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This paper develops a theory for group Lasso using a concept
called strong group sparsity. Our result shows that group Lasso is
superior to standard Lasso for strongly group-sparse signals. This
provides a convincing theoretical justification for using group sparse
regularization when the underlying group structure is consistent with
the data. Moreover, the theory predicts some limitations of the group
Lasso formulation that are confirmed by simulation studies.

1. Introduction. We are interested in the sparse learning problem for least squares regression.
Consider a set of p basis vectors {x1,...,X,} where x; € R" for each j. Here, n is the sample size.
Denote by X the n x p data matrix, with column j of X being x;. Given an observation y =
[Y1,...,9yn] € R™ that is generated from a sparse linear combination of the basis vectors plus a

stochastic noise vector € € R":
d

y:XB—i-E:ZBij—FG,
j=1

where we assume that the target coefficient 3 is sparse. Throughout the paper, we consider fixed
design only. That is, we assume X is fixed, and randomization is with respect to the noise € (and
thus the observation y). Note that we do not assume that the noise € is zero-mean.

Define the support of a sparse vector 8 € RP as

supp(8) = {j : B; # 0},

and [|5]|o = [supp(8)|. A natural method for sparse learning is Lo regularization:
Pro = arg min X0 — yl3 subject to [Bllo < k,

where k is the sparsity. Since this optimization problem is generally NP-hard, in practice, one often
consider the following L regularization problem, which is the standard convex relaxation of Lg:

. 1
= in |—|| X8 —ylz+ X :
Bra arg min nll B —yllz + AllBlh

where A is an appropriately chosen regularization parameter. This method is often referred to as
Lasso in the statistical literature.

In practical applications, one often knows a group structure on the coefficient vector 3 so that
variables in the same group tend to be zeros or nonzeros simultaneously. The purpose of this paper
is to show that if such a structure exists, then better results can be obtained.
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2. Strong Group Sparsity. For simplicity, we shall only consider non-overlapping groups in
this paper, although our analysis can be adapted to handle moderately overlapping groups (that is,
each feature is only covered by a constant number of groups, and the resulting analysis depends on
this constant).

Assume that {1,...,p} = U7, G is partitioned into m disjoint groups G1,Ga, ..., Gn: GiNG; =
() when i # j. Moreover, throughout the paper, we let k; = |G;|, and ko = max;e(1, . m} kj. Given
S c {1,...,m} that denotes a set of groups, we define Gg = U;csG;.

Given a subset of variables F' C {1,...,p} and a coefficient vector 5 € RP, let Sr be the vector
in RIFl which is identical to 8 in F. Similar, X is the n x |F| matrix with columns identical to X
in F.

The following method, often referred to as group Lasso, has been proposed to take advantage of
the group structure:

~ . 1 m
(1) g = argmin | - IX8 = yl3+ > AllBa, 2
j=1

The purpose of this paper is to develop a theory that characterizes the performance of (1). We
are interested in conditions under which group Lasso yields better estimate of 3 than the standard
Lasso.

Instead of the standard sparsity assumption, where the complexity is measured by the number of
nonzero coefficients k, we introduce the strong group sparsity concept below. The idea is to measure
the complexity of a sparse signal using group sparsity in addition to coefficient sparsity.

DEFINITION 2.1. A coefficient vector 3 € RP is (g, k) strongly group-sparse if there exists a set
S of groups such that

supp(f) C Gs, |Gs| <k, [S][<g.

The new concept is referred to as strong group-sparsity because k is used to measure the sparsity
of 3 instead of ||3]|o. If this notion is beneficial, then k/||3||o should be small, which means that
the signal has to be efficiently covered by the groups. In fact, the group Lasso method does not
work well when k/||3]|o is large. In that case, the signal is only weak group sparse, and one needs to
use ||3]|o to precisely measure the real sparsity of the signal. Unfortunately, such information is not
included in the group Lasso formulation, and there is no simple fix of this problem using variations
of group Lasso. This is because our theory requires that the group Lasso regularization term is
strong enough to dominate the noise, and the strong regularization causes a bias of the order O(k)
which cannot be removed. This is one fundamental drawback which is inherent to the group Lasso
formulation.

We shall mention that this paper focuses on the scenario that each group is finite dimensional,
and our analysis relies on the overall sparsity k. For some applications, each group may be an
infinite dimensional Hilbert space, and the group Lasso can be used to learn combinations of kernels
(see |1, 5] for analysis and references). For such problems, our analysis does not apply because the
sparsity k£ may be infinity. Also in such case, Lasso cannot be run and thus group Lasso will be the
only natural formulation.

3. Related Work. The idea of using group structure to achieve better sparse recovery per-
formance has received much attention. For example, group sparsity has been considered for si-
multaneous sparse approximation |12| and multi-task compressive sensing [1] from the Bayesian
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hierarchical modeling point of view. Under the Bayesian hierarchical model framework, data from
all sources contribute to the estimation of hyper-parameters in the sparse prior model. The shared
prior can then be inferred from multiple sources. Although the idea can be justified using standard
Bayesian intuition, there are no theoretical results showing how much better (and under what kind
of conditions) the resulting algorithms perform.

In [11], the authors attempted to derive a bound on the number of samples needed to recover
block sparse signals, where the coefficients in each block are either all zero or all nonzero. In our
terminology, this corresponds to the case of group sparsity with equal size groups. The algorithm
considered there is a special case of (1) with \; — 0F. However, their result is very loose, and does
not demonstrate the advantage of group Lasso over standard Lasso.

In the statistical literature, the group Lasso (1) has been studied by a number of authors [1, 5, 7,
8, 13]. There were no theoretical results in [13]. Although some theoretical results were developed
in [1, 7], neither showed that group Lasso is superior to the standard Lasso. In particular, although
[7] is related to our work (in the sense that it also studies parameter estimation error), the analysis
does not try to show the advantage of group Lasso over standard Lasso.

