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ABSTRACT 
Learning by imitation represents a powerful approach for 
efficient learning and low-overhead programming. An 
important part of the imitation process is the mapping of 
observations to an executable control strategy. This is 
particularly important if the capabilities of the imitating 
and the demonstrating agent differ significantly. This paper 
presents an approach that addresses this problem by 
optimizing a cost function. The result is an executable 
strategy that as closely as possible resembles the observed 
effects of the demonstrator on the environment. To ensure 
that the imitating agent replicates the important aspects of 
the observed task, a learning component is introduced 
which learns the appropriate cost function from rewards 
obtained while executing the imitation strategy. The 
performance of this approach is illustrated within the 
context of a simulated multi-agent environment. 
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1. Introduction 

As computer and robot systems move into more complex 
and unstructured environments, it becomes increasingly 
important that these systems have adaptive capabilities, can 
interact with humans, and are easy to program even by 
users who are not skilled computer programmers. In such 
situations it becomes essential that advanced means of 
programming or autonomous learning capabilities are 
available. Imitation, or learning from demonstration is a 
technique that takes an intermediate stance between fully 
autonomous learning and direct programming. In this 
paradigm new behaviors are acquired by observing other 
agents, be they human or artificial, operating in the 
environment. This framework can be seen either as a 
learning paradigm that provides the learning robot with 
richer information, or alternatively as a simpler approach 
to programming that permits to communicate new 
behaviors to the system by demonstrating them. 

Robot Imitation and learning from demonstration have 
received significant interest in recent years [1],[4],[8],[9]. 
Within the field of robotics most of this has focused on 
imitation in humanoid systems. Most approaches in this 
domain address imitation by observing the demonstrator’s 
joint angles and then attempting to execute the same angle 

sequence on the kinematic structure of the robot. If the 
structure of the imitator is not identical or very similar to 
the one of the imitating system, however, such approaches 
often lead to unsatisfactory results and the observed 
sequences have to be adapted on-line to address this 
problem. In addition, imitation at such a low level often 
limits its application to relative small task domains and 
does generally not generalize to the re-use of the acquired 
strategy when the environmental conditions change. 

Other, more symbolic approaches to learning from 
demonstration have been developed where the imitating 
agent attempts to learn the internal policy model of the 
demonstrating agent [2],[5]. While this permits to address 
larger tasks, most of these approaches require that the 
agents have identical representations and behavioral 
repertoires and that the imitator can observe the actions 
chosen by the other agent. In most real-world systems, 
however, the demonstrating and the imitating agent can 
have significantly different capabilities and only the effects 
of actions are observable. 

The imitation approach presented here is aimed at 
imitation at a functional level and focuses on the mapping 
from an observed state sequence to an executable control 
strategy, largely ignoring the perceptual challenges 
involved in translating sensory and in particular visual 
input into representations of the state of the environment. 
Functional imitation here implies that the goal is not to 
copy action sequences but rather to attempt to achieve 
similar sequences of effects on the state of the environment 
irrespective of the particular actions. The resulting 
imitation strategies are mappings from the observed states 
of the world to the behavioral capabilities of the imitating 
agent. The result is a control strategy that matches the 
behavioral repertoire of the imitating agent and that exactly 
or closely matches the functional effects of the observed 
actions even in situations where behavioral capabilities of 
the imitator and the demonstrator are dissimilar. To 
achieve the mapping between observation and imitation, 
the approach presented here uses a distance metric which 
represents the deviation of the imitation strategy from the 
functional intent of the demonstrator.  

To permit the system to determine automatically which 
aspects of the observed task are important in the particular 
environment, this approach is combined with a  
reinforcement learning component [7] which attempts to 
acquire an optimal cost function using feedback obtained 
while executing the mapped policy. This incrementally 
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increases the quality of imitation even for new tasks and 
demonstrations that have the same or similar objectives. 

The techniques introduced here are illustrated using the 
WISE simulation environment [6] which is based on the 
Wumpus world computer game.  

