
LEARNING IMITATION STRATEGIES
USING COST-BASED POLICY MAPPING AND TASK REWARDS

Srichandan V. Gudla and Manfred Huber

University of Texas at Arlington
Arlington, TX 76019

United States of America
{gudla, huber}@cse.uta.edu

ABSTRACT
Learning by imitation represents a powerful approach for
efficient learning and low-overhead programming. An
important part of the imitation process is the mapping of
observations to an executable control strategy. This is
particularly important if the capabilities of the imitating
and the demonstrating agent differ significantly. This paper
presents an approach that addresses this problem by
optimizing a cost function. The result is an executable
strategy that as closely as possible resembles the observed
effects of the demonstrator on the environment. To ensure
that the imitating agent replicates the important aspects of
the observed task, a learning component is introduced
which learns the appropriate cost function from rewards
obtained while executing the imitation strategy. The
performance of this approach is illustrated within the
context of a simulated multi-agent environment.

KEY WORDS
Imitation, Reinforcement Learning, Policy Mapping

1. Introduction

As computer and robot systems move into more complex
and unstructured environments, it becomes increasingly
important that these systems have adaptive capabilities, can
interact with humans, and are easy to program even by
users who are not skilled computer programmers. In such
situations it becomes essential that advanced means of
programming or autonomous learning capabilities are
available. Imitation, or learning from demonstration is a
technique that takes an intermediate stance between fully
autonomous learning and direct programming. In this
paradigm new behaviors are acquired by observing other
agents, be they human or artificial, operating in the
environment. This framework can be seen either as a
learning paradigm that provides the learning robot with
richer information, or alternatively as a simpler approach
to programming that permits to communicate new
behaviors to the system by demonstrating them.

Robot Imitation and learning from demonstration have
received significant interest in recent years [1],[4],[8],[9].
Within the field of robotics most of this has focused on
imitation in humanoid systems. Most approaches in this
domain address imitation by observing the demonstrator’s
joint angles and then attempting to execute the same angle

sequence on the kinematic structure of the robot. If the
structure of the imitator is not identical or very similar to
the one of the imitating system, however, such approaches
often lead to unsatisfactory results and the observed
sequences have to be adapted on-line to address this
problem. In addition, imitation at such a low level often
limits its application to relative small task domains and
does generally not generalize to the re-use of the acquired
strategy when the environmental conditions change.

Other, more symbolic approaches to learning from
demonstration have been developed where the imitating
agent attempts to learn the internal policy model of the
demonstrating agent [2],[5]. While this permits to address
larger tasks, most of these approaches require that the
agents have identical representations and behavioral
repertoires and that the imitator can observe the actions
chosen by the other agent. In most real-world systems,
however, the demonstrating and the imitating agent can
have significantly different capabilities and only the effects
of actions are observable.

The imitation approach presented here is aimed at
imitation at a functional level and focuses on the mapping
from an observed state sequence to an executable control
strategy, largely ignoring the perceptual challenges
involved in translating sensory and in particular visual
input into representations of the state of the environment.
Functional imitation here implies that the goal is not to
copy action sequences but rather to attempt to achieve
similar sequences of effects on the state of the environment
irrespective of the particular actions. The resulting
imitation strategies are mappings from the observed states
of the world to the behavioral capabilities of the imitating
agent. The result is a control strategy that matches the
behavioral repertoire of the imitating agent and that exactly
or closely matches the functional effects of the observed
actions even in situations where behavioral capabilities of
the imitator and the demonstrator are dissimilar. To
achieve the mapping between observation and imitation,
the approach presented here uses a distance metric which
represents the deviation of the imitation strategy from the
functional intent of the demonstrator.

To permit the system to determine automatically which
aspects of the observed task are important in the particular
environment, this approach is combined with a
reinforcement learning component [7] which attempts to
acquire an optimal cost function using feedback obtained
while executing the mapped policy. This incrementally

In Prodeedings of the 6th IASTED International Conference on Intelligent Systems and Control, Honolulu, HI. © 2004 IASTED

increases the quality of imitation even for new tasks and
demonstrations that have the same or similar objectives.