The authors of |5] showed that group Lasso can be superior to standard Lasso when each group is
an infinite dimensional kernel, by using an argument completely different from ours (they relied on
the fact that meaningful analysis can be obtained for kernel methods in infinite dimension). Their
idea cannot be adapted to show the advantage of group Lasso in finite dimensional scenarios of
interests such as in the standard compressive sensing setting. Therefore our analysis, which focuses
on the latter, is complementary to their work.

Another related work is [8], where the authors considered a special case of group Lasso in the
multi-task learning scenario, and showed that the number of samples required for recovering the
exact support set may be smaller for group Lasso under appropriate conditions. The analysis is quite
tight but with different assumptions than what we make in this paper. That is, there are major
differences between our analysis and their analysis. For example, the group formulation we consider
here is more general and includes the multi-task scenario as a special case. Moreover, we study signal
recovery performance in 2-norm instead of the exact recovery of support set in their analysis. The
sparse eigenvalue condition employed in this work is different from the irrepresentable type condition
in their analysis (which is required for exact support set recovery). Under our assumptions, either
Lasso nor group Lasso may be able to recover the exact support set.

In the above context, the main contribution of this work is the introduction of the strong group
sparsity concept, under which a satisfactory theory of group Lasso is developed. Our result shows
that strongly group sparse signals can be estimated more reliably using group Lasso, in that it
requires fewer number of samples in the compressive sensing setting, and is more robust to noise in
the statistical estimation setting.

Finally, we shall mention that independent of the authors, results similar to those presented in
this paper have also been obtained in 6] with a similar technical analysis. However, while our paper
studies the general group Lasso formulation, only the special case of multi-task learning is considered
in |6].

4. Assumptions. The following assumption on the noise is important in our analysis. It cap-
tures an important advantage of group Lasso over standard Lasso under the strong group sparsity
assumption.

AssuMPTION 4.1 (Group noise condition).  There exist non-negative constants a,b such that for
any fized group j € {1,...,m}, andn € (0,1): with probability larger than 1—n, the noise projection
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to the j-th group is bounded by:
1(X8,X6,)~02 X, (e~ Bl < ay/h; + by/~Tn.

The importance of the assumption is that the concentration term \/—Inn does not depend on
k. This reveals a significant benefit of group Lasso over standard Lasso: that is, the concentration
term does not increase when the group size increases. This implies that if we can correctly guess the
group sparsity structure, the group Lasso estimator is more stable with respect to stochastic noise
than the standard Lasso.

We shall point out that this assumption holds for independent sub-Gaussian noise vectors, where
ellei—Bei) < eto?/2 for all ¢ and i = 1,...,n. It can be shown that one may choose a = 2.8 and
b = 2.4 when n € (0,0.5). Since a complete treatment of sub-Gaussian noise is not important for
the purpose of this paper, we only prove this assumption under independent Gaussian noise, which
can be directly calculated.

PROPOSITION 4.1.  Assume the noise vector € are independent Gaussians: ¢; — Ee; ~ N(0,02),
where each 0; < o (i =1,...,n). Then Assumption 4.1 holds with a = ¢ and b = \/20.

The next assumption handles the case that true target is not exactly sparse. That is, we only
assume that X3 ~ Ey.

ASSUMPTION 4.2 (Group approximation error condition). There exist da,db > 0 such that for
all group j € {1,...,m}: the projection of error mean Ee to the j-th group is bounded by:

1(X&, Xa,) 3 X Eella/vn < \[k;da + ob.

As mentioned earlier, we do not assume that the noise is zero-mean. Hence Ee may not equal
zero. In other words, this condition considers the situation that the true target is not exactly sparse.
It resembles algebraic noise in [15] but takes the group structure into account. Similar to [15], we
have the following result.

PROPOSITION 4.2.  Consider a (g, k) strongly group sparse coefficient vector 3 such that
1 2 2 2

and ag,bo > 0. Then there exists (¢', k") strongly group sparse B such that k'a3+g'b3 < 2(kaZ+gb3),
| X3 —Eylla < || X8 — Ey|l2, supp(3) C supp(3'), and for all group j:

1(X&, Xa,) *5XE (X~ Ey)ll2/vin < (ao\/k; + bo)A/y/kad + B3

The proposition shows that if the approximation error of 3 is A = || X3 — Ey|l2/+/n, then we

may find an alternative target 3 with similar sparsity for which we can take da = apA/y/kad + b}

and db = byA/y/ka3 + b% in Assumption 4.2. This means that in Theorem 5.1 below, by choosing

ap = a and by = b+/In(m/n), the contribution of the approximation error to the reconstruction error
|8 — B2 is O(A). Note that this assumption does not show the benefit of group Lasso over standard
Lasso. Therefore in order to compare our results to that of the standard Lasso, one may consider
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the simple situation where da = 0b = 0. That is, the target is exactly sparse. The only reason to
include Assumption 4.2 is to illustrate that our analysis can handle approximate sparsity.

The last assumption is a sparse eigenvalue condition, used in the modern analysis of Lasso (e.g.,
[2, 15]). It is also closely related to (and slightly weaker than) the RIP (restricted isometry property)
assumption [3| in the compressive sensing literature. This assumption takes advantage of group
structure, and can be considered as (a weaker version of) group RIP. We introduce a definition
before stating the assumption.

DEFINITION 4.1.  For all FF C {1,...,p}, define

1
p-(F) =int { | XBI3/13]3 : supp(8) < F .
1
p(F) =sup { L X31B/115 s supp(3) < F |
Moreover, for all 1 < s < p, define

p—(s) =inf{p_(Gg) : S C {1,...,m},|Gs| < s},
p+(s) =sup{p;(Gs): S C{l,...,m},|Gs| < s}.

