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Constrained Optimization 
n  Unconstrained Optimization finds a minimum of a 

function under the assumption that the parameters 
can take on any possible value. 

n  In a range of problems additional constraints exist 
that limit the range of feasible parameters. 
n  Unconstrained optimization techniques would often find 

solutions that are not feasible (parameters do not fulfill 
constraints) 

n  Simply limiting iterative methods at the constraints will 
often lead to suboptimal solutions 
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Constrained Optimization 
n  Constrained optimization problems can be defined 

using an objective function and a set of constraints. 
n  Objective function:      minx f(x) 
n  Equality constraints:    gi(x)=0 

n  Inequality constraints: hi(x)≤ 0 

n  A feasible point is any point that fulfills all the 
constraints. 

n  An optimal point is one that locally optimizes the 
value function given the constraints. 
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Constrained Optimization 
n  A number of special cases for constrained 

optimization problems can be defined based on the 
types of functions used 
n  Linear programming: 

n  Linear objective function: f(x)=αTx 

n  Linear constraints: g(x)=Bx-c ; h(x)=Cx-d 

n  Quadratic programming: 
n  Quadratic objective function: f(x)=1/2 xTAx +αTx 

n  Linear constraints: g(x)=Bx-c ; h(x)=Cx-d 
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Constrained Optimization 
n  Solving constrained optimization problems is 

substantially harder than solving unconstrained 
optimization problems 
n  If possible, convert the constrained optimization problem 

into an unconstrained optimization problem 
n  For constraints on individual parameters, replace them with 

differentiable functions of an unconstrained parameter 

! 

a " xi " b       #     xi =
(b $ a)
1+ e$ ˜ x i

+ a

xi " a             #     xi = e ˜ x i + a
xi +%x j = 0   #      xi = $%x j
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Constrained Optimization 
n  Another differentiation can be made in terms of the 

types of constraints present 
n  Optimization problems with only equality constraints 

n  Optimization problems with inequality constraints 

n  Equality constraints are generally easier to deal with than 
inequality constraints 
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Problems with Equality 
Constraints 

n  A problem with only equality constraints is defined 
through and objective function f(x) and a set of 
constraints, g(x)=0 
n  Feasible points have to fulfill the constraints 

n  Constrained optimal points have to fulfill the necessary 
condition that the negative gradient of the objective 
function can not have any component that falls within the 
space spanned by the constraints 

n  Otherwise there  would be a way to lower the objective function 
without violating the constraints   

! 

"#f (x*) = Jg
T (x*)$
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Problems with Equality 
Constraints 

n  Lagrange multipliers λ introduce the equality 
constraints into the optimality condition 
n  Instead of optimizing f(x) optimize the Lagrangian 

function L(x,λ) 

n  At the constrained minimum the Lagrangian has a minimum and 
therefore constrained optimization solution has to be a solution to 
the nonlinear system 
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L(x,") = f (x) + "T g(x)
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Equality Constraint Optimization 
n  Problems with equality constraints can be solved by 

finding a critical point of the Lagrangian using 
Newton’s method 

n  To find this point requires the Hessian 
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Equality Constraint Optimization 
n  The step for Newton’s method can be determined 

(as generally in Newton’s method) as the solution 
to the linear system 

n  In the case of pure equality constraints this can be solved 
directly by solving the (m+n)x(m+n) linear system 

n  Solution has to be verified as a minimum since it 
could be a saddle 
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Equality Constraint Optimization 
n  We need a means to judge the progress to 

evaluate convergence and feasibility 
n  x in each step does not necessarily fulfill the constraints 

n  Only when converged do the constraints have to be fulfilled 

n  Merit functions can be used to measure progress 

n  E.g. Penalty function   
n  ρ represents tradeoff between optimality and feasilbity 

n  Penalty function for a large ρ has the same minimum as the 
original function ! 

"p (x) = f (x) +
1
2
#g(x)T g(x)
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Equality Constraint Optimization 
n  Penalty function provides another means to solve an 

equality constrained optimization problem 
n  Constrained minimum of f(x) is the same as the 

unconstrained minimum of the penalty function for a 
sufficiently large ρ 

n  Penalty function allows to convert a constrained optimization 
problem into an unconstrained problem 

n  Unconstrained problem becomes ill-conditioned for large ρ 
n  Penalty term starts to dominate and f(x) disappears 

n  Range from which optimization converges correctly becomes small 

n  Use of iterative approach can solve problem 
n  Incrementally solve unconstrained optimization problems for 

increasing values of ρ   
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Inequality Constraints 
n  With inequality constraints, the matrix for 

Newton’s method can no longer be solved directly. 
n  Sometimes inequality constraints can be (partially) 

converted into equality constraints 
n  Active set methods replace inequality constraints with equality 

constraints for a subset of the constraints 
n  Inequality constraints that are not currently violated can be temporarily 

dropped as the next step is unlikely to violate them 

n  Inequality constraints that are violated can be replaced by equality constraints 
since the equality is the closes value to fulfilling the constraint 

n  Active set method requires to reevaluate the set of required 
constraints at each step 
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Extended Form 
n  Inequality constraints can be replaced by equality 

constraints and an additional, simpler inequality 
constraint 
n  Introducing slack variables 

n  System with slack variables can be represented as an 
extended system (mh additional variables) with solely 
constraints on the slack variables 

n  Allows more efficient solution methods since all constraints are 
uniform 

! 

h(x) " 0    #    h(x) + xs = 0  , xs " 0



© Manfred Huber 2011 15 

Barrier Methods 
n  As for equality constraints, optimization problems 

with inequality constraints can be solved by 
converting them into a sequence of unconstrained 
optimization problems with appropriate penalties 
n  Barrier functions form one-sided penalty function 

n  For sufficiently small μ the barrier function has the same 
minimum as the constrained optimization problem for f(x) 

n  Again ill conditioned for small μ 

n  Iterated unconstrainted optimization using barrier function with 
decreasing μ can address problem 

n  Basis for interior point methods 

! 

