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Abstract

Minimization of the execution time of an iterative application in a heterogeneous parallel computing environment requires an appropriate
mapping scheme for matching and scheduling the subtasks of a given application onto the processors. Often, some of the characteristics
of the application subtasks are unknown a priori or change from iteration to iteration during execution-time based on the inputs being
processed. In such a scenario, it may not be feasible to use the same off-line-derived mapping for each iteration of the application.
One possibility is to employ a semi-static methodology that starts with an initial mapping but dynamically performs remapping between
application iterations by observing the effects of the changing characteristics of the application’s input data, called dynamic parameters,
on the application’s execution time. A contribution in this paper is to implement and evaluate a semi-static methodology involving the
on-line use of off-line-derived mappings. The off-line phase is based on a genetic algorithm (GA) to generate high-quality mappings for a
range of values for the dynamic parameters. A dynamic parameter space partitioning and sampling scheme is proposed that partitions the
parameter space into a number of hyper-rectangles, within which the “best” mapping for each hyper-rectangle is stored in a mapping table.
During the on-line phase, the actual dynamic parameters are observed and the off-line-derived mapping table is referenced to choose the
most suitable mapping. Experimental results indicate that the semi-static approach outperforms a dynamic on-line approach and performs
reasonably close to an infeasible on-line GA approach. Furthermore, the semi-static approach considerably outperforms the method of
using the same mapping for all iterations.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. On-line use of off-line-derived mappings

Heterogeneous computing (HC) encompasses a great
variety of situations (e.g., see [19,24,28,35,46,48,53,54]).
This paper focuses on a particular application domain in
which (1) an iterative application is to be mapped onto an
associated specific type of dedicated heterogeneous parallel
hardware platform and (2) the execution of each iteration
can be represented by a directed acyclic graph (DAG) of
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Fig. 1. Conceptual design of an operating system for ATR applications.

subtasks. To minimize the execution time of such an itera-
tive application in a heterogeneous parallel computing en-
vironment, an appropriate mapping scheme is needed for
matching and scheduling the subtasks onto the processors
[1,2,5–8,29,39,34,55]. However, when some of the charac-
teristics of the application subtasks are unknown a priori and
will change from iteration to iteration during execution-time
based on the inputs being processed, it may not be feasible
or desirable to use the same off-line-derived mapping for
each iteration of the application.

An example of such a problem domain are iterative au-
tomatic target recognition (ATR) tasks, where a sequence
of images are received from a group of sensors and var-
ious image-processing operations are required to generate
a real-time scene description. Most notable ATR-based ap-
plications are homeland security imaging [50] and medical
monitoring systems [32]. In ATR, the characteristics of a
subtask’s input data, such as the amount of clutter and the
number of objects to be identified, varies from image to im-
age, and thus, may lead to large variations in the subtask’s
processing requirements from one iteration to the next.

In such situations, a semi-static methodology [9,10] can
be employed, which starts with an initial mapping but dy-
namically decides whether to remap the application with
a mapping previously determined off-line (i.e., statically).
This can be done by observing, from one iteration to an-
other, the effects of the changing characteristics of the ap-
plication’s input data, called dynamic parameters, on the
application’s execution time. In other words, the operating
system will be able to make a heuristically determined de-
cision during the execution of the application whether to
perform a remapping based on information generated by the
application from its input data. If the decision is to remap,
the operating system will be able to select a pre-computed
and stored mapping that is appropriate for the given state
of the application (e.g., the number of objects it is currently

tracking). This remapping process will, in general, require
a certain system reconfiguration time for relocating the data
and program modules. The semi-static method differs con-
siderably from other real-time HC mapping techniques in
that it involves the on-line real-time use of off-line precom-
puted mappings. This is significant because it is possible for
off-line heuristics to have much longer execution times to
search for a good solution (mapping) than what is practical
for an on-line heuristic. Thus, with the semi-static method,
the mapping quality of a time-consuming off-line heuristic
can be approached at real-time speeds. The focus of this pa-
per is the evaluation of a method for performing semi-static
mappings.

A previously proposed conceptual design of a high-level
operating system for ATR applications, which includes the
capability for the on-line use of off-line computed mappings,
is depicted in Fig. 1 [9,10]. This conceptual design has its
roots in the high-level model presented in [14] for automatic
dynamic processor allocation in a partitionable parallel ma-
chine with homogeneous processors (called PASM [47,49]).

The ATR Kernel in Fig. 1 makes decisions on how a given
ATR application task should be accomplished, including de-
termining the partial ordering of subtasks and which algo-
rithms should be used to accomplish each subtask. The HC
Kernel uses a semi-static method to decide how the partially
ordered algorithmic suggestions should be implemented and
mapped onto the heterogeneous parallel platform. A subtask
may have a data-parallel implementation, and, thus, may be
assigned to a set of processors. Also, the HC Kernel inter-
acts with the Basic Kernel (the low-level operating system)
to execute the application and monitors its execution so it
can decide at the end of each iteration through the appli-
cation if the subtasks should be remapped onto the hard-
ware platform. Thus, the ATR Kernel deals with applica-
tion issues, while the HC Kernel deals with implementa-
tion issues. Information from the Algorithm Database and
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the Knowledge Base is used to support the ATR and HC
Kernels.

The design of the ATR Kernel and HC Kernel was the fo-
cus of Budenske et al. [10]. In addition, two methods were
suggested for determining the representative choices for the
dynamic parameter values to use for each static mapping.
The first was to have the application developer specify what
these representative values should be. The second was to
have the application developer specify a range for each dy-
namic parameter, and then the representative values are uni-
formly distributed over that range. Neither of these methods
was ever evaluated in any way, as this was not the focus of
Budenske et al. [10]. In particular, the performance of off-
line mappings based on points selected in either of these
ways was never determined. In contrast, our current work
focuses just on the semi-static mapping approach. The cur-
rent research does not depend on an application developer
to guess at what might be appropriate representative values;
nor does it take the simplistic approach of selecting repre-
sentative values uniformly across the range. Instead, we de-
rive a procedure for statistically sampling each region of the
multidimensional dynamic parameter space to find a map-
ping that is near optimal for the range of parameters within
that region. We evaluate the current approach in a variety
of ways, including comparing it to the simplistic uniform
distribution method of Budenske et al. [10].

A more detailed discussion of the ATR problem domain
is presented in Section 1.2. Examples of other applications
whose characteristics are similar to those of the iterative ATR
applications and platforms include sensor-based robotics,
intelligent vehicle highway systems, air traffic control, nu-
clear facility maintenance, weather prediction, intruder de-
tection, and manufacturing inspection. The performance of
the semi-static method in comparison to other methods will
depend upon the exact application and exact platform under
consideration.

The application to be mapped is iterative in structure and
each iteration is modeled by a DAG in which the nodes
represent subtasks and the edges represent the communica-
tions among subtasks. The model used for an application
task is described in Section 3. The attributes associated with
the DAG, such as the computation time of a subtask and
the communication time between subtasks, are modeled by
equations that are functions of the dynamic parameters. Ex-
amples of dynamic parameters include the contrast level of
an image, the number of objects in a scene, and the average
size of an object in a scene. Thus, as the dynamic parame-
ters change from one iteration (one image) to the next itera-
tion, the mapping currently in use may not be suitable and a
remapping of the subtasks onto the processors may need to
be performed. However, performing a remapping requires a
certain system reconfiguration time. Given the current map-
ping, a new mapping, and the system estimated reconfigura-
tion time, the HC Kernel has to decide whether a remapping
is to be done. This framework can be applied to any task
graph structure represented as a DAG.