2. Functional Imitation Using Cost-Functions 
Imitation takes place when an agent learns a task from 
observing its execution by a teacher or demonstrator. In 
general, the demonstrator can here be another artificial 
agent or ideally a human, while the imitator is a robot or an 
artificial computer agent. This general definition implies 
that the behavioral capabilities of the two agents involved 
can be substantially different and that the imitator might 
not be capable of performing the precise action sequence 
of the demonstrating agent. For example, if a mobile robot 
with a simple gripper is to imitate a human demonstrator 
for a house cleaning task, it will generally not be capable 
of performing all aspects of the demonstration in the same 
fashion. It might, for example, not be capable to reach on 
top of a book shelf due to its limited size. Similarly, it will 
not be able to perform aspects of the task in the same 
fashion as the human. For example, to pick a magazine off 
the floor, the human will bend down and reach forward. To 
achieve the same functional outcome, the mobile robot will 
have to drive up to the magazine and then close its gripper 
on it, thus executing an action sequence that behaviorally 
differs substantially from the one observed. The approach 
presented here addresses this by establishing a lowest cost 
approximation to the observed sequence. The result is an 
agent that approximately repeats the observed task. 

Underlying this approach is a view that sees imitation as 
a three step process leading from perceptual observations 
to the execution and storage of a corresponding, executable 
control policy as illustrated in Figure 1. 

 

 
Figure 1: Imitation Process 

The first step involves translating the perceptual input 
stream into a discrete representation of the sequence of the 
observed events. The resulting model of the observed task 
takes the form of a discrete Markov chain where states 
represent the observed state of the demonstrator and the 
environment and transitions occur when an observable 
change in the state is detected. Since actions are not 
directly observable, no actions are associated with the 
transitions. Similarly, aspects of the state that can not be 
observed are not represented in the observed task model. 

The second step is concerned with mapping the 
observed behavior model onto the internal model of the 
imitating agent. The internal model is again represented as 

a discrete Markov model where states represent states of 
the environment and of the imitating agent. In contrast to 
the observed model, however, the internal model is a 
complete representation of the behavioral capabilities of 
the imitator. States occurring in the model represent all 
possible states that can be achieved actively by the agent 
using all options in its behavioral repertoire. Transitions of 
the internal model correspond to the effects of the 
execution of a particular action. In general, this model can 
be learned by the agent by exploring the range of actions at 
its disposal or can be pre-programmed by the designer 
using the available knowledge about the operation of the 
agent. The goal of the model mapping is to find the policy, 
i.e. the mapping from states to actions in the internal model 
that leads to the state sequence that most closely matches 
the observed state sequence and thus most closely 
reproduces the functional outcomes of the observed task. 

In the third step, the imitating agent executes the policy 
identified in the second step. If the internal model is an 
accurate representation of the behavioral capabilities of the 
imitator, policy execution should be straightforward. 

This paper focuses on the second step and thus assumes 
that the perceptual capabilities to generate the model of the 
observations are available and that the model of the 
observed task is already constructed. The main task 
addressed here is the mapping from the observed model to 
the internal model. In general, this will require identifying 
correspondences between states in the observed and in the 
internal model and searching for a state and transition 
sequence that matches the one observed. For the purpose of 
this paper it is assumed that the states in the observed and 
in the internal model are represented in terms of the same 
state attributes, facilitating the computation of a state 
distance measure. However, since the behavioral 
capabilities of the demonstrator and the imitator are 
generally not identical, the mapping process does not result 
in the exact same state sequence for the imitator, requiring 
the identification of the closest matching sequence which 
might include additional transitions or might not include 
certain observed states because they can not be achieved 
by the imitator or prevent it from achieving the remainder 
of the task. To identify the best policy, the approach 
presented here searches for the best match using a cost 
function defined on the state and action. The cost function 
here captures which aspects of the observed task are 
functionally important and as a result, changes in the cost 
function can directly affect the resulting imitation strategy. 

Figure 2 illustrates the basic model mapping parameters 
used. Here, the observed model states (dark states) are 
mapped to internal states (light states) using a cost criterion 
consisting of an adaptable distance metric between the 
states and the cost of the actions. 

2.1 Cost-Based Model Mapping  

To map the state and transition sequence of the observed 
model to the internal model of the agent, the approach 
taken here has to address two main parts: i) Mapping the 
start state of the observed sequence to a corresponding start 
state in the imitator’s model. ii) Mapping each transition in 
the observed model onto transitions in the imitator’s 
internal model such as to produce the closest matching  
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Figure 2: Cost-Based Model Mapping 

state sequence. Both of these mapping steps are achieved 
here by optimizing a cost function C. This cost function 
consists of  two components representing the cost of the 
actions selected to achieve the mapped transitions, Ca , and 
a cost, Cs , computed based on a distance metric between 
the observed and mapped states: 

C = Ca + Cs 
For the example in Figure 2 these cost factors are: 

