∀β such thatsupp(β)⊂ F, and a> 0, we have

‖Xβ−Ey‖2
2 ≤ (1+a)[‖Xβ−y‖2

2−‖y−Ey‖2
2]+ (2+a+a−1)σ2[7.4|F|+4.7ln(4/η)].

Proof Let

PF = XF(X
⊤
F XF)

+X⊤
F

be the projection matrix to the subspace generated by columns ofXF . HereXF may not be full-rank,
and(X⊤

F XF)
+ denotes the Moore-Penrose pseudo-inverse. SinceXβ belongs to this subspace, we

havePFXβ = Xβ.
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Let z= (I −PF)Ey/‖(I −PF)Ey‖2, δ1 = ‖PF(y−Ey)‖2 andδ2 = |z⊤(y−Ey)|, we have

‖Xβ−Ey‖2
2

=‖Xβ−y‖2
2−‖y−Ey‖2

2+2(y−Ey)⊤(Xβ−Ey)

=‖Xβ−y‖2
2−‖y−Ey‖2

2+2(y−Ey)⊤(Xβ−PFEy)−2z⊤(y−Ey)‖(I −PF)Ey‖2

=‖Xβ−y‖2
2−‖y−Ey‖2

2+2(y−Ey)⊤PF(Xβ−PFEy)−2z⊤(y−Ey)‖(I −PF)Ey‖2

≤‖Xβ−y‖2
2−‖y−Ey‖2

2+2δ1‖Xβ−PFEy‖2+2δ2‖(I −PF)Ey‖2

≤‖Xβ−y‖2
2−‖y−Ey‖2

2+2
√

δ2
1+δ2

2

√

‖Xβ−PFEy‖2
2+‖(I −PF)Ey‖2

2

=‖Xβ−y‖2
2−‖y−Ey‖2

2+2
√

δ2
1+δ2

2‖Xβ−Ey‖2.

Note that in the above derivation, the first two equalities are simple algebra. The third equal-
ity uses the fact thatPFXβ = Xβ. The first inequality uses the Cauchy-Schwartz inequality and
the definitions ofδ1 and δ2. The second inequality uses the Cauchy-Schwartz inequality of the

form δ1a1+δ2a2 ≤
√

δ2
1+δ2

2

√

a2
1+a2

2. The last equality uses the fact that‖Xβ−PFEy‖2
2+‖(I −

PF)Ey‖2
2 = ‖Xβ −Ey‖2

2, which is a consequence of the fact thatPF is a projection matrix and
PFXβ = Xβ.

Now, by solving the above displayed inequality with respect to‖Xβ−Ey‖2, we obtain

‖Xβ−Ey‖2
2 ≤

[

√

‖Xβ−y‖2
2−‖y−Ey‖2

2+δ2
1+δ2

2+
√

δ2
1+δ2

2

]2

≤(1+a)[‖Xβ−y‖2
2−‖y−Ey‖2

2]+ (2+a+1/a)(δ2
1+δ2

2).

The desired bound now follows easily from Proposition 3 and Lemma 14, where we know that with
probability 1−η/2,

δ2
1 = (y−Ey)⊤PF(y−Ey)≤ σ2(7.4|F|+2.7ln(4/η)),

and with probability 1−η/2,

δ2
2 = |z⊤(y−Ey)|2 ≤ 2σ2 ln(4/η).

We obtain the desired result by substituting the above two estimates and simplify.

Lemma 18 Suppose that Assumption 1 is valid. Then we have with probability1−η, ∀β ∈R
p and

a> 0:

‖Xβ−Ey‖2
2 ≤ (1+a)

[

‖Xβ−y‖2
2−‖y−Ey‖2

2

]

+(2+a+1/a)σ2[7.4c(β)+4.7ln(4/η)].

Proof Note that for eachF , with probability 2−cl(F)η, we obtain from Lemma 17 that∀supp(β)∈F ,

‖Xβ−Ey‖2
2 ≤ (1+a)

[

‖Xβ−y‖2
2−‖y−Ey‖2

2

]

+(2+a+1/a)σ2[7.4(|F|+cl(F))+4.7ln(4/η)].

Since∑F⊂I ,F 6= /0 2−cl(F)η ≤ η, the result follows from the union bound.
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Lemma 19 Consider a fixed subset̄F ⊂ I . Given anyη ∈ (0,1), we have with probability1−η:

|‖Xβ̄−y‖2
2−‖y−Ey‖2

2| ≤ ‖Xβ̄−Ey‖2
2+2σ

√

2ln(2/η)‖Xβ̄−Ey‖2.