1.2. An example application domain: ATR

Simply stated, an ATR system takes a set of images it-
eratively from a group of sensors and produces some type
of description of the scene [56]. The most notable real-life
examples of an ATR-based system are homeland security
imaging [50] and medical monitoring systems [32]. A sim-
plified example of an ATR task for tracking forwardlook-
ing ladar infra-red (FLIR) images is shown in Fig. 2 [59].
The various types of image processing elements required in
an ATR system can be broadly classified into three groups:
low-level processing (numeric computation), intermediate-
level processing (quasi-symbolic computation, e.g., where
numeric and symbolic types of operations are used to de-
scribe surfaces and shapes of objects in the scene), and high-
level processing (symbolic computation, e.g., for producing
the scene description) [3,4,13,15,20,25,27]. Heterogeneous
parallel architectures are appropriate computing platforms
for efficiently handling computational tasks with such di-
verse requirements.

A key technical issue that must be addressed to exploit
the inherent potential of heterogeneous parallel computing
systems to efficiently execute ATR applications is the de-
velopment of a high-level operating system that can fully
utilize the architectural flexibility of such a system. Such
a high-level operating system must be able to assign each
ATR application subtask to the processors where it is best
suited for execution. Often, subtasks can execute concur-
rently, sharing resources. Because the execution time of ap-
plication subtasks in an ATR system is highly input-data
dependent (e.g., number of currently located objects), this
matching and scheduling of application subtasks to proces-
sors must be performed dynamically at execution-time for
best performance.

The semi-static concept was proposed in [10] for a class of
ATR applications, where each application can be modeled as
an iterative execution of a set of partially ordered subtasks.
The ATR applications in this class are production jobs that
are executed repeatedly and, hence, it is worthwhile to invest
off-line time to determine an effective mapping of such an
application onto the hardware platform used to execute it.
The automatic target acquisition (ATA) system described in
[16] and the tracking system described in [17] are examples
of such iterative ATR applications.

1.3. Contributions of this research

The objective of this paper is to implement and evalu-
ate a semi-static methodology, called the on-line use of off-
line-derived mappings (denoted as On–Off in subsequent
sections), whose conceptual structure was proposed in [10].
In particular, the goal of the present study is two-fold: (1)
to design novel and practical off-line mapping generation
methods; and (2) to evaluate the ideas underlying the de-
sign and use of the On–Off method for a specific class of
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Fig. 2. A directed acyclic graph modeling an ATR application.

computational structures and hardware platforms. This is
done by simulating the methodology and studying its be-
havior for various situations.

The implementation of the On–Off methodology entails
addressing the fundamental research issue of how to select
representative mappings off-line for on-line use. To solve
this problem, a novel dynamic parameter space partitioning
and sampling scheme is proposed in Section 4. During the
off-line phase, a genetic algorithm (GA) is used to generate
high-quality mappings for a range of values for the dynamic
parameters. Specifically, the dynamic parameter space is par-
titioned into a number of hyper-rectangles, within which the
“best” mapping for each hyper-rectangle is stored in a map-
ping table. During the on-line phase, the actual dynamic
parameters are observed and the off-line-derived mapping
table is referenced to choose the most suitable mapping.
Experimental results, presented in Section 5, indicate that
this semi-static approach is effective in that it consistently

gave performance that was comparable to that of using the
same GA on-line with the exact dynamic parameter values
for the next iteration (which is physically impossible). Also,
the semi-static approach considerably outperforms using the
same mapping for all iterations and outperforms a represen-
tative dynamic on-line mapping heuristic.

2. Related work

In [38], a greedy policy is suggested for the dynamic
remapping of iterative data parallel applications, such as
fluid dynamics problems, on a homogeneous message-
passing architecture. In these types of applications, multiple
processors work independently on different regions of the
data domain during one iteration. As the focus of computa-
tion may shift from one region to another between iterations,
some processors will be idle while some other processors
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will be overloaded if the initial mapping of workload is
not changed. Thus, remapping is useful for balancing the
workload across the processors and thus, reducing the exe-
cution time of an iteration. The technique reported in [38]
works by monitoring from iteration to iteration a function
that indicates the average processor idle time since the last
remapping. Once it is detected that a local minimum point
of this function is reached at a certain iteration, a remap-
ping is done. This approach is not applicable to the scenario
considered in this work for two reasons. First, it assumes a
homogeneous processing environment rather than a hetero-
geneous one. Second, it is designed for independent data
parallel computations such that a task does not have the
subtask precedence constraints that are modeled as DAGs
here.

A framework has been recently suggested for determin-
ing an off-line mapping of image processing applications,
modeled as a linear task chain, to homogeneous distributed-
memory machines [31]. The mapping technique, which is
based on the shortest path algorithm, can only be applied to
a linear task chain. The goal is to produce a static mapping
that has good average performance without regard to the
actual variations of task parameters during execution time.
This is in contrast to the semi-static technique described here
that adjusts the mapping during execution time according
to the changes in dynamic parameters. The algorithm used
in [31] is not applicable to the scenario considered here be-
cause tasks are represented as DAGs, rather than chains, and
the hardware target is assumed to be heterogeneous rather
than homogeneous.

A scheduling and allocation scheme reported in [41] for
regular scientific applications uses a model that is similar
to the one used here in that a subtask in an application is a
data parallel program. According to this model, a regularly
structured high-performance fortran (HPF) application is de-
composed into a DAG in which the functional parallelism
is captured by the DAG structure but the data parallelism
is encapsulated within each subtask. An approximate algo-
rithm is used for mapping the application to a distributed-
memory machine. However, the approach is static in that
the mapping algorithm is applied based on cost estimates
at compile-time and no execution-time scheme is used for
tuning the scheduling and allocation. Furthermore, a homo-
geneous target platform is assumed.

In [60], a run-time support technique is proposed for mini-
mizing the execution time of some iterative computations on
message-passing architectures by using the loop unfolding
method. The technique used is essentially based on exploit-
ing the inter-iteration parallelism to further minimize the
execution time. Similar to the above approaches, the map-
ping is only done statically based on cost estimates and no
execution-time adjustment of mapping is done, and a homo-
geneous target platform is assumed.

In [52], an automatic machine selection scheme is pro-
posed for allocating application tasks to a network of
autonomous computers. The major focus is to minimize

network congestion by taking into account the applica-
tion’s communication topology. Unlike the task-mapping
algorithms considered in this paper, execution times of the
applications are not explicitly optimized. Several scientific
applications (e.g., 2D fast-Fourier transform) are tested us-
ing an experimental system implemented using the Remos
API [42]. In [45], the dynamic data redistribution costs
of the 2D Jacobi application are analytically modeled by
exploiting the application’s structure under the AppLeS
(Application Level Scheduling) framework. The model is
rather specific and can accurately predict the redistribution
costs of the 2D Jacobi application under different simulated
scenarios. This is very different from the generalized task
execution model used in the study presented here.

In [43], an integrated compile-time and run-time scheme
for predicting the data redistribution cost for multi-phase
parallel applications on a software distributed shared mem-
ory system is suggested. The crux of the scheme is a clever
exploitation of the knowledge about the data access patterns,
page locations, and the distributed shared memory proto-
col. Again, the focus is mainly on execution costs related
to data placements but not the overall execution times. In
[37], an integrated load balancing and scheduling scheme is
proposed for efficient execution of parallel applications on
a network of autonomous machines. The proposed scheme
exploits the synergy among the compile-time analysis mech-
anism, run-time system management, and OS level load bal-
ancing facilities. Unlike the general HC platform considered
here, the target platform is a loosely coupled homogeneous
machines. On a network of four machines, each of which
is a four-CPU SMP, the integrated scheme can efficiently
execute several scientific applications (e.g., Jacobi, matrix
multiplication, etc.).