The techniques introduced here are illustrated using the
WISE simulation environment [6] which is based on the
Wumpus world computer game.

2. Functional Imitation Using Cost-Functions
Imitation takes place when an agent learns a task from
observing its execution by a teacher or demonstrator. In
general, the demonstrator can here be another artificial
agent or ideally a human, while the imitator is a robot or an
artificial computer agent. This general definition implies
that the behavioral capabilities of the two agents involved
can be substantially different and that the imitator might
not be capable of performing the precise action sequence
of the demonstrating agent. For example, if a mobile robot
with a simple gripper is to imitate a human demonstrator
for a house cleaning task, it will generally not be capable
of performing all aspects of the demonstration in the same
fashion. It might, for example, not be capable to reach on
top of a book shelf due to its limited size. Similarly, it will
not be able to perform aspects of the task in the same
fashion as the human. For example, to pick a magazine off
the floor, the human will bend down and reach forward. To
achieve the same functional outcome, the mobile robot will
have to drive up to the magazine and then close its gripper
on it, thus executing an action sequence that behaviorally
differs substantially from the one observed. The approach
presented here addresses this by establishing a lowest cost
approximation to the observed sequence. The result is an
agent that approximately repeats the observed task.

Underlying this approach is a view that sees imitation as
a three step process leading from perceptual observations
to the execution and storage of a corresponding, executable
control policy as illustrated in Figure 1.

Figure 1: Imitation Process

The first step involves translating the perceptual input
stream into a discrete representation of the sequence of the
observed events. The resulting model of the observed task
takes the form of a discrete Markov chain where states
represent the observed state of the demonstrator and the
environment and transitions occur when an observable
change in the state is detected. Since actions are not
directly observable, no actions are associated with the
transitions. Similarly, aspects of the state that can not be
observed are not represented in the observed task model.

The second step is concerned with mapping the
observed behavior model onto the internal model of the
imitating agent. The internal model is again represented as

a discrete Markov model where states represent states of
the environment and of the imitating agent. In contrast to
the observed model, however, the internal model is a
complete representation of the behavioral capabilities of
the imitator. States occurring in the model represent all
possible states that can be achieved actively by the agent
using all options in its behavioral repertoire. Transitions of
the internal model correspond to the effects of the
execution of a particular action. In general, this model can
be learned by the agent by exploring the range of actions at
its disposal or can be pre-programmed by the designer
using the available knowledge about the operation of the
agent. The goal of the model mapping is to find the policy,
i.e. the mapping from states to actions in the internal model
that leads to the state sequence that most closely matches
the observed state sequence and thus most closely
reproduces the functional outcomes of the observed task.

In the third step, the imitating agent executes the policy
identified in the second step. If the internal model is an
accurate representation of the behavioral capabilities of the
imitator, policy execution should be straightforward.

This paper focuses on the second step and thus assumes
that the perceptual capabilities to generate the model of the
observations are available and that the model of the
observed task is already constructed. The main task
addressed here is the mapping from the observed model to
the internal model. In general, this will require identifying
correspondences between states in the observed and in the
internal model and searching for a state and transition
sequence that matches the one observed. For the purpose of
this paper it is assumed that the states in the observed and
in the internal model are represented in terms of the same
state attributes, facilitating the computation of a state
distance measure. However, since the behavioral
capabilities of the demonstrator and the imitator are
generally not identical, the mapping process does not result
in the exact same state sequence for the imitator, requiring
the identification of the closest matching sequence which
might include additional transitions or might not include
certain observed states because they can not be achieved
by the imitator or prevent it from achieving the remainder
of the task. To identify the best policy, the approach
presented here searches for the best match using a cost
function defined on the state and action. The cost function
here captures which aspects of the observed task are
functionally important and as a result, changes in the cost
function can directly affect the resulting imitation strategy.

