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Abstract 
Reinforcement learning addresses the problem of learning to 
select actions in order to maximize an agent’s performance 
in unknown environments. To scale reinforcement learning 
to complex real-world tasks, agent must be able to discover 
hierarchical structures within their learning and control 
systems. This paper presents a method by which a 
reinforcement learning agent can discover subgoals with 
certain structural properties. By discovering subgoals and 
including policies to subgoals as actions in its action set, the 
agent is able to explore more effectively and accelerate 
learning in other tasks in the same or similar environments 
where the same subgoals are useful. The agent discovers the 
subgoals by searching a learned policy model for state that 
exhibits certain structural properties. This approach is 
illustrated using gridworld tasks. 

Introduction  
Reinforcement learning (RL) (Kaelbling, Littman, and 
Moore, 1996) comprises a family of incremental algorithms 
that construct control policy through real-world 
experimentation. A key scaling problem of reinforcement 
learning is that in large domains an enormous number of 
decisions are to be made. Hence, instead of learning using 
individual primitive actions, an agent could potentially 
learn much faster if it could abstract the innumerable 
micro-decisions, and focus instead on a small set of 
important decision. This immediately raises the question of 
how to recognize hierarchical structures within learning 
and control systems and how to learn strategies for 
hierarchical decision making. Within the reinforcement 
learning paradigm, one way to do this is to introduce 
subgoals with their own reward functions, learn policies for 
achieving these subgoals, and then include these policies as 
actions. This strategy can facilitate skill transfer to other 
tasks and accelerate learning. It is desirable that the 
reinforcement learning agent discover the subgoals 
automatically. Several researchers have proposed methods 
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by which policies learned for a set of related tasks are 
examined for commonalities (Thrun and Schwartz, 1995) 
or are probabilistically combined to form new policies 
(Bernstein, 1999). However, neither of these RL methods 
introduces subgoals. In other work, subgoals are chosen 
based on information about the frequency a state was 
visited during policy acquisition or based on the reward 
obtained. Digney (Digney 1996, 1998) chooses states that 
are visited frequently or states where the reward gradient is 
high as subgoals.  Similarly, McGovern (McGovern and 
Barto, 2001a) uses diverse density to discover useful 
subgoals automatically. However, in the case of more 
complicated environments and rewards it can be difficult to 
accumulate and classify the sets of successful and 
unsuccessful trajectories needed to compute the density 
measure or frequency counts. In addition, these methods do 
not allow the agent to discover subgoals that are not 
explicitly part of the tasks used in the process of 
discovering them. In this paper, the focus is on discovering 
subgoals by searching a learned policy model for certain 
structural properties. This method is able to discover 
subgoals even if they are not a part of the successful 
trajectories of the policy. If the agent can discover these 
subgoal states and learn policies to reach them, it can 
include these policies as actions and use them for effective 
exploration as well as to accelerate learning in other tasks 
in which the same subgoals are useful. 

Reinforcement Learning 
In the reinforcement learning framework, a learning agent 
interacts with an environment over a series of time steps t  
= 0, 1, 2, 3, … At any instant in the time the learner can 
observe the state of the environment, denoted by Ss ∈  
and apply an action, Aa ∈ . Actions change the state of 
environment, and also produce a scalar pay-off value 
(reward), denoted by ℜ∈r . In a Markovian system, the 
next state and reward depend only on the preceding state 
and action, but they may depend on these in a stochastic 
manner. The objective of the agent is to learn to maximize 
the expected value of reward received over time. It does 
this by learning a (possibly stochastic) mapping from states 
to actions called a policy, AS →Π :  i.e. a mapping from 
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states Ss ∈  to actions Aa ∈  . More precisely, the 
objective is to choose each action so as to maximize the 
expected return: 
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where )1,0[∈γ is a discount-rate parameter and ri refers 
to the pay-off at time i. A common approach to solve this 
problem is to approximate the optimal state-action value 
function, or Q-function (Watkins, 1989), Q: S× ℜ→A  
which maps states s  ∈  S and actions a  ∈  A to scalar 
values. In particular, Q ( s , a ) represents the expected 
discounted sum of future rewards if action a  is taken in 
state s  and the optimal policy is followed afterwards. 
Hence Q, once learned, allows the learner to maximize R 
by picking actions greedily with respect to Q:  
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The value function Q is learned on-line through 
experimentation. Suppose that during learning the learner 
executes action a  in state s , which leads to a new state ’s  
and the immediate pay-off asr , . In this case Q-learning 
uses this state transition to update Q ( s , a) according to: 
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The scalar ∈α [0,1) is the learning rate. 