3. System model

To evaluate the On–Off semi-static mapping methodol-
ogy, a particular sample architecture is chosen; however, the
On–Off method can be adopted for other target architectures.
The sample target HC platform considered here is based on
the expected needs of ATR applications that are of interest
to the US Army Research Laboratory (e.g., [16,17]). Specif-
ically, it contains four different types of processors (e.g.,
[18,30]), with 16 processors of each type (see Fig. 3(a)).

The processors are connected via crossbar switches in
such a way that each processor has exactly one input port
and one output port. Communications among processors of
the same type are assumed to be symmetric in the sense
that the conflict-free time for any pair of processors (of the
same type) to communicate is the same (see Fig. 3(b)). For
simplicity, it is assumed that if a data-parallel implementa-
tion of a given subtask uses a virtual machine of processors,
all processors will be of the same type. Given this and the
symmetry property of the inter-processor communications
among processors of the same type, the expected execution
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Fig. 3. (a) The target heterogeneous computing platform consisting of four types of processors with 16 in each type; (b) message start-up times, S (in
ms), and transmission times per unit data, 1/R, of the inter-processor communication channels.

time of a particular multiprocessor implementation of a sub-
task is independent of which fixed-size subset of the proces-
sors of a given type are assigned to execute the subtask. It
is assumed that one processor in each virtual machine is re-
sponsible for data communication to other virtual machines.
This assumption simplifies the simulation study, but is not
required for the On–Off methodology. In addition, the hard-
ware platform includes (1) a workstation, for off-line op-
erations to develop an application implementation and for
use as the application user interface, and (2) a host proces-
sor, which monitors the application implementation during
its execution and implements the on-line HC Kernel. It is
assumed that when a given ATR application is executing on
a platform, that platform is dedicated to that application. It
should be noted that the On–Off strategy is applicable to a
wide variety of computing platforms that vary from the test
platform described.

An application task is modeled as a DAG, with n nodes
representing subtasks si (0� i�n−1) and e edges represent-
ing inter-subtask communications. To illustrate the On–Off

semi-static mapping approach, a simplified model is used
for subtask execution time and inter-subtask communication
time. However, the On–Off framework does not depend on
how the subtask execution time and inter-subtask communi-
cation time are modeled. The way in which the four dynamic
parameters �, �, �, and � are used in each subtask execution
time (and inter-subtask communication time) equation given
below is a simple approach for the purpose of illustration in
the simulation studies to be described. In reality, a single-
dynamic parameter can impact any subset of the components
of a given subtask’s execution time equation. Furthermore,
the way in which a particular dynamic parameter impacts a
given component of a subtask’s execution time may not be
linear (as assumed here), and may differ for different sub-
tasks. Clearly, the structure and details of the execution time
complexity equations for subtasks, as a function of dynamic
parameters, is task dependent and can vary greatly. The de-
termination of these equations is considered the responsi-
bility of the application developer [9,10] and outside the
scope of this paper. These equations are just an input to the
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Table 1
Definition of notation

Notation Definition

si Subtask i
n Number of subtasks in the application task

Subtask execution time equation variables
tu(si ) Execution time of subtask si on virtual machine u
hiu Heterogeneity factor indicating the relative speed of the ith subtask on machine u
ai Coefficient for the parallel portion of subtask i’s execution time
bi Coefficient for the parallelization overhead portion of subtask i’s execution time
ci Coefficient for the serial portion of subtask i’s execution time
p Number of processors used in a virtual machine

Inter-subtask communication time equation variables
dij Size of the fixed portion of the data to be transferred between subtasks si and sj
eij Coefficient for the size of the variable portion of data to be transferred between si and sj
Cuv Communication time between virtual machines u and v

Suv Message start-up time between virtual machines u and v

Ruv Data-transfer rate between virtual machines u and v

Dynamic parameters
� Dynamic parameter impacting the parallel workload
� Dynamic parameter impacting the parallelization overhead
� Dynamic parameter impacting the serial workload
� Dynamic parameter impacting the size of the variable portion of data transfer

On–Off methodology presented here, and when considering
the results of the paper the reader should note that the exe-
cution time and communication time equations are parts of
a simplified model. Table 1 summarizes the notation to be
used throughout the paper.

The simple execution time expression used in this model
is a version of Amdahl’s law extended by a term represent-
ing the parallelization overhead (e.g., synchronization and
communication). The serial and parallel fractions of a sub-
task are frequently represented using similar models (e.g.,
[11,21,36,44]). The execution time expression for subtask
si includes: (a) three dynamic parameters, �, �, and �, (b)
the number of processors used, p, and (c) three coefficients
ai, bi , and ci . The parallel fraction and serial fraction of sub-
task si are represented by ai�/p and ci�, respectively. The
parallelization overhead is represented by bi� log p and hiu

is the heterogeneity factor, indicating the relative speed of
the subtask si on the type of processor used in virtual ma-
chine u. The heterogeneity factor reflects the real-world dif-
ferences among machines that could impact the execution
time of a given subtask on a given machine. These factors
include, but are not limited to, CPU clock rate, the number
of levels of cache and sizes of cache at each level, the ex-
act instruction set and execution time for each instruction,
and the pipeline structure. The impact of each of such fac-
tors will depend on the precise code for the given subtask.
Thus, in general, different subtasks will have affinities for
different machines. The execution time tu(si) of subtask si
on virtual machine u is modeled by the expression

tu(si) = hiu · (ai�/p + bi� log p + ci�). (1)

By differentiating this equation and equating the deriva-
tive to zero, the optimal value of p that leads to the minimum
execution time for a given subtask is popt = (ai�)/(bi�).
The mapping heuristic will not assign more processors than
a subtask’s popt.

It is assumed that the size of the data set to be transferred
between two subtasks si and sj consists of a fixed portion
and a variable portion. The size of the fixed portion is mod-
eled by a constant dij (independent of the input data of the
application). The size of the variable portion is modeled by
the product of a coefficient eij and a dynamic parameter �.
For communication between virtual machines u and v, Suv

and Ruv are the message start-up time and the data trans-
mission rate, respectively [26] (see Fig. 3(b) for values of
Suv and Ruv based on [17,18,26]). Thus, the inter-subtask
communication time between subtask si on virtual machine
u and subtask sj on virtual machine v is Cuv , which is given
by

Cuv(si, sj ) = Suv + (dij + eij�)/Ruv. (2)

4. The semi-static mapping approach

4.1. Remapping approaches

Consider two approaches for remapping application tasks
to processors during execution time (between iterations
through the DAG):

• Dynamic mapping: Based on the current values of dy-
namic parameters, compute a new mapping in real time
using a low complexity algorithm.
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• On-line use of off-line-derived mappings: For each dy-
namic parameter, some representative values are chosen
so that a number of possible scenarios are generated. Us-
ing an off-line (i.e., static) heuristic, high-quality map-
pings for the scenarios are precomputed and stored in a
table. During execution of the application, the mapping
corresponding to the scenario with values of dynamic pa-
rameters closest to the actual values is selected from the
table to be a possible new mapping [5].