Figure 2 illustrates the basic model mapping parameters
used. Here, the observed model states (dark states) are
mapped to internal states (light states) using a cost criterion
consisting of an adaptable distance metric between the
states and the cost of the actions.

2.1 Cost-Based Model Mapping

To map the state and transition sequence of the observed
model to the internal model of the agent, the approach
taken here has to address two main parts: i) Mapping the
start state of the observed sequence to a corresponding start
state in the imitator’s model. ii) Mapping each transition in
the observed model onto transitions in the imitator’s
internal model such as to produce the closest matching

D1

Ignored

Demonstrator Model
State

Imitator Model State

Transitions

Mapping

Cost of distance Cost of action

D2 D3 D4
D5

D6A1

A2

A3

A4
A5

Di Ai

Figure 2: Cost-Based Model Mapping

state sequence. Both of these mapping steps are achieved
here by optimizing a cost function C. This cost function
consists of two components representing the cost of the
actions selected to achieve the mapped transitions, Ca , and
a cost, Cs , computed based on a distance metric between
the observed and mapped states:

C = Ca + Cs
For the example in Figure 2 these cost factors are:

 Ca = A1 + A2 + A3 + A4 + A5

 Cs = D1 + D2 + D3 + D4 + D5 + D6

where Ai is the cost of the action associated with the ith

transition and Dj is the distance metric between the jth state
mapping between the observed sequence and the matched
internal state sequence. It is important to note here that the
state and transition mapping between observed and internal
model is generally not one-to-one and that therefore
multiple distances can be associated with each state in
these sequences. These cost factors can be defined in
different ways by the user or an autonomous learning
component, resulting in the potential for different types of
imitation behavior. For example, by giving more weight to
one feature of the internal state representation, the
importance of exactly matching the parts of task related to
this feature will be emphasized while features with lower
weights might be ignored if their achievement introduces
too high a cost. In this way, the choice of cost function can
directly influence the resulting imitation policy, thus
providing additional flexibility to this imitation approach.

A second choice in the construction of the matching
state sequence is the one between establishing lowest cost
matches locally across a short part of the model or doing so
globally for the complete model. While establishing a
minimum cost match globally would result in the best
match according to the cost function used, the cost of such
a procedure is very high. Moreover, establishing such a
global match can only be accomplished if the entire
demonstration is observed before the imitation strategy is
formed and executed. Using a local matching procedure,
on the other hand, can permit an imitating agent to start
executing the first steps of the imitation policy before the
demonstrator has finished the complete task.

The approach presented here forms a local solution by
incrementally searching for state and transition matches for
the observed sequence. This local solution could be used
subsequently as a starting point for a global optimization
procedure to improve the policy for future use.

2.2 State Mapping Using Heuristic Search

The approach presented here uses A* search with a limited
search horizon to construct a policy mapping
incrementally. To construct an admissible heuristic, the
approach taken here assumes that at least one internal
action is needed for one attribute change in the state and on
this basis estimates the heuristic cost from the present state
of the imitator model until the end of the observed state
sequence. This heuristic function also assumes that once it
guesses the cost for reaching the closest state of the
remaining observed model, to reach every other state in the
observed model thereafter will take at least one internal
action. The total cost while performing the heuristic search
is as follows:

C = CA + CH
CH = CHC + CHR

Here CA refers to the actual cost and CH refers to the
heuristic cost used by the A* search. The heuristic cost is
again divided into two other costs, CHC and CHR where CHC
refers to the heuristic cost to reach the closest state in the
observed model from the imitator’s internal state and CHR
refers to the heuristic cost to reach the rest of the observed
model from the closest observed state.