AssuMPTION 4.3 (Group sparse eigenvalue condition).  There exist s,¢ > 0 such that

p+(s) = p—(25)

p—(s) =

Assumption 4.3 illustrates another advantage of group Lasso over standard Lasso. Since we
only consider eigenvalues for sub-matrices consistent with the group structure {G;}, the ratio
p+(s)/p—(s) can be significantly smaller than the corresponding ratio for Lasso (which consid-
ers all subsets of {1,...,p} up to size s). For example, assume that all group sizes are identical
ki1 =...=kmn = ko, and s is a multiple of ky. For random projections used in compressive sensing
applications, only n = O(s + (s/kg)Inm) projections are needed for Assumption 4.3 to hold. In
comparison, for standard Lasso, we need n = O(sInp) projections. The difference can be significant
when p and kg are large. More precisely, we have the following random projection sample complexity
bound for the group sparse eigenvalue condition. Although we assume Gaussian random matrix in
order to state explicit constants, it is clear that similar results hold for other sub-Gaussian random
matrices.

PROPOSITION 4.3 (Group-RIP).  Suppose that elements in X are iid standard Gaussian random,
variables N(0,1). For any t >0 and ¢ € (0,1), let

8

n> —[n3+t+kIn(l+8/5) + gln(em/g)].

[« %)

Then with probability at least 1—e™", the random matriz X € R™ P satisfies the following group-RIP
inequality for all (g, k) strongly group-sparse vector 3 € RP,

@) (1= OBllz < S=IXBl < (1+8)5].



5. Main Results. Our main result is the following signal recovery (2-norm parameter estima-
tion error) bound for group Lasso.

THEOREM 5.1.  Suppose that Assumption 4.1, Assumption 4.2, and Assumption 4.3 are valid.
Take \j = (A\/kj + B)/\/n, where both A and B can depend on data y. Given n € (0,1), with
probability larger than 1 —n, if the following conditions hold:

A > 4dmax; pi(G)Y?(a + Say/n),

B > 4max; py(G)2(by/In(m/n) + 6by/n),

B is a (g, k) strongly group-sparse coefficient vector,
s> k+ ko,

Let ¢t = s — (k— ko) + 1, and g = min{|S| : |Gg| > ¢,S C {1,...,m}}, we have

2 (A? + g,B?

© = TkAZy gBY)

then the solution of (1) satisfies:

13 = Bll2 < %(1 +0.25¢ 1)/ A2k + gB2.

The first four conditions of the theorem are not critical, as they are just definitions and choices
for A;. The fifth assumption is critical, which means that the group sparse eigenvalue condition has
to be satisfied with some ¢ that is not too large. In order to satisfy the condition, ¢ should be chosen
relatively large as the right hand side is linear in £. However, this implies that s also grow linearly. It
is possible to find s so that the condition is satisfied when ¢? in Assumption 4.3 grows sub-linearly
in s. Consider the situation that da = 0b = 0. If the conditions of Theorem 5.1 is satisfied, then

18 = BI13 = O((k + gIn(m/n))/n).

In comparison, The Lasso estimator can only achieve the bound

1821 = BII3 = O((1Bllo In(p/n)) /m)-

If k/||8)lo < In(p/n) (which means that the group structure is useful) and g < || 3|0, then the group
Lasso is superior. This is consistent with intuition. However, if k > ||3||o In(p/n), then group Lasso
is inferior. This happens when the signal is not strongly group sparse.

Theorem 5.1 also suggests that if the group sizes are not even, then group Lasso may not work
well when the signal is contained in small sized groups. This is because in such case gy can be
significantly smaller than g even with relatively large £, which means we have to choose a large s
and small ¢, implying a poor bound. This prediction is confirmed in Section 7.2 using simulated
data. Intuitively, group Lasso favors large sized groups because the 2-norm regularization for large
group size is weaker. Adjusting regularization parameters A; not only fails to work in theory, but
also impractical since it is unrealistic to tune many parameters. This unstable behavior with respect
to uneven group size may be regarded as another drawback of the group Lasso formulation.

In the following, we present two simplifications of Theorem 5.1 that are easier to interpret. The
first is the compressive sensing case, which does not consider stochastic noise.

COROLLARY 5.1 (Compressive sensing). Suppose that Assump_tion 4.1 and Assumption 4.2 are
valid with a = b = 6b = 0. Take \; = 4,/k; max; p_,_(Gj)l/Qéa. Let 3 be a (k, g) strongly group-sparse
6



signal, £ = k, and s = 2k + ko — 1. If (p5(s) — p_(25))/p_(s) < 1/3/72, then the solution of (1)
satisfies:

6v2 + 18
— 1N

||B —Bll2 < PD ‘?Xp+(Gj)1/25a'\/E.

If a = 0, then we can achieve exact recovery. Moreover, Proposition 4.2 implies that we may
choose a target with similar sparsity such that dav/k = O(|| X8 — Ey||2/v/n). This implies a bound

18 = Bll2 = O(| X5 — Ey|l2/v/n).

If we have even sized groups, the number of samples n required for Corollary 5.1 to hold (that is,
(p(s) — p—(25))/p—(s) < 1/3/72) is O(k + gln(m/g)), where g = k/kg. In comparison, although a
similar result holds for Lasso, it requires sample size of order ||3|o In(p/||5]lo). Again, group Lasso
has a significant advantage if k/||3|lo < In(p/||Blo), g < ||8]l0, and p is large.

The following corollary is for even sized groups, and the result is simpler to interpret. For standard
Lasso, B = O(y/Inp), and for group Lasso, B = O(vInm). The benefit of group Lasso is the division
of B% by kg in the bound, which is a significant improvement when the dimensionality p is large.
The disadvantage of group Lasso is that the signal sparsity ||3]|o is replaced by the group sparsity
k. This is not an artifact of our analysis, but rather a fundamental drawback inherent to the group
Lasso formulation. The effect is observable, as shown in our simulation studies.

