
The Benefit of Tree Sparsity in Accelerated MRI

Chen Chen and Junzhou Huang

Department of Computer Science and Engineering,
The University of Texas at Arlington , TX, USA 76019

Abstract. The wavelet coefficients of a 2D natural image are not only
very sparse with only a small number of coefficients have large values, but
also yield a quadtree structure. According to structured sparsity theory,
the required measurement bounds for compressive sensing reconstruction
can be reduced to O(K + logn) by exploiting this tree structure rather
than O(K +K logn) for standard K-sparse data. In this paper, we pro-
posed a new model to validate how much the wavelet tree structure can
help to accelerate Magnetic Resonance Imaging (MRI). This model is
decomposed to two subproblems. The first subproblem has closed form
solution. For the other one, we apply FISTA to solve it, which guaran-
tees this subproblem can be solved with the similar convergence to the
existing fastest MRI algorithms. Numerous experiments are conducted
to validate how much benefit it can bring by tree sparsity. Experimental
results show that the proposed method can definitely improve existing
MRI algorithms, although with gaps to the theory.

1 Introduction

According to compressive sensing (CS) theory [1] [2], only O(K +K log n) sam-
pling measurements are enough to recoverK-sparse data with length n. Applying
this theory in Magnetic Resonance Imaging (MRI), the MR scanning time can
be significantly reduced [3]. Suppose x is a MR image and R is a partial Fourier
transform, the sampling measurement b of x is defined as b = Rx. Recent meth-
ods all can reconstruct MR images with good quality from approximate 20%
sampling [3] [4] [5] [6]. They have a general model for the MRI problem:

x̂ = arg min
x
{1

2
‖Rx− b‖2 + α‖x‖TV + β‖Φx‖1} (1)

where α and β are two positive parameters; and Φ denotes a wavelet transform.
It is based on the fact that smooth MR images of organs should have relatively
small total variations and these images can be sparsely represented in the wavelet
domain. TV is defined as: ‖x‖TV =

∑
i

∑
j

√
(∇1xij)2 + (∇2xij)2, where ∇1

and ∇2 denote the forward finite difference operators on the first and second
coordinates.

In this model, both TV and L1 norms are nonsmooth which makes this prob-
lem has no closed form solution. Classical conjugate gradient decent method is



first used to solve this problem [3]. TVCMRI [4] and RecPF [5] use an operator-
splitting method and a variable splitting method to solve this problem respec-
tively. FCSA [6] decomposes the original problem into two easy subproblems and
separately solve each of them with FISTA [7] [8]. These are the state-of-the-art
algorithms for CS-MRI.

Recent works show that the required measurements can be further reduced by
exploiting the structure of the sparse prior [9] [10]. Specially, only O(K + log n)
sampling measurements are needed for tree sparse data. Some algorithms have
been proposed to improve standard CS recovery by utilizing the tree structure
of wavelet coefficients [11] [12] [13] [14]. Although their experiments show the
improvement by tree sparsity, none of them conducts experiments on MR images
to validate the practical benefit for accelerated MRI. In addition, for an image
with 256 × 256 pixels, there are big gaps between their improvements and the
theory.

In this paper, we propose a new model with wavelet tree sparsity instead of
the wavelet sparsity in FCSA, to validate how much it can improve the result
of standard sparsity. The tree structure is modeled as an overlapping group
regularization. The original problem can be decomposed to two subproblems
and solved very efficiently by existing techniques. Numerous experiments are
conducted to validate whether tree sparsity has the benefit and how much is
the benefit in practical MRI. The results show that the existing methods can be
further improved by exploiting the wavelet tree structure.

2 Related Work

2.1 Theoretical Benefit of Wavelet Tree Structure

(a) (b) (c)

Fig. 1: Wavelet quadtree structure: a) A cardiac MR image; (b)(c) The corre-
sponding tree structure of the wavelet coefficients.

The wavelet coefficients for natural data (signals or images) are often very
sparse, with only a small number of the coefficients have large values and a large



fraction of them are approximate zeros. Apart from this, the wavelet coefficients
also yield a quadtree structure for a 2D image. The coefficients in the coarsest
scale can be seen as the root nodes and the coefficients in the finest scale are the
leaf nodes. Each coefficient (non leaf) has four children in the finer scale below
it. Figure 1 shows the wavelet quadtree structure of a MR image.

