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a b s t r a c t 

In this paper, we propose a novel algorithm for analysis-based sparsity reconstruction. It can solve the 

generalized problem by structured sparsity regularization with an orthogonal basis and total variation 

(TV) regularization. The proposed algorithm is based on the iterative reweighted least squares (IRLS) 

framework, and is accelerated by the preconditioned conjugate gradient method. The proposed method 

is motivated by that, the Hessian matrix for many applications is diagonally dominant. The convergence 

rate of the proposed algorithm is empirically shown to be almost the same as that of the traditional 

IRLS algorithms, that is, linear convergence. Moreover, with the specifically devised preconditioner, the 

computational cost for the subproblem is significantly less than that of traditional IRLS algorithms, which 

enables our approach to handle large scale problems. In addition to the fast convergence, it is straight- 

forward to apply our method to standard sparsity, group sparsity, overlapping group sparsity and TV 

based problems. Experiments are conducted on practical applications of compressive sensing magnetic 

resonance imaging. Extensive results demonstrate that the proposed algorithm achieves superior perfor- 

mance over 14 state-of-the-art algorithms in terms of both accuracy and computational cost. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Ill-posed problems widely exist in medical imaging and com-

uter vision. In order to seek a meaningful solution, regularization

s often used if we have certain prior knowledge. With the emerg-

ng of compressive sensing (CS) ( Candes et al., 2006; Donoho,

006 ), sparsity regularization has been an active topic in recent

ears. If the original data is sparse or compressible, it can be re-

overed precisely from a small number of measurements. The � 1 
orm is usually used to induce sparsity and gains great success in

any real applications. The optimization problems can be written

s: 

in 

x 
{ F (x ) = 

1 

2 

|| Ax − b || 2 2 + λ|| x || 1 } , (1) 

here A ∈ R 

M×N is the system matrix for the specific application

nd b ∈ R 

M is the vector of measurements; x ∈ R 

N is the data to

e recovered; λ is a positive parameter. 

According to structured sparsity theories ( Baraniuk et al., 2010;

uang et al., 2011b ), more benefits can be achieved if we could
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tilize more prior information about the sparsity patterns. For ex-

mple, the components of the data may be clustered in groups,

hich is called group sparse data. Components within the same

roup tend to be zeros or non-zeros. Sometimes one component

ay appear in several groups simultaneously, which corresponds

o the overlapping group sparsity ( Jacob et al., 2009 ). A favorable

ethod would be replacing the � 1 norm with � 2, 1 norm to model

he group sparsity ( Yuan and Lin, 2005 ): 

| x || 2 , 1 = 

∑ || x g i || 2 , i = 1 , 2 , . . . , s, (2) 

here x g i denotes the components in i th group and s is the total

umber of groups. It has been proven that, fewer measurements

re required for structured sparsity recovery, or more accurate so-

ution can be obtained with the same number of measurements

 Baraniuk et al., 2010; Huang et al., 2011b; Bach et al., 2011 ). 

In many real-world applications, the data itself is not sparse,

ut it can be sparsely represented in some transformation do-

ains. This leads to the analysis-based sparsity regularization

roblem: 

in 

x 
{ F (x ) = 

1 

2 

|| Ax − b || 2 2 + λ|| �x || 2 , 1 } , (3) 

https://doi.org/10.1016/j.media.2018.08.002
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where � denotes some sparifying operator, e.g., the wavelet trans-

form or finite difference operator. In addition to the analysis-based

sparsity model, the synthesis sparsity model is also widely used

in signal processing ( Cleju et al., 2012 ). An empirical study shows

that analysis-based recovery works better for a large number of

signals, but is less robust for approximately sparse signals or when

fewer measurements are available ( Cleju et al., 2012 ). In this arti-

cle, we are interested in the analysis-based sparsity model, where

the sparsifying operator � is a composite of the finite difference

matrices or a group configuration matrix combined with an or-

thogonal sparsifying basis (See Section 3 and dummyTXdummy- 4

for more details). The standard sparsity and non-overlapping group

sparsity minimization problem are special cases of problem (3) .

In this work, we focus on the image reconstruction applications

where A is an undersampling matrix/operator. 

When � is an orthogonal basis, many efficient algorithms can

be used to solve the standard sparsity and non-overlapping group

sparsity minimization, such as FISTA ( Beck and Teboulle, 2009b ),

SPGL1 ( Berg and Friedlander, 2008 ), SpaRSA ( Wright et al., 2009 ),

FOCUSS ( Gorodnitsky and Rao, 1997 ). However, there are relatively

fewer algorithms for overlapping group sparsity, due to the dif-

ficulty of dealing with the non-smoothness and non-separability

of the overlapping � 2, 1 penalty. SLEP ( Liu et al., 2009; Yuan

et al., 2013 ), GLO-pridu ( Mosci et al., 2010 ) solve the overlapping

group sparsity problem by identifying active groups, and YALL1

( Deng et al., 2011 ) solves it with the alternating direction method

(ADM). Both SLEP and GLO-pridu are based on the proximal gradi-

ent descent method (e.g., FISTA Beck and Teboulle, 2009b ), which

cannot achieve a convergence rate better than F (x k ) − F (x ∗) ∼
O(1 /k 2 ) , where x ∗ denotes an optimal solution and k is the iter-

ation number. YALL1 relaxes the original problem and iteratively

minimizes the corresponding subproblems based on the variable

splitting method. Generally, the convergence rate of ADM is no bet-

ter than O(1 /k ) in sparse recovery problems. Although they are

very efficient in each iteration, a large number of iterations may

be required due to the relatively slow convergence rate. On the

other hand, the iterative reweighted least squares (IRLS) algorithms

have been proven to converge exponentially fast ( Daubechies et al.,

2010 ) if A satisfies the restricted isometry property (RIP). Unfortu-

nately, conventional IRLS algorithms contain a large scale inverse

operation in each step, which makes them still much more compu-

tationally expensive than the fastest proximal methods. Some other

algorithms can solve the sparsity or group sparsity based denoising

problems efficiently ( Chen and Selesnick, 2014b; 2014a ), but they

cannot solve the general linear inverse problem (3) directly. 

Another special case of (3) is the total variation (TV) recon-

struction problem, where � denotes the first-order finite differ-

ence matrices and is non-orthogonal. There are efficient algo-

rithms specially designed for TV reconstruction such as RecPF

( Yang et al., 2010 ) and SALSA ( Afonso et al., 2010 ). Both of

them are relaxed by ADM. The efficient transformation in RecPF

( Yang et al., 2010 ) requires that A 

T A can be diagonalized by

the Fourier transform, while SALSA ( Afonso et al., 2010 ) requires

AA 

T = I . Due to these restrictions, these two methods cannot be

applied to certain reconstruction applications, e.g., CS imaging

( Xiao and Yang, 2010 ). Moreover, it is unknown how to extend

them to solve the joint total variation (JTV) problems ( Bresson

and Chan, 2008; Huang et al., 2012 ). The ADM-based meth-

ods often have slower convergence rate. Generalized minimiza-

tion methods can be used, such as the split Bregman method

( Goldstein and Osher, 2009 ), FISTA ( Beck and Teboulle, 2009a ) and

IRN ( Rodríguez and Wohlberg, 2009 ), but they do not consider the

special structure of undersampling matrix A in reconstruction. 