Subgoal Extraction 
An example that shows that subgoals can be useful is a 
room to room navigation task where the agent should 
discover the utility of doorways as subgoals. If the agent 
can recognize that a doorway is a subgoal, then it can learn 
a policy to reach the doorway. This policy can accelerate 
learning on related tasks in the same or similar 
environments by allowing the agent to move between the 
rooms using single actions. The idea of using subgoals 
however is not confined to gridworlds or navigation tasks. 
Other tasks should also benefit from subgoal discovery. For 
example, consider a game in which the agent must find a 
key to open a door before it can proceed. If it can discover 
that having a key is a useful subgoal, then it will more 
quickly be able to learn how to advance from level to level 
(McGovern and Barto, 2001b). 
 In the approach described in this paper, the focus is on 
discovering useful subgoals that can be defined in the 
agent’s state space. Policies to those subgoals are then 
learned and added as actions. In a regular space (regular 
space here refers to a uniformly connected state space) 
every state will have approximately the same expected 
number of direct predecessors under a given policy, except 
for regions near the goal state or close to boundaries (where 
the space is not regular). In a regular and unconstrained 
space, if the count of all the predecessors for every state 
under a given policy is accumulated and a curve for these 

counts along a chosen path is plotted, the expected curve 
would behave like the positive part of a quadratic, and the 
expected ratio of gradients along such a curve would be a 
positive constant. In the approach presented here, a subgoal 
state is a state with the following structural property: the 
state space trajectories originating from a significantly 
larger than expected number of states lead to the subgoal 
state while its successor state does not have this property. 
Such states represent a “funnel” for the given policy. To 
identify such states it is possible to evaluate the ratio of the 
gradients of the count curve before and after the subgoal 
state. Consider a path under a given policy going through a 
subgoal state. The predecessors of the subgoal state along 
this path lie in a relatively unconstrained space and thus the 
count curve for those states should be quadratic. However, 
the dynamics changes strongly at the subgoal state. There 
will be a strong increase in the count and the curve will 
become steeper as the path approaches a subgoal state. On 
the other hand, the increase in the count can be expected to 
be much lower for the successor state of the subgoal as it 
again lies in a relatively unconstrained space. Thus the ratio 
of the gradients at this point will be high and easily 
distinguishable. Let C( s ) represent the count of 
predecessors for a state s  under a given policy, and Ct( s ) 
is the count of predecessors that can reach s in exactly t 
steps: 
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where n  is such that Cn+1= Cn or n = number of states, 
whichever is smaller. The condition ’ss ≠  prevents the 
counting of one step loops. P( s | ’s ,� � ’s )) is the 
probability of reaching state s from state s’ by taking action 
� ’s ) (in a deterministic world the probability is 1 or 0). If 

there are loops within the policy, then the counts for the 
states in the loop will become very high. This implies that, 
if no precautions are taken, the gradient criteria used here 
might also identify states in the loop as subgoals. 
 
To calculate the ratio along a path under the given policy, 
let C ( 1s  ) be the predecessor count for the initial state of 
the path and C ( ts ) be the count for the state the agent will 
be in after executing t  steps from the initial state. The 
slope of the curve at step t , t∆  can be computed as: 
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To identify subgoals, the gradient ratio
1+∆

∆

t

t is computed if 

1+∆>∆ tt  (If 1+∆<∆ tt  then the ratio is less then 1 and 
state does not fit the criterion. Avoiding the computation of 
the ratio for such points thus saves computational effort). If 
the computed ratio is higher then a specified threshold, 
state st will be considered a potential subgoal. The 
threshold here depends largely on the characteristics of the 
state space but can often be computed independent of the 
particular environment.  
 
The subgoal extraction technique presented here has been 
illustrated using a simple gridworld navigation problem.  
Figure 1 shows a four-room example environment on a 
20x20 grid. For these experiments, the goal state was 
placed in the lower right portion and each trial started from 
same state in the left upper corner as shown in Figure1. 
 

 
 
Figure 1. Set of primitive actions (right) and gridworld(left) 
with the initial state in the upper left corner, the goal in the 
lower right portion and a random path under the learned 
policy. 
 
The action space consists of eight primitive actions (North, 
East, West, South, North-west, North-east, South-west, and 
South-east). The world is deterministic and each action 
succeeds in moving the agent in the chosen direction. With 
every action the agent receives a negative reward of -1 for 
a straight action and -1.2 for a diagonal action. In addition, 
the agent gets a reward of +10 when it reaches the goal 
state. The agent learns using Q-OHDUQLQJ� DQG� -greedy 
exploration. It starts with  ��90 (which means 90% of the 
time it tries to explore by choosing a random action) and 
gradually decreases the exploration to  0.05. In this 
experiment the predecessor count for every state is 
computed exhaustively using equations 4, 5, and 6. 
However, for large state spaces counts can be approximated 

using Monte Carlo sampling methods. The agent then 
evaluates the ratio of gradients along the count curve by 
choosing random paths, and picks the states in which the 
ratio is higher then the specified threshold as subgoal states. 
For this experiment the count curve along one of the 
randomly chosen paths through a subgoal state is shown in 
Figure 2. The path chosen is indicated in Figure 1 and the 
subgoal state is highlighted both in Figure 1 and Figure 2. 
The value for the gradient ratio at step 4 (which is in 
regular space) is 1.444 while it is 95.0 at step 6 (which is a 
subgoal state). 
 