COROLLARY 5.2 (Even group size). Suppose that Assumption 4.1 and Assumption 4.2 are valid.
Assume also that all groups are of equal sizes: ko = kj for j =1,...,m. Giwenn € (0,1), let

A = (Ao + B)/V,

where A > 4max; py (G;)/?(a + day/n) and B > 4max; py (G;)/2(by/In(m/n) + dby/n). Let B be
a (k,k/ko) strongly group-sparse signal. With probability larger than 1 —n, if

6vV2(ps(k+€) — p_(2k +20))/p_(k+ ) < +/4/k

for some € > 0 that is a multiple of ko, then the solution of (1) satisfies:

16 = Bllz < p—(k+ )~ (V45 + 4.5€/k~)\/A2 + B?//go\/k/n,

6. Parameter Estimation Lower Bound. The following parameter estimation lower bound
applies to all statistical estimators. In order to simplify the proof, we intentionally exclude the
Q(k/n) term from the lower bound (see comments in the proof), as this is a well-known term from
the classical parametric statistics.

THEOREM 6.1.  Given an n x p design matriz X, we define V3 € RP the following probability

density for'y € R":
1 3112 /(902

(v) = — —  o~lly=XBl3/(20%)
= & .
pﬁ(y) (271')”/20'”
Let H(g,k) be the family of (g,k) strongly group-sparse signals in RP with respect to a set of m
pre-defined groups with even group size kg = p/m, where k = gko. Let 5(y) € RP be an arbitrary
statistical estimator of B based on'y ~ pg. If g < m/2, then we have

; 5 p—(29)

sup By IX(B(y) = B3 > 0? o—

Gergr) 7 ? 32p1(29)
7

[gIn((m —g)/g) — (g +2)In4].



It 1mplies the following lower bound on the 2-norm parameter estimation error:

R _ _(2¢
Sup Eyeps |B(y) - B3 > 02220

Bet(g.k) S6mp, (229 ((m = 9)/9) = (9 +2)In4].

The theorem shows that under the sparse eigenvalue conditions, the advantage of group Lasso
over standard Lasso is real. For standard sparsity, we take kg = 1, and the parameter estima-
tion lower bound is Q(k1In(p/k)/n). Since Lasso does not take advantage of group structure, it
follows that there exists a k-sparse signal for which Lasso can only achieve parameter estimation
error of Q(kIn(p/k)/n), independent of the signal’s group structure. In comparison, if this signal
is (g, k) strongly group-sparse with respect to a pre-defined group structure, then the lower bound
is Q(gln(m/g)/n). Since the classical parametric statistics implies that the lower bound for any
statistical estimator cannot be better than Q(k/n) with k features, we obtain a lower bound of
Q((k+ gln(m/g))/n) under strong group-sparsity (with even group size), which matches our upper
bound obtained for group Lasso. This means that group Lasso achieves the optimal minimax rate
for 2-norm parameter estimation up to a constant factor that depends on p(-) and p_(-).

Moreover, we note that in the setting of compressive sensing, the RIP condition at sparsity
k requires Q(kIn(p/k)) random projections. In general, Q(kln(p/k)) random projections are also
needed in order to reconstruct a k-sparse signal. This claim follows from some classical n-width
results in approximation theory. However, similar results for group-sparsity is not simple to derive.
Therefore we shall not include such results here.

7. Simulation Studies. We want to verify our theory by comparing group Lasso to Lasso on
simulation data. For quantitative evaluation, the recovery error is defined as the relative difference in
2-norm between the estimated sparse coefficient vector f.s; and the ground-truth sparse coefficient
p: Hﬁest - ﬁ||2/||ﬁ||2

The regularization parameter A in Lasso is chosen with five-fold cross validation. In group Lasso,
we simply suppose the regularization parameter \; = (A\/k;)/y/n for j = 1,2,...,m. The regular-
ization parameter A is then chosen with five-fold cross validation. Here we set B = 0 in the formula
A;j = O(A\/k; + B). Since the relative performance of group Lasso versus standard Lasso is similar
with other values of B, in order to avoid redundancy, we do not include results with B # 0.

7.1. Even group size. In this set of experiments, the projection matrix X is generated by creating
an n X p matrix with i.i.d. draws from a standard Gaussian distribution N(0,1). For simplicity, the
rows of X are normalized to unit magnitude. Zero-mean Gaussian noise with standard deviation
o = 0.01 is added to the measurements. Our task is to compare the recovery performance of Lasso
and Group Lasso for these (g, k) strongly group sparse signals.

7.1.1. With correct group structure. In this experiment, we randomly generate (g, k) strongly
group sparse coefficients with values +1, where p = 512, k = 64 and g = 16. There are 128 groups
with even group size of kg = 4. Here the group structure coincides with the signal sparsity: & = ||3]o.

Figure 1 shows an instance of generated sparse coefficient vector and the recovered results by
Lasso and group Lasso respectively when n = 3k = 192. Since the sample size n is only three times
the signal sparsity k, the standard Lasso does not achieve good recovery results, whereas the group
Lasso achieves near perfect recovery of the original signal.

Figure 2(a) shows the effect of sample size n, where we report the averaged recover error over 100
random runs for each sample size. Group Lasso is clearly superior in this case. These results show
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that the the group Lasso can achieve better recovery performance for (g, k) strongly group sparse
signals with fewer measurements, which is consistent with our theory.

(a) Original
2 T T

AW

_2 L L L L L L L L L L
50 100 150 200 250 300 350 400 450 500

(b) Lasso

o

50 100 150 200 250 300 350 400 450 500
(b) Group Lasso

L

_2 L L L L L L L L L L
50 100 150 200 250 300 350 400 450 500

o

Fia 1. Recovery results when the assumed group structure is correct. (a) Original data; (b) results with Lasso (recovery
error is 0.3444); (c¢) results with Group Lasso (recovery error is 0.0419)

To study the effect of the group number g (with k fixed), we set the sample size n = 160 and
then change the group number while keeping other parameters unchanged. Figure 2(b) shows the
recovery performance of the two algorithms, averaged over 100 random runs for each sample size. As
expected, the recovery performance for Lasso is independent to the group number within statistical
error. Moreover, the recovery results for group Lasso are significantly better when the group number
g is much smaller than the sparsity k = 64. When g = k, the group Lasso becomes identical to
Lasso, which is expected. This shows that the recovery performance of group Lasso degrades when
g/k increases, which confirms our theory.