Because a static mapping heuristic (e.g., the GA used in
this study) can potentially generate solutions of much higher
quality than a dynamic mapping algorithm, it is interest-
ing to investigate how well the approach of on-line use of
off-line-derived mappings (using the GA) performs. Notice
that even off-line generation of optimal mappings is infea-
sible because the heterogeneous mapping problem is NP-
complete [22,23], and, thus, exponential time is needed for
finding optimal solutions.

4.2. Generation of off-line-derived mappings

In the On–Off semi-static mapping approach, it is as-
sumed that the ranges of the dynamic parameters are known.
This assumption is justified because, for example, for a
particular size of image, the maximum possible number of
objects of a given type at a given distance is bounded and
can be estimated. Once specified by the application devel-
oper, the space of dynamic parameters is partitioned into a
number of disjoint regions. Formally, suppose the minima
and total range sizes of the dynamic parameters are given
by �min, �min, �min, �min, �range, �range, �range, and �range,
respectively. The parameter space R can be partitioned into
K4 uniform sized disjoint regions as follows:

R(i, j, k, l) = {(�, �, �, �)}, 0� i, j, k, l�K − 1, (3)

where �min + i�range/K �� < �min + (i + 1)�range/K and
the ranges for �, �, and � are defined analogously.

Within each region (defined by specifying values for
indices i, j, k, l), N dynamic parameter vectors, each com-
posed of (�, �, �, �), are randomly chosen. An off-line
(static) heuristic is then applied to determine the map-
pings for these sample scenarios represented by different
dynamic parameter vectors. For a random sample vector
vx (0�x�N − 1), denote the corresponding mapping by
Mx . The mapping Mx is then evaluated for every one of
the N − 1 other sample scenarios in the region by applying
the mapping Mx to the DAG and computing the total com-
pletion time for one iteration of the application given the
dynamic parameter values that define that scenario. This is
repeated for each Mx . That is, the task completion times
t (Mx(vy)) for all x and y (0�x, y�N − 1) are computed.
Then, the average completion time for each mapping Mx is
computed as [∑N−1

y=0 t (Mx(vy))]/N . The mapping Mx that
gives the minimum of these average completion times is
chosen as the representative mapping for the corresponding

region in the dynamic parameter space. This representa-
tive mapping and the corresponding average completion
time are stored in the off-line mapping table, which is a
multi-dimensional array indexed by i, j, k, l.

This new approach for determining representative map-
pings differs considerably from that used in earlier work,
where it was assumed that the application developer will pro-
vide the specific set of dynamic parameter values to be used
to derive each representative mapping [10]. Fig. 4 depicts
the block diagram of the envisioned system for determin-
ing the off-line mapping for a given region of the dynamic
parameter space.

Here, the parameter space is uniformly partitioned with
each parameter equally subdivided. However, different val-
ues of K can be used for each individual dynamic parameter,
depending upon the specifications given by the application
developer. In addition, one could use non-uniform-sized re-
gions for the parameter space if good performance is not
being achieved. In particular, if the average completion time
for the representative mapping selected for a region is signif-
icantly greater than t (Mx(vx)) for most values of x, then that
region can be subdivided and a representative mapping de-
termined for each sub-region. This process can be repeated
recursively.

4.3. On-line retrieval of off-line-derived mappings

The input to the simulated on-line module consists of an
execution profile that comprises a certain number of iter-
ations of executing the task graph. Examples of execution
profiles containing 20 iterations are shown in Table 2 in Sec-
tion 5. In each profile, the dynamic parameter values change
from one iteration to another. Specifically, row i represents
the values of the dynamic parameters observed after execu-
tion of the graph for iteration i is finished. Thus, when exe-
cution of the task for iteration i begins, the on-line module
does not know the (simulated) actual values of the dynamic
parameters for that iteration. The on-line module has to de-
termine a mapping for iteration i based on the dynamic pa-
rameter values of iteration i − 1. In the On–Off semi-static
mapping approach, the representative mapping is retrieved
for the region that includes the dynamic parameter values of
iteration i − 1. If the stored pre-determined execution time
of the selected mapping, plus the estimated reconfiguration
time, is smaller than the execution time that occurred for
iteration i − 1, a remapping is performed; otherwise, the
mapping used at iteration i − 1 will continue to be used for
iteration i. The off-line mapping technique used in this study
is discussed in Section 4.5.

4.4. A dynamic approach

In this paper, several mapping approaches are examined
and evaluated. The first approach is a dynamic approach that
uses a fast heuristic that takes a small amount of time but
generates a reasonably good solution. The heuristic used is a
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Fig. 4. Generation of the off-line mapping for a given region of the dynamic parameter space.

fast static mapping algorithm, called the earliest completion
time (ECT) algorithm, that is based on the technique pre-
sented in [57] and is outlined below. It should be noted that
other high-performance scheduling heuristics, such as DCP
[29] and CPR [40], are unsuitable to be used for dynamic
scheduling due to their high time complexity.

The ECT algorithm is used for performing dynamic map-
ping in a manner similar to that described in Section 4.3.
The ECT algorithm is applied (in real time) to the task graph
with the values for the dynamic parameters at iteration i−1.
The resulting mapping is (with its associated estimated task
execution time using the iteration i−1 parameters) then con-
sidered to be a potential new mapping for iteration i. Again,
if the estimated gain in adopting the new mapping is greater
than the reconfiguration time, the new mapping will be used
in iteration i.

ECT ALGORITHM:
(1) Construct a level-based list L of subtasks as follows:

(a) Label each entry subtask (subtask that does not have predecessor) as a level 1 subtask.
(b) For each of the remaining subtasks, label it as level i if its highest level parent is at level i−1.
(c) Make L a list of subtasks sorted in ascending order of levels. For subtasks on the same level,
they are sorted in descending order of the number of children. Ties are broken arbitrarily.

(2) for each subtask si on L do:
(3) for each processor group do:
(4) for p = 1 to popt do:
(5) Find the earliest start time tstart such that there are p available processors.
(6) Note si’s completion time using p processors.
(7) endfor
(8) endfor
(9) Schedule si using p processors of the processor group (starting at the corresponding tstart) that

minimizes its completion time.
(10) Update the availability times for the processors in this group.
(11) endfor

4.5. Genetic algorithm

GAs are a promising heuristic approach to tackling opti-
mization problems that are intractable. There are a great va-
riety of approaches to GAs (see [51] for a survey). The first
step of designing a GA is to encode all possible solutions
as chromosomes, a set of which is referred to as a popula-
tion. In this study, the GA presented in [58] is extended to
allow multiple processors to be assigned to a subtask. Each
chromosome consists of three parts: the matching string, the
processor allocation string, and the scheduling string. Each
string is a vector of length n, the number of subtasks in the
application task.

