
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 7, NOVEMBER 1998 909

A Software-Based MPEG-4 Video
Encoder Using Parallel Processing

Yong He,Student Member, IEEE,Ishfaq Ahmad,Member, IEEE,and Ming L. Liou, Fellow, IEEE

Abstract—In this paper, we describe a software-based MPEG-
4 video encoder which is implemented using parallel processing
on a cluster of workstations collectively working as a virtual
machine. The contributions of our work are as follows. First, a
hierarchical Petri-nets-based modeling methodology is proposed
to capture the spatiotemporal relationships among multiple ob-
jects at different levels of an MPEG-4 video sequence. Second, a
scheduling algorithm is proposed to assign video objects to work-
stations for encoding in parallel. The algorithm determines the
execution order of video objects, ensures that the synchronization
requirements among them are enforced and that presentation
deadlines are met. Third, a dynamic partitioning scheme is
proposed which divides an object among multiple workstations to
extract additional parallelism. The scheme achieves load balanc-
ing among the workstations with a low overhead. The striking
feature of our encoder is that it adjusts the allocation and
partitioning of objects automatically according to the dynamic
variations in the video object behavior. We have made various
additional software optimizations to further speed up the com-
putation. The performance of the encoder can scale according
to the number of workstations used. With 20 workstations, the
encoder yields an encoding rate higher than real time, allowing
the encoding of multiple sequences simultaneously.

Index Terms—Data partitioning, dynamic scheduling, load bal-
ancing, MPEG-4, parallel and distributed processing, Petri nets,
video encoder.

I. INTRODUCTION

T HE current and emerging multimedia services demand
many more functionalities than those offered by the

traditional standards. For example, mobile communication
requires very low bit-rate video coding and error resilience
across various networks, virtual reality and animation require
integration of natural and synthetic hybrid object coding, and
interactive digital video requires a high degree of object based
interactivity. Instead of traditional frame-based interaction
such as fast forward, fast backward, etc., new ways of interac-
tivity are needed to efficiently realize such applications. The
new standard, MPEG-4, which is currently being developed
by MPEG, will enable the integration of the production,
distribution, and content access paradigms in a multimedia

Manuscript received October 31, 1997; revised May , 1998. This work was
supported by the Hong Kong Telecom Institute of Information Technology.
This paper was recommended by Associate Editor M.-T. Sun.

Y. He and M. L. Liou are with the Department of Electrical and Electronic
Engineering, Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong.

I. Ahmad is with the Department of Computer Science, Hong Kong
University of Science and Technology, Clear Water Bay, Kowloon, Hong
Kong.

Publisher Item Identifier S 1051-8215(98)08385-2.

environment [1]. With a flexible toolbox approach, MPEG-4 is
capable of supporting diverse new functionalities, and hence
will cover a broad range of present and future multimedia
applications.

MPEG-4, due to its content-based representation nature and
flexible configuration structure, is considerably more complex
than previous standards. Any MPEG-4 hardware implementa-
tion is likely to be very much application specific. Therefore,
software-based implementation seems to be a natural and
viable option. In addition, a software-based approach allows
flexibility, portability, scalability, and permits the inclusion of
new tools, which are extremely desirable features for MPEG-
4-based interactive multimedia systems. The main obstacle
in such an approach is that it requires a large amount of
computing power to support real-time encoding and decoding
operations. However, the latest developments in parallel and
distributed systems promise a higher degree of performance
at an affordable cost (such as a network of workstations or
PC’s), provided the parallelism from the application at hand
is effectively extracted.

A parallel implementation of the MPEG-4 encoder is a
nontrivial task, and cannot be accomplished using a straightfor-
ward multitasking or data-partitioning strategy. This is because
objects in MPEG-4 video add or drop from a video scene, with
their sizes varying from time to time. In addition, various
objects need to be tightly synchronized. Finally, depending
upon the application requirements, MPEG-4 allows us to adopt
different encoding efficiencies and levels of scalability on
various objects. Orchestrating various tasks of the encoder
and distributing and dividing objects into pieces for concurrent
execution pose some research challenges. Thus, parallelization
of the MPEG-4 encoder requires highly efficient scheduling
and a load-balancing scheme. An effective implementation
of the encoder also needs modeling tools that can capture
the spatiotemporal relationships between different MPEG-4
objects.

We are currently building an MPEG-4-based interactive
multimedia environment for supporting applications in the
areas of CAD, teaching, and multimedia authoring. As a part
of this system, we have implemented an MPEG-4 encoder
with a software-based approach using parallel processing on
a cluster of workstations. The main contributions of our work
include the following.

• A Petri-net-based modeling scheme for capturing the spa-
tiotemporal relationships between MPEG-4 video com-
ponents at various levels (video session, object, or video
object plane level).

1051–8215/98$10.00 1998 IEEE

910 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 7, NOVEMBER 1998

Fig. 1. MPEG-4 video codec (encoder and decoder) structure.