7.1.2. With incorrect group structure. In this experiment, we assume that the known group
structure is not exactly the same as the sparsity of the signal (that is, & > [|3|lo). We randomly
generate strongly group sparse coefficients with values 1, where p = 512, ||3|lo = 64 and g = 16.
In the first experiment, we let k = 4(|3||o, and use m = 32 groups with even group size of kg = 16.

Figure 3 shows one instance of the generated sparse signal and the recovered results by Lasso and
group Lasso respectively when n = 3||3|lo = 192. In this case, the standard Lasso obtains better
recovery results than the group Lasso. Figure 2(a) shows the effect of sample size n, where we report
the averaged recover error over 100 random runs for each sample size. The group Lasso recovery
performance is clearly inferior to that of the Lasso. This shows that group Lasso fails when k/| 3o
is relatively large, which is consistent with our theory.

To study the effect of k/||3||o on the group Lasso performance, we keep ||3||o fixed, and simply
vary the group size as kg = 1,2,4,8,16,32,64 with k/| 3|0 = 1,1,1,2,4,8,16. Figure 4(b) shows
the performance of the two algorithms with different group sizes kg in terms of recovery error. It
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F1a 2. Recovery performance: (a) recovery error vs. sample size ratio n/k; (b) recovery error vs. group number g

shows that the performance of group Lasso is better when k/||3||o = 1. However, when k/||3]jo > 1,
the performance of group Lasso deteriorates.

(a) Original
oAt
0 100 200 N La550300 400 500

0 100 200 300 400 500

(c) Group Lasso
2 T T T T T

0 100 200 300 400 500

Fi1G 3. Recovery results when the assumed group structure is incorrect. (a) Original data; (b) results with Lasso
(recovery error is 0.3616); (c) results with Group Lasso (recovery error is 0.6688)

7.2. Uneven group size. In this set of experiments, we randomly generate (g, k) strongly sparse
coefficients with values 41, where p = 512, and g = 4. There are 64 uneven sized groups. The
projection matrix X and noises are generated as in the even group size case. Our task is to compare
the recovery performance of Lasso and Group Lasso for (g, k) strongly sparse signals with ||3]o = k.
To reduce the variance, we run each experiment 100 times and report the average performance.

In the first experiment, the group sizes of 64 groups are randomly generated and the g = 4 active
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Fic 4. Recovery performance: (a) recovery error vs. sample size ratio n/k; (b) recovery error vs. group size ko

groups are randomly extracted from these 64 groups. Figure 5(a) shows the recovery performance
of Lasso and group Lasso with increasing sample size (measurements) in terms of recovery error.
Similar to the case of even group size, the group Lasso obtains better recovery results than those
with Lasso. It shows that the group Lasso is superior when the group sizes are randomly uneven.

1.2

T T T T
= ¥ =Lasso = ¥ = Lasso
—&6— Group Lasso —&— Group Lasso

o
@

0.8F

061

Recovery Error
o
>
Recovery Error

0.4r

o
IS

0.2r 0.2r

0 o
[ 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Sample Size Ratio (n/k) Sample Size Ratio (n/k)
(a) (b)

Fia 5. Recovery performance: (a) g active groups have randomly uneven group sizes; (b) half of g active groups are
single element groups and another half of g active groups have large group size

As discussed after Theorem 5.1, because group Lasso favors large sized groups, if the signal is
contained in small sized groups, then the performance of group Lasso can be relatively poor. In
order to confirm this claim of Theorem 5.1, we consider the special case where 32 groups have large
group sizes and each of the remaining 32 groups has only one element. First, we consider the case
where half of g = 4 active groups are extracted from the single element groups and the other half
of g = 4 active groups are extracted from the groups with large size. Figure 5(b) shows the signal
recovery performance of Lasso and group Lasso. It is clear that the group Lasso performs better,
but the results are not as good as those of Figure 5(a).

Moreover, Figure 6(a) shows the recovery performance of Lasso and group Lasso when all of the
g = 4 active groups are extracted from large sized groups. We observe that the relative performance
of group Lasso improves. Finally, Figure 6(b) shows the recovery performance of Lasso and group
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Lasso when all of the g = 4 active groups are extracted from single element groups. It is obvious
that the group Lasso is inferior to Lasso in this case. This confirms the prediction of Theorem 5.1
that suggests that group Lasso favors large sized groups.

120 = ¥ =Lasso i 12 = ¥ = Lasso i
) —6— Group Lasso ) —&— Group Lasso

o
)
o
)

o
>
<

o
@
Recovery Error

Recovery Error

o
IS
o
IS

0.2r

H

3 4 5 6 7 15 20 25
Sample Size Ratio (n/k) Sample Size Ratio (n/k)

(a) (b)

o

=)
o
o

—qg="
ik
‘f

Fi1G 6. Recovery performance: (a) all g active groups have large group size; (b) all g active groups are single element
groups

8. Conclusion. In this paper we introduced a concept called strong group sparsity that char-
acterizes the signal recovery performance of group Lasso. In particular, we showed that group Lasso
is superior to standard Lasso when the underlying signal is strongly group-sparse:

e Group Lasso is more robust to noise due to the stability associated with group structure.
e Group Lasso requires a smaller sample size to satisfy the sparse eigenvalue condition required
in the modern sparsity analysis.

However, group Lasso can be inferior if the signal is only weakly group-sparse, or covered by groups
with small sizes. Moreover, group Lasso does not perform well with overlapping groups (which is
not analyzed in this paper). Better learning algorithms are needed to overcome these limitations.
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APPENDIX A: PROOF OF PROPOSITION 4.1

Without loss of generality, we may assume o; > 0 for all ¢ (otherwise, we can still let o; > 0 and
then just take the limit o; — 0 for some 7).

For notation simplicity, we remove the subscript j from the group index, and consider group G
with k variables.