Let mat be the matching string where mat(i) = j means
that subtask si is mapped to processor type j. Let the allo-
cation string, alloc(i), be the number of processors of type
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Table 2
Execution profiles of dynamic parameters: (a) Profile A (average per-
centage change in dynamic parameter values � = 5%) and (b) Profile B
(� = 40%)

Iteration (a) Profile A
� � � �

0 3000 15 300 60
1 2821 15 287 63
2 2949 12 302 65
3 3073 12 286 68
4 3228 11 273 71
5 3090 13 258 67
6 3256 11 272 70
7 3424 16 259 73
8 3621 16 271 75
9 3811 13 260 78

10 4014 17 245 81
11 4229 13 257 77
12 3994 19 242 80
13 4179 15 253 83
14 4386 15 264 78
15 4208 13 249 82
16 4016 14 236 77
17 3835 16 226 81
18 4026 19 238 84
19 4258 16 251 88
20 4479 15 265 92

Iteration (b) Profile B

0 3000 15 300 60
1 4309 15 409 82
2 2635 7 268 43
3 3894 6 361 27
4 2241 8 197 39
5 1265 12 287 52
6 1699 16 420 75
7 1138 11 282 50
8 1543 12 153 67
9 2205 17 225 97

10 3198 10 332 51
11 4678 18 477 73
12 2588 8 315 48
13 1358 16 211 67
14 1794 17 307 98
15 2605 11 163 61
16 3719 17 240 87
17 2478 9 332 53
18 1507 16 466 76
19 2081 8 243 50
20 3053 17 149 70

j assigned to subtask si , where alloc(i)�popt for si . Typ-
ically, multiple subtasks will be assigned to some of the
same processors in a processor group, and then executed in
a non-preemptive manner based on an ordering that obeys
the precedence constraints (data dependencies) specified in
the application task DAG. The scheduling string is a topo-
logical sort of the DAG (i.e., a valid total ordering of the
partially ordered DAG).

In the initial population generation step, a predefined num-
ber of chromosomes are randomly created as follows. A new

matching string is obtained by randomly assigning each sub-
task to a processor group. Scheduling strings are generated
by performing a topological sort on the DAG and then ap-
plying a mutation operator to create random valid schedul-
ing strings (i.e., schedules that are also valid topological
sorts). The initial allocation string for each chromosome is
generated by randomly selecting a value from 1 to popt as
the number of processors allocated for each subtask (for the
processor group type specified in the matching string). The
solution from the ECT algorithm is also encoded as a chro-
mosome and may be included in the initial population as a
“seed.” Indeed, it is common in GA applications to incor-
porate solutions from some non-evolutionary heuristic into
the initial population, which may reduce the time needed for
finding a satisfactory solution. In the GA used, it is guar-
anteed that the chromosomes in the initial population are
distinct from each other. After the initial population is gen-
erated, the genetic operators crossover, mutation, and selec-
tion are applied one after the other for a number of genera-
tions (1000 in this study) or until the solution quality does
not improve for 150 generations. Elitism is used to ensure
that the best solution for each generation is explicitly pro-
tected from being modified by the mutation and crossover
operations. The GA is executed ten times for a given dy-
namic parameter vector. To enhance diversity, only five of
the ten runs include a chromosome generated by the ECT
algorithm in the initial population. For more details of the
GA, the reader is referred to [58].

5. Performance results

5.1. Introduction

Four approaches were compared in the experiments: (i)
the On–Off approach; (ii) the ECT algorithm as a dynamic
scheduling algorithm; (iii) the infeasible approach of using
the GA as a real-time dynamic scheduling algorithm (re-
ferred to as GA on-line); and (iv) an ideal but impossible
approach which uses the GA on-line with the exact (as yet
unknown) dynamic parameters for the iteration to be exe-
cuted (referred to as Ideal). The latter two schemes are in-
cluded only to provide points of references for comparing
the solution quality of the first two approaches.

5.2. Workload

To investigate the performance of the On–Off approach
with the proposed dynamic parameter space partitioning and
sampling methods, task graphs with four different structures
were used. These graphs included in-tree graphs, out-tree
graphs, fork-join graphs, and randomly structured graphs
(see Fig. 5 for examples). Graphs with sizes 10, 50, 100,
and 200 nodes were considered. For each graph structure
and size, ten graphs were used in the simulation studies.
Thus, a total of 4 × 4 × 10 = 160 different graphs were
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in-tree out-tree fork-join

Fig. 5. Different common regular graph structures.

generated. According to [33], parallel algorithms can be
classified based on the structure of their task graphs, and
experience shows that most parallel algorithms belong to
one of only a small number of classes. Examples of classes
of task graphs are those representing asynchronous divide-
and-conquer, multilevel or multiphase series-parallel, and
pipelined parallel algorithms. Thus, in this study, tree
structured task graphs are used to model many divide-
and-conquer type of algorithms and fork-join task graphs
model many multilevel or multiphase series-parallel algo-
rithms. Randomly structured graphs were also included to
represent parallel algorithms that do not fall into the other
categories.

The randomly structured task graphs were generated as
follows. Given the number of nodes n, the height (the num-
ber of levels) of the graph was randomly generated from a
uniform distribution with range [1 − 2

√
n]. At each level,

the number of nodes was randomly generated also using a
uniform distribution but with the maximum value modified
to guarantee that the final total number of nodes is n. The
nodes at each level were then randomly connected to nodes
at a higher level. The number of children for each node was
chosen from a uniform distribution with range [0–7], but
not exceeding the number of nodes specified for the next
level. The regular graphs were generated according to their
predefined structures.

In each graph, the coefficients of the subtask execution
time equation (ai, bi , ci) and inter-subtask communication
time equation (dij and eij ) were randomly generated from
uniform distributions with ranges [10–100] and [1–10], re-
spectively. The heterogeneity factors (hiu’s) of these graphs
were also randomly selected from a uniform distribution
with range [0.5–20].

The heterogeneous platform shown in Fig. 3 was used
throughout the experiments. Below are the parameters used
in the experiments, unless otherwise stated.

• Ranges of the dynamic parameters: �: [1000–5000], �:
[5–25], �: [100–500], and �: [20–100].

• Partitioning of the dynamic parameter space: the range
of each dynamic parameter is partitioned into four equal

intervals (i.e., K = 4, see Section 4.2) and, therefore, the
mapping table stores 44 = 256 mappings (i.e., there are
256 regions in the four dimensional space).

• Number of randomly chosen sample scenarios within
each partition (hyper-rectangle) of the dynamic parame-
ter space: 10 (i.e., N = 10, see Section 4.2).

• The GA is executed 10 times for each sample scenario,
from which the best mapping is chosen (thus, for a single
graph, the GA was executed a total of K4 × N × 10 =
256 × 10 × 10 = 25, 600 times to build the mapping
table).

• Estimated reconfiguration time: 1000.
• Crossover and mutation probabilities for the GA: both 0.4

(these values were chosen according to the light/moderate
load results in [58]).

Two randomly generated 20-iteration execution profiles
of dynamic parameters were used for each graph (see Table
2). The dynamic parameters for Profile B change eight times
more rapidly, on average, than those for Profile A. In the
profiles, iteration 0 is the initialization iteration. In this study,
the dynamic parameter values of iteration 0 are chosen to be
the mean values of the respective dynamic parameter ranges.
The dynamic parameter values shown on iteration i (i > 0)

simulate the actual dynamic parameter values observed after
the task graph finishes iteration i execution.

Both Profiles A and B were generated randomly based
on a single parameter: the mean percentage change in dy-
namic parameter values, called �. Specifically, given �, an
increment factor, denoted by �i−1, was randomly chosen
from a uniform distribution with a range [0.5�.1.5�], and
its sign had a 0.5 probability of being positive. Then, a dy-
namic parameter for iteration i, say �i , was given by: �i =
�i−1 ± �i−1�i−1 (the same is done for � and �; � is given
by �/� where � was randomly chosen from a uniform distri-
bution with a range of [4.0, 6.0]). In generating the profiles,
the dynamic parameters are bounded within the specified
ranges using the following method. If, say, a dynamic pa-
rameter goes beyond the upper bound (because of a positive
�i−1), then the value of �i−1 is negated to force the dynamic
parameter to decrease rather than increase, and the reverse
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Fig. 6. (a) A ten-node randomly generated task graph; (b) coefficients of the subtask execution time equations; (c) coefficients of the inter-subtask
communication data equations; (d) heterogeneity factors hiu for the subtask.

is done when the dynamic parameter goes below the lower
bound. Thus, the extent of change in dynamic parameter val-
ues could be controlled by specifying �: a higher value of
� implies a more swiftly changing execution profile, which,
in turn, can model a series of swiftly changing scenes in an
input stream of images. The values of � used for Profiles A
and B are 5% and 40%,respectively.