Proof Let ã= (Xβ̄−Ey)/‖Xβ̄−Ey‖2, we have

|‖Xβ̄−y‖2
2−‖y−Ey‖2

2|
=|−2(Xβ̄−Ey)⊤(y−Ey)+‖Xβ̄−Ey‖2

2|
≤2‖Xβ̄−Ey‖2|ã⊤(y−Ey)|+‖Ey−Xβ̄‖2

2.

The desired result now follows from Lemma 14.

Lemma 20 Suppose that Assumption 1 is valid. Consider any fixed targetβ̄ ∈ R
p. Then with

probability exceeding1−η, for all λ≥ 0,ε≥ 0, β̂∈R
p such that:Q̂(β̂)+λc(β̂)≤ Q̂(β̄)+λc(β̄)+ε,

and for all a> 0, we have

‖Xβ̂−Ey‖2
2 ≤(1+a)[‖Xβ̄−Ey‖2

2+2σ
√

2ln(6/η)‖Xβ̄−Ey‖2]

+ (1+a)λc(β̄)+a′c(β̂)+b′ ln(6/η)+(1+a)ε,

where a′ = 7.4(2+ a+ a−1)σ2 − (1+ a)λ and b′ = 4.7σ2(2+ a+ a−1). Moreover, if the coding
scheme c(·) is sub-additive, then

nρ−(c(β̂)+c(β̄))‖β̂− β̄‖2
2 ≤ 10‖Xβ̄−Ey‖2

2+2.5λc(β̄)+(37σ2−2.5λ)c(β̂)+29σ2 ln(6/η)+2.5ε.

Proof We obtain from the union bound of Lemma 18 (with probability 1−η/3) and Lemma 19
(with probability 1−2η/3) that with probability 1−η:

‖Xβ̂−Ey‖2
2

≤(1+a)
[

‖Xβ̂−y‖2
2−‖y−Ey‖2

2

]

+(2+a+a−1)[7.4σ2c(β̂)+4.7σ2 ln(6/η)]

≤(1+a)
[

‖Xβ̄−y‖2
2−‖y−Ey‖2

2+λc(β̄)+ ε
]

+a′c(β̂)+b′ ln(6/η)

≤(1+a)[‖Xβ̄−Ey‖2
2+2σ

√

2ln(6/η)‖Xβ̄−Ey‖2]+ (1+a)λc(β̄)+a′c(β̂)
+b′ ln(6/η)+(1+a)ε.

This proves the first claim of the lemma.
The first claim witha= 1 implies that

‖Xβ̂−Xβ̄‖2
2 ≤ [‖Xβ̂−Ey‖2+‖Xβ̄−Ey‖2]

2

≤1.25‖Xβ̂−Ey‖2
2+5‖Xβ̄−Ey‖2

2

≤7.5‖Xβ̄−Ey‖2
2+5σ

√

2ln(6/η)‖Xβ̄−Ey‖2+2.5λc(β̄)+1.25(29.6σ2−2λ)c(β̂)

+1.25×18.8σ2 ln(6/η)+2.5ε

≤10‖Xβ̄−Ey‖2
2+2.5λc(β̄)+(37σ2−2.5λ)c(β̂)+29σ2 ln(6/η)+2.5ε.

Sincec(β̂− β̄)≤ c(β̂)+c(β̄), we have‖Xβ̂−Xβ̄‖2
2 ≥ nρ−(c(β̂)+c(β̄))‖β̂− β̄‖2

2. This implies the
second claim.
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D.1 Proof of Theorem 6

We takeλ = 0 in Lemma 20, and obtain:

‖Xβ̂−Ey‖2
2 ≤(1+a)[‖Xβ̄−Ey‖2

2+2σ
√

2ln(6/η)‖Xβ̄−Ey‖2]

+7.4(2+a+a−1)σ2c(β̂)+4.7σ2(2+a+a−1) ln(6/η)+(1+a)ε

=(‖Xβ̄−Ey‖2+σ
√

2ln(6/η))2+14.8σ2c(β̂)+7.4σ2 ln(6/η)+ ε

+a[(‖Xβ̄−Ey‖2+σ
√

2ln(6/η))2+7.4σ2c(β̂)+2.7σ2 ln(6/η)+ ε]

+a−1[7.4σ2c(β̂)+4.7σ2 ln(6/η)].