• Efficient parallel processing of the encoder through an
effective scheduling algorithm. The algorithm uses the
information generated by the model to allocate objects to
workstations for parallel encoding, and ensures that the
synchronization requirements among various objects are
observed, presentation deadlines are met with a guarantee
of quality of service, and that maximum speed up is
obtained in terms of compression time. Allocating objects
to workstations for concurrent processing is equivalent to
exploiting control parallelism.

• A dynamic and adaptive data-partitioning scheme that
maximizes the parallelism by further dividing an object
among multiple workstations is proposed. Since the size
of a video object may change from time to time, the
partitioning strategy ensures load balancing among the
divided parts. Division of a video object among multiple
workstations is equivalent to exploitingdata parallelism.

Our encoder encodes various input video objects by ad-
justing the allocation and partitioning of objects automatically
regardless of the dynamic variation of the video object behav-
ior. Various levels of software optimization have been used
to speed up the computation. The performance of the encoder
can scale according to the number of workstations used. With
20 workstations, the encoder yields an encoding rate higher
than real time on some sequences. This allows us to encode
multiple sequences at the same time.

The rest of this paper is arranged in the following manner:
Section II gives a brief overview of MPEG-4 video verifica-
tion model. Section III describes the proposed implementation
approach in detail, including: 1) a Petri nets modeling method-
ology introduced to model and represent the timing constraints
of the video session, 2) an effective scheduling algorithm
which schedules various subtasks of the encoder, and 3) a
dynamic data-partitioning scheme used for further speed-up
gain. Section IV provides the experimental results, and the
last section presents the conclusion.

II. OVERVIEW OF MPEG-4 VIDEO

MPEG-4 is scheduled to become an international standard
in November 1998. As one of the major parts of MPEG-4,
MPEG-4 video is an object-based hybrid natural and synthetic
coding standard which specifies the technologies enabling
the functionalities such as content-based interactivity, efficient
compression, error resilience, and object scalability [2]. Fig. 1

(a)

(b)

Fig. 2. Representation of the VOP (person Akiyo). (a) Image of original
“Akiyo” VOP. (b) Binary alpha phase of “Akiyo” VOP.

is the overall structure of MPEG-4 video codec (encoder and
decoder) which is based on the concept of video object planes
(VOP’s) defined as the instances of video objects.

The video encoder is composed of a number of VOP
encoders as is the decoder. The same coding scheme is applied
to each video object separately, and the reconstructed video
objects are composited together and presented to the user. The
user interaction with the objects such as scaling, dragging, and
linking can be handled either in the encoder or in the decoder.

In order to describe the arbitrarily shaped VOP’s, MPEG-
4 defines a VOP by means of a bounding rectangle called a
“VOP window.” The window surrounds the VOP with the min-
imum number of macroblocks, as depicted in Fig. 2(a). There
are three kinds of macroblock (MB) within a VOP window:

HE et al.: MPEG-4 VIDEO ENCODER 911

the transparent MB, the contour MB, and the standard MB.
The contour and standard MB include the pixels belonging to
the object, and the transparent MB lies completely outside the
object area.

Each VOP encoder consists of three main parts: shape
coding, motion estimation/compensation, and texture coding.
Shape information of VOP is referred to as alpha plane
in MPEG-4. As Fig. 2(b) shows, the alpha plane has the
same format as the luminance file, and its data indicate the
characteristics of the relevant pixels (inside or outside the
object). The shape coder performs the compression on the
alpha plane. Because the transparent MB has no object pixels
inside, it will not be processed for the motion and/or texture
coding.

Motion estimation and compensation (ME/MC) are used
to reduce temporal redundancies. A padding technique is
applied on the reference VOP which allows polygon matching
instead of block matching for rectangular image. SAD (sum
of absolute difference) is used as the error measure, and is
calculated only on the pixels inside the object. SAD is given
by

or

In addition to the basic motion technique, unrestricted
ME/MC, the advanced prediction mode, and bidirectional
ME/MC (especially for the frame) are supported by the
MPEG-4 video to obtain a significant quality improvement
with a little increase in complexity.

The intra and residual data after motion compensation of
VOP’s are coded by texture-coding algorithms including DCT
or shape-adaptive DCT (SA-DCT), MPEG or H.263 quantiza-
tion, intra dc and ac prediction, and VLC to achieve further
compression. For contour MB’s, a low-pass extrapolation
padding technique is employed before performing DCT.

MPEG-4 also supports the scalable coding of video objects
in both spatial and temporal domains, and provides error
resilience across various media. In addition to the above
basic technologies used in the encoder structure, the toolbox
approach of MPEG-4 video makes it possible to achieve more
improvement for some special cases by using dedicated tools.
Further details on MPEG-4 video encoder can be found in [3].

III. PROPOSEDIMPLEMENTATION APPROACH

Most multimedia applications have real-time requirements
which demand the codec to be highly efficient. In order to deal
with arbitrarily shaped objects, more sophisticated techniques
are needed to achieve an efficient compression. This, however,
can introduce extra complexity in the encoder, which in turn
requires additional computational power. Since the encoder of
MPEG-4 video is much more complex and time consuming in
computing than the decoder, it is more challenging to speed
up the computation in the encoder.