5.3. An illustrative example

To examine the performance of the On–Off approach, first
consider the results of scheduling a 10-node random task
graph using the two execution profiles. The structure and
parameters of the 10-node random task graph are shown
in Fig. 6. Detailed results of using the four approaches for

Profile A are shown in Table 3. Below are the definitions of
the data columns.

• t (map[i − 1]): this is the task execution time of iteration
i using the mapping chosen at the end of iteration i − 1,
denoted by map[i−1]. Here, it should be noted that at the
end of iteration i − 1, a new mapping will be determined
but such a mapping would not be used for iteration i if
the reconfiguration time offsets the gain of remapping.
Thus, a mapping chosen at the end of iteration i − 1
could be a new mapping or the same mapping used for
iteration i − 1. In the case of On–Off, the new mapping
considered is the representative mapping for the region
containing the dynamic parameter values at iteration i−1
stored in the mapping table. In the case of ECT, the new
mapping considered is the one determined using the ECT
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Table 3
Results for the ten-node random graph using Profile A (“total” below is the total task execution time for 20 iterations)

i On–Off ECT GA
On-line Ideal

t (map[i − 1])t (tab[i − 1]) rc t (map[i − 1])t (ect[i − 1]) rc t (ga[i − 1]) t (ga[i])
0 — 54,391 1000 — 74,516 1000 — 46,228
1 47,508 46,045 1000 76,384 76,029 0 47,508 47,508
2 47,993 47,286 0 79,227 75,866 1000 49,095 45,280
3 48,301 51,679 0 75,375 74,586 0 50,306 45,856
4 48,921 51,679 0 76,912 74,755 1000 48,520 43,611
5 44,035 51,679 0 74,966 71,491 1000 53,579 40,937
6 49,121 51,679 0 76,226 75,020 1000 48,410 46,496
7 53,225 52,891 0 79,468 77,336 1000 51,161 47,580
8 55,303 52,891 1000 81,944 79,878 1000 55,447 52,809
9 56,355 51,679 1000 83,053 82,556 0 52,846 50,539

10 63,288 63,958 0 86,042 87,381 0 55,887 53,733
11 56,631 52,610 1000 82,874 88,226 0 58,984 51,973
12 58,025 55,142 1000 87,122 81,860 1000 63,183 53,733
13 57,410 63,958 0 87,644 87,182 0 57,948 54,311
14 59,774 53,073 1000 85,449 87,898 0 56,267 52,328
15 58,932 60,754 0 86,152 87,311 0 59,472 55,476
16 55,878 58,723 0 81,710 81,883 0 55,878 55,878
17 58,200 59,774 0 81,434 76,982 1000 56,981 51,227
18 60,966 63,958 0 88,524 81,581 1000 56,961 54,483
19 63,071 63,958 0 91,701 84,474 1000 60,043 59,846
20 65,608 — — 95,498 93,014 — 58,528 53,842

Total 1,115,545 1,688,705 1,097,004 1,065,040

algorithm with the exact dynamic parameters at iteration
i − 1.

• t (tab[i − 1]): this is the task execution time of the rep-
resentative mapping stored in the off-line mapping table,
denoted by tab[i − 1], for the region containing the dy-
namic parameter values at iteration i−1 stored in the map-
ping table. This is the value stored in the mapping table,
instead of the task execution time by applying tab[i − 1]
to the dynamic parameters at iteration i−1. The mapping
tab[i − 1] may or may not be chosen for iteration i.

• rc: the reconfiguration cost, if remapping is performed.
• t (ect[i − 1]): this is the execution time of the mapping,

denoted by ect[i − 1], determined using the ECT algo-
rithm with the dynamic parameters at iteration i −1. The
mapping may or may not be chosen for iteration i.

• t (ga[i − 1]): this is the task execution time of iteration
i by applying the mapping determined by the GA us-
ing the dynamic parameter values from iteration i − 1.
This mapping is applied whether the remapping is justi-
fied by the gain or not. The mapping found at iteration
i − 1 (by the GA using the dynamic parameter values
from iteration i − 1) is incorporated in the initial popu-
lation of the GA at iteration i. This GA on-line method
is included for comparison only; applying the GA on-
line for dynamic scheduling is infeasible due to the long
execution time required by the GA. The GA on-line ap-
proach may require more reconfigurations than the On–
Off method because it searches for a customized mapping
at each iteration. Thus, to conservatively compare these

approaches, the reconfiguration time for GA on-line is not
considered.

• t (ga[i]): this is the task execution time of iteration i de-
termined by the GA using the exact dynamic parame-
ter values from iteration i. This is, therefore, the ideal
case, and is impossible in practice because the actual val-
ues of the dynamic parameters for iteration i cannot be
known before the execution of iteration i begins. Further-
more, the solutions found by both the On–Off (tab[i−1])
and the GA on-line (ga[i − 1]) approaches are incorpo-
rated into the initial population of the GA. This is done
to determine the “best” possible solution as a reference
for comparison. For reasons similar to those given for
GA on-line, reconfiguration time for GA Ideal is not
considered.

As can be seen from Table 3, the On–Off approach of dy-
namically using off-line-derived mappings generated much
smaller total execution time (1, 115, 545) compared to that
of using the ECT algorithm (1, 668, 705). The improve-
ment is approximately 33%. The On–Off approach consis-
tently resulted in performance that was comparable to the
infeasible GA on-line scheme (about 2% worse) and was
only marginally outperformed by the Ideal (but impossible)
method (about 5% worse). Recall that the strategy under-
lying the On–Off approach is to provide a mechanism by
which mappings derived from time-consuming static heuris-
tics, such as the GA, can be employed on-line; i.e., using the
On–Off approach allows the power of the GA heuristic to be
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achieved on-line. Indeed, one very interesting observation is
that at some iterations (i.e., iterations 2, 3, 5, 8, 11, 12, 13,
and 15), the On–Off approach generated shorter mapping
execution times than the GA on-line (e.g., see Table 4 for
the substantially different mappings used by the four ap-
proaches at iteration 5). This can be explained by the fact
that the GA on-line mapping is optimized for the i −1 itera-
tions dynamic parameters and thus, this mapping may not be
very suitable for the ith iteration if the parameters vary con-
siderably. The On–Off approach, however, is more robust to
rapidly changing dynamic parameters because its mapping
is based on good average performance over a wide range of
dynamic parameters.

The results of scheduling the ten-node random graphs for
Profile B are shown in Table 5. As expected, more reconfig-
urations were performed for this profile than for Profile A
because the dynamic parameter values change much faster.
Once again the ECT approach resulted in the worst perfor-
mance with a total execution time that was approximately
45% longer than that of the On–Off approach. The On–Off
approach was only slightly outperformed by the infeasible
GA on-line method (about 5%) and about 20% worse than
the impossible Ideal method. It should be noted that the
higher degradation is partially due to the higher reconfig-
uration overhead of the On–Off method, which is not in-
cluded in the GA on-line or Ideal execution times. Similar
to the case of Profile A, at some iterations (i.e., iterations
1, 2, 8, 9, 12, and 17) the On–Off approach produced shorter
task execution times than those of the infeasible GA on-line
scheme.