In this article, we propose a novel method for the analysis-

based sparsity reconstruction (3) in the IRLS framework. It pre-

serves the fast convergence performance of traditional IRLS, which
nly requires a few reweighted iterations to achieve an accu-

ate solution. An incomplete Cholesky preconditioner is proposed

o significantly accelerate the inverse subproblem with precondi-

ioned conjugate gradient (PCG) method. We call our method fast

terative reweighted least squares (FIRLS). This preconditioner is

ased on the observation that A 

T A is often diagonally dominant in

he image reconstruction problems, such as compressed sensing,

mage inpainting and CS-MRI. With the same computation com-

lexity, the proposed preconditioner provides more precise results

han conventional Jacobi diagonal preconditioner. In addition, the

roposed preconditioner can be applied even when A is an oper-

tor, e.g., the Fourier or wavelet transform, which is not feasible

or most existing preconditioners of the PCG methods. Besides the

fficiency and fast convergence rate, the proposed method can be

asily applied to different sparsity patterns, e.g., overlapping group

parsity, TV and JTV. We validate the proposed method on CS-MRI

or tree sparsity, joint sparsity, TV and JTV based reconstruction.

xtensive experimental results demonstrate that the proposed al-

orithm outperforms the state-of-the-art methods in terms of both

ccuracy and computational speed. Primary results in this work

as been presented in Chen et al. (2014) . 

Our major contributions in this article include: (a) We intro-

uce a novel incomplete Cholesky preconditioner, which is an ex-

ension of the conventional diagonal preconditioner and can be

otentially used in a wide range of applications; (b) For overlap-

ing group sparsity minimization, we propose an efficient precon-

itioner (16) to solve the large scale inverse problem by utilizing

he diagonally dominant structure of A 

T A ; (c) We exploit the in-

xact LU decomposition of the finite difference operators and pro-

ose a novel preconditioning (36) for TV regularization; (d) Exten-

ive experiments are conducted to evaluate the performance of our

ethod on different reconstruction tasks. The results demonstrate

hat our preconditioning strategy achieves significant improvement

ver state-of-the-arts in terms of both accuracy and efficiency. 

. Related work: IRLS 

The conventional IRLS algorithms solve the standard sparsity

roblem in this constrained form: 

in 

x 
|| x || 1 , subject to Ax = b . (4)

n practice, the � 1 norm is replaced by a reweighted � 2 norm

 Chartrand and Yin, 2008 ): 

in 

x 
x 

T Wx , subject to Ax = b . (5)

he diagonal weight matrix W in the k th iteration is computed

rom the solution of the current iteration x k , i.e., W 

k 
i 

= | x k 
i 
| −1 . With

urrent weights W 

k , we can derive the closed form solution for

 

k +1 : 

 

k +1 = (W 

k ) −1 A 

T (A (W 

k ) −1 A 

T ) −1 b . (6)

t has been proven that the IRLS algorithm converges expo-

entially fast (linear convergence in the terminology of numeri-

al optimization) if the measurement matrix A satisfies the RIP

 Daubechies et al., 2010 ): 

| x 

k − x 

∗|| 1 ≤ μ|| x 

k −1 − x 

∗|| 1 ≤ μk || x 

0 − x 

∗|| 1 , (7)

here μ is a fixed constant with μ< 1. However, this algo-

ithm is rarely used in compressive sensing applications espe-

ially for large scale problems. That is because the inverse of

 (W 

k ) −1 A 

T takes O(M 

3 ) if A is a M × N sampling matrix. Even

ith the higher convergence rate, traditional IRLS still cannot com-

ete with the fastest first-order algorithms such as FISTA ( Beck and

eboulle, 2009b ) (some results have been shown in Bach et al.,

011 ). Most existing IRLS methods like Chartrand and Yin (2008) ;
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aubechies et al. (2010) ; Gorodnitsky and Rao (1997) cannot solve

he overlapping group sparsity problems, which is a strong limita-

ion. In Bach et al. (2011) , the IRLS is extended to solve the over-

apping group sparsity problems. However, the inverse subproblem

s solved in the closed form, which makes it impossible for large

cale problems. As we will show later, the proposed precondition-

ng method can significantly accelerate the speed of conventional

RLS algorithms. 

. FIRLS for overlapping group sparsity 

.1. An alternative formulation for overlapping group sparsity 

We consider the overlapping group sparsity regularization prob-

em first ( Yuan and Lin, 2005; Jacob et al., 2009 ). The mixed � 2, 1 

orm in (3) may contain overlapping groups. It can be rewritten in

he analysis-based sparsity form: 

in 

x 
{ F (x ) = 

1 

2 

|| Ax − b || 2 2 + λ|| G �x || 2 , 1 } , (8) 

here � denotes an orthogonal sparse basis and is optional. A

ood choice of � for natural images/signals would be the orthog-

nal wavelet transform, which is used in this article. Our method

an also be applied if � is not orthogonal but the inverse of pre-

onditioner can be obtained efficiently. For some applications, or-

hogonal transforms may lead to “blocking” artifacts. G is a bi-

ary matrix for group configuration, which is constructed by the

ows of the identity matrix. With different settings of G , this model

an handle overlapping group, non-overlaping group and standard

parsity problems. Tree sparsity can also be approximated by this

odel ( Kim and Xing, 2010; Liu and Ye, 2010; Jenatton et al.,

011 ). Although G may have large scales, it can be efficiently im-

lemented by a sparse matrix. This kind of indexing matrix has

een used in the previous work YALL1 ( Deng et al., 2011 ). With

his reformulation, � = G � and the � 2, 1 norm in (8) is now non-

verlapping. 

We relax the mixed � 2, 1 norm based on Young’s inequality: 

| G �x || 2 , 1 = 

s ∑ 

i =1 

|| (G �x ) g i || 2 ≤
s ∑ 

i =1 

(|| (G �x ) g i || 2 2 + ε) 1 / 2 

≤
s ∑ 

i =1 

[ (|| (G �x 

k ) g i || 2 2 + ε) 1 / 2 

2 

+ 

|| (G �x ) g i || 2 2 + ε 

2(|| (G �x 

k ) g i || 2 2 
+ ε) 1 / 2 

]
. (9) 

here ε is a very small constant to avoid the denominator going

o zero. In Chen and Selesnick (2014b) , a similar way is used to

ajorize the original function. Writing it in matrix form and we

an majorize F ( x ) by the majorization minimization (MM) method

 Hunter and Lange, 2004 ): 

(x , W 

k ) = 

1 

2 

|| Ax − b || 2 2 + 

λ

2 

x 

T �T G 

T W 

k G �x 

+ 

λ

2 

s ∑ 

i =1 

1 

W 

k 
g i 

+ c, (10) 

here �T denotes the inverse transform of �; W 

k is the group-

ise weights; c is a constant with respect to x containing the re-

aining terms in (9) . Based on our majorization in (10) , we are

ctually minimizing an upper bound 

∑ s 
i =1 (|| (G �x ) g i || 2 2 

+ ε) 1 / 2 of

he original function || G �x || 2, 1 . Our solution is guaranteed to con-

erge to a local minimum by the MM theory. The weight of i th

roup W 

k 
g i 

can be obtained by: 

 

k 
g i 

= (|| (G �x 

k ) g i || 2 2 + ε) −1 / 2 . (11) 

uppose that the signal x to be recovered is of length N and G is a

 

′ -by- N matrix, then W 

k is a N 

′ -by- N 

′ diagonal matrix and has the
ollowing form: 

 

k = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

W 

k 
g 1 

. . . 