"µ (x) = f (x) #µ
1

hi(x)i=1

mp$
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Sequential Quadratic Programming 
n  Lagrange multipliers λ can also be used with 

inequality constraints but have to be 0 for all 
inactive constraints 
n  Instead of optimizing f(x) we can again optimize the 

Lagrangian function L(x,λ) 
n  At the constrained minimum the Lagrangian has a minimum and 

therefore constrained optimization solution has to be a solution to 
the nonlinear system 
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Sequential Quadratic Programming 
n  The step for Newton’s method can be determined 

(as generally in Newton’s method) as the solution 
to the linear system with the added constraints for 
active set variables 

n  This can no longer be solved directly but represents a 
quadratic programming problem for 
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Linear Programming 
n  Linear programs are an important special class of 

constrained optimization problems 
n  Linear objective function f(x) 
n  Linear constraints g(x), h(x) 

n  Often with the additional constraints x≥0 

n  In linear programming problems (as in quadratic 
programming problems), the feasible region is convex 
n  Since objective function is linear the optimum has to occur at a 

vertex of the constrained feasible region 
n  Solution is at an intersection point of n constraints 

n  Simplex algorithm uses extended form to navigate a search 
through the space of vertices 
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Simplex Algorithm 
n  In augmented form a vertex is characterized as a 

point in which at least n variables are 0 

n  Starting from one vertex, navigate to a neighbor with a 
lower value of Z 

n  Neighbors are nodes in which one of the n variables that were set 
to 0 become non-zero 

n  Selection of neighbor is the one that requires the smallest change 
(i.e. along steepest “gradient”) 
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Simplex Algorithm 
n  In the worst case the complexity of the simplex 

algorithm is exponential 
n  Problems can be constructed where it moves through 

every single vertex 

n  In practice it is usually very efficient and most of the time 
outperforms interior point methods (which are 
polynomial) 

n  Simplex algorithm can solve problems with large 
numbers of variables 
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Simplex Algorithm - Example 
n  Linear program: 

n  Objective function: P=-2x-3y-4z 
n  Constraints: 3x+2y+z ≤10 , 2x+5y+3z ≤ 15 , x,y,z≥0 

n  Convert linear program into extended form: 
n  Objective function: P+2x+3y+4z=0 
n  Constraints: 3x+2y+z+s=10, 2x+5y+3z+t=15, x,y,z,s,t≥0 
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Simplex Algorithm - Example 
n  Determine initial vertex by identifying 3 variables that can 

simultaneously be 0 under the constraints 
n  Convert the matrix such that first row contains 0 for all elements 

except the first column and the 3 variables that are equal to 0 
n  In this case this is already the case when selecting x, y, z. Thus starting with 

the vertex described by x=y=z=0 

n  To find next vertex, find the variable among the current ones that has the 
steepest downhill gradient in the objective function (i.e. highest coefficient in 
the first row) – in this case z 
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Simplex Algorithm - Example 
n  Identify the next variable to set to 0 (instead of z) by finding the constraint 

row that requires the minimal change in z (computed by dividing the right 
hand side of the constraint equations by the corresponding value in the z 
column and then selecting the constraint equation with the smallest value – 
in this case the second constraint (third row) and thus the variable t 
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Simplex Algorithm - Example 
n  Eliminate the entries in the z column for all but the selected constraint row 

and eliminate all entries corresponding to non-zero variables in the first row. 

n  Find the direction towards the next vertex by identifying the 
strongest downhill direction for the selected variables (x,y,t) 

n  Since all entries in the first row are negative, there is now way to improve 
the function and we have reached the optimal vertex with x=y=t=0 
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Simplex Algorithm - Example 
n  Find the values for all the variables in the vertex 

n  From the first row we obtain the objective function P=2/3x+11/3y+4/3t-20 
which is (as it has to be) minimal at x=y=t=0 with a value of -20 

n  Using the second constraint equation and the already known variable 
values we obtain  2x+5y+3z+t = 3z = 15 and thus z=5 

n  Solution is  x=y=0 , z=5 , P=-20 

 

n  Find the direction towards the next vertex by identifying the 
strongest downhill direction for the selected variables (x,y,t) 

n  Since all entries in the first row are negative, there is now way to improve 
the function and we have reached the optimal vertex with x=y=t=0 
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Constrained Optimization 
n  Constrained Optimization allows to find the best parameters 

for arbitrary objective functions while obeying constraints 

n  Equality and inequality constraints 

n  Special cases of Linear programming can be addressed using 
the constraints explicitly 

n  Simplex algorithm 

n  Most general solution methods transform the constrained 
problem into an unconstrained one with the same solution 

n  Lagrangian function 

n  Penalty or barrier functions 
n  Convergence is enhanced by iterating over increasingly strict barrier functions 