As mentioned earlier, the hardware-based MPEG-4 encoder
is likely to be very much application specific. The flexible
and extensible nature of MPEG-4 requires a highly flexible
and programmable encoder which is more feasible using a
software-based approach. But the computational requirement
of a software-based encoder is simply too enormous to be han-
dled by a single processor PC or a workstation. It is, therefore,
natural to exploit the high computational power offered by a
high-performance parallel or distributed system. The architec-
ture of MPEG-4 encoder as shown in Fig. 1 also happens to be
very suitable for distributed computing. Each input VOP is en-
coded separately, and efficient performance can be achieved by
decomposing the whole encoder into separate tasks with indi-
vidual VOP encoders and running these tasks simultaneously.

In a simpler approach, one could use a single workstation
to encode one VOP, but this scheme does not fully exploit
the computational power of the system because it is not
scalable and the degree of parallelism is rather limited. A more
effective approach is to form groups of workstations, with each
group working on a single VOP while additional parallelism
is exploited by partitioning a VOP among the workstations
within the group. This scheme, however, requires a careful
division of video objects as they are interrelated. Furthermore,
the sizes of VOP’s change with time, implying that distribution
and partitioning of VOP’s will need to be adjusted accordingly.
Since this must be done in real time, the cost of scheduling
and distribution must be kept low to ensure that the benefits
gained from an efficient parallelization are not outweighed by
a lengthy scheduling time.

In our scheme, we divide a given number of workstations
to groups, and assign the encoding task of one VOP to one
group. However, when the VOP’s are distributed to different
groups of workstations, the spatiotemporal relationships be-
tween various VOP’s must be preserved. Such relationships
can be kept to an extremely detailed level by using a Petri
nets model which is described below. A scheduling algorithm
is proposed to allocate the workstations proportionally, and to
decide their execution sequence in accordance with the priority
of each VOP so that the timing constraint can be satisfied.

The data of a VOP are divided among the workstations
within a group, allowing further gain in computing speed. For
distributing the data of a VOP, various simple partitioning
schemes are possible. We propose a shape-adaptive data-
partitioning scheme that ensures load balancing among the
divided pieces and incurs a low overhead. The details of
the modeling methodology, scheduling algorithm, and data-
partitioning scheme are described next.

A. Modeling MPEG-4 Video Sequence with Petri Nets

In MPEG-4 video encoder, one of the most important issues
to consider is the synchronization of various video objects.
Each object may have certain presentation timing constraints
which, in turn, may be dependent on the other objects. The
playout time requirements and associated synchronization con-
straints among multiple video objects must be satisfied in real
time to guarantee that a smooth flow of video sequence is
presented to the user.

912 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 7, NOVEMBER 1998

Fig. 3. Graphical representation of a Petri net.

Fig. 4. Playout time chart for video session.

To identify the timing constraints among multiple objects,
a synchronization reference model is required to describe
temporal relationships for determining an appropriate sched-
uling scheme. Several modeling tools have been proposed
for specifying the temporal behavior of various multimedia
systems [4]. We choose Petri nets as the modeling tool
since it is a simple but effective tool for describing and
studying systems with concurrent, distributed, and parallel
characteristics [5]. A number of variations of the Petri nets
model, such as OCPN [6], XOCPN [7], and TSPN [8], have
been widely used in multimedia communication applications
due to its intuitive graphical representation and the simplicity
of the modeling concept.

Fig. 3 depicts a graphical representation of a Petri net.
The circles and bars represent the places and transitions,
respectively, and the arcs indicate both input and output flow
directions. A Petri net is executed by the firing rules that
transmit the marks or tokens from one place to another, and
such firing is enabled only when each input place has a token
inside. Thus, by using firing transition and a token distribution
state, Petri nets can describe the information flow or system
activities in a straightforward way.

Because a Petri nets modeling structure may become com-
plex when it is used to model a complicated real-world system,
a hierarchical Petri net can be used to refine the system
behavior in a step-by-step fashion. As for the MPEG-4 video
session, due to its object-based nature, the number of objects
presented within a scene may vary from time to time since
an object can be added in or dropped out from the scene

randomly. Moreover, while some of the objects may be tightly
time dependent with each other, and thus must be synchronized
accordingly, others may not be required to be stringently
synchronized. To represent such a complex session, we can
utilize hierarchical Petri nets with a similar structure as the
syntax definition of MPEG-4 video which consists of video
session (VS) level, video object (VO) level, video object layer
(VOL) level, and video object plane (VOP) level (for the sake
of simplicity in our implementation, we consider only VS,
VO, and VOP levels.)