5.4. Effectiveness of the sampling strategy

Some additional experiments using larger graphs were
conducted to further test the effectiveness of the sampling
strategy used. Specifically, ten 50-node random graphs were
used and the following different approaches to generate rep-
resentative mappings were compared:

• the mid-point of the hyper-rectangle is chosen as the only
sample scenario for generating the representative map-
ping (called Scheme 1),

• a randomly selected point within the hyper-rectangle is
chosen as the only sample scenario (called Scheme 2);

• ten sample scenarios in the hyper-rectangle are examined
but for each sample scenario the GA is executed with-
out incorporating the solution generated by the ECT al-
gorithm as one of the members in the initial population
(and the mappings of the ten sample scenarios are ap-
plied to all other sample scenarios in the hyper-rectangle,
with the mapping giving the best average performance
selected) (called Scheme 3);

• the approach used throughout all previous experiments—
like Scheme 3 except the GA is executed with the ECT
solution as a seed chromosomes (called Scheme 4).

Table 4
Mappings for iteration 5 of Profile A used by the (a) On–Off approach
(adopted after iteration 1), (b) ECT approach (adopted after iteration 4),
(c) GA on-line approach, and (d) Ideal approach

si Proc type � tu(si ) Comm. Cuv

(a) On–Off approach
s0 1 10 11,217 s0 → s1 77
s1 1 13 10,864 s0 → s2 184
s2 2 10 13,367 s0 → s3 34
s3 2 5 12,199 s0 → s4 2551
s4 3 6 4190 s0 → s5 212
s5 2 2 18,553 s0 → s8 1523
s6 0 9 12,175 s1 → s7 64
s7 2 8 18,346 s2 → s9 3048
s8 0 15 9355 s4 → s6 1562
s9 3 10 4738 s6 → s7 2281

s6 → s8 223
s6 → s9 7600

(b) ECT approach
s0 0 10 8060 s0 → s1 2321
s1 3 4 9906 s0 → s2 1526
s2 1 16 18,558 s0 → s3 792
s3 3 16 4928 s0 → s4 3839
s4 3 4 4825 s0 → s5 194
s5 0 14 21,664 s0 → s8 2281
s6 0 2 41,444 s1 → s7 1551
s7 0 16 13,440 s2 → s9 176
s8 2 12 11,798 s4 → s6 1562
s9 1 14 14,655 s6 → s7 167

s6 → s8 3040
s6 → s9 2534

(c) GA on-line approach
s0 1 10 11,217 s0 → s1 95
s1 2 10 8090 s0 → s2 1526
s2 0 7 8100 s0 → s3 26
s3 1 2 10,836 s0 → s4 2551
s4 3 10 3691 s0 → s5 1764
s5 0 10 23,510 s0 → s8 1523
s6 2 8 27,098 s1 → s7 64
s7 1 11 24,203 s2 → s9 5334
s8 0 15 9355 s4 → s6 891
s9 3 16 3787 s6 → s7 183

s6 → s8 3040
s6 → s9 4343

(d) Ideal approach
s0 0 10 8060 s0 → s1 85
s1 0 5 8517 s0 → s2 2287
s2 2 11 12,811 s0 → s3 29
s3 0 1 11,600 s0 → s4 3839
s4 3 14 3484 s0 → s5 1764
s5 1 4 14,568 s0 → s8 1523
s6 1 16 15,449 s1 → s7 57
s7 0 10 16,799 s2 → s9 3048
s8 1 8 9183 s4 → s6 1033
s9 3 14 4011 s6 → s7 1523

s6 → s8 201
s6 → s9 5058

Note that Scheme 1 is equivalent to using a uniform dis-
tribution for representative values of dynamic parameters
suggested in [10] (recall that the only other approach in [10]
forced the application developer to guess what representa-
tive values to use). The above four approaches were ap-
plied to ten 50-node random graphs using Profile A and the
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Table 5
Results for the ten-node random graph using Profile B (“total” below is the task execution time for 20 iterations)

i On–Off ECT GA
On-line Ideal

t (map[i − 1])t (tab[i − 1]) rc t (map[i − 1])t (ect[i − 1]) rc t (ga[i − 1]) t (ga[i])
0 — 54,391 1000 — 76,029 1000 — 47,980
1 61,988 69,217 0 107,754 103,630 1000 66,150 61,988
2 36,411 38,707 0 63,998 61,852 1000 45,692 34,972
3 49,142 45,126 1000 72,559 79,625 0 44,712 40,318
4 43,516 26,908 1000 51,686 51,648 0 38,337 28,418
5 38,740 34,726 1000 64,508 49,440 1000 35,719 32,825
6 50,402 48,248 1000 74,503 74,365 0 44,250 29,231
7 34,390 50,402 0 50,107 49,296 0 29,842 27,753
8 41,947 33,684 1000 62,863 45,772 1000 48,713 31,601
9 45,940 48,911 0 83,088 85,888 0 48,095 44,184

10 57,662 48,178 1000 75,503 76,404 0 55,606 42,139
11 64,180 62,401 1000 111,327 112,449 0 69,058 61,897
12 39,930 42,374 0 67,829 68,907 0 40,476 39,930
13 46,949 40,904 1000 59,054 47,534 1000 46,350 31,203
14 46,677 45,483 1000 84,529 67,120 1000 45,041 41,910
15 58,622 41,498 1000 54,991 56,205 0 34,473 26,400
16 61,211 55,142 1000 78,358 80,091 0 57,254 51,032
17 46,193 42,374 1000 69,973 72,405 0 46,243 36,274
18 56,042 41,947 1000 85,659 72,229 1000 55,192 44,846
19 49,145 38,707 1000 52,644 57,459 0 47,570 31,678
20 51,900 — — 68,733 63,337 — 48,931 43,881

Total 995,987 1,447,666 947,704 830,460

total mapping execution times were noted. The averages of
these execution times were determined and the results were
normalized with respect to those of Scheme 4. The results
obtained are as follows: 1.23 (Scheme 1), 1.19 (Scheme 2),
1.16 (Scheme 3), and 1.00 (Scheme 4). These results lead to
the conclusion that the relationship between the parameters
space and the mappings space is highly irregular and, as
such, more random sample scenarios are needed to more
accurately “characterize” a good representative mapping for
a hyper-rectangle. Finally, as expected, the solutions of the
GA without using mappings determined by ECT are worse.
Given these findings, Scheme 4 was used throughout all
other experiments.

5.5. Results for larger graphs with different structures

To investigate the effects of graph sizes and structures on
the performance of the On–Off approach, more extensive
experiments were done for larger task graphs (recall that for
each type of graphs, the test set contains ten graphs for each
size of 10, 50, 100, and 200 nodes). Fig. 7 shows the average
normalized total execution times of the ECT, On–Off, and
GA on-line approaches with respect to the Ideal method.
The normalized total execution time of each test case is
calculated by dividing the total execution time of a particular
approach (e.g., ECT) by that of the Ideal method. Each point
on the curves gives the average value of ten test cases. Recall

that the GA on-line approach is infeasible, the Ideal approach
is impossible, and neither include reconfiguration time in
their resultant execution time (the ECT and On–Off methods,
however, do include reconfiguration time).

The execution time of the infeasible GA on-line was at
most 20% greater than the Ideal approach (which assumed
advance knowledge of the iteration i parameter values). The
execution time of the On–Off was at most 30% greater than
the infeasible GA on-line. Moreover, comparing the results
of Profile A with that of Profile B, in most cases there was no
significant increase in relative performance degradation for
increasing incremental changes (�) in dynamic parameter
values.

