IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

A Test Generation Strategy
for Pairwise Testing

Kuo-Chung Tai and Yu Lei

Abstract—Pairwise testing is a specification-based testing criterion, which
requires that for each pair of input parameters of a system, every combination of
valid values of these two parameters be covered by at least one test case. In this
paper, we propose a new test generation strategy for pairwise testing.

Index Terms—Software testing, pairwise testing, test generation.

4

1 INTRODUCTION

PAIRWISE testing requires that, for each pair of input parameters of
a system, every combination of valid values of these two
parameters be covered by at least one test case. Empirical results
indicate that pairwise testing is practical and effective for various
types of software systems [1], [2]. To illustrate the concept of
pairwise testing, consider a system with parameters and values as
shown below:

e parameter A has values A; and A,

e parameter B has values B; and B, and

e parameter C has values C, (5, and C;.
For parameters A and B, {(A1, B1), (A1, B2), (A2, B1), (A2, By)} is
the only pairwise test set. For parameters A, B, and C, a large
number of pairwise test sets exist. Below are three of them with the
numbers of tests being 6, 7, and 8, respectively:

o {(41,B1,C1), (A1,B2,Ca), (A2, B1,C3), (A2, B2,C1), (As,
Bi,Cs), (A1, B2, C3)},
i {(A1, B1,C1), (A1, B2,C1), (A2, B1,Cs), (A2, B2,C3), (As,
B1,C1), (A1, By, Cy), (A1, B1,Cs)},
° {(A] 5 B] 5 C]), (A] 5 BQ, C]), (A27 B] 3 CQ), (Az7 BQ, Cg), (AQ,
B], Cl), (A17 Blv Cg), (1417 Bl, Cd), (AQ, BQ, Cd)}
Different test generation strategies for pairwise testing have been
published. The strategy proposed in [2] starts with an empty test
set and adds one test at a time. To generate a new test, the strategy
produces a number of candidate tests according to a greedy
algorithm and then selects one that covers the most uncovered
pairs.

Another approach to generating a pairwise test set is to use
orthogonal arrays. The original method of orthogonal arrays
requires that all parameters have the same number of values and
that each pair of values be covered the same number of times [4].
The first requirement can be relaxed by adding don’t care values for
missing values. But, the use of don't care values creates extra tests
[5]. The second requirement is considered unnecessary for soft-
ware testing and also creates extra tests for pairwise testing [1].

In this paper, we propose a new test generation strategy,
called in-parameter-order (or IPO), for pairwise testing. The
remainder of this paper is organized as follows: Section 2 presents
the IPO strategy. Section 3 describes an IPO-based test generation
tool and shows some empirical results. Section 4 concludes this
paper. An extended version of this paper is available [3].

o The authors are with the Department of Computer Science, North Carolina
State University, Raleigh, NC 27695-7534.
E-mail: {kct, ylei2)@eos.ncsu.edu.

Manuscript received 5 Jan. 1999; revised 12 Feb. 2001; accepted 26 Mar. 2001.
Recommended for acceptance by R. Hamlet.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 108587.

0098-5589/02/$17.00 © 2002 IEEE

JANUARY 2002 1

2 THE IPO STRATEGY

For a system with two or more input parameters, the IPO strategy
generates a pairwise test set for the first two parameters, extends the
test set to generate a pairwise test set for the first three parameters,
and continues to do so for each additional parameter. The extension
of an existing pairwise test set for an additional parameter contains
the following two steps: a) horizontal growth, which extends each
existing test by adding one value of the new parameter and
b) vertical growth, which adds new tests, if necessary, to the test set
produced by horizontal growth. Sections 2.1 and 2.2 show
algorithms for horizontal and vertical growth, respectively.

2.1 An Algorithm for Horizontal Growth

Assume that 7 is a pairwise test set for parameters pi,po,...,
and p;_;. The horizontal growth of 7 for parameter p; is to
extend each test in 7 by adding a value of p;. Fig. 1 shows a
high-level algorithm called IPO_H for horizontal growth of 7 for
parameter p;.

Now, we apply algorithm IPO_H to the example system in
Section 1. {(Ai,B1), (A1,Bs), (As,B1), (As,Bs)} is the only
pairwise test set for A and B. Since C has three values Ci, Cy,
and C3, we extend (A4;, By), (A1, By), and (A, B;) by adding C},
Cy, and Cj, respectively. The extended tests are (A;,B,C)),
(A1, By, C3), and (As, By, Cs), and the resulting set of missing (or
uncovered) pairs is {(As, C1), (B2, C1), (A2,Cs), (B1,Cs), (A1,Cs),
(Bs,C3)}. Now, we need to choose one of (), Cy, and Cj for
(Ag, By). If we add C; to (A, By), the extended test (As, By, C)
covers two missing pairs (As,Cy) and (B,,C1). If we add C» to
(A2, Bs), the extended test (As, Bs,C>) covers only one missing
pair (As,Cy). If we add Cs to (Ag, Bs), the extended test
(A2, By, C3) covers only one missing pair (Bs, Cs). Thus, we choose
(A2, By, C) as the fourth test. The following four pairs are not
covered yet: (Ay,Cy), (A1,C5), (B1,Cs), and (B, C3). How to
generate new tests to cover these four pairs is discussed next.