By using a hierarchical model we can achieve coarse or
fine-grained synchronization by applying scheduling schemes
on different levels. Fig. 4 shows the playout time chart of a
general MPEG-4 video sequence. The sequence has four video
objects (VO’s); VO, VO , VO start at time unit 0, and VO
starts at time unit 4. VOand VO are synchronized with each
other and both end at time unit 4, while VOand VO are
also synchronized and end at time unit 12. The duration of a
frame for both VO and VO is two time units, and four for
VO and VO

Fig. 5 represents the hierarchical Petri nets model for the
above case. In the hierarchical Petri nets model, we define
the place asobject intermedia unit(OIU) and the transition
as timing constraint point(TCP). At the VS level, an OIU
represents the whole video session with just two TCP’s (the
session start and end point). At the VO level, each OIU rep-
resents one object within the session; here, the TCP’s indicate
the temporal relationship and timing constraints among various
objects. At the VOP level, each OIU represents one frame of

HE et al.: MPEG-4 VIDEO ENCODER 913

Fig. 5. Hierarchical Petri nets model of video presentation.

the object, whereas the TCP’s indicate the intra and/or inter
VOP’s synchronization on the frame level.

Generally, all video objects play out simultaneously in the
natural video session, which results in the same frame rate and
presentation deadlines. For some synthetic sequences, different
video objects may be introduced or halted randomly by the
operations such as user interaction and content-based retrieval,
and therefore may have different timing characteristics. In
order to build a Petri nets model for such a dynamic behavior,
we have to obtain all of the necessary information such
as processing times, frame rate, object dependencies, and
synchronizations beforehand. It is possible for nonreal-time
applications to generate the complete Petri nets model for static
scheduling with the temporal information of all video objects
available in advance. For real-time applications, however, such
knowledge can only be obtained at run time, and the model
is generated partially along the playout sequences which, in
turn, determines a dynamic scheduling scheme. For example,
in the above case, we can obtain the playout deadlines and
frame rates of VO, VO and VO after a short time of
observation at the beginning of the session. The model can
then be constructed, and it remains the same if the status of
all VO’s is stable. Until a new object (VO is added or some
existing objects (VO and VO are deleted at a certain time
(time unit 4), the model construction can then be changed
according to the new knowledge obtained after another short
observation time.

B. Scheduling Objects to Workstations

We use a scheduling algorithm to allocate objects in a
video session to workstations. The objective of a scheduling
algorithm in a parallel processing environment is to minimize
the overall execution time of a concurrent program by properly
allocating the tasks to the processors and sequencing their
executions [9]. A scheduling algorithm can be characterized as
being eitherstatic or dynamic. A static scheduling algorithm
determines the schedule with the complete knowledge of
all of the tasks before the program execution. In contrast,
a dynamic scheduling algorithm deals with task assignment
at run time because the information about the tasks is not
available in advance. Static scheduling incurs little run-time

cost, but cannot adapt to the indeterministic behavior of the
system. On the other hand, although dynamic scheduling is
more flexible as it can be adjusted to system changes, it incurs
a high run-time cost. In an MPEG-4 video session, even though
a static scheduling scheme is feasible for some nonreal-time
applications, it is not suitable for most real-time applications
because of the unpredictable characteristics of the VOP’s.

In our implementation, we have designed a hybrid static
and dynamic scheduling scheme. Using the Petri nets model,
the information about the video objects can be acquired after
observing the objects for a short time at the beginning of
each presentation period. The length of the presentation period
depends on the availability of objects. During that period, the
temporal characteristics of the video objects, such as frame
rates and synchronizations, are assumed to be relatively stable.
Therefore, we can perform a static scheduling scheme on each
period with the knowledge obtained at the beginning of the
period, and reschedule the new period with the updated pa-
rameters. Such a scheduling scheme combines the advantages
of static and dynamic strategies, and, with a little overhead,
adapts to the variation of both deterministic and indeterministic
video objects. Fig. 6 depicts a scheduling scenario at VO level
for the example shown in Fig. 4. The scheduling algorithm
is invoked whenever a new presentation period begins. The
scheduling period is bounded by the successive object sched-
uling instants (OSI’s), and the complexity of the scheduling
depends on the number of OSI’s during the whole video
session.

A number of scheduling algorithms have been developed for
distributed and parallel systems [10]. The proposed algorithm
is a variant of theearliest deadline first(EDF) algorithm which
has been widely employed in many applications [11]. The
basic principle of this algorithm is that the tasks with earlier
deadlines are assigned higher priorities and are executed before
tasks with lower priorities. In our implementation, VOP’s with
the earlier playout deadlines or synchronization constraints
are encoded and delivered first. Fig. 7 shows the Petri nets
model of the scheduled VOP execution order at VOP level
for the case shown in Fig. 4. VOP VOP and VOP
have a playout time of unit 0 which is earlier than those of
other VOP’s; thus, they are processed first. Then VOPand

914 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 7, NOVEMBER 1998

Fig. 6. Petri nets model for dynamic scheduling.

Fig. 7. Petri nets model of EDF scheduling.

VOP whose playout deadline is time unit 2, are processed
next, and so on. For the tasks with the same TCP such as
VOP and VOP since a video object with a larger size
usually requires more computing power, and vice versa, we
allocate the available processors to each VOP proportionally
according to the VOP size ratio between the VOP’s.