To show that the gradient ratio in the unconstrained portion 
of the state space and at a subgoal state are easily 
distinguishable, histograms for the distribution of  these 
ratios in randomly generated environments, are shown in 
Figure 3. 
 

 
 
Figure 2. Count curve along a randomly chosen path 
through a subgoal state under the learned policy. 

 
The Histogram shows data collected from 12 randomly 
generated 20x20 gridworlds with randomly placed rooms 
and goals. Each run learns a policy model for the respective 
task using Q-learning and computes the counts of 
predecessors for every state using equations 4, 5, and 6. 
Gradient ratios for 40 random paths in each environment 
are shown in the histogram. 
 The subgoal states that the agent discovered in this 
experiment are shown in Figure 4. The subgoal state 
leading to the left room is identified here due to its 
structural properties under the policy and despite the fact 
that it does not lie on the successful paths between the start 
and the goal state. The agent did not discover the doorway 
in the smaller room as a subgoal state because the number 
of state for which the policy leads through the subgoal is 
small compared to the other rooms and hence the count for 
this subgoal state is not influenced significantly by the 
structural property of the state. 



 To show that the method for discovering subgoals 
discussed above is not confined to gridworlds or navigation 
tasks, random worlds with 1600 states were generated. In 
these worlds fixed numbers of actions were available in 
each state. Each action in the state s connects to a randomly 
chosen state s’ in their local neighborhood. Then the count 
metric was established and gradient ratios were computed 
for these spaces with and without a subgoal. The results 
showed that the gradient ratios in the unconstrained portion 
of the state space and at a subgoal state are again easily 
distinguishable. 
 

  
 
Figure 3. Histogram for the distribution of the gradient 
ratio in regular space (dark bars) and at subgoal states 
(light bars). 
 
 
 
 

 
 
Figure 4. Subgoals states discovered by the agent (light 
gray states) 

Hierarchical Policy Formation 
The motivation for discovering subgoals is the effect that 
available policies that lead to subgoals have on the agent’s 
exploration and speed of learning in related tasks in the 
same or similar environments. If the agent randomly selects 
exploratory primitive actions, it is likely to remain within 
the more strongly connected regions of the state space. A 
policy for achieving a subgoal region, on the other hand, 
will tend to connect separate strongly connected areas. For 
example, in a room-to-room navigation task, navigation 
using primitive movement commands produces relatively 
strongly connected dynamics within each room but not 
between rooms. A doorway links two strongly connected 
regions. By adding a policy to reach a doorway subgoal the 
rooms become more closely connected. This allows the 
agent to more uniformly explore its environment. It has 
been shown that the effect on exploration is one of two 
main reasons that extended actions can be able to 
dramatically affect learning (McGovern, 1998). 

Learning policies to subgoals  
To take advantage of the subgoal states, the agent uses Q-
learning to learn a policy to each of the subgoals discovered 
in the previous step. These policies, which lead to 
respective subgoal states (subgoal policies) are added to the 
action set of the agent. 
Learning hierarchical policies. One reason that it is 
important for the learning agent to be able to detect subgoal 
states is the effect of subgoal policies on the rate of 
convergence to a solution. If the subgoals are useful then 
learning should be accelerated. To ascertain that these 
subgoals help the agent to improve its policy more quickly, 
two experiments were performed where the agent learned a 
new task with and without the subgoal policies. The same 
20x20 grid-world with three rooms was used to illustrate 
the results. Subgoal policies were included in the action set 
of the agent (Subg1, Subg2). The task was changed by 
moving the goal to left hand room as shown in Figure 5. 
The agent solves the new task using Q-learning with an 
exploration of 5%.  
 The action sequence under the policy learned for the new 
task, when its action set included the subgoal policies is 
(Subg2, South-west, South, South, South, South) where 
Subg2 refers to the subgoal policy which leads to the state 
as shown in Figure 5. Figure 6 shows the learning curves 
when the agent was using the subgoal policies and when it 
was using only primitive actions. The learning performance 
is compared in terms of the total reward that the agent 
would receive under the learned policy at that point of the 
learning process. The curves in Figure 6 are averaged over 
10 learning runs. Only an initial part of data is plotted to 
compare the two learning curves; with primitives only the 
agent is still learning after 150,000 learning steps while 
with subgoal policies the policy has already converged. 
After 400,000 learning steps the agent without subgoal 



policies also converges to the same overall performance. 
The vertical intervals along the curve indicate one standard 
deviation in each direction at that point. 
 

 
 

Figure 5. New task with goal state in the left hand room. 
 
 

 
 
Figure 6. Comparison of learning speed using subgoal 
policies and using primitive actions only. 

Conclusions 
This paper presents a method for discovering subgoals by 
searching a learned policy model for states that exhibit a 
funneling property. These subgoals are discovered by 
studying the dynamics along the predecessor count curve 
and can include states that are not an integral part of the 
initial policy. The experiments presented here shows that 
discovering subgoals and including policies for these 

subgoals in the action set can significantly accelerate 
learning in other, related tasks. While the example shown 
here are gridworld tasks, the presented approach for 
discovering and using subgoals is not confined to 
gridworlds or navigation tasks.  
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