Now letz= ‖Xβ̄−Ey‖2+σ
√

2ln(6/η), and we choosea to minimize the right hand side as:

‖Xβ̂−Ey‖2
2 ≤z2+14.8σ2c(β̂)+7.4σ2 ln(6/η)+ ε

+2[z2+7.4σ2c(β̂)+2.7σ2 ln(6/η)+ ε]1/2[7.4σ2c(β̂)+4.7σ2 ln(6/η)]1/2

≤[(z2+7.4σ2c(β̂)+2.7σ2 ln(6/η)+ ε)1/2+(7.4σ2c(β̂)+4.7σ2 ln(6/η))1/2]2

≤[z+2(7.4σ2c(β̂)+4.7σ2 ln(6/η)+ ε)1/2]2.

This proves the first inequality. The second inequality follows directly fromLemma 20 withλ = 0.

D.2 Proof of Theorem 7

The desired bound is a direct consequence of Lemma 20, by noticing that

2σ
√

2ln(6/η)‖Xβ̄−Ey‖2 ≤ a‖Xβ̄−Ey‖2
2+a−12σ2 ln(6/η),

a′ ≤ 0, and
b′+a−12σ2 ≤ (10+5a+7a−1)σ2.

Appendix E. Proof of Theorem 9

The following lemma is an adaptation of a similar result in Zhang (2011) on greedy algorithms for
standard sparsity.

Lemma 21 Suppose the coding scheme is sub-additive. Consider anyβ̄, and a cover of̄β byB:

supp(β̄)⊂ F̄ = ∪b
j=1B̄ j (B̄ j ∈ B).

Let c(β̄,B) = ∑b
j=1c(B̄ j). Letρ0 = maxj ρ+(B̄ j). Then consider F such that∀ j : c(B̄ j ∪F)≥ c(F),

we define
β = arg min

β′∈Rp
‖Xβ′−y‖2

2 subject to supp(β′)⊂ F.

If ‖Xβ−y‖2
2 ≥ ‖Xβ̄−y‖2

2, we have

max
j

φ(B̄ j)≥
ρ−(F ∪ F̄)

ρ0c(β̄,B)
[‖Xβ−y‖2

2−‖Xβ̄−y‖2
2],

where as in (5), we define

φ(B) =
‖PB−F(Xβ−y)‖2

2

c(B∪F)−c(F)
.
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Proof For all ℓ ∈ F , ‖Xβ+αXeℓ− y‖2
2 achieves the minimum atα = 0 (whereeℓ is the vector of

zeros except for theℓ-th component, which is one). This implies that

x⊤ℓ (Xβ−y) = 0

for all ℓ ∈ F . Therefore we have

(Xβ−y)⊤ ∑
ℓ∈F̄−F

(β̄ℓ−βℓ)xℓ

=(Xβ−y)⊤ ∑
ℓ∈F̄∪F

(β̄ℓ−βℓ)xℓ = (Xβ−y)⊤(Xβ̄−Xβ)

=− 1
2
‖X(β̄−β)‖2

2+
1
2
‖Xβ̄−y‖2

2−
1
2
‖Xβ−y‖2

2.

Now, let B̄′
j ⊂ B̄ j −F be disjoint sets such that∪ j B̄′

j = F̄ −F. The above inequality leads to the
following derivation∀η > 0:

−∑
j

φ(B̄ j)(c(B̄ j ∪F)−c(F))

≤∑
j







∥

∥

∥

∥

∥

∥

Xβ+η ∑
ℓ∈B̄′

j

(β̄ℓ−βℓ)xℓ−y

∥

∥

∥

∥

∥

∥

2

2

−‖Xβ−y‖2
2







≤η2 ∑
ℓ∈F̄−F

(β̄ℓ−βℓ)
2ρ0n+2η(Xβ−y)⊤ ∑

ℓ∈F̄−F

(β̄ℓ−βℓ)xℓ

≤η2 ∑
ℓ∈F̄−F

(β̄ℓ−βℓ)
2ρ0n−η‖X(β̄−β)‖2

2+η‖Xβ̄−y‖2
2−η‖Xβ−y‖2

2.

Note that we have used the fact that‖PB−F(Xβ−y)‖2
2 ≥ ‖Xβ−y‖2

2−‖Xβ−y+X∆β‖2
2 for all ∆β

such that supp(∆β)⊂ B−F . By optimizing overη, we obtain

max
j

φ(B̄ j)∑
j

c(B̄ j)≥∑
j

φ(B̄ j)(c(B̄ j ∪F)−c(F))

≥ [‖X(β̄−β)‖2
2+‖Xβ−y‖2

2−‖Xβ̄−y‖2
2]

2

4∑ℓ∈F̄−F(β̄ℓ−βℓ)2ρ0n

≥4‖X(β̄−β)‖2
2[‖Xβ−y‖2

2−‖Xβ̄−y‖2
2]

4∑ℓ∈F̄−F(β̄ℓ−βℓ)2ρ0n

≥ρ−(F ∪ F̄)

ρ0
[‖Xβ−y‖2

2−‖Xβ̄−y‖2
2].