C. Dynamic Shape-Adaptive Data Partitioning

Parallel programming paradigms can be classified into var-
ious models such as object-oriented model, control-parallel
model, and data-parallel model. The data parallel paradigm
emphasizes exploiting parallelism in large data sets. The main
idea of data partitioning in video encoding is to decompose the
whole frame data into a number of data blocks, and map these
blocks onto the corresponding processors. Since the processors
perform the computation on their own data simultaneously, a
high speed up can be achieved.

In a data parallel program, the issue of load balancing should
be carefully addressed. Load balancing means equalization of
the processors’ workloads to minimize their idle times [12].
In MPEG-4 video, the size and location of each object may
vary with time, and such behavior cannot be predicted be-
forehand. Therefore, no matter how initial tasks are assigned,
the workloads of the processors will become unbalanced later

TABLE I
MPEG-4 VIDEO TOOLS DEPLOYMENT

on. Some processors will become highly loaded, while others
are idle or lightly loaded. Furthermore, some computation-
intensive algorithms of the encoder are data dependent, and
their execution times are different for various data regions.
For example, as depicted in Table I, some operations are
performed on all macroblocks, while others just act on contour
and/or standard MB’s. Thus, the problem of load balancing
becomes nontrivial.

We have developed a dynamic shape-adaptive data partition
method to guarantee the workload balancing during the whole
video session with low run-time overhead and fine granularity.
This method can be explained by considering that the entire
MPEG-4 video session can be characterized by the number
of time intervals. The time interval boundary depends on the
variation of the VOP window size. A new time interval begins
whenever a VOP window size changes. For example, Fig. 8
shows the intervals of the test sequence “Weather” (person
woman) with the number of frames ranging from 150 to 300.
Since the knowledge of video objects, including the object
size and the contour and standard macroblock distribution, can
be obtained at the beginning of the interval. We can perform
the partitioning scheme (as described below) within each time
interval. During that interval, we can assume that the spatial
computation distribution is relatively stable, and that there
is no need to change the partition. Therefore, the proposed
method can handle the object variations with a small run-time
overhead. Since most of the algorithms are macroblock based,

HE et al.: MPEG-4 VIDEO ENCODER 915

Fig. 8. Time interval example of the “Weather” sequence (person woman).

(a) (b) (c)

Fig. 9. Some simple partitioning methods. (a) Strip-wise decomposition. (b)
Blockwise decomposition. (c) Recursive bisection.

we employ a macroblock-based data partitioning to map an
integer number of macroblocks to each processor. This allows
each processor to execute the compression algorithm on its
own data.

In its simple form, a data-partitioning method may restrict
the subregion to a rectangular shape to avoid the use of
complex data structures. Fig. 9 shows some simple partitioning
methods. A stripwise partition divides the whole VOP window
horizontally or vertically into subregions for processors. It
is easy to determine the area of subregions for corresponding
processors, while the number of boundary pixels is high. A
blockwise partition divides the VOP window evenly along
both the horizontal and vertical dimensions. In this case, the
number of boundary pixels of the subregion is minimal, but
the number of processors to be used is restricted. The recur-
sive bisection method [13] divides the whole VOP window
recursively in a binary fashion. Although the computational
load can be optimally distributed, it is relatively expensive to
execute the recursive operations during the decomposition.

For MPEG-4, when an object is large enough and almost
fills the entire VOP window, rectangular region partitioning
methods may achieve good load balancing because the contour
and standard MB’s are likely to be distributed uniformly
among multiprocessors. In general, some subregions of the
window are full of transparent MB’s, while others may be full
of contour and/or standard MB’s. Therefore, no partitioning
method can equally distribute rectangular subregions in a
straightforward way. In addition, because the object size may

(a)

(b)

Fig. 10. Rectangular block partition example on “Children.” (a) Strip-wise
partitioning. (b) Block-wise partitioning.

be too irregular, it may not be possible to employ the stripwise
or blockwise partition. Fig. 10 shows a partitioning example of
both stripwise and blockwise decomposition on the first frame
of the test sequence “Children” (QCIF). With nine processors
available, it is apparent that some processors are assigned
almost all transparent macroblocks (which require low com-

916 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 7, NOVEMBER 1998

(a) (b)

(c) (d)

Fig. 11. Arbitrary partitioning example.

puting power), while other processors may be overloaded with
computation-intensive contour and standard macroblocks.

In our shape-adaptive partitioning method, the initial sep-
arated subregion may have an arbitrary shape to minimize
the imbalances. The extended rectangular subalpha plane is
further redefined to avoid unnecessary computation for each
processor.