Let ¥ be the diagonal matrix with o; as its diagonal elements. We can find an n x k matrix

7 = Xa(XLSXg)™5, such that ZTSZ = Iy, Let € = Z7 (e — Be) € RE. Since Vv € R™,
I(X&Xa) "0 X vl = (27 2)"°Z ]2,

we have

I(XGXe) X5 (e —Ee)|l _ - v Z(Z272) 2T
£re ~ veRn v ZZTv
VAN A Y TAVADWAY
Taer wu eemeu’ (2 2

v Y 9
+— <o
v

< sup

veRn U

Therefore, we only need to show that with probability at least 1 — n for all n € (0, 1):

(3) I€]l2 < aVk + by/=1Inn
with a =1 and b = /2.

To prove this inequality, we note that the condition Z'XZ = I} means that the covariance
matrix of £ is Ij, . Therefore the components of £ are £ iid Gaussians N (0, 1), and the distribution of
€1|3 is x%. Many methods have been suggested to approximate the tail probability of x? distribution.
For example, a well-known approximation of ||£||2 is the normal N(v/k —0.5,0.5), which would

imply a = b =1 in (3). The weaker bound with @ = 1 and b = /2 can be obtained through direct
integration.

APPENDIX B: PROOF OF PROPOSITION 4.2

We consider the f0119wing group-greedy procedure starting with 5O = 3. and form (k(é),g(z))
strongly group sparse 5 as follows for £ =1,2,...

o let 71 = XB(Z_D — Ey,
o let jO = argmaxj[H(ngXGj)_O'E’ngr(z_l)||2/w/kja% + B3],
e let 5©) = 3= and then reset its coefficients in group G as Bg} = ng)_—(ng XGj)_ngjr(f_l)

where j = j©.
13



It is not difficult to check that
e D13 = 11r O3 = (X &, Xa,) 07X, rE3,

kO — -1 < k;, g0 — =D <1, with j = j©. Therefore if for all 0 < £ < t, we have

arg max [”(ngXGj)_O'E’ngT(Z)Hg/\/]ﬁjag + bg} > nA/y\/ ka3 + b3,

then by summing over £ = 1,...,t,t+ 1, we obtain

t+1
nA? =[r O3 = 31V 1E — 1]

>nz (Y — kD62 + (¢ — g2 A? ) (kak + b2)

Sl — R+ (g — R (4 )

This implies that
D2 1+ gt DR2 < 2(ka2 + gbR).

Therefore if we let t be the first time KD a2 + gt > (ka2 + gb3), then there exists £ < t,
such that 3’ = 8 satisfies the requirement.
APPENDIX C: PROOF OF PROPOSITION 4.3
The following lemma is taken from [9].

LemMmA C.1.  Consider the unit sphere S¥=1 = {x : ||lz]lo = 1} in R¥ (k > 1). Given any
e > 0, there exists an e-cover Q C S*~1 such that mingeq ||z — qll2 < € for all ||z|s = 1, with

QI < (1+2/¢).

The following concentration result for y? distribution is similar to Proposition 4.1, and can be
obtained from direct integration. We skip the detailed calculation. This is where the Gaussian
assumption is used in the proof. A similar result holds for sub-Gaussian random variables.

LEMMA C.2. Let & € R™ be a vector of n iid standard Gaussian variables: & ~ N(0,1). Then
Ve > 0: ,
Pr{llgle — vl > ¢ < 3e/2.

The derivation of the following estimate employs a standard proof technique (for example, see

10]).

LemMa C.3. Suppose X is generated according to Proposition 4.5. For any fixed set S C
{1,...,p} with |S| =k and 0 < § < 1, we have with probability exceeding 1 — 3(1 + 8/8)ke—0"/8.

(4) (1 =d)lsll2 < \/—HXsﬂﬂz (1+9)115]2

for all § € R
14



PROOF. It is enough to prove the conclusion in the case of ||3]|2 = 1. According to Lemma C.1,
given € > 0, there exists a finite set Q = {g;} with |Q] < (1 + 2/e1)* such that ||g;|l2 = 1 for all 4,
and min; || — ¢;l]2 < € for all ||5]|2 = 1.

For each 4, Since elements of £ = Xgg; are iid Gaussians N (0, 1), Lemma C.2 implies that Ve > 0:

Pr [ Xsqill2 — vVallaillz] > Vaes] < 3e7%/2,

Taking union bound for all ¢; € @), we obtain with probability exceeding 1 — 3(1 + 2/61)k6_n€%/2:
for all ¢; € Q,

1
(I—€) < %||quz'||2 < (1+e).
Now, we define p as the smallest nonnegative number such that
1
Vn

for all B € R¥ with ||3||2 = 1. Since for all |32 = 1, we can find ¢; € Q such that |3 — ¢|2 < €1,
we have

(5) [XsBllz < (1+p)

1 XsBll2 < | Xsqill2 + 1 Xs(B — @i)ll2 < vVn(l+ €2 + (1 + p)er),

where we used (5) in the derivation. Since p is the smallest non-negative constant for which (5)
holds, we have

V(1 +p) < vVl + e+ (14 pler),

which implies that
p<(e1+e)/(1—e)

Now we choose €; = §/4 and e; = 0/2. Since 0 < § < 1, it is easy to see that p < §. This proves the
upper bound. For the lower bound, we note that for all ||3||2 =1 with [|5 — gi||2 < €1, we have

1 XsBll2 > [ Xsaillz — 1 Xs(6 — qi)ll2 > vVn(l — e2 — (14 p)er),
which leads to the desired result. O

Proof of Proposition 4.3. For each subset S C {1,...,m} of groups with |[S| < ¢ and
|Gs| < k, we know from C.3 that for all 3 such that supp(8) C Gg:

1
(1= 8)8ll2 < —=1XBl < (1 + )5
with probability exceeding 1 — 3(1 + 8/5)’“6—”52/8.