However, the ECT approach performed much worse, par-
ticularly for large random graphs. An explanation for this
phenomenon is that because the ECT algorithm employs a
strictly greedy scheduling method, the effect of making mis-
takes at early stages of scheduling can propagate until the
whole graph is completely scheduled. The adverse impact
of such a greedy approach can be more profound for larger
graphs. The ECT approach did not perform as poorly for the
tree and fork-join graphs because these graphs tend to con-
tain long chains of subtasks that the ECT algorithm tends
to handle well [57]. Fig. 8 shows the 95% confidence inter-
vals (i.e., given the calculated mean over the 40 test cases,
the probability that the true mean is in the interval shown is
0.95; see [12]) corresponding to the results shown in Fig. 7
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Fig. 7. Average normalized total execution times for the four types of task graphs: (a) random graphs, Profile A, (b) random graphs, Profile B, (c)
in-tree graphs, Profile A, (d) in-tree graphs, Profile B, (e) out-tree graphs, Profile A, (f) out-tree graphs, Profile B, (g) fork-join graphs, Profile A and
(h) fork-join graphs, Profile B (note that the scale for graphs (a) and (b) is twice that of the other graphs.
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Fig. 8. The 95% confidence intervals of the normalized total execution times produced by the three approaches for all the four types of task graphs: (a)
random graphs, (b) in-tree graphs, (c) out-tree graphs and (d) fork-join graphs.

and the absolute total execution times of the Ideal method
are shown in Fig. 9.

5.6. Effect of the reconfiguration cost

An experiment was also conducted to explore the effect
of increasing the reconfiguration cost on the performance of
the On–Off approach. Ten 100-node random task graphs and

Profile B (with 20 iterations) were used. The reconfiguration
cost was varied as: 1000, 5000, 25,000, 50,000, and 100,000,
which approximately correspond to 0.2%, 1%, 5%, 10%,
and 20% of the execution time of a single iteration. The
average total mapping execution times are shown in Table
6. As can be seen, the total execution times of the ECT and
On–Off approaches increase moderately despite the fact that
the reconfiguration cost varied over a wide range. A scrutiny
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Fig. 9. Average total execution times of the Ideal approach for the four
types of task graphs: (a) Profile A and (b) Profile B.

of the detailed execution traces revealed that for the ECT
and On–Off approaches, a higher reconfiguration cost simply
reduces the number of switches to a new mapping from one
iteration to another. If reconfiguration cost is small, more
remappings are performed but the aggregate reconfiguration
costs do not considerably affect the total time. It appears that
increasing the reconfiguration cost does not critically affect
the total execution time. Most importantly, even though the
total execution times of On–Off increase as expected, the
On–Off approach still performs very well with respect to the
other approaches.

5.7. Comparison with using a single mapping

It is interesting to compare the performance of all ap-
proaches considered thus far with a static approach that
works by find the “best” mapping in the On–Off table.
Specifically, each mapping from the 256 regions is applied
to all of the 256 dynamic parameter vectors. The mapping
that gives the shortest average execution time (across the
256 scenarios) is selected as the static mapping and is used

in all the iterations in an execution profile. In this experi-
ment, a suite of forty 200-node graphs was used: for each
of the graph structures (random, in-tree, out-tree, and fork-
join), ten graphs were used. The mapping approaches were
applied to the task graphs using ten different 200-iteration
execution profiles with average percentage change � var-
ied from 5% to 50% in increments of 5%. These results are
shown in Fig. 10. As can be seen, the relative performance
of the On–Off, GA on-line, and ECT approaches is quite
consistent. Furthermore, the On–Off method outperformed
the static approach considerably. On the other hand, it is
interesting to see that the static approach gave better per-
formance than the ECT algorithm for test cases with small
changes in dynamic parameter values, indicating that the so-
lution quality of the GA is indeed much better than the ECT
heuristic. This is due to the fact that, for this experiment,
all execution profiles started in the middle of the dynamic
parameter space for which the best average mapping was
quite good. However, as � increased, the dynamic param-
eter values strayed further from the middle and the static
approach generated progressively worse solutions (although
still not as bad as a typical static mapping). For large values
of � (e.g., larger than 25%), even the ECT approach out-
performed the static approach. This illustrates that using the
same mapping is not desirable for scheduling a task graph
with vigorously changing attributes. In contrast, the On–Off
approach was much less significantly affected by quickly
varying dynamic parameters, only increasing from 1.213 to
1.297 while � increased from 5% to 50%.

5.8. Running time of the mapping algorithms

A limitation of the On–Off approach is the relatively long
running time needed to build the mapping table. For exam-
ple, while the ECT algorithm took 0.5 s to generate a map-
ping for a 100-node graph, the GA used in the On–Off ap-
proach required about 10 min off-line for each mapping ta-
ble entry. However, because the mapping table is to be built
off-line and the target heterogeneous task graph is to be used
as a production job, some extra time is affordable. In addi-
tion, the efficiency of the On–Off approach can be further
improved because it is possible to parallelize the GA used.

6. Conclusions

A distinctive feature of the semi-static strategy is that it
approaches the off-line mapping quality of a genetic algo-
rithm (GA) with on-line efficiency. To make the semi-static
mapping methodology complete, a new technique was de-
signed for selecting off-line mappings through partitioning
and sampling the dynamic parameter space of the heteroge-
neous application. Experimental results indicate that with the
proposed method for determining the representative static
mappings, the semi-static approach is effective in that it con-
sistently outperformed a fast dynamic mapping heuristic,
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Table 6
The total execution times (average over ten graphs for each reconfiguration cost) for 100-node random task graphs using (a) Profile A, and (b) Profile B
(20 iterations). The number of reconfigurations of ECT and On–Off are shown in the parentheses

Reconfig. cost ECT On–Off GA on-line Ideal

(a) Profile A
1000 25,749,859 10,581,274 9,219,447 8,025,182

(13) (10) — —
5000 26,108,420 10,809,310 9,219,447 8,025,182

(11) (8) — —
25,000 26,590,023 11,093,256 9,219,447 8,025,182

(8) (6) — —
50,000 27,092,528 11,321,890 9,219,447 8,025,182

(7) (6) — —
100,000 27,502,753 11,740,731 9,219,447 8,025,182

(7) (6) — —

(a) Profile B
1000 27,259,122 11,124,981 10,954,377 9,014,579

(14) (12) — —
5000 27,850,353 11,370,890 10,954,377 9,014,579

(13) (10) — —
25,000 28,601,246 11,691,931 10,954,377 9,014,579

(11) (8) — —
50,000 29,381,251 12,017,445 10,954,377 9,014,579

(9) (7) — —
100,000 29,991,021 12,529,694 10,954,377 9,014,579

(9) (7) — —

Fig. 10. Average total execution times (normalized by the execution times
of the Ideal approach) for a suite of forty 200-node task graphs using
various values of � (200-iteration profiles were used).

and yields reasonable performance compared with the infea-
sible approach of directly using the GA on-line for a wide
range of task graph structures. Indeed, the sampling strat-
egy performs even better than using the GA on-line (based
on parameter values of the previous iteration) in several in-
stances. Furthermore, it is found that the performance of the
methodology is effective even for handling swiftly chang-
ing dynamic parameters in these heterogeneous applications.
In addition, the semi-static approach outperformed the best
static method by a considerable margin. A limitation of such

a semi-static approach is the additional off-line execution
time needed to build the mapping table. However, because
the mapping table is built off-line and the target heteroge-
neous task graph is used as a production job, some extra
time is affordable.
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