W 

k 
g 1 

. . . 

W 

k 
g s 

W 

k 
g s 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

, (12) 

here each group-wise weight W 

k 
g i 

is duplicated | g i | times and | g i |

enotes the size of the i -th group. One can find that the group-

ise weights are all related to G . With different settings of G , the

roup-wise weights are directly derived. Variant-size group spar-

ity problems also can be flexibly handled in this model. An in-

eresting case would be the standard sparse problem, where each

roup contains only one element and the group-wise weight ma-

rix W is the same as in IRLS algorithm ( Daubechies et al., 2010;

hartrand and Yin, 2008 ). 

The next the problem is to solve: 

 

k +1 = arg min 

x 
Q(x , W 

k ) . (13) 

ote that W 

k 
g i 

is independent of x and can be considered as a con-

tant. We iteratively update W 

k with x k and solve x k +1 based on

urrent W 

k . Our algorithm is also an IRLS typed algorithm. 

.2. Accelerating with PCG 

In each iteration, W 

k can be easily updated with (12) and (11) .

o solve (13) , a simple way is to let the first order derivative of

 ( x | x k ) be zero as it is a quadratic convex function: 

(A 

T A + λ�T G 

T W 

k G �) x − A 

T b = 0 . (14) 

he way to solve (14) determines the efficiency of the whole

lgorithm. The exact inverse of the Hessian matrix S = A 

T A +
�T G 

T W 

k G � takes O(N 

3 ) time. It is impractical to compute S −1 

or many cases especially when the size of S is large. An alter-

ative way is to approximate the solution of (14) with the classi-

al conjugate gradient (CG) decent method. It is much faster than

omputing the exact solution. In addition to CG, a better way is

he preconditioned conjugate gradient (PCG) method ( Saad, 2003 ).

he design of preconditioner is problem-dependent, which should

e as close as possible to the Hessian matrix S and can be in-

ersed efficiently. Therefore, it is not an easy task to design a good

reconditioner in general due to this tradeoff. In signal/image re-

onstruction, such preconditioner has not been found in existing

RLS algorithms ( Chartrand and Yin, 2008; Daubechies et al., 2010;

orodnitsky and Rao, 1997 ). 

We define a new preconditioner for the best approximation in

robenius norm || · || F : 

 

∗ = arg min 

X ∈D 
|| S − X || F , (15) 

here D denotes a class of incomplete Cholesky preconditioner

 Kershaw, 1978 ), whose inverse can be obtained efficiently with

(N) time. Instead of discarding all the non-diagonal entries

ike the conventional diagonal preconditioner, such incomplete

holesky preconditioner keeps more information so that the algo-

ithm converges much faster. 

For the subproblem (14) , it is difficult to exactly optimize the

ncomplete Cholesky preconditioners. Fortunately, we could find

 set of possible candidates due to the strong constraint, such

s diag(A 

T A + λ�T G 

T W 

k G �) , (a I + λ�T G 

T W 

k G �) or diag(A 

T A +
�T w �) etc. Here, a, w denote the mean of diagonal elements

f the matrix A 

T A, G 

T W 

k G , respectively, which are scalars; diag ()

eans setting all non-diagonal elements to zero and I denotes

he identity matrix. Note that the G 

T W 

k G is always diagonal for
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any kind of G . In addition, we observe that A 

T A is often diago-

nally dominant in the image reconstruction problems. For exam-

ple, in CS-MRI, A = RF where F denotes the Fourier transform and

R ∈ R 

M×N ( M < N ) is a selection matrix containing M rows of the

identity matrix. Therefore, A 

T A = F T R 

T RF is diagonally dominant

as R 

T R is diagonal. For the image inpainting problem, A 

T A = R 

T R

is diagonal. This structure also holds when A is a random projec-

tion matrix. Based on this property, we proposed a preconditioner

by discarding the non-diagonal elements of A 

T A : 

P = (a I + λ�T G 

T W 

k G �) . (16)

The preconditioning error in Frobenius norm || S − P || F is very

small, due to diagonally dominant structure of A 

T A . As A is known

for many applications, a can be pre-estimated and is fixed for each

iteration. Therefore in each iteration, P 

−1 = �T (a I + λG 

T W 

k G ) −1 �

can be efficiently obtained. 

Several advantages of the proposed preconditioner can be found

when compared with existing ones ( Papandreou and Yuille, 2011;

Lefkimmiatis et al., 2012 ). To get the inverse, fast Fourier trans-

forms are used in recent circulant preconditioners for image de-

blurring ( Papandreou and Yuille, 2011; Lefkimmiatis et al., 2012 ),

while our model only requires linear time to obtain P 

−1 . We do not

discard all non-diagonal information like the Jacobi preconditioner

and therefore the preconditioner is more accurate. Moreover, our

model can also handle the case when A or � is an operator, while

other preconditioners ( Papandreou and Yuille, 2011; Lefkimmiatis

et al., 2012; Rodríguez and Wohlberg, 2009 ) cannot because they

require the exact values of S . 

Our method can be summarized in Algorithm 1 . We denote

Algorithm 1: FIRLS_OG. 

Input: A , b , x 1 , G , λ, k = 1 

while stopping criterion not met do 

Update W 

k by (11) (12) 

Update S = A 

T A + λ�T G 

T W 

k G �

Update P 

−1 = �T (a I + λG 

T W 

k G ) −1 �

Initialize PCG: r 0 = A 

T b − Sx k , z 0 = p 0 = P 

−1 r 0 , 

n = 0 , y 0 = x k 

while PCG stopping criterion not met do 

Update αn = 

r T n z n 

p T n Sp n 

Update y n +1 = y n + αn p n 

Update r n +1 = r n − αn Sp n 

Update z n +1 = P 

−1 r n +1 

Update βn = 

z T 
n +1 

r n +1 

z T n r n 

Update p n +1 = z n +1 + βn p n 

Update n = n + 1 

end while 

Update x k +1 = y n 

Update k = k + 1 

end while 

this overlapping group sparsity version as FIRLS_OG. n is the it-

eration counter for the inner PCG loop. In each inner PCG itera-

tion, the dominated cost is by applying S and P 

−1 , which is de-

noted by O(C S + C P ) . When A and � are dense matrices, O(C S +
C P ) = O(N 

2 ) . When A and � are the partial Fourier transform and

wavelet transform in CS-MRI ( Lustig et al., 2007 ), it is O(N log N) .