Since the number of such groups S can be no more than CJ, < (em/g)?, by taking the union
bound, we know that the group RIP in Equation (2) fails with probability less than

3(em/g)9 (1 + 8/8)ke™0"/8 < 7,
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APPENDIX D: TECHNICAL LEMMAS

The following lemmas are adapted from [15] to handle group sparsity structure. Similar techniques
can be found in |2]. The first lemma is in |15].

LEMMA D.1. Let A = X" X/n, and let I and J be non-overlapping indices in {1,...,p}. We
have

147 ll2 < /(o1 (1) — p—(T U D) (p(J) = p—(1 U J)),

where the matriz 2-norm is defined as || A1 jll2 = SUP|y|p=|ofo=1 luT Ag vl

The next lemma uses the previous result to control the contribution of the non-signal part G¢ of
an error vector u to the product ugAG,chGc.

LEMMA D.2. Given u € RP and S C {1,...,m}. Consider £ > 1 and define

A%:min{ZA§:yGS,\ze}.

jes’

Let So C {1,...,m} — S contain indices j of largest values of ||ug,|l2/X; (7 & S), and satisfies the
condition { < |Gg,| <+ ko. Let G = Gs UGg,. Then

S lug B < @A)7HY Allug, Il
JESUSy Jj¢s

and

Tyl
> ueXgXaug
J¢SUSo

<A (IGL L+ ko = Ducllz Y Ajllug,ll2,
J¢s
where p (|G|, t+ko—1) = \/(p+(IG]) — p—(|G] + €+ ko — 1)) (p+ (€ + ko — 1) — p— (|G + £+ ko — 1)).

1
n

Proor. Without loss of generality, we assume that S = {1,...,¢g}, and we assume that j > g
is in descending order of [lug,||2/A;. Let So,S1,... be the first, second, etc, consecutive blocks of
J > g, such that ¢ <|Gg, | < ¢+ ko (except for the last Si). If we let GF = G, , then:

> lug,li < Z Ajllugllz | | max |jug, ||2/>\]

#5080 L5050 L #5US0
<| 3 Al e r.gsnnuajnm]
Li#5US0 L7&=0
<

S Al ] | S Al o/ 3 Ag}

Lj¢SUSo _jES() JE€So

_jgs Aillug, ||2] ‘
= 402
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This proves the first inequality of the lemma. Note that the second inequality follows from the
descending order of ||ug, |l2/A; for j > g. Similarly, we have

Do lugrlla =2 D7 lluc, I3

k>1 k>1\ jESk

<3S IS Nlug, | max [[ug, [[2/A;
k>1\l jes, =k
<> Iy Aj||uaj||2¢gn luc ll2/A;
k>1\/ jes, IETh

<SS Nllugylla, [ Y0 Alugslla/ Y A2

k>1\ jeSg JESK_1 JESk-1
AT IS Nllug,llz. | D0 Ajlug, |2
k>1\ jESy JESK_1
_ 1
ANy 3 > Nllugllz+ D2 Ajlug, |2
k>1 JESK JESK_1
AT TN Nllug, llz = A7 Allug, llo-
k>0 5ES) j2S
Therefore
n! Z ugngXGjqu <n! Z lu& X & X grugr|
JESUSy k>1
-1 T
<nTH Y [1XG Xanllallugs ll2lluc 12
k>1
<pr(IGL L+ ko — Dllugll2 Y lugr 2
k>1
<p (|G, L+ ko — DA uall2 Y Ajllug, ll2-
Jgs

Note that Lemma D.1 is used to bound ||X5ng\|2. This proves the second inequality of the
lemma. O

The following lemma shows that the group Lj-norm of the group Lasso estimator’s non-signal
part is small (compared to the group Lj-norm of the parameter estimation error in the signal part).

LEMMA D.3.  Let supp(B) € Gg for some S C {1,...,m}. Assume that for all j:
N > dpy (G2 (XE, Xa,) T PXE ell2 /v

Then the solution of (1) satisfies:

> ||, |, <33 AsllBe, — el

Jgs Jjes
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PRrRoOOF. The first order condition is:

(6) 2XTX(6—B)—2X e+ i Ajnv; = 0,
j=1

where v; = ng/ HBG?

) when ng # 0; [Jvjll2 < 1 and supp(v;) C G when ng = 0. It implies that
ﬂij = ”ﬂGj”27 ‘(ﬂ - B)ij’ < ”(B - /B)GjH2'

By multiplying both sides by (B —3)T, we obtain

0>-28-3)TXTX(B-8)=-28-8)"X"e+> Nn(B—B) v,

j=1
Therefore
>N HBGJ' 2
j¢s
<" AilBe, — fella +2(3 - B) X Te/n
JjES
<3 Aile, = oyl +2 Y- o (G5 = o, Il (X8, X)X ela/
jES g=1
<3 AillBa, = Ballz + 0.5 X113 = B,
jes 7=l

Note that the last inequality follows from the assumption of the lemma. By simplifying the above
inequality, we obtain the desired bound. ]

The following lemma bounds parameter estimation error by combining the previous two lemmas.

LEMMA D.4. Let supp(B) € Gg for some S C {1,...,m}. Consider £ > 1 and let s = |Gg| +
{+ ko — 1. Define

A2 :min{z e ze},

jes’

P (s,5 —|Gsl) Z\/(p+(8) —p-(2s = [Gs))(p+(s — |Gs]) — p-(25 — |Gs])).