As depicted in Fig. 11, gray blocks represent the contour
and standard MB’s, while white blocks represent the trans-
parent MB’s. By using the alpha plane information, first, we
get the statistical distribution of the contour and standard
MB’s. Then, we equally distribute them to a given number of
processors. As illustrated in Fig. 11(a), there are 20 contour
and standard MB’s within the window, and each proces-
sor is assigned five contour and standard MB’s. Thus, each
processor (– may get an arbitrarily shaped subregion
[see Fig. 11(b)]. As it stands, this partitioning will cause
an irregular data structure problem. Moreover, because the
bit stream can only indicate the rectangular data formation
by the syntax such asvop horizontal/verticalmc spatial ref
and vop width/height, the decoding and picture composition
will become more complex for arbitrary subregions. Here,
we extend each subregion to the tightest rectangle called
the subalpha plane [see Fig. 11(c)]. Since some of the sub-
alpha planes contain redundant macroblocks, we redefine
the subalpha planes by labeling those extensive macroblocks
as transparent MB’s in order to avoid unnecessary compu-
tation [see Fig. 11(d)]. For example, processor should
only encode the subregion which includes the contour and
standard macroblock from 16 to 20 as shown in Fig. 11(b).
In order to get a rectangular subregion which contains those
blocks, we extend this subregion to be a subalpha plane
[Fig. 11(c)] which contains the contour and standard MB’s

from 14 to 20. Next, we define the fourteenth and fifteenth
MB as transparent MB’s to form a redefined subalpha plane
as shown in Fig. 11(d). Therefore, processor still pro-
cesses five contour and standard MB’s while keeping the
subregion rectangular. Because such a partition is based on
macroblock decomposition, the granularity is small, and the
method can yield finer workload balancing among the work-
stations. Fig. 12 compares the computation load distribution
of each processors for the sequence “Children.” It can be seen
that both the stripwise and blockwise partitioning methods
exhibit highly unbalanced distribution of computation load,
while the shape-adaptive partitioning method achieves better
load balancing.

IV. EXPERIMENTAL RESULTS

With the advancement of workstations and networking
technologies, the aggregated computing power of a cluster
of workstations can approach that of an expensive parallel
computing system [14]. Because of numerous advantages
offered by this approach (scalable file storage, large memory,
high performance/cost ratio, and efficient communication hard-
ware/software support), many current parallel applications are
now using clusters of workstations as the computing platform.
The proposed parallel approach has been implemented on
a cluster of 20 Sparc Ultra 1 workstations connected by a
ForeSystems ATM switch (ASX-1000) which provides fast
communication among the workstations. The cluster is config-
ured as a virtual 2-D processor grid which is independent of
the hardware topology.

For interprocessor communication and synchronization, we
use themessage passing interface(MPI), which ensures the
portability of our MPEG-4 video encoder across various
platforms. MPI is an industrial standard designed by the

HE et al.: MPEG-4 VIDEO ENCODER 917

(a)

(b)

(c)

Fig. 12. Comparison of load distribution for different partitioning method.
(a) Stripwise partitioning (1� 9). (b) Blockwise partitioning (3� 3). (c)
Shape-adaptive partitioning.

MPI Forum for supporting a portable message-passing parallel
program on massively parallel computers as well as networks
of workstations [15].

Some encoding problems such as rate control and buffer
regulation require the information for updating the quantizer,
and such information has to be collected and broadcast among
the workstations frequently. This may become a bottleneck
in parallel implementation when the number of processor
increases. In our implementation, because the shape-adaptive
data-partitioning scheme ensures that each processor owns
equal numbers of contour and standard macroblocks which
consume most available coding-bits budget, we can assign the
bit quota or buffers equally to the processors within the group.
By so doing, each processor can adjust its local subbuffer
independently, and no data piping is required. For example,

TABLE II
VIDEO OBJECTS FOREXPERIMENTS

if four processors deal with one VOP at a bit rate of 64 000
bits/s, each processor encodes the quarter-VOP at a bit rate
of 16 000 bits/s.

Several experiments have been performed on a set of
MPEG-4 video test sequences (both single and multiple ob-
jects). Table II shows various single objects in different video
sequences chosen from different classes of an MPEG-4 test
library and represent various characteristics in terms of spatial
detail and movement. Our software-based implementation is
applied on the MPEG-4 video verification model (VM8.0)
encoder.

We have also done software optimizations at various levels,
which results in a significant performance improvement of the
encoding speed. First, a fast search algorithm [16] has been
adopted to speed up the computation of block-matching motion
estimation while maintaining the visual quality close to that
of the full search. We partition the search range into three
nested search zones, and set the threshold to ten (zero means
full search) for all zones. Second, we have used a Sun Solaris
C compiler (SC4.0) to incorporate various compile optimiza-
tions. The appropriate option choice (such asxarch, xchip, fast,
andXO5)can provide executable optimizations on the specific
architecture, including loop parallelization and restructuring,
cache properties redefinition, automatic register allocation, etc.
Finally, we have utilized the visual instruction set (VIS) to
compute the SAD, which is the most computational-intensive
module in the encoding. VIS is a RISC-like extension to the
SPARC V9 instruction set for the acceleration of multimedia
processing on UltraSPARC processors [17]. By using the 64-
bit floating-point register, VIS can perform the computations
such as addition, subtraction, and multiplication on eight
8-bit pixels in a single cycle, which results in nearly eight-fold
speed-up gain. Fig. 13 presents the encoding speed up with or
without optimization approaches using one workstation.