The PCG stopping criterion depends on the precision requirements

of different problems. As the inner loop is time consuming to be

solved exactly, we set a fixed number of iterations (e.g., 10–30 it-

erations) for the PCG. 
.3. Convergence analysis 

Our algorithm follows the rules of MM method. It is guaran-

eed to converge to a local minimum based on the MM theory. We

rovide a concise proof of its convergence property. 

heorem 1. The global optimal solution x ∗ of (10) is the global opti-

al solution of original problem (8) . 

roof. Suppose x ∗1 is the global optimal solution of (10) and x ∗2 
s the global optimal solution of (8) . W 

∗
1 

and W 

∗
2 

are weights of

 

∗
1 

and x ∗
2 

based on (11) and (12) . Consider Q as a function corre-

ponds to x and W . We have: 

(x 

∗
1 , W 

∗
1 ) ≤ Q(x 

∗
2 , W ) , ∀ W ; (17)

 (x 

∗
2 ) ≤ F (x 

∗
1 ) . (18)

ased on the inequality (9) , we have 

 (x ) ≤ Q(x , W 

k ) ∀ x ; (19)

 (x 

k ) = Q(x 

k , W 

k ) . (20)

herefore, 

 (x 

∗
2 ) ≤ F (x 

∗
1 ) = Q(x 

∗
1 , W 

∗
1 ) ≤ Q(x 

∗
2 , W 

∗
2 ) = F (x 

∗
2 ) , (21)

hich indicates F (x ∗
1 
) = F (x ∗

2 
) . �

heorem 2. F ( x k ) is monotonically decreased by Algorithm 1 ,

.e., F (x k +1 ) ≤ F (x k ) . In particular, we have lim k →∞ 

(F (x k ) −
 (x k +1 )) = 0 . 

roof. With the property (19) , we have 

 (x 

k +1 ) ≤ Q(x 

k +1 , W 

k ) . (22)

To balance the cost and accuracy when solving (14) , we apply

he PCG method to decrease Q ( x, W 

k ) and efficiently obtain the

olution x k +1 . Because x k is the initial guess for x k +1 , based on the

onotonically decreasing property of PCG ( Kaasschieter, 1988 ), we

ave: 

(x 

k +1 , W 

k ) ≤ Q(x 

k , W 

k ) . (23)

And we finally get: 

 (x 

k +1 ) ≤ Q(x 

k +1 , W 

k ) ≤ Q(x 

k , W 

k ) = F (x 

k ) . (24)

F ( x ) is convex and bounded. Due to the monotone convergence

heorem, we have: 

lim 

 →∞ 

(F (x 

k ) − F (x 

k +1 )) = 0 . (25)

�

. FIRLS for TV 

We have presented an efficient algorithm for overlapping group

parsity under an orthogonal sparse basis �. In image reconstruc-

ion problems, another widely used sparsity regularizer is TV. Due

o the non-orthogonality of the TV semi-norm, the FIRLS_OG algo-

ithm cannot be applied to solve the TV problem. In this section,

e will present an efficient algorithm for TV based image recon-

truction. For brevity and clarity, we first present the algorithm for

ingle channel image reconstruction and then extended it to multi-

hannel reconstruction ( Bresson and Chan, 2008 ). 
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i  
.1. An alternative formulation for TV 

TV minimization exploits the sparsity of the image in the gra-

ient domain. For brevity, we assume the image is n by n with

 × n = N. Let D 1 , D 2 be two N -by- N first-order finite difference

atrices in vertical and horizontal directions. 

 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

−1 1 

−1 1 

. . . . . . 

. . . . . . 

−1 1 

−1 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (26) 

D 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

. . . . . . 

−1 . . . 1 

−1 . . . 1 

. . . . . . 

−1 . . . 1 

−1 . . . 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (27) 

he main diagonal elements of D 1 and D 2 are all ones. The first

iagonal elements below the main diagonal are all minus ones in

 1 , while in D 2 n -th diagonal elements below the main diagonal

re all minus ones. With these notations, the � 1 and isotropic TV

ased image reconstruction can be reformulated as: 

in 

x 
{ 1 

2 

|| Ax − b || 2 2 + λ|| D 1 x || 1 + λ|| D 2 x || 1 } , (28) 

in 

x 
{ F (x ) = 

1 

2 

|| Ax − b || 2 2 + λ|| [ D 1 x , D 2 x ] || 2 , 1 } . (29) 

ere, the � 2, 1 norm is the summation of the � 2 norm of each row,

hich is a special case of (2) . Here and later, we denote [ , ] as the

oncatenating of the matrices horizontally. To avoid repetition, all

he following derivations only consider isotropic TV function (29) .

 1 -based TV function can be derived in the same way. 

Considering the Young’s inequality, we majorize (29) by the MM

ethod ( Hunter and Lange, 2004 ): 

(x , W 

k ) = 

1 

2 

|| Ax − b || 2 2 + 

λ

2 

x 

T D 

T 
1 W 

k D 1 x 

+ 

λ

2 

x 

T D 

T 
2 W 

k D 2 x + 

λ

2 

Tr ((W 

k ) −1 ) , (30) 

here Tr() denotes the trace. W 

k is a diagonal weight matrix in

he k th iteration: 

 

k = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

W 

k 
1 

W 

k 
2 

. . . 

W 

k 
N 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, (31) 

ith 

 

k 
i = 1 / 

√ 

(∇ 1 x 

k 
i 
) 2 + (∇ 2 x 

k 
i 
) 2 + ε , i = 1 , 2 , . . . , N, (32) 

here ∇ 1 and ∇ 2 denote the gradients along the x and y di-

ections. When D 1 = D 2 = I , it is identical to the � 1 norm mini-

ization as in the conventional IRLS methods ( Chartrand and Yin,

008; Daubechies et al., 2010; Gorodnitsky and Rao, 1997 ). 

.2. Accelerating with PCG and incomplete LU decomposition 

After the weight matrix is updated by (31) and (32) , the prob-

em is to update x . With the same rule as in the overlapping group

parsity regularization, we have 

(A 

T A + λD 

T 
1 W 

k D 1 + λD 

T 
2 W 

k D 2 ) x = A 

T b . (33) 
imilar to (14) , the Hessian matrix here is in large scale. We have

iscussed that the Hessian matrix is not dense but follows some

pecial structure in image reconstruction. A good solver should

onsider such special structure of the problem. In TV based image

eblurring problems, by observing that A has a circulant structure

under periodic boundary conditions), many efficient algorithms

ave been proposed to accelerate the minimization ( Lefkimmiatis

t al., 2012; Yang et al., 2009; Chan et al., 2011 ). However, these

lgorithms cannot be applied to the TV reconstruction problems. 

Based on the diagonally dominant prior information in image

econstruction, we can obtained an accurate preconditioner like

16) . 

 

′ = a I + λD 

T 
1 W 

k D 1 + λD 

T 
2 W 

k D 2 (34) 

owever, the inverse cannot be efficiently obtained for this pre-

onditioner, due to the non-orthogonality of D 1 and D 2 . 