2.2 An Algorithm for Vertical Growth

Assume that the horizontal growth for parameter p; has produced
a test set 7 for pi,ps,..., and p;. Let 7 be the set of pairs not
covered by 7. Each pair in 7 contains a value of p; and a value of
P1,P2,-.., or pi_1. Assume that |r| > 0. The vertical growth of 7°
according to 7 is to construct new tests for covering pairs in 7 and
add these new tests to 7. Thus, the resulting 7 is a pairwise test set
for pi,ps,..., and p;. Fig. 2 shows a high-level algorithm called
IPO_V for the vertical growth of 7 according to 7. In this
algorithm, “—” denotes an unspecified value of a parameter.

After the completion of algorithm IPO_V, 7 may contain “—”
values. If p; is the last parameter, each “—" value for p;, 1 <k <4,
is replaced by any value of p;. Otherwise, these “—" values are
replaced by parameter values in the horizontal growth for p;; as
follows: Assume that value v of p;;; is chosen for the horizontal
growth of a test that contains “—" as the value for p;, 1 < k <i. If
there are uncovered pairs involving v and some values of p;, the
“—" for p; is replaced by one of these values of p;. Otherwise, the
“—" for py, is replaced by any value of pj.

We continue our discussion of the example system defined in
Section 1. In Section 2.1, we show that the horizontal growth for
parameter C generates the following four tests: (A;, Bi,Ch),
(A1, By, (), (Ag, B1,C3), and (As, B, Cy), and that these four tests
do not cover the following four pairs: (Az,Cs), (A1, Cs), (B1,Ca),
and (B;,C3). Now, we apply algorithm IPO_V to construct new
tests to cover these four pairs. To cover (A, Cs), we generate test
(Ag,—,Cy). To cover (Aq, C3), we generate test (A, —, C3). To cover
(B1,C3), we change (Ay,—,C,) to (A, By, Cy) without adding a
new test. To cover (B, C3), we change (A4;,—,Cs) to (A1, By, C3)
without adding a new test. Thus, we generate two new tests to
cover the four pairs not covered by horizontal growth. So, the
generated pairwise test set has a total of six tests.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

JANUARY 2002

Algorithm IPO_H(T, p;)

¥

else

// T is a test set. But 7 is also treated as a list with elements in arbitrary order.

{ assume that the domain of p; contains values v, vy, ..., and vg;
7= = { pairs between values of p; and values of py, py, ..., and p;_1 };
if(TI<q)

{ for 1 < j <|T], extend the jth test in 7 by adding value v; and
remove from 7 pairs covered by the extended test;

{ for 1 < j < g, extend the jth test in 7 by adding value v; and
remove from 7 pairs covered by the extended test;
for g < j < |T|, extend the jth test in 7 by adding one value of p;
such that the resulting test covers the most number of pairs in 7, and
remove from 7 pairs covered by the extended test;

Fig. 1. Algorithm IPO_H.

Algorithm IPO_V(T,r)
{ let 7" be an empty set;
for each pair in 7

if (77 contains a test with “—”

{ assume that the pair contains value w of pg, 1 < k < 4, and value u of p;;
as the value of p; and u as the value of p;)

modify this test by replacing the “—” with w;
else
add a new test to 7’ that has w as the value of p;, u as the value of p;,
and “—" as the value of every other parameter;
b
T=TUT
1§
Fig. 2. Algorithm IPO_V.
TABLE 1
Sizes of Pairwise Test Sets Generated by AETG and PairTest
System | S1|S2|S3|S4|S5| S6
AETG |11 |17 [35|25 | 12 | 193
PairTest | 9 | 17 | 34 | 26 | 15 | 212

S1: 4 3-value parameters
S2: 13 3-value parameters

S3: 61 parameters (15 4-value parameters, 17 3-value parameters, 29 2-value parameters)
S4: 75 parameters (1 4-value parameter, 39 3-value parameters, 35 2-value parameters)

S5: 100 2-value paramecters
S6: 20 10-value parameters

3 PAIRTEST: AN IPO-BASED TEST GENERATION TOOL

We have implemented an IPO-based test generation tool, called
PairTest, that includes algorithm IPO_H for horizontal growth and
algorithm IPO_V for vertical growth. PairTest was written in Java
and it provides a graphical user interface to make the tool easy to
use. PairTest also supports the reuse of tests sets when systems are
modified due to changes of input parameters and/or values.
Another test generation tool for pairwise testing is AETG
(Automatic Efficient Test Generator)! [1], [2]. We used AETG? to
produce pairwise test sets for the six systems mentioned in [2]. We
also used PairTest to generate pairwise test sets for the same six
systems. Table 1 shows the size information produced by AETG
and PairTest for these six systems. As shown in Table 1, each of

1. AETG is a trademark of Telcordia Technologies Inc. and is covered by
United States Patent 5,542,043.

2. Telcordia allows free use of AETG for two weeks over the Web. AETG
does not provide the length of time used for test generation.