        Ca = A1 + A2 + A3 + A4 + A5 

        Cs = D1 + D2 + D3 + D4 + D5 + D6 

where Ai is the cost of the action associated with the ith 

transition and Dj is the distance metric between the jth state 
mapping between the observed sequence and the matched 
internal state sequence. It is important to note here that the 
state and transition mapping between observed and internal 
model is generally not one-to-one and that therefore 
multiple distances can be associated with each state in 
these sequences. These cost factors can be defined in 
different ways by the user or an autonomous learning 
component, resulting in the potential for different types of 
imitation behavior. For example, by giving more weight to 
one feature of the internal state representation, the 
importance of exactly matching the parts of task related to 
this feature will be emphasized while features with lower 
weights might be ignored if their achievement introduces 
too high a cost.  In this way, the choice of cost function can 
directly influence the resulting imitation policy, thus 
providing additional flexibility to this imitation approach.  

A second choice in the construction of the matching 
state sequence is the one between establishing lowest cost 
matches locally across a short part of the model or doing so 
globally for the complete model. While establishing a 
minimum cost match globally would result in the best 
match according to the cost function used, the cost of such 
a procedure is very high. Moreover, establishing such a 
global match can only be accomplished if the entire 
demonstration is observed before the imitation strategy is 
formed and executed. Using a local matching procedure, 
on the other hand, can permit an imitating agent to start 
executing the first steps of the imitation policy before the 
demonstrator has finished the complete task.  

The approach presented here forms a local solution by 
incrementally searching for state and transition matches for 
the observed sequence. This local solution could be used 
subsequently as a starting point for a global optimization 
procedure to improve the policy for future use. 

2.2 State Mapping Using Heuristic Search 

The approach presented here uses A* search with a limited 
search horizon to construct a policy mapping 
incrementally. To construct an admissible heuristic, the 
approach taken here assumes that at least one internal 
action is needed for one attribute change in the state and on 
this basis estimates the heuristic cost from the present state 
of the imitator model until the end of the observed state 
sequence. This heuristic function also assumes that once it 
guesses the cost for reaching the closest state of the 
remaining observed model, to reach every other state in the 
observed model thereafter will take at least one internal 
action. The total cost while performing the heuristic search 
is as follows: 

C = CA + CH               
CH = CHC + CHR       

Here CA refers to the actual cost and CH refers to the 
heuristic cost used by the A* search. The heuristic cost is 
again divided into two other costs, CHC and CHR where CHC 
refers to the heuristic cost to reach the closest state in the 
observed model from the imitator’s internal state and CHR 
refers to the heuristic cost to reach the rest of the observed 
model from the closest observed state.  

 
 

 

 

 

 

 
 

 

Figure 3: Calculation of  Heuristic Cost 

Figure 3 shows an example of the calculation of the 
heuristic cost of the imitator as the sum of CHC and CHR, 
where CHC is calculated as shown in the figure after finding 
the closest state of the observed model (which in this 
example is the first state of the observed model). Then CHR 
can be calculated as the number of remaining states from 
the closest observed state to the rest of the observed model 
(in this example three). While calculating CHC, each time 
the attribute that contributes to the highest cost is changed 
and its cost is removed from the state difference and added 
to the heuristic until the state difference becomes zero. The 
action cost to reach the closest state is the number of times 
the state difference is decremented multiplied by the 



minimum action cost of the imitator’s internal action. This 
heuristic is used in the search process which stops when 
the lowest cost mapping is found or the limit is reached.  

3. Experiment 

To illustrate the operation and results of the imitation 
approach presented here, a number of experiments have 
been performed using a simulated agent environment 
called Wumpus World which is based on an early 
computer game. In this environment, the agent explores a 
grid world to collect gold pieces (G). At the same time it 
has to avoid pits (P) and wumpi (W). The agent can 
remove the wumpi by shooting them. The objective of the 
game is to collect as many gold pieces as possible, return 
to the initial grid location, and exit the cave. The actions 
available to the imitating agent are Forward (GF), Turn left 
(L), Turn right (R), Shoot (S), and Grab (G). The Shoot 
operation is used to shoot a wumpus and Grab is used to 
collect the gold pieces. In the experiments presented here it 
is assumed that the imitator has full access to its state and 
that it observes the state of the demonstrator.  

Here each observed state contains the information of the 
observable features of the demonstrator. The features of 
the agent are the current x and y coordinates, the 
orientation, and if the agent carries a piece of gold. The 
features of the world included in the state are the presence 
and location of any wumpi or pieces of gold. 