Fortunately, P 

′ has a sparse structure due to the forms of D 1 

nd D 2 . We observe that preconditioner P 

′ in (34) is a penta-

iagonal matrix ( Saad, 2003 ) and is symmetric, which has the fol-

owing form: 

 

′ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

a 1 b 1 c 1 
b 1 a 2 b 2 c 2 

b 2 a 3 . . . . . . 

. . . . . . c N−n 

c 1 
c 2 . . . 

. . . . . . . . . b N−1 

c N−n b N−1 a N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (35) 

uch penta-diagonal matrix has incomplete LU decomposition.

herefore, we propose a new preconditioner for TV minimiza-

ion: 

 = LU ≈ a I + λD 

T 
1 W 

k D 1 + λD 

T 
2 W 

k D 2 , (36) 

here 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

b 1 
a 1 

1 

b 2 
a 2 

1 

. . . . . . 
c 1 
a 1 

b n 
a n 

1 

. . . . . . . . . 
c N−n 

a N−n 
. . . 

b N−1 

a N−1 
1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (37) 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

a 1 b 1 . . . c 1 
a 2 b 2 . . . c 2 

. . . . . . . . . 

a N−n b N−n . . . c N−n 

. . . . . . 

a N b N−1 

a N 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (38) 

e assume λ is small for the TV regularization. The decomposi-

ion is very accurate therefore as P is diagonally dominated with

 i � b 2 
i 
, a i � c 2 

i 
and a i � b i c i for all i . To the best of our knowledge,

his incomplete LU decomposition is first proposed for TV mini-

ization. Due to the special structure of P , the incomplete LU de-

omposition only takes O(N) time. Therefore, the total time to ob-

ain P 

−1 ≈ U 

−1 L −1 is O(N) . We can conclude the proposed method

or TV reconstruction in Algorithm 2 . The inner PCG loop is similar

o that in Algorithm 1 , which is omitted to avoid repetition. 

.3. Extension to JTV 

In many multiple measurement vector problems (MMV), the

mage with multiple channels has the joint sparsity property. In
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Algorithm 2: FIRLS_TV. 

Input: A , b , x 1 , λ, k = 1 

while stopping criterion not met do 

Update W 

k by ( ?? ) and ( ?? ) 

Update S = A 

T A + λD 

T 
1 

W 

k D 1 + λD 

T 
2 

W 

k D 2 

Update P = LU ≈ a I + λD 

T 
1 

W 

k D 1 + λD 

T 
2 

W 

k D 2 , P 

−1 = U 

−1 L −1 

while PCG stopping criterion not met do 

Update x k +1 by PCG for Sx = A 

T b with preconditioner P 

end while 

Update k = k + 1 

end while 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Convergence rate comparison among standard CG, Jacobi PCG and the pro- 

posed PCG for � 1 norm minimization. 
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these cases, the TV can be extended to joint total variation (JTV)

( Bresson and Chan, 2008; Huang et al., 2012 ): 

min 

x 

{ 

1 

2 

T ∑ 

t=1 

|| A t X t − b t || 2 2 + λ|| [ D 1 X , D 2 X ] || 2 , 1 
} 

, (39)

where X ∈ R 

N×T is a T -channel image with X = [ X 1 , X 2 , . . . , X T ] ; A t

is the undersampling matrix for channel t and b t is the measure-

ment vector for channel t . Similar as (30) , we have: 

Q(X , W 

k ) = 

1 

2 

T ∑ 

t=1 

|| A t X t − b t || 2 2 + 

λ

2 

[ 

T ∑ 

t=1 

X 

T 
t D 

T 
1 W 

k D 1 X t 

+ 

T ∑ 

t=1 

X 

T 
t D 

T 
2 W 

k D 2 X t + Tr ((W 

k ) −1 ) 

] 

, (40)

where 

W 

k 
i = 1 / 

√ 

T ∑ 

t=1 

(∇ 1 X 

k 
t,i 

) 2 + (∇ 2 X 

k 
t,i 

) 2 + ε , ∀ i, (41)

and 

W 

k = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

W 

k 
1 

W 

k 
2 

. . . 

W 

k 
N 

⎫ ⎪ ⎬ 

⎪ ⎭ 

. (42)

It indicates that the weights for X 1 to X T are the same. Similar, X t 

can be updated by solving: 

(A 

T 
t A t + λD 

T 
1 W 

k D 1 + λD 

T 
2 W 

k D 2 ) x = A 

T 
t b t . (43)

It also can be solved efficiently by the PCG method with the pro-

posed preconditioner. Again to avoid repetition, the algorithm for

JTV based reconstruction is not listed. 

5. Experiments 

5.1. Experiment setup 

The experiments are conducted using MATLAB on a desktop

computer with 3.4 GHz Intel core i7 3770 CPU. We validate differ-

ent versions of our method on wavelet tree sparsity based recon-

struction, wavelet joint sparsity reconstruction, T V and JT V recon-

struction. To avoid confusion, we denote the tree sparsity version

as FIRLS_OG and non-overlapping joint sparsity version FIRLS_MT.

The version for standard � 1 norm minimization is denoted by

FIRL S_L1. FIRL S_TV and FIRL S_JTV denotes the TV and JTV recon-

struction, respectively. We also compare the corresponding IRLS

algorithms without our preconditioning (i.e., the subproblem is

solved by CG), which are named IRL S_L1, IRL S_TV, etc. 

Note that some algorithms need a very small number of itera-

tions to converge (higher convergence rate), while they cost more

time in each iteration (higher complexity). The others take less
ime in each iteration; however, more iterations are required. As

e are interested in fast reconstruction, an algorithm is considered

o be better if it can achieve higher reconstruction accuracy with

ess computational time. 

.2. The accuracy of the proposed preconditioner 

One of our contributions is the proposed incomplete Cholesky

reconditioner for sparse recovery. First, we conduct an experi-

ent to validate its effectiveness with the orthogonal wavelet ba-

is. Without loss of generality, a patch (64 × 64) cropped from the

ameraman image is used for reconstruction, which is feasible to

btain the closed form solution of S −1 for evaluation. As most ex-

sting preconditioners cannot support the inverse of operators, the

ampling matrix is set as the random projection and � is a dense

atrix for wavelet basis here. Fig. 1 demonstrates the performance

f the proposed PCG compared with Jacobi PCG and standard CG

or the problem (14) . The performance of the proposed PCG with

ess than 50 iterations is better than that of CG and Jacobi PCG

ith 200 iterations. Although Jacobi preconditioner is diagonal, it

emoves all the non-diagonal elements which makes the precondi-

ioner less precise. 