In order to reduce the interprocessor communication over-
head during the motion estimation, we have used an over-
lapped data allocation method [18]. This method stores the
entire search window data on local disk, and allows each
processor to perform motion estimation independently with-
out any data exchange. Usually, workstations have enough
memory for storage, and we can evenly distribute the entire
frame data to each workstation. Therefore, each workstation
can access the data from its local memory, and perform
the distributed load balancing more efficiently. All of the
preprocessing, including the format conversion and bounding,
are done off line

918 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 7, NOVEMBER 1998

(a)

(b)

Fig. 13. Encoding speed-up comparison (with/without optimization). (a) Encoding speed up of the QCIF sequences. (b) Encoding speed up of the
CIF sequences.

TABLE III
PROCESSORDISTRIBUTION TO EACH VIDEO OBJECT

As for the single object sequences, we have to guarantee
playout time constraints and allocate the VOP data proportion-
ally to each workstation. Fig. 14(a) and (b) shows the encoding
frame rates for different MPEG-4 video test sequences with
QCIF and CIF format using various numbers of workstations.
We can achieve a frame rate much higher than the real-time
performance (30 frames/s) on all QCIF format sequences. For
CIF format sequences, since the object size is larger, a frame
rate above 15 frames/s can be obtained.

Fig. 15(a) and (b) shows the overall speed ups for the QCIF
and CIF format, respectively. A linear speed-up relationship

demonstrates that the performance of the encoder can scale
according to the number of workstations used.

Apart from the single-object sequences, we also tested our
encoder with the composed sequence “News” which contains
the object “News1” and “News2” in QCIF format. “News1” has
150 frames and “News2” has 300 frames. During the first 150
frames, “News1” and “News2” are synchronized to each other
with a frame rate of 30 frames/s. Then, the object “News1”
ceases, and “News2” continues to the end with the same frame
rate. Table III indicates the processor allocation during the
first 150 frames. The number of processors assigned to each

HE et al.: MPEG-4 VIDEO ENCODER 919

(a)

(b)

Fig. 14. Encoding frame rate. (a) QCIF format. (b) CIF format.

object is determined by the VOP window size ratio among the
existing objects.

Fig. 16 is the encoding frame rate of “News” sequences with
two objects inside the video session. The maximum encoding
rate achieved on 20 workstations is about 41.78 frames/s.

V. CONCLUSIONS

In this paper a software-based MPEG-4 video encoder using
parallel processing on a cluster of workstations has been
described. The experimental results on various test sequences
have been provided, and an encoding rate higher than real time
has been achieved on some sequences. The contribution of our
work includes the use of a hierarchical Petri nets model to
capture the spatiotemporal relations between multiple objects
of MPEG-4 video, an effective scheduling algorithm, and a
dynamic shape-adaptive data parallel scheme to implement
an MPEG-4 video encoder. In our future work, we will be
exploring more efficient partitioning schemes and scheduling
algorithms to improve the encoder performance. To complete
our MPEG-4 multimedia system, we are also implementing
MPEG-4 decoder and interactive methodology for supporting
multimedia communication between the encoder and decoder.

(a)

(b)

Fig. 15. Overall speed-up ratio. (a) QCIF format. (b) CIF format.

Fig. 16. Encoding frame rate of composed sequence “News” (QCIF).

ACKNOWLEDGMENT

The authors would like to thank Dr. R. Yung of Sun
Microsystems and Dr. Y.-Q. Zhang of Sarnoff Corporation
for technical support.

920 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 7, NOVEMBER 1998

REFERENCES

[1] ISO/IEC, “Overview of MPEG-4 version 1 standard,” ISO/IEC
JTC1/SC29/WG11 N1909, Oct. 1997.

[2] T. Sikora, “The MPEG-4 video standard verification model,”IEEE
Trans. Circuits Syst. Video Technol., vol. 7, pp. 19–31, Feb. 1997.

[3] ISO/IEC, “MPEG-4 video verification model version 8.0,” ISO/IEC
JTC1/SC29/WG11 N1796, July 1997.

[4] G. Blakowski and R. Steinmetz, “A media synchronization survey:
Reference model, specification and case studies,”IEEE J. Select. Areas
Commun., vol. 14, pp. 5–35, Jan. 1996.

[5] T. Murata, “Petri nets: Properties, analysis and applications,”Proc.
IEEE, vol. 77, pp. 541–580, Apr. 1989.

[6] T. D. C. Little and A. Ghafoor, “Synchronization and storage models
for multimedia objects,”IEEE J. Select. Areas Commun., vol. 8, pp.
413–427, Apr. 1990.

[7] M. Woo, N. U. Qazi, and A. Ghafoor, “A synchronization framework
for communication of pre-orchestrated multimedia information,”IEEE
Network, vol. 8, pp. 52–61, Jan.–Feb. 1994.

[8] M. Diza and P. Senac, “Time stream Petri nets: A model for multimedia
streams synchronization,” inProc. 1st Int. Conf. Multi-Media Modeling,
Singapore, 1993, pp. 257–273.

[9] Y. K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors,”IEEE
Trans. Parallel Distrib. Syst., vol. 7, pp. 506–521, May 1996.