Figure 3: Calculation of Heuristic Cost

Figure 3 shows an example of the calculation of the
heuristic cost of the imitator as the sum of CHC and CHR,
where CHC is calculated as shown in the figure after finding
the closest state of the observed model (which in this
example is the first state of the observed model). Then CHR
can be calculated as the number of remaining states from
the closest observed state to the rest of the observed model
(in this example three). While calculating CHC, each time
the attribute that contributes to the highest cost is changed
and its cost is removed from the state difference and added
to the heuristic until the state difference becomes zero. The
action cost to reach the closest state is the number of times
the state difference is decremented multiplied by the

minimum action cost of the imitator’s internal action. This
heuristic is used in the search process which stops when
the lowest cost mapping is found or the limit is reached.

3. Experiment

To illustrate the operation and results of the imitation
approach presented here, a number of experiments have
been performed using a simulated agent environment
called Wumpus World which is based on an early
computer game. In this environment, the agent explores a
grid world to collect gold pieces (G). At the same time it
has to avoid pits (P) and wumpi (W). The agent can
remove the wumpi by shooting them. The objective of the
game is to collect as many gold pieces as possible, return
to the initial grid location, and exit the cave. The actions
available to the imitating agent are Forward (GF), Turn left
(L), Turn right (R), Shoot (S), and Grab (G). The Shoot
operation is used to shoot a wumpus and Grab is used to
collect the gold pieces. In the experiments presented here it
is assumed that the imitator has full access to its state and
that it observes the state of the demonstrator.

Here each observed state contains the information of the
observable features of the demonstrator. The features of
the agent are the current x and y coordinates, the
orientation, and if the agent carries a piece of gold. The
features of the world included in the state are the presence
and location of any wumpi or pieces of gold.

In this experiment, the demonstrator starts from a start
position and shoots a wumpus. Then it grabs the gold and
returns to the start position and exits through the action
Climb (C). But the imitator agent, who observes the same
discrete number of states and transitions, does not repeat
the task in the same way since it does not have the
capability to shoot. Instead it tries to approximate the task
as shown in the Figure 4.

W

W

W

G

Goal

C
GF

GF

GF
GFGF

GF

GFGF

GFGF

R R

G,R,R

GFGF

GF GF

GF GF

LL

R R

LL

Start

Figure 4: Imitation Example

This figure shows that the imitator model initially
performs in the same way as the demonstrator. However,
instead of shooting the wumpus it changes its orientation,
moves up to avoid the three wumpi, and moves towards the
nearest approximately matched state of the observed
model. Then it grabs the gold and on its way back again
encounters the risk of being killed by the wumpi. Hence it
again acts differently from the demonstrator and ultimately
reaches a state close to the observed state and exits in the
same way as demonstrator.

4. Learning to Imitate Using Reinforcement
In the imitation process described above, the final imitation
strategy heavily depends on the structure of the cost
function. As a consequence, this cost function provides a
means to modify the future behavior of the imitation
system. If an optimal cost function can be found, the
quality of the imitation strategies constructed in response
to future demonstrations can be increased. This is achieved
here by including a learning mechanism that tries to
acquire a modified cost function such that subsequent
imitation strategies can be further improved. In this work
the state distance function is computed as a weighted sum:

Dj = Σi wi f(ai)
where wi represents the weight and f(ai) represents the

square difference of each state attribute ai. The weight
vector, w, is learned here over time such as to result in the
highest reward possible for the imitating agent.

4.1 Reinforcement Learning for Imitation

Since there is no feedback or communication assumed
from the demonstrator to the imitator, the learning
mechanism of the imitator interacts with the environment
to receive feedback such that the learning mechanism can
update its knowledge to adapt to the environment and to
improve the imitation process as shown in the Figure 5.

Figure 5: Reinforcement Learning for Imitation

 For this purpose, a reinforcement learning algorithm is
chosen where the learning system interacts in a closed loop
with the environment. During each attempt of execution of
a sequence of actions by the imitator, the environment
provides an evaluation or reinforcement and the learning
system has to learn from this how to improve imitation.