To validate the effectiveness of the proposed preconditioner in

V reconstruction, we take experiments on the Shepp-Logan phan-

om image with 64 × 64 pixels. The Shepp-Logan phantom image is

ery smooth and is an ideal example to validate TV reconstruction.

he relative errors of CG, PCG Jacobi and the proposed method are

hown in Fig. 2 . It shows that only 20 iterations of PCG with the

roposed preconditioner can outperform conventioanal CG with

00 iterations. Jacobi PCG requires approximately 2 times of iter-

tions to reach the same accuracy as our method, because it dis-

ards all non-diagonal information directly and makes the precon-

itioning less precise. Comparing with the results in Fig. 1 , our

reconditioner seems less powerful on TV reconstruction. This is

xpected as we further decompose the preconditioner into two tri-

ngle matrices L and U , which introduces minor approximation er-

or. However, it still converges much faster than the existing Jacobi

CG. These experiments demonstrate that the inner loop subprob-

em in our method is solved efficiently with the proposed precon-

itioner. 
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Fig. 2. Convergence rate comparison among standard CG, Jacobi PCG and the pro- 

posed PCG for TV minimization. 

Fig. 3. Convergence rate comparison among FOCUSS, FISTA and SpaRSA for � 1 norm 

minimization. 

Table 1 

Computational cost comparison between FOCUSS ( Gorodnitsky and Rao, 1997 ) and 

the proposed method. 

FOCUSS FIRLS_L1 

Time (seconds) 47.5 127.2 485.7 10.3 24.4 49.4 

Function value 0.2810 0.2774 0.2767 0.2809 0.2774 0.2767 
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Fig. 4. Comparisons between FIRLS_L1 and IRLS_L1 with different inner PCG/CG it- 

erations. 
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.3. Convergence rate and computational complexity 

One of the properties of the proposed FIRLS is its fast conver-

ence rate, i.e., only a small number of iterations can achieve high

econstruction accuracy. In addition, each iteration has low compu-

ational cost. To validate its fast convergence rate, we compare it

ith three existing algorithms with known convergence rate. They

re the IST algorithm SpaRSA ( Wright et al., 2009 ), FISTA ( Beck and

eboulle, 2009b ) and IRLS algorithm FOCUSS ( Gorodnitsky and

ao, 1997 ), with O(1 /k ) , O(1 /k 2 ) and exponential convergence

ates, respectively. In addition, the IRLS without our precondition-

ng is compared. 

The test data is a random 1D signal of length 40 0 0, with 10%

lements being non-zeros. The number of measurements are 800.

ig. 3 demonstrates the comparison. In each iteration, FOCUSS

eeds to compute the inverse of a large scale matrix, and the pro-

osed method uses 30 PCG iterations to approximate the inverse.

oth FOCUSS and the proposed method converge within 100 it-

rations in terms of the object function value (1) . FISTA tends to

onverge at about 800 iterations. However, SpaRSA requires much

ore than 800 iterations to converge. Table 1 lists the reconstruc-

ion results at different CPU time between FOCUSS and the pro-

osed method. The proposed algorithm always achieves more ac-
urate result in much less time. After convergence, the slightly dif-

erent function values may be caused by approximation or round-

ng errors. With the size of the data becomes larger, the time cost

f FOCUSS will increase at a cubic speed. More importantly, it is

ot known how to solve the overlapping group sparsity problem

ith FOCUSS. 

In Fig. 3 , one may notice that IRLS_L1 also converges very fast,

ut the converged function value is a higher than the others. To in-

estigate this observation, we compare IRLS_L1 and FIRLS_L1 with

ifferent inner PCG/CG iterations. The results on the same data

re shown in Fig. 4 . When the subproblem is not precisely solved,

RLS_L1 may not converge to the same result of FIRLS_L1. With

ore number of CG iterations, the IRLS_L1 can converge to bet-

er solutions. In contrast, FIRLS_L1 can always converge to similar

olutions, which correspond to much lower function values than

hose by IRLS_L1. For 30 inner iterations, the computational costs

f IRLS_L1 and FIRLS_L1 are 28.1 s and 28.5 s. With a similar com-

utational cost, our method can produce more accurate results. 

.4. Approximation of the diagonal dominant structure 

We do not have strong assumption on the type of the A ma-

rix, but only require A 

T A has a diagonally dominant structure. If

 

T A is less diagonally dominant, we will get more approximation

rrors using the proposed preconditioning. An experiment is con-

ucted to evaluate the behaviors of our preconditioning on differ-

nt A matrices. 

We create three types of random projection A matrices. The

umber of rows are N , 0.5 N and 0.1 N , and A is less and less diago-

ally dominant. The test data is created using the same method as

n Section 5.3 . We compare the convergence speeds of our method

or solving the subproblem (14) . The PCG algorithm is terminated

hen a tolerance 10 −6 of the residual is reached. The average num-

ers of iterations to reach the tolerance are 87, 152 and 226, re-

pectively. This experiment demonstrates that our method con-

erges much faster when A 

T A is more diagonally dominant. 

. Application: compressive sensing MRI 

Compressive sensing MRI (CS-MRI) ( Lustig et al., 2007 ) is one of

he most successful applications of compressive sensing and spar-

ity regularization. There are various sparsity patterns on MR im-

ges. Therefore, we validate the performance of different versions
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Fig. 5. The original images: (a) Brain; (b) Cardiac; (c) Chest; (d) Shoulder. 

Fig. 6. Convergence speed comparison on the Brain image with 25% sampling. Left: 

SNR vs outer loop iterations. Right: SNR vs CPU time. 

Table 2 

Average SNR (dB) comparisons on the four MR images with 

wavelet tree sparsity. 

Sampling ratio 20% 23% 25% 28% 30% 

AMP 11.64 15.7 16.43 17.08 17.44 

WaTMRI 15.56 17.43 18.23 19.22 20.45 

SLEP 11.59 16.51 17.36 18.51 20.07 

YALL1 12.13 13.29 14.12 15.29 16.07 

FIRLS_OG 15.67 18.78 19.43 20.53 21.52 
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of our method on CS-MRI as a concrete reconstruction instance.

Partial but not full k-space data is acquired and the final MR im-

age can be reconstructed by exploiting the sparsity of the image.

With little information loss, this scheme can significantly acceler-

ate MRI acquisition. In CS-MRI, A = RF is an undersampled Fourier

operator, where F is the Fourier transform and R ∈ R 

M×N is a se-

lection matrix containing M rows of the identity matrix. Therefore,

A 

T A = F T R 

T RF is diagonally dominant as R 

T R is diagonal. Based on

(16) , a is identical to the sampling ratio (a fixed scalar). The exam-

ples in this article are single coil CS-MRI. For parallel MRI recon-

struction, one can apply our method in the CS-SENSE framework

( Liang et al., 2009; Otazo et al., 2010; Ramani and Fessler, 2011 ). 

Following previous works, Signal-to-Noise Ratio (SNR) is used

as metric for result evaluation: 

SNR = 10 log 10 (V s /V n ) , (44)

where V n is the Mean Square Error between the original image x 0 
and the reconstructed x ; V s = v ar(x 0 ) denotes the variance of the

values in x 0 . 