This leads to the desired bound. In the above derivation, the first inequality is simple algebra; the
second inequality is by optimizing overη mentioned earlier; the third inequality is of the form
[a1+a2]

2 ≥ 4a1a2. The last inequality uses the definition ofρ−(·).
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E.1 Proof of Theorem 9

Let

ν′ =
νρ−(s+c(F̄))

ρ0(B)c(β̄,B)
.

By Lemma 21, we have at any stepk> 0:

‖Xβ(k−1)−y‖2
2−‖Xβ(k)−y‖2

2 ≥ ν′[‖Xβ(k−1)−y‖2
2−‖Xβ̄−y‖2

2](c(β
(k))−c(β(k−1)),

which implies that

max[0,‖Xβ(k)−y‖2
2−‖Xβ̄−y‖2

2]≤ max[0,‖Xβ(k−1)−y‖2
2−‖Xβ̄−y‖2

2]e
−ν′(c(β(k))−c(β(k−1)).

Therefore at stopping, we have

‖Xβ(k)−y‖2
2−‖Xβ̄−y‖2

2

≤[‖y‖2
2−‖Xβ̄−y‖2

2]e
−ν′c(β(k))

≤[‖y‖2
2−‖Xβ̄−y‖2

2]e
−ν′s ≤ ε.

This proves the theorem.

Appendix F. Performance of StructOMP for Weakly Sparse Signals

Theorem 22 Suppose the coding scheme is sub-additive. Given a sequence of targetsβ̄ j such that
Q̂(β̄0)≤ Q̂(β̄1)≤ ·· · and c(β̄ j ,B)≤ c(β̄0,B)/2 j . If

s≥ ρ0(B)

νmin j ρ−(s+c(β̄ j))
c(β̄0,B)

[

3.4+
∞

∑
j=0

2− j ln
Q̂(β̄ j+1)− Q̂(β̄0)+ ε
Q̂(β̄ j)− Q̂(β̄0)+ ε

]

for someε > 0. Then at the stopping time k, we have

Q̂(β(k))≤ Q̂(β̄0)+ ε.

Proof For simplicity, let f j = Q̂(β̄ j). For eachk = 1,2, . . . before the stopping time, letjk be the
largestj such that

Q̂(β(k))≥ f j + f j − f0+ ε.

Let ν′ = (νmin j ρ−(s+c(β̄ j)))/(ρ0(B)c(β̄0,B)).
We prove by contradiction. Suppose that the theorem does not hold, thenfor all k before stop-

ping, we havejk ≥ 0.
For eachk> 0 before stopping, ifjk = jk−1 = j, then we have from Lemma 21 (with̄β = β̄ j )

c(β(k))≤ c(β(k−1))+ν′−12− j ln
‖Xβ(k−1)−y‖2

2− f j

‖Xβ(k)−y‖2
2− f j

.

Therefore for eachj ≥ 0, we have:

∑
k: jk= jk−1= j

[c(β(k))−c(β(k−1))]≤ ν′−12− j ln
2( f j+1− f0+ ε)

f j − f0+ ε
.
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Moreover, for eachj ≥ 0, Lemma 21 (with̄β = β̄ j ) implies that

∑
k: jk= j, jk−1> j

[c(β(k))−c(β(k−1))]≤ ν′−12− j .

Therefore we have

∑
k: jk= j

[c(β(k))−c(β(k−1))]≤ ν′−12− j
[

1.7+ ln
f j+1− f0+ ε
f j − f0+ ε

]

.

Now by summing overj ≥ 0, we have

c(β(k))≤ 3.4ν′−1+ν′−1
∞

∑
j=0

2− j ln
f j+1− f0+ ε
f j − f0+ ε

≤ s.

This is a contradiction because we know at stopping, we should havec(β(k))> s.

In the above theorem, we can see that if the signal is only weakly sparse, inthat (Q̂(β̄ j+1)−
Q̂(β̄0)+ε)/(Q̂(β̄ j)−Q̂(β̄0)+ε) grows sub-exponentially inj, then we can chooses= O(c(β̄0,B)).
This means that we can findβ(k) of complexitys= O(c(β̄0,B)) to approximate a signal̄β0. The
worst case scenario is when̂Q(β̄1)≈ Q̂(0), which reduces to thes=O(c(β̄0,B) log(1/ε)) complex-
ity in Theorem 9.