[10] S. Chenget al., “Scheduling algorithms for hard-real time systems—A
brief survey,” in Hard Real-Time Systems.Los Alamitos, CA: IEEE
Computer Society Press, 1988.

[11] J. M. Sohn and G. Y. Kim, “Earliest-deadline-first scheduling on
nonpreemptive real-time threads for a continuous-media server,” inProc.
High-Performance Computing and Networking, Int. Conf. Exhibition,
1997, pp. 950–956.

[12] I. Ahmad, “Resource management of parallel and distributed systems
with static scheduling: Challenges, solutions and new problems,”Con-
currency: Practice Exp., vol. 7, pp. 339–348, Aug. 1995.

[13] M. J. Berger and S. H. Bokhari, “A partitioning strategy for nonuniform
problems on multiprocessors,”IEEE Trans. Comput., vol. C-36, pp.
570–580, May 1987.

[14] T. E. Anderson, D. E. Culler, and D. Patterson, “A case for NOW
(networks of workstations),”IEEE Micro, vol. 15, pp. 54–64, Feb. 1995.

[15] D. W. Walker and J. J. Dongarra, “MPI: A standard message passing
interface,”Supercomputer, vol. 12, pp. 56–68, Jan. 1996.

[16] Z. L. He and M. L. Liou, “A high performance fast search algorithm
for block matching motion estimation,”IEEE Trans. Circuits Syst. Video
Technol., vol. 7, pp. 826–828, Oct. 1997.

[17] M. Tremblay, J. M. O’Connor, V. Narayanan, and L. He, “VIS speeds
new media processing,”IEEE Micro, vol. 16, pp. 10–20, Aug. 1996.

[18] S. M. Akramullah, I. Ahmad, and M. L. Liou, “A software-based H.263
video encoder using a cluster of workstations,”Proc. SPIE, vol. 3166,
pp. 266–273, 1997.

Yong He (S’96) was born in Shanghai, China. He
received the B.Eng. and M.Eng. degrees from the
Southeast University, NanJing, China, in 1992 and
1995, respectively. He is currently a Ph.D. candidate
in the Department of Electrical and Electronic En-
gineering, at the Hong Kong University of Science
and Technology.

His research interests include image processing,
video coding techniques, parallel and distributed
computing, and scheduling algorithms.

Ishfaq Ahmad (S’88–M’91) received the B.Sc.
degree in electrical engineering from the University
of Engineering and Technology, Lahore, Pakistan
in 1985. He received the M.S. degree in computer
engineering, and the Ph.D. degree in computer sci-
ence, from Syracuse University, in 1987 and 1992,
respectively.

Currently, he is an Associate Professor in the
Department of Computer Science at the Hong Kong
University of Science and Technology. His research
interests include various aspects of parallel and

distributed computing, high-performance computer architecture and their as-
sessment, multimedia systems, and video coding. He has published extensively
in the above areas.

Dr. Ahmad received the Best Student Paper Awards at Supercomputing ’90
and Supercomputing ’91. He has been a guest editor for two special issues
of Concurrency: Practice and Experience, and is guest editing a forthcoming
special of theJournal of Parallel and Distributed Computing. He has also
served on the program committees of various international conferences. Dr.
Ahmad is a member of the IEEE Computer Society.

Ming L. Liou (M’63–SM’78–F’79) received the B.S. degree from National
Taiwan University, the M.S. degree from Drexel University, Philadelphia, PA,
and the Ph.D. degree from Stanford University, Stanford, CA, in 1956, 1961,
and 1964, respectively, all in electrical engineering.

He joined the faculty of the Department of Electrical and Electronic Engi-
neering, the Hong Kong University of Science and Technology, as a Professor
in October 1992 and was appointed as the Director of Hong Kong Telecom
Institute of Information Technology in January 1993. His current research
interests include very low bit-rate video, motion estimation techniques, packet
video, HDTV, VLSI architecture, implementation of parallel and distributed
computing systems for visual applications. From 1984 to 1992, he was a
Director at Bellcore, Red Bank, NJ, conducting research in data transmission,
digital subscriber line transceiver, and video technology. He joined AT&T Bell
Labs in 1963 as a Member of Technical Staff and had held various supervisory
positions until 1984 when he was transferred to Bellcore. During his career
at AT&T Bell labs, he did research on numerical analysis, system theory, FM
distortion analysis, and computer-aided design of communication circuits and
systems, including circuits containing periodically operated switches. He has
published numerous papers in various fields.

Dr. Liou received the IEEE CAS Society Special Prize Paper Award in
1973 and the Darlington Prize Award in 1977. He has been very active in
professional activities and served in various capacities including Editor of the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS from 1979–1981, Executive
Vice-President of CAS Society in 1986 responsible for regional activities,
President of the CAS Society in 1988, the founding editor of the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS FORVIDEO TECHNOLOGY from 1991
to 1995, and general Co-Chair of the 1997 IEEE International Symposium on
Circuits and Systems held in Hong Kong. He is a member of Sigma Xi, Eta
Kappa Nu, Phi Tau Phi, the Hong Kong Institution of Science, and a Fellow
of the Hong Kong Institution of Engineers.