Besides the sparsity of wavelet coefficients, this tree structure also provides
another good prior for compressive sensing recovery. If a parent coefficient has
a large/small value, its children also tend to be large/small. If this prior is fully
exploited, only O(K+log n) measurements is needed to recover tree-sparse data
rather thanO(K+K log n) for standard K-sparse data [9] [10]. The improvement
by exploiting tree structure can be significant when n is large.

2.2 Algorithmic Benefit of Wavelet Tree Structure

Rao et al. consider the wavelet tree structure as group lasso regularization [11]:

min
x
{F (x) =

1

2
‖Aθ − b‖22 + β

∑
g∈G
||θg||2} (2)

where θ is the wavelet coefficients. A = RΦT for MR image reconstruction
problem, ΦT is an inverse wavelet transform. β is positive parameter, G denotes
the all parent-child groups and g is the group index. When θ is recovered, it can
be transferred to the image by an inverse wavelet transform.

They replicate the overlapped elements and propose two convex models OGL
and OGLR with only non-overlapping terms. These tree-based group lasso meth-
ods have shown great benefit when comparing with standard lasso.

In statistical learning, Turbo AMP [14] models the wavelet coefficients as
conditionally Gaussian with hidden Markov tree states. Both the wavelet coef-
ficients and states are propagated on a factor graph. It assumes the observed
measurements are linearly containing with noise:

y = Ax+ w = AΦT θ + w (3)

x is the original image to be reconstructed and w is Gaussian white noise.
MCMC [12], and VB [13] also solve (3) with probabilistic inference. They model
the coefficients with hierarchical tree graph. The posterior probability of coeffi-
cients are derived from the value of their parents. All these algorithms with tree
structure show superiority to standard sparse methods. However, none of them
have been validated on real MR images.

3 Algorithm

We also model the wavelet tree structure as overlapping group regularization (2).
We do not introduce OGL and OGLR [11] into MRI problem as following reasons:
a) OGLR needs to replicate the matrix A, which brings much inconvenience for



the partial Fourier transform and will slow down the whole algorithm; b) the
parent-child relationship in OGL is hard to track; c) they apply SpaRSA [15] to
solve their models, with a relative slow convergence rate. Instead, we extend the
overlapping term to nonoverlapping with a sparse matrix G. Then the original
problem (2) is transferred to:

x̂ = arg min
x,z
{1

2
‖Rx− b‖22 + β

s∑
gi=1

||zgi ||2 +
λ

2
||z −GΦx||22} (4)

where β and λ are positive parameters and Φ denotes a wavelet transform.
gi denotes one of the parent-child groups and s is the total number of groups.
G is a sparse binary matrix indicates the grouping index with only one of 1 in
each row. z is the extended vector of wavelet coefficients x without overlapping.

All terms in our model are convex. For the z subproblem:

zgi = arg min
zgi
{β||zgi ||2 +

λ

2
||zgi − (GΦx)gi ||22}, i = 1, 2, ..., s (5)

It has closed form solution by soft thresholding:

zgi = max(||ri||2 −
β

λ
, 0)

ri
||ri||2

, i = 1, 2, ..., s (6)

where ri = (GΦx)gi . We denote this step by z = shrinkgroup(GΦx, βλ ) for
convenience.

For the x-subproblem:

x = arg min
x
{1

2
‖Rx− b‖22 +

λ

2
||z −GΦx||22} (7)

This is a combination of two quadratic terms and has closed form solution:
x = (RTR + λΦTGTΦG)−1(RT b + ΦTGT z). However, the inverse of RTR +
λΦTGTΦG is not easily obtained. In order to validate the benefit of tree struc-
ture, we apply FISTA to solve the x subproblem, which can match the conver-
gence rate of FCSA. Let f(x) = 1

2‖Rx− b‖
2
2 + λ

2 ||z −GΦx||
2
2, which is a convex

and smooth function with Lipschitz Lf , and g(x) = 0. Then our algorithm can
be summarized in Algorithm 1.

The proximal map is defined for any scaler ρ > 0:

proxρ(g)(x) := arg min
u
{g(u) +

1

2ρ
‖u− x‖2} (8)

and ∇f(rk) = RT (Rrk− b) +λΦTGT (GΦrk− z). RT and ΦT denote the inverse
partial Fourier transform and the inverse wavelet transform. Note that G is a
sparse matrix with each row containing only one nonzero element 1. Suppose



Algorithm 1 TreeMRI

Input: ρ = 1/Lf , r1 = x0, t1 = 1, β, λ,N
for k = 1 to N do
z = shrinkgroup(GΦxk−1, β/λ)
xk = rk − ρ∇f(rk)
tk+1 = [1 +

√
1 + 4(tk)2]/2

rk+1 = xk + tk−1
tk+1 (xk − xk−1)

end for

x is an image with n pixels. The shrinkgroup step can implemented in only
O(n log n) time and the gradient step also takes O(n log n). We can find the total
time complexity in each iteration is stillO(n log n), the same as that of TVCMRI,
RecPF and FCSA. This good feature guarantees the proposed algorithm could
be comparable with the fastest MRI algorithms in terms of execution speed.