In this experiment, the demonstrator starts from a start 
position and shoots a wumpus. Then it grabs the gold and 
returns to the start position and exits through the action 
Climb (C).  But the imitator agent, who observes the same 
discrete number of states and transitions, does not repeat 
the task in the same way since it does not have the 
capability to shoot. Instead it tries to approximate the task 
as shown in the Figure 4.  
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Figure 4: Imitation Example 

This figure shows that the imitator model initially 
performs in the same way as the demonstrator. However, 
instead of shooting the wumpus it changes its orientation, 
moves up to avoid the three wumpi, and moves towards the 
nearest approximately matched state of the observed 
model. Then it grabs the gold and on its way back again 
encounters the risk of being killed by the wumpi. Hence it 
again acts differently from the demonstrator and ultimately 
reaches a state close to the observed state and exits in the 
same way as demonstrator. 

4. Learning to Imitate Using Reinforcement  
In the imitation process described above, the final imitation 
strategy   heavily   depends on the structure of   the cost 
function. As a consequence, this cost function provides a 
means to modify the future behavior of the imitation 
system. If an optimal cost function can be found, the 
quality of the imitation strategies constructed in response 
to future demonstrations can be increased. This is achieved 
here by including a learning mechanism that tries to 
acquire a modified cost function such that subsequent 
imitation strategies can be further improved. In this work 
the state distance function is computed as a weighted sum: 

Dj = Σi wi f(ai) 
where wi represents the weight and f(ai) represents the 

square difference of each state attribute ai. The weight 
vector, w, is learned here over time such as to result in the 
highest reward possible for the imitating agent. 

4.1 Reinforcement Learning for Imitation 

Since there is no feedback or communication assumed 
from the demonstrator to the imitator, the learning 
mechanism of the imitator interacts with the environment 
to receive feedback such that the learning mechanism can 
update its knowledge to adapt to the environment and to 
improve the imitation process as shown in the Figure 5. 
 

 
Figure 5: Reinforcement Learning for Imitation 

 For this purpose, a reinforcement learning algorithm is 
chosen where the learning system interacts in a closed loop 
with the environment. During each attempt of execution of 
a sequence of actions by the imitator, the environment 
provides an evaluation or reinforcement and the learning 
system has to learn from this how to improve imitation.  



Another factor that needs to be considered in the 
construction of a reinforcement learning algorithm is that it 
has to deal with continuous rewards and outputs. In the 
work presented here, this led to the development of an 
algorithm that is closely related to the SRV (Stochastic 
Real Valued) Algorithm [3]. This algorithm computes its 
output as a function of a random activation generated using 
the Gaussian distribution. The activation, which here 
corresponds to a weight vector used in the cost function of 
the imitation approach, depends on a mean and the 
standard deviation. These, in turn, depend on the inputs to 
the learning system in the form of reinforcement received 
from the environment. The algorithm adjusts the 
parameters to increase the probability of producing an 
optimal value and hence of finding an optimal solution.  

The following are the update equations used to learn the 
weight vector and the expected reinforcement:  

          mi = mi + α (R – R̃) (wi – mi) 
σi = γ σi 

R̃ = R̃ + β (R – R̃) 
Here mi is the mean and σi is the standard deviation of 

the estimated weight vector of each state attribute i and the 
combination of these represent the Gaussian distribution 
for each attribute weight. R represents the actual 
reinforcement received for one trial after executing a 
particular imitation policy, and R̃ is the expected 
reinforcement for the weight vector distribution. The 
symbols α and β are the learning rates for the mean and the 
expected reinforcement equations, whereas γ is the rate at 
which the standard deviation monotonically decreases.  

This learning system operates by randomly picking 
weight vectors from the Gaussian distribution. As the 
learning system is exposed to more trials, it receives more 
feedback which in turn changes the mean value of the 
Gaussian distribution such that higher reward can be 
expected from the environment in the future. The random 
activations generated from the distribution are the weights 
used in conjunction with the state attributes to calculate the 
state differences. Hence different imitation strategies are 
generated and evaluated until an optimal weight vector is 
reached that generates an optimal imitation strategy. As a 
result, the learned weight vector identifies the important 
attributes within the state representation. In the approach 
taken here weights are assumed to be independent 

One limitation of this approach of imitation with 
reinforcement learning is that the learning mechanism can 
optimize the cost function only for tasks whose objectives 
can be expressed in terms of the available state attributes. 