6.1. CS-MRI 

6.1.1. CS-MRI with wavelet tree sparsity 

The MR images are often piecewise smooth, which are widely

assumed to be sparse under the wavelet basis or in the gradient

domain ( Lustig et al., 2007; Ma et al., 2008; Yang et al., 2010;

Huang et al., 2011a ). Furthermore, the wavelet coefficients of a nat-

ural image yield a quadtree. If a coefficient is zero or nonzero, its

parent coefficient also tends to be zero or nonzero. This wavelet

tree structure has already been successfully utilized in MR im-

age reconstruction, approximated by the overlapping group spar-

sity ( Chen and Huang, 2012; 2013 ). Tree-structured CS-MRI method

( Chen and Huang, 2012; 2013 ) has been shown to be superior to

standard CS-MRI methods ( Lustig et al., 2007; Ma et al., 2008;

Huang et al., 2011a ). Therefore, we compare our algorithm with

two latest and fastest tree-based algorithms, turbo AMP ( Som and

Schniter, 2012 ) and WaTMRI ( Chen and Huang, 2012 ). In addition,

overlapping group sparsity solvers SLEP ( Liu et al., 2009; Yuan

et al., 2013 ) and YALL1 ( Deng et al., 2011 ) are also compared. The

total number of iterations is 100 except that turbo AMP only runs

10 iterations due to its higher time complexity. Followed by the

previous works ( Ma et al., 2008; Huang et al., 2011a; Chen and

Huang, 2012 ), four MR images with the same size 256 × 256 are

used for testing, which are shown in Fig. 5 . Using a similar sam-

pling strategy, we randomly choose more Fourier coefficients from

low frequency and less on high frequency. The sampling ratio is

defined as the number of sampled measurements divided by the

total size of the signal/image. 

The convergence speeds of different algorithms on the Brain

image are illustrated in Fig. 6 . From SNR versus outer loop iter-

ations, the proposed algorithm far exceeds that of all other algo-

rithms, which is due to the fast convergence rate of FIRLS. How-

ever, there is no known convergence rate better than O(1 /k 2 )

for WaTMRI and SLEP, and O(1 /k ) for YALL1, respectively. These

results are consistent with that in previous work ( Chen and

Huang, 2012 ). The IRLS without preconditioning has the similar

performance as SLEP. For the same number of total iterations, the

computational cost of our method is comparable to the fastest

one YALL1, and it significantly outperforms YALL1 in terms of re-

construction accuracy. SLEP has the same formulation as ours. To

reach our result in this experiment, it requires around 500 itera-

tions with about 43 s. Similar results can be obtained on the other

testing images. The results on the four images with different sam-

pling ratios are listed in Table 2 . Our results are consistently more

accurate. 
A visual comparison on the Brain image is shown in Fig. 7 ,

ith a 25% sampling ratio. Visible artifacts can be found on the re-

ults by YALL1 ( Deng et al., 2011 ). The image reconstructed by AMP

 Som and Schniter, 2012 ) tends to be blurry when compared with

he original. The image recovered by SLEP ( Liu et al., 2009 ) is noisy.

ur method and WaTMRI ( Chen and Huang, 2012 ) produce the

ost accurate results in terms of SNR. Note that WaTMRI has more

arameters required to be tuned due to its variable splitting strat-

gy. Besides SNR, we also compare the mean structural similar-

ty ( Wang et al., 2004 ) (MSSIM) of different images, which mimics

he human visual system. The MSSIM for the images recovered by

MP ( Som and Schniter, 2012 ), WaTMRI ( Chen and Huang, 2012 ),

LEP ( Liu et al., 2009 ), YALL1 ( Deng et al., 2011 ) and the proposed
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Fig. 7. Visual comparison on the Brain image with 25% sampling. The SNRs of AMP ( Som and Schniter, 2012 ), WaTMRI ( Chen and Huang, 2012 ), SLEP ( Liu et al., 2009 ), YALL1 

( Deng et al., 2011 ) and the proposed method are 15.91, 16.72, 16.49, 12.86 and 18.39, respectively. 

Fig. 8. Convergence rate comparison for TV minimization on the Chest image with 

25% sampling. Left: SNR vs CPU time. Right: Function Value vs CPU time. The con- 

verged function value of RecPF is approximately 2.6 × 10 5 , which is out of range of 

this display. 
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Table 3 

Quantitative comparison of convergence speed on the 

Chest image by TV regularization with 25% sampling. 

Iterations CPU time (sec) SNR (dB) 

CG 3181 397.8 19.23 

TVCMRI 21392 495.1 21.54 

RecPF 7974 163.4 18.86 

FCSA 1971 39.6 18.96 

SALSA 9646 882.4 20.13 

FIRLS_TV 29 6.9 21.65 
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ethod are 0.8890, 0.8654, 0.8561, 0.7857 and 0.9009. In terms of

SSIM, our method still has the best performance, which is con-

istent with the observation in terms of SNR. 

.1.2. CS-MRI by TV reconstruction 

TV is another popular regularizer for MRI reconstruction and

he images recovered by TV tend to be less noisy ( Lustig et al.,

007 ). For TV based reconstruction, we compare our method with

lassical method CG ( Lustig et al., 2007 ), TVCMRI ( Ma et al., 2008 ),

ecPF ( Yang et al., 2010 ), FCSA ( Huang et al., 2011a ) and SALSA

 Afonso et al., 2010 ). 

The convergence speeds of different algorithms on the Chest

mage are presented in Fig. 8 . It is worthwhile to note that no

losed form solutions exist for the subproblems of these algo-

ithms. The subproblems in these algorithms are often solved in an

pproximate way. From the figure, the final results of our method

nd TVCMRI are almost the same while the others converge to dif-

erent results. The right pane demonstrates that our method and

VCMRI can minimize the object function (29) more successfully.

RLS_TV meets the same problem as in Fig. 3 , i.e., converge to

 poor solution with a low SNR with a high function value. We

urther found that only TVCMRI has analyzed their global conver-
ence (in Section 2.3 of Ma et al., 2008 ), while the accuracy of all

he other methods ( Lustig et al., 2007; Yang et al., 2010; Huang

t al., 2011a; Afonso et al., 2010 ) has not been discussed in de-

ails. For the four MR images, the average SNRs of CG ( Lustig et al.,

007 ), TVCMRI ( Ma et al., 2008 ), RecPF ( Yang et al., 2010 ), FCSA

 Huang et al., 2011a ), SALSA ( Afonso et al., 2010 ) and the proposed

lgorithm are 19.45, 21.78, 21.70, 21.53 21.95 and 23.07, respec-

ively. 

We terminate each algorithm after a fixed toleration is reached,

.g., 10 −3 of the relative solution change. The final SNR and conver-

ence speeds of different methods are listed in Table 3 . To produce

 similar result of TVCMRI, our method only requires about its 1/70

omputational time. These convergence performances are not sur-

rising.FIRLS converges with a similar rate as the conventional IRLS

lgorithm FOCUSS (as shown in Fig. 3 ) and require the fewest iter-

tions. FCSA is a FISTA based algorithm, which has O(1 /k 2 ) conver-

ence rate. It converges with the second fewest iterations. For the

est algorithms, there is no known convergence rate better than

(1 /k ) . 