Another factor that needs to be considered in the
construction of a reinforcement learning algorithm is that it
has to deal with continuous rewards and outputs. In the
work presented here, this led to the development of an
algorithm that is closely related to the SRV (Stochastic
Real Valued) Algorithm [3]. This algorithm computes its
output as a function of a random activation generated using
the Gaussian distribution. The activation, which here
corresponds to a weight vector used in the cost function of
the imitation approach, depends on a mean and the
standard deviation. These, in turn, depend on the inputs to
the learning system in the form of reinforcement received
from the environment. The algorithm adjusts the
parameters to increase the probability of producing an
optimal value and hence of finding an optimal solution.

The following are the update equations used to learn the
weight vector and the expected reinforcement:

 mi = mi + α (R – R̃) (wi – mi)
σi = γ σi

R̃ = R̃ + β (R – R̃)
Here mi is the mean and σi is the standard deviation of

the estimated weight vector of each state attribute i and the
combination of these represent the Gaussian distribution
for each attribute weight. R represents the actual
reinforcement received for one trial after executing a
particular imitation policy, and R̃ is the expected
reinforcement for the weight vector distribution. The
symbols α and β are the learning rates for the mean and the
expected reinforcement equations, whereas γ is the rate at
which the standard deviation monotonically decreases.

This learning system operates by randomly picking
weight vectors from the Gaussian distribution. As the
learning system is exposed to more trials, it receives more
feedback which in turn changes the mean value of the
Gaussian distribution such that higher reward can be
expected from the environment in the future. The random
activations generated from the distribution are the weights
used in conjunction with the state attributes to calculate the
state differences. Hence different imitation strategies are
generated and evaluated until an optimal weight vector is
reached that generates an optimal imitation strategy. As a
result, the learned weight vector identifies the important
attributes within the state representation. In the approach
taken here weights are assumed to be independent

One limitation of this approach of imitation with
reinforcement learning is that the learning mechanism can
optimize the cost function only for tasks whose objectives
can be expressed in terms of the available state attributes.

5. Experiments
To illustrate the operation and the results of the learning
system, additional experiments have been performed using
the Wumpus World. As described previously the attributes
of the state are the x and y coordinates, the orientation, the
number of pieces of gold the agent carries the number of
arrows. These attributes are associated with weights which
are initially set to uniform values, making all attributes

equally important. The learning system’s task is to change
these weights such that the expected reward increases.

Figure 6 shows a sample environment which the agent
uses for learning. In this world, the observed model starts
at the initial position, shoots the wumpus on its way to the
position where one of the two pieces of gold is lying, grabs
the gold and returns to the start position to exit the world.
These changes in the environment are assumed to be
permanent and once the demonstrator has completed its
task, the wumpus is already dead and only the second piece
of gold lying in the world one square diagonal to the

Figure 6: Example World Used for Learning

location of the gold acquired by the demonstrator remains
as shown in the figure. Here, the imitating agent who
observes the same discrete number of states and transitions
cannot repeat the same task because the wumpus and the
first piece of gold no longer exist in the environment

Figure 7: Learning Curve for Sample World

As shown in the Figure 7, the imitating agent is able to
learn to improve its performance starting from the first trial
until some optimal point is reached. This figure shows a
running average over ten trials representing the average
reward over five separate learning experiments. In
addition, the standard deviations over ten experiments are
shown as error bars for every ten trials.

Once the imitating agent reaches the optimum value, the
standard deviation becomes almost. This implies that the
imitating agent is able to grab the gold even if the gold is

out of place from where the demonstrator grabbed it. This
is the case because the imitation strategy produced now
tries to imitate the demonstrator in light of the new weight
vector determined through learning. In this example the
imitator learns that gold is relatively more important than
other attributes. Hence the imitating agent is able to grab
the gold in another square in order to reduce overall cost of
the imitation with respect to the observed model.