AETG and PairTest produces smaller test tests than the other for
some systems. Later, we will show that PairTest has lower time
complexity than AETG.

It was shown that, for a system with n parameters, each having
d values, the size of a minimum pairwise test set grows at most
logarithmically in n and quadratically in d [2]. Empirical results
based on AETG indicates that when the number of candidate test
cases for a new test case is 50, the number of test cases grows
logarithmically in n [2]. We have carried out empirical studies to
determine the growth function for the size of a pairwise test set
generated by PairTest in terms of n and d. Table 2 shows the sizes
of test sets generated by PairTest for systems with d =4 and
different values of n. Table 3 shows the sizes of test sets generated
by PairTest for systems with n =10 and different values of d.
According to statistical analysis,3 the values of s (number of tests)

3. Curve fitting using the SAS package was performed on data in Tables 2
and 3.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 1,

JANUARY 2002 3

TABLE 2
Results of PairTest for Systems with n 4-Value Parameters

n (# of parameters) | 10 [20 | 30 | 40 [50 | 60 | 70 | 80 | 90 | 100
s (# of tests) 31 |34 |41 |42 |48 |48 |51 |51 |51 | 53
in Tables 2 and 3 grow in O(log(n) and O(d?), respectively. These ~REFERENCES

empirical results match the theoretical results mentioned earlier.

Tables 2 and 3 also show time information for test sets
generated by PairTest. The execution time information was
collected when PairTest was compiled and run on a PC with
Intel 450MHZ Pentium II processor, Windows 98, and JDK 1.2.2.
According to statistical analysis, the values of ¢ (time for test
generation) in Tables 2 and 3 grow in O(n?log(n)) and O(d?),
respectively. Based on the observation that the size of a test set
generated by PairTest is O(d?log(n)), we have shown that the
time complexity of the IPO strategy is O(d*n?log(n)) [3]. Based
on the same observation for AETG, we have also shown that the
time complexity of the AETG heuristic algorithm in [2] is
O(d'n?log(n)) [3].

4 CONCLUSION

In this paper, we have presented the IPO test generation
strategy for pairwise testing. Our empirical results indicate that
the TPO strategy performs well according to the sizes of
generated test sets and the amount of time taken for test
generation. In addition, the IPO strategy can be easily adapted
to reuse existing test sets when systems are modified due to
changes of input parameters and/or values. More information
on IPO-based test generation and our pairwise testing tool can
be found in [3]. Pairwise testing (or 2-way testing) is a special
case of n-way testing, which requires that for each set of n input
parameters of a system, every combination of valid values of
these n parameters be covered by at least one test case. The
IPO strategy can be easily extended for n-way testing.

One problem with pairwise testing is that, if the domains of
input parameters are large, the number of generated tests is huge.
For a system with each parameter having d values, the number of
tests required for pairwise testing is at least d°>. Thus, if each
parameter has 1,000 values, at least 1 million tests are required for
pairwise testing. To alleviate this test explosion problem, one
solution is to divide each input domain into partitions, select one
representative value from each partition, and generate tests
according to representative values for input parameters. By
controlling the number of partitions for each input parameter,
we can determine the number of tests needed for pairwise testing.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Ho-Yen Chang for his effort
on implementing the PairTest tool. They also wish to thank
reviewers and Professor Richard Hamlet for their helpful
comments. This research was supported in part by US National
Science Foundation grants CCR-9320992 and CCR-9901004 and a
grant from IBM in Research Triangle Park, North Carolina.

TABLE 3
Results of PairTest for Systems with 10 Parameters,
Each Having d Values

10
169

15
361

20
618

25
956

30
1355

d (# of values) | 5
s (# of Tests) | 47

[1] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton, "The Combinator-
ial Desgin Approach to Automatic Test Generation,” IEEE Software, vol. 13,
no. 5, pp. 83-89, Sept. 1996.

[2] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton, “The AETG
System: An Approach to Testing Based on Combinatorial Design,” IEEE
Trans. Software Eng., vol. 23, no. 7, pp. 437-443, July 1997.

[3] Y. Lei and K.C. Tai, “In-Parameter-Order: A Test Generation Strategy for
Pairwise Testing,” Technical Report TR-2001-03, Dept. of Computer
Science, North Carolina State Univ., Raleigh, North Carolina, Mar. 2001.

[4] R. Mandl, "Orthogonal Latin Squares: An Application of Experimental
Design to Compiler Testing,” Comm. ACM, vol. 28, no. 10, pp. 1054-1058,
Oct. 1985.

[S] A.W.Williams and R.L. Probert, ”A Practical Strategy for Testing Pair-Wise
Coverage of Network interfaces,” Proc. IEEE Int’l Symp. Software Reliability
Eng., pp. 246-254, 1996.

> For more information on this or any computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