Due to the relatively slower convergence speed, we note that

revious methods ( Lustig et al., 2007; Ma et al., 2008; Yang et al.,

010; Huang et al., 2011a ) often terminate after a fixed number of

terations (e.g., 200) in practice. This is because the exactly con-

ergence is time consuming that may not be feasible for clinic

pplications. Following by this scheme, we run TVCMRI 200 iter-
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Fig. 9. Chest MR image reconstruction from 25% sampling. All methods terminate after 4 s. The SNRs for CG, TVCMRI, RecPF, FCSA, SALSA and the proposed are 17.13, 17.32, 

16.18, 18.28, 16.96 and 21.63, respectively. 

Fig. 10. The original images for multi-contrast MRI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. (a) Performance comparison for multi-contrast MRI with 25% sampling. The 

average time costs of SPGL1_MMV, FCSA_MT, and the proposed method are 10.38 s, 

8.15 s, 5.19 s. Their average SNRs are 31.58, 33.12 and 33.69. (b) Performance com- 

parison for multi-contrast MRI with 20% sampling. Their average time costs are 

9.98 s, 7.54 s, 5.23 s. Their average SNRs are 29.31, 29.69 and 30.01. 
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ations. All the other algorithms terminate after the same running

time of TVCMRI (i.e., around 4 s). The reconstruction results on the

Chest MR image are shown in Fig. 9 . A close look shows that our

method preserves highest organ-to-background contrast. Such re-

sults are expected if we take a review on Fig. 8 . Similar results can

be obtained on the Brain, Cardiac and Artery images. 

6.2. Multi-contrast MRI 

6.2.1. Multi-contrast MRI with wavelet joint sparsity 

To assist clinic diagnose, multiple MR images with differ-

ent contrasts are often acquired simultaneously from the same

anatomical cross section. For example, T1 and T2 weighted MR

images could distinguish fat and edema better, respectively. Dif-

ferent from the CS-MRI for individual MR imaging, multi-contrast

reconstruction for weighted MR images means the simultaneous

reconstruction of multiple T1/T2-weighted MR images. Joint spar-

sity of the wavelet coefficients and JTV across different contrasts

have been used in recent multi-contrast reconstruction methods

( Majumdar and Ward, 2011; Huang et al., 2012 ). 

Here, the multi-contrast MR images are extracted from the

SRI24 Multi-Channel Brain Atlas Data ( Rohlfing et al., 2010 ). An

example of the test images is shown in Fig. 10 . We compare our

method with the fastest multi-contrast MRI methods ( Majumdar

and Ward, 2011; Huang et al., 2012 ), which use the algorithms

SPGL1_MMV ( Berg and Friedlander, 2008 ) and FCSA to solve the

corresponding sub-problems, respectively. FCSA_MT and FIRLS_MT
enote the algorithm in Huang et al. (2012) and the proposed

ethod in this setting. 

Fig. 11 shows the performance comparisons among

PGL1_MMV ( Berg and Friedlander, 2008 ), FCSA_MT ( Huang et al.,

012 ) and FIRLS_MT on the example images shown in Fig. 10 . Each

lgorithm runs 100 iterations in total. After convergence, three

lgorithms achieve similar accuracy for 20% sampling and SPGL1 is

nly slightly worse than others for 25% sampling. From the curves,

ur method always ourperforms SPGL1_MMV and FCSA_MT, i.e.,

igher accuracy for the same reconstruction time. 

To quantitatively compare the convergence speed of these three

ethods, we conduct an experiment on 20 set images (i.e., total 60

mages) that are from SRI24. Different from the tree-based CS-MRI,

ach algorithm for non-overlapping group sparsity converges much

aster. To reduce randomness, all algorithms run 100 times and the

econstruction results are shown in Fig. 12 . With 25% sampling, the

ccuracy of our method is almost the same as FCSA_MT, and al-

ays better than SPGL1. In the process to achieve the convergence,

ur method is consistently faster than the other two algorithms.

hese results demonstrate the efficiency of proposed method. 
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Fig. 12. Performance comparison on 60 images from SRI24 dataset with 25% sam- 

pling. (a) SNR comparison. (b) CPU time comparison. The average convergence time 

for SPGL1, FCSA_MT and the proposed FIRLS_MT is 9.3 s, 7.2 s, 4.6 s, respectively. 

Fig. 13. Multi-contrast MRI with JTV reconstruction. (a) The performance compari- 

son with 25% sampling. (b) The performance comparison with 30% sampling. 
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.2.2. Multi-contrast MRI with JTV 

Finally, we reconstruct multi-contrast MR images with

TV. Here, we compare our method FIRLS_JT V with FCSA_JT V

 Huang et al., 2012 ). 

Fig. 13 shows the performance comparison on the example

mages (in Fig. 10 ) from 25% and 30% sampling, without set-

ing stoping criteria. After convergence, the accuracy of our re-

ults are slightly higher than those of FCSA_JTV. Also, it is clearly

hat FIRLS_JTV requires much less time to converge in both cases.

e then let each algorithm terminate with the 10 −3 tolerance.

CSA_JTV cost 35.6 s and 19.7 s to converge for the two sampling

ases, while the proposed FIRLS_JTV only requires 6.7 s and 4.6 s

or the two cases, respectively. 

.3. Discussion 

The first and second experiments validate the fast convergence

peed of our method due to the proposed preconditioner. The su-

erior performance of the proposed preconditioner attributes to

he utilizing of the special structure of the matrix A 

T A , which is

ften diagonally dominant in reconstruction problems (e.g., A is

andom projection or partial Fourier transform). We do not have

trong assumption about the properties matrix A 

T A except its di-

gonally dominant structure. As shown in Section 5.4 , our method

onverges faster if the A 

T A matrix is more diagonally dominant. 

The advantages of our method over the state-of-the-arts are

alidated on practical application CS-MRI with four sparsity pat-

erns: overlapping groups with tree sparsity, non-overlapping

roups with joint sparsity, T V and JT V. Although results on these

roblems are promising, some difference can be found. The non-

verlapping group sparsity problem is often easier to solve. For

xample, the subproblem in FISTA has closed form solution for

oint sparsity but not for overlapping group sparsity. However, our

ethod has similar difficulty for non-overlapping and overlapping

roup sparsity. That is why our method outperforms the fastest

ethods on joint sparsity reconstruction, and significantly outper-

orms those for tree-sparsity reconstruction, TV and JTV recon-
truction. In this work, we focus on fast minimization of the given

unctions, which is our major contribution. 

. Conclusion 

We have proposed a novel method for analysis-based sparsity

econstruction, which includes structured sparsity with an orthog-

nal basis and TV. It is of the IRLS type and preserves the fast

onvergence rate . The subproblem in our scheme is accelerated

y the PCG method with a new incomplete Cholesky precondi-

ioner. Due to the high accuracy and efficiency of this precondi-

ioner, the subproblem can be solved in very low cost, even when

t contains transforming operations. Extensive experimental results

ave demonstrated the flexibility, effectiveness and efficiency of this

ethod on CS-MRI. 
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