As an application, we introduce the following concept of weakly sparse compressible target
that generalizes the corresponding concept of compressible signal in standard sparsity from the
compressive sensing literature (Donoho, 2006). A related extension has also appeared in Baraniuk
et al. (2010).

Definition 23 The targetEy is (a,q)-compressible with respect to blockB if there exist constants
a,q> 0 such that for each s> 0, ∃β̄(s) such that c(β̄(s),B)≤ s and

1
n
‖Xβ̄(s)−Ey‖2

2 ≤ as−q.

Corollary 24 Suppose that the target is(a,q)-compressible with respect toB. Then with probabil-
ity 1−η, at the stopping time k, we have

Q̂(β(k))≤ Q̂(β̄(s′))+2na/s′q+2σ2[ln(2/η)+1],

where
s′ ≤ sν

(10+3q)ρ0(B)
min
u≤s′

ρ−(s+c(β̄(u))).

Proof Givens′, we considerf j = minℓ≥ j Q̂(β̄(s′/2ℓ)). We also assume thatf0 is achieved atℓ0 ≥ 0.
Note that by Lemma 19, we have with probability 1−2− j−1η:

|Q̂(β̄(s′/2 j))−‖y−Ey‖2
2| ≤2‖Xβ̄(s′/2 j)−Ey‖2

2+2σ2[ j +1+ ln(2/η)]

≤2an2q j/s′q+2σ2[ j +1+ ln(2/η)].
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This means the above inequality holds for allj with probability 1−η. Therefore

f j+1− f0 ≤Q̂(β̄(s′/2 j+1))− Q̂(β̄(s′))

≤|Q̂(β̄(s′/2 j+1))−‖y−Ey‖2
2|+ |Q̂(β̄(s′))−‖y−Ey‖2

2|
≤4an2q( j+1)/s′q+4σ2[0.5 j +1+ ln(2/η)].

Now, by takingε = 2an/s′q+2σ2[ln(2/η)+1] in Theorem 22, we obtain

∞

∑
j=0

2− j ln
f j+1− f0+ ε
f j − f0+ ε

≤
∞

∑
j=ℓ0

2− j ln(1+( f j+1− f0)/ε)

≤
∞

∑
j=ℓ0

2− j ln(4+2(0.5 j +2q( j+1)))

≤
∞

∑
j=ℓ0

2− j(2+0.5 j + ln2+q( j +1) ln2)≤ 4.4+4(0.5+qln2),

where we have used the simple inequality ln(α+2β)≤ 0.5α+ ln(2β) whenα,β ≥ 1. Therefore,

s≥ ρ0(B)s′

νminu≤s′ ρ−(s+c(β̄(u)))
(10+3q)

≥ ρ0(B)s′

νminu≤s′ ρ−(s+c(β̄(u)))

[

3.4+
∞

∑
j=0

2− j ln
f j+1− f0+ ε
f j − f0+ ε

]

.

This means that Theorem 22 can be applied to obtain the desired bound.

If we assume the underlying coding scheme is block coding generated byB, then we have
minu≤s′ ρ−(s+c(β̄(u)))≤ ρ−(s+s′). The corollary shows that we can approximate a compressible
signal of complexitys′ with complexitys= O(qs′) using greedy algorithm. This means the greedy
algorithm obtains optimal rate for weakly-sparse compressible signals. Thesample complexity
suffers only a constant factorO(q). Combine this result with Theorem 6, and take union bound, we
have with probability 1−2η, at stopping timek:

1√
n
‖Xβ(k)−Ey‖2 ≤

√

a
s′q

+σ
√

2ln(6/η)
n

+2σ
√

7.4(s+c0(B))+6.7ln(6/η)
n

+
2a

σ2s′q
,

‖β(k)− β̄(s′)‖2
2 ≤

1
ρ−(s+s′+c0(B))

[

15a
s′q

+
37σ2(s+c0(B))+34σ2 ln(6/η)

n

]

.

Given a fixedn, we can obtain a convergence result by choosings (and thuss′) to optimize the
right hand side. The resulting rate is optimal for the special case of standard sparsity, which im-
plies that the bound has the optimal form for structuredq-compressible targets. In particular, in
compressive sensing applications whereσ = 0, we obtain when sample size reachesn= O(qs′), the
reconstruction performance is

‖β̄(k)− β̄‖2
2 = O(a/s′q),

which matches that of the constrained coding complexity regularization method in(2) up to a con-
stantO(q). Since many real data involve weakly sparse signals, our result provides strong theoretical
justification for the use of OMP in such problems. Our experiments are consistent with the theory.
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