4 Experiments

4.1 Experiment Setup

For fair comparisons, we follow the experiment setup used in previous works
[4] [6] and download codes from their websites. Suppose R is a partial Fourier
transform with m rows and n columns. The sampling ratio is defined as m/n.
Lower sampling ratio needs less MR scanning time to acquire. We follow the
sampling strategy of previous works [4] [6], which randomly choose more Fourier
coefficients from low frequency and less on high frequency.

All experiments are on a laptop with 2.5GHz Intel core i5 2530M CPU.
Matlab version is 7.8(2009a). All measurements are added with 0.01 Gaussian
white noise. Signal-to-Noise Ratio (SNR) is used for result evaluation. We mainly
compare the proposed algorithm with the classical method CG [3] and several
fastest MRI algorithms TVCMRI [4], RecPF [5] and FCSA [6]. In order to show
the benefit of tree structure, we remove the TV term in all algorithms.We use
the same setting β = 0.035 in previous works and λ = 0.2× β for our model.

For convenience, all test images are resized to 256 × 256 and the wavelet
decomposition level is set to 4. To perform fair comparisons, all methods run 50
iterations except that the CG runs only 8 iterations due to its higher computa-
tional complexity.

4.2 Visual Comparisons

We compare proposed tree-based algorithm with the fastest MRI algorithms to
validate how much the tree structure can improve existing results. Total variation
terms are all removed, leaving only wavelet sparsity and wavelet tree sparsity to



be compared. We conduct experiments on MR images that used in previous work
[6]. Figure 2 shows the visual results on a Cardiac MR image. It can be found
that the SNR has been improved by the proposed tree-based algorithm. The
image reconstructed by the proposed algorithm has detailed textures and is the
closest to the original one. Experiments on other MR images are also conducted
but not shown here due to the page limitation. All results show that the wavelet
tree sparsity obtain significantly better reconstruction over standard sparsity.

Fig. 2: Cardiac MR image reconstruction from 20% sampling. a) The original
image Recovered by : b) CG [3]; (b) TVCMRI [4]; d) RecPF [5]; e) FCSA [6]; f)
the proposed algorithm. All algorithms are without total variation regularization.
Their SNR are 9.86, 14.31, 15.14, 17.31 and 17.93.

4.3 CPU Time and SNRs

In the last subsection, our experiment confirms the conclusion in [6] that the
FCSA [6] is better than TVCMRI [4] and RecPF [5] and far better than the
classical CG [3]. We give the performance comparisons between different methods
in terms of the CPU time over SNR in this subsection. Besides the Cardiac image,
we also show the SNR performance in terms of both iterations and execution
time on the Chest image used in previous work [6]. In Figure 3, the SNR of



the proposed tree-based algorithm always is the highest in each iteration. When
considering CPU execution time, the superiority is weakened by its higher time
cost. Although the benefit obtained by wavelet tree structure is far away from the
conclusion in theory, it is reasonable because we only model the tree structure
as overlapping group sparsity. Only parent-child grouping is contained in the
model but not the whole tree graph structure.
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Fig. 3: Performance comparisons on: a)b) The Cardiac image; c)d) The Chest
image. All algorithms are without total variation regularization.

5 Conclusion and Future Work

In order to validate the benefit of wavelet tree structure in MR image reconstruc-
tion, we propose an overlapping group sparse model for CS-MRI and compare
with the good model used in recent papers based on standard sparsity. All total
variation terms are removed to emphasize the benefit of tree sparsity. Numerous
experiments are conducted to show the practical improvement of the proposed



tree-based algorithm on MR images. The results tell that the benefit of the pro-
posed algorithm far from the conclusion in structured sparsity theory. That is
because we model the tree structure as overlapping group sparsity which only
utilizes every parent-child relationship, while not considering the whole tree-
graph structure. The future work will focus on designing efficient algorithms to
exploit the whole wavelet tree graph.
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