5. Experiments 
To illustrate the operation and the results of the learning 
system, additional experiments have been performed using 
the Wumpus World. As described previously the attributes 
of the state are the x and y coordinates, the orientation, the 
number of pieces of gold the agent carries the number of 
arrows. These attributes are associated with weights which 
are initially set to uniform values, making all attributes 

equally important. The learning system’s task is to change 
these weights such that the expected reward increases. 

Figure 6 shows a sample environment which the agent 
uses for learning. In this world, the observed model starts 
at the initial position, shoots the wumpus on its way to the 
position where one of the two pieces of gold is lying, grabs 
the gold and returns to the start position to exit the world. 
These changes in the environment are assumed to be 
permanent and once the demonstrator has completed its 
task, the wumpus is already dead and only the second piece 
of gold lying in the world one square diagonal to the 

 

Figure 6: Example World Used for Learning 

location of the gold acquired by the demonstrator remains 
as shown in the figure. Here, the imitating agent who 
observes the same discrete number of states and transitions 
cannot repeat the same task because the wumpus and the 
first piece of gold no longer exist in the environment 

 

 
Figure 7: Learning Curve for Sample World 

As shown in the Figure 7, the imitating agent is able to 
learn to improve its performance starting from the first trial 
until some optimal point is reached. This figure shows a 
running average over ten trials representing the average 
reward over five separate learning experiments. In 
addition, the standard deviations over ten experiments are 
shown as error bars for every ten trials.  

Once the imitating agent reaches the optimum value, the 
standard deviation becomes almost. This implies that the 
imitating agent is able to grab the gold even if the gold is 



out of place from where the demonstrator grabbed it. This 
is the case because the imitation strategy produced now 
tries to imitate the demonstrator in light of the new weight 
vector determined through learning. In this example the 
imitator learns that gold is relatively more important than 
other attributes. Hence the imitating agent is able to grab 
the gold in another square in order to reduce overall cost of 
the imitation with respect to the observed model. 

This same learning agent that was trained in the world 
where the gold is one diagonal square away from the gold 
acquired by the demonstrator is now tried in different 
scenarios by altering the demonstration and placing the 
gold in other locations, L1 to L4 , as shown on the left in 
Figure 8. Here the demonstrator starts from the start 
location moves to one of the gold pieces, grabs it, and 
moves back to the start position to exit the game. This is 
different task in the sense that not only the x coordinate is 
varied but also the y coordinate. Here the previously 
learned imitating agent that was trained on the sample 
world based on the task specified in Figure 6 is compared 
against the initial agent with uniform weights. The right 
table in Figure 8 shows the reward obtained by both agents 
if the second gold piece is placed in each of the locations.  

 

 
Figure 8: World for Testing of Learned Cost Function 

(left) and Rewards Obtained (right) 

This table demonstrates that the agent that was trained 
on the first environment can outperforms the initial agent 
on new tasks within the same task domain without any 
additional learning on the particular task. This illustrates 
the benefit of using learning to modify the imitation 
mechanism rather than to optimize a particular, task-
specific policy. Learning in this approach does not modify 
a policy directly but rather is aimed at identifying the 
functional attributes that are important for successful 
imitation. As a result, the learned information transfers 
readily to new tasks within the same task domain. 

6. Conclusions 
This paper presented an approach to imitation that 
constructs an imitation strategy by mapping an observed 
state sequence onto the internal model of the agent. This 
mapping uses a cost function, permitting it to be applied in 
situations where the behavioral capabilities of the 
demonstrating and imitating agent differ. The experiments 
presented show that the imitator is capable of imitating the 
demonstrator even under these circumstances by 

addressing the same task differently using its own action 
set. In this process it sometimes deviates from the observed 
state sequence, finding the closest state match that is 
achievable. This permits this approach to be used even if 
the demonstrator and imitator are different agent types.  

A reinforcement learning approach is combined with the 
imitation to learn an optimal cost function and thus to 
improve the imitation process. Each time a sequence of 
actions is executed by the imitator, the learning system 
uses feedback provided by the environment to learn a cost 
function that increases the expected reward obtained on 
subsequent imitation attempts. This incrementally 
increases the quality of imitation such that the trained 
agent will imitate better than the imitating agent that has no 
knowledge of the environment. The results presented here 
show that the system is able to learn which aspects of the 
observations are important for imitation and that the 
learned cost function extends beyond the training tasks to 
other tasks within the same task domain. 
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