This same learning agent that was trained in the world
where the gold is one diagonal square away from the gold
acquired by the demonstrator is now tried in different
scenarios by altering the demonstration and placing the
gold in other locations, L1 to L4 , as shown on the left in
Figure 8. Here the demonstrator starts from the start
location moves to one of the gold pieces, grabs it, and
moves back to the start position to exit the game. This is
different task in the sense that not only the x coordinate is
varied but also the y coordinate. Here the previously
learned imitating agent that was trained on the sample
world based on the task specified in Figure 6 is compared
against the initial agent with uniform weights. The right
table in Figure 8 shows the reward obtained by both agents
if the second gold piece is placed in each of the locations.

Figure 8: World for Testing of Learned Cost Function

(left) and Rewards Obtained (right)

This table demonstrates that the agent that was trained
on the first environment can outperforms the initial agent
on new tasks within the same task domain without any
additional learning on the particular task. This illustrates
the benefit of using learning to modify the imitation
mechanism rather than to optimize a particular, task-
specific policy. Learning in this approach does not modify
a policy directly but rather is aimed at identifying the
functional attributes that are important for successful
imitation. As a result, the learned information transfers
readily to new tasks within the same task domain.

6. Conclusions
This paper presented an approach to imitation that
constructs an imitation strategy by mapping an observed
state sequence onto the internal model of the agent. This
mapping uses a cost function, permitting it to be applied in
situations where the behavioral capabilities of the
demonstrating and imitating agent differ. The experiments
presented show that the imitator is capable of imitating the
demonstrator even under these circumstances by

addressing the same task differently using its own action
set. In this process it sometimes deviates from the observed
state sequence, finding the closest state match that is
achievable. This permits this approach to be used even if
the demonstrator and imitator are different agent types.

A reinforcement learning approach is combined with the
imitation to learn an optimal cost function and thus to
improve the imitation process. Each time a sequence of
actions is executed by the imitator, the learning system
uses feedback provided by the environment to learn a cost
function that increases the expected reward obtained on
subsequent imitation attempts. This incrementally
increases the quality of imitation such that the trained
agent will imitate better than the imitating agent that has no
knowledge of the environment. The results presented here
show that the system is able to learn which aspects of the
observations are important for imitation and that the
learned cost function extends beyond the training tasks to
other tasks within the same task domain.

7. Acknowledgements

This work was supported in part by NSF ITR-0121297.

References
[1] C. Atkeson and S. Schaal, Robot Learning From
Demonstration. Proceedings of the 14th Int. Conf. on
Machine Learning, San Francisco, CA, 1997, 12-20.
[2] J. Demiris, Active and passive routes to imitation. In
Proceedings of the AISB’99 Symposium on Imitation in
Animals and Artifacts, Edinburgh, Scotland, 1999.
[3] V. Gullapalli, Associative Reinforcement Learning of
Real-valued Functions. Technical Report 90-129,
University of Massachusetts, Amherst, MA, 01003, 1990.
[4] O.C. Jenkins, M.J. Mataric, and S. Weber, Primitive-
Based Movement Classification for Humanoid Imitation.
In Proceedings, First IEEE-RAS International Conference
on Humanoid Robotics, Cambridge, MA, MIT, 2000.
[5] G. Peterson and D.J. Cook, DFA learning of opponent
strategies. In Proceedings of the Florida AI Research
Symposium, 1998, 367–371.
[6] L. Holder and D.J. Cook, An Integrated Tool for
Enhancement of Artificial Intelligence Curriculum.
Journal of Computing in Higher Education 12(2), 2001.
[7] L.P. Kaelbling, M.L. Littman, and A.W. Moore,
Reinforcement Learning: A Survey. Journal of Artificial
Intelligence Research, 4, 1994, 237-285.
[8] S. Kang, and K. Ikeuchi, Toward automatic robot
instruction from perception: Recognizing a grasp from
observation. IEEE Journal Robotics Automat., 9(4), 1993.
[9] M.J. Mataric, Learning motor skills by imitation. In
Proceedings, AAAI Spring Symposium Toward Physical
Interaction and Manipulation, Stanford University, 1994.