If for all j: " . -
Aj > 4py(G)Y [(Xe, Xe;)™ / Xe,el2/vn,

and

pulss —1Ga) _ A

p-(s) T e N

6

then the solution of (1) satisfies:

15— B)ll2 < pi;(i) (1 + 157! ZA?) oz

JjeSs jes
18



PROOF. Define Sy as in Lemma D.2. Let G = Ujesus, G- By multiplying both sides of (6) by
(B — B), we obtain

28 = B)GXEX(B = B) =28 = B)eX e+ D Mn(B—B)b,u =0.

jeSUSH

Similar to the proof in Lemma D.3, we use the assumptions on \; to obtain:

(7) B - B)EXeX

, =3 S NlBa, = Ba,lle-
jeSs

J€So

Now, Lemma D.2 implies that

(6= B)GXEX (6~ B)
>(6— B)eXEXG (B = Bl — pr(s,s — [GsDAZ (B = Blall2 Y Al (6 = B, l2-
JES

By applying Lemma D.3, we have

n" (B~ B)EXEX (B~ B)
>p_(G)I(B = B)alls — 3p+(s,s — |GsDAZ(B = B)ell2 D A8 = B, 12

jes

p—(G)N(B = B)all3 — 3p4(s,5 — [GsDA" |3 N2(8 - B)all3

jes
>0.50-(G)||(8 — Ball3-

The assumption of the lemma is used to derive the last inequality. Now plug this inequality into
(7), we have

15 = B)al3 < 1.5p-(G)™" D NliBa, — Ba,llz < 1.50-(G) ™" [ M2(6 — B)gl2-

JjES JjES

This implies o
13 = B)cl} < 2.25p_(G) 72> A%

jeS
Now Lemma D.2 and Lemma D.3 imply that
12

1B = B3~ 18— B)cll3 <0.250=2 ZA 13 = B)c,l2
J¢S J
12

<2.2502% | YN8 = B)g, 2
LJES

<2.25072 3" M2)|(B - B)cll3-

JES

By combining the previous two displayed inequalities, we obtain the lemma. O
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APPENDIX E: PROOF OF THEOREM 5.1
Assumption 4.1 implies that with probability larger than 1 — 7, uniformly for all groups j, we

have
(X4, X)X (e — Ee)l|2 < ay/k; + by/In(m/n).

It follows that with the choice of A, B, and Aj, \j > 4p4(G)'2(|(X5, Xa,)~/? X5, ell2//n for all
Jj. Moreover, assumptions of the theorem also imply that py(s,s —|Gg|) < p+(s) — p—(2s), and

prlss—IGsl) _pels) —p-(25) _ _ VIR TGP _ A
p-(s) T () T T 6V2(RAT+gBY) T 6, [y gAY

Note that we have used ¢ o/[A%k; + B?] <nYjce AF <230 [A%k; + B2
Therefore the conditions of Lemma D.4 are satisfied. Its conclusion implies that

15— Bl <15 (1 - 1-5A:1¢Z A?) \/Z x

p—( jes jes

Spi‘(i) <1 " 4%) \/];9>A§

pi‘(i) (1 + i) \/2(A%k + B2g) /n.

<

This proves the theorem.

APPENDIX F: PROOF OF THEOREM 6.1

First, we recall the standard definition of KL divergence:
Dk r(psllpg) = / pa(y) In(pz(y)/ps(y))dy.
y

Our proof relies on the following lower bound result, with an appropriately chosen B C H(g, k) to
be determined later. Although the bound is related to other standard lower-bound techniques such
as Fano’s inequality, it is easier to apply for our purpose. The lemma itself is a special case of a
more general lower bound theorem in [14] with uniform prior on B; it is a direct translation using
our notations.

LemMmA F.1.  Consider an arbitrary finite set B C RP and let N = |B|. For an arbitrary estimator
/B(Y) S RP Of/B f’r‘om y Npﬁ_’ we have

! 5.4 N
el Eyp. | X(B — B(y)|2 > 0.5suple: inf In— — >2Ap +1n4d;,
NB%B sl 2= Al pere {BERP: [ X (B —P)II5 < e} 7

where Ap = N2 ZB,B’GB DKL(pBHp[;,).
The following result relates KL-divergence and in-sample prediction error.
LEmMA F.2. We have

X (3 — B)|2
Dicelpling) = 0P
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PROOF. By definition, we have

Dir(psllpg) = /y e DAYV I0(03()/p5(y))dy
:/ L ly-xBI3/20%) oy = XBI3 - lly - Xﬁ”zd
y€eR? (271')”/20" 202
_ IX(B - B3

202 ’

which implies the lemma. ]

The following result is used to define a set B in order to apply Lemma F.1.

LEMMA F.3.  Given positive integer g < m/2. Let N be the largest number such that there exist
subsets S1,...,Sy CA{1,...,m}: |S;| =g and |S; — S;| > g fori # j. Then we have

InN > 0.5gIn((m —g+1)/(49)).

PROOF. Let Sy be a subset of {1,...,m} of cardinality g, chosen uniformly at random without
replacement. Then for each j =1,..., N:

¢
E£>g/2ccg— . Z C( g! (m—g)2

PliSo = Sjl <ol =—"¢7 Ol mi(m + £ — 29)!

0>g/2 (9

¢
<Y ¢ mi)lg_ S Clg/(m — g+ 1))/
0>g/2 m g+ ) 0>g/2
<29(g/(m — g+ 1)),
Since N is the largest, for any Sy, there exists j such that [Sy — S;| < g. It follows that

N
= P[3j:So—Sj| < gl <D P[ISo— Sj| < g] < N(dg/(m — g+ 1))9/2.
j=1

This implies the desired bound. U

Now we can apply Lemma F.1 with the following B. Let § = o+/(2np+(2¢9))~1In(N/4), where
= |B|. We choose B C H(g, k) such that each 3 € B has components 3; € {0,5/v'k}. Moreover,
we assume that any two different elements 3, 3’ € B satisfy the separation condition |3 — 3|2 > 6.
Lemma F.3 implies that we can find such a set B (for each j in Lemma F.3, we define a corresponding
3 € B with supp(3) = Gg,) so that N = |B| > (m — g + 1)"59 /(44)%%9.
We observe that B has the property that for any two different elements 3,3’ € B

52 / X AN / 52
p-20)2% < o2 )\m20_m\2_ H (6206)H2§np( )Hﬁ2 il < prl2o) ™.

Therefore, in Lemma F.1, we have

X(3- 33 ng®
Ap< swp Drlpglpg) = sup IO <) 00) ™ < 05 1m(nvya),
B3 eB B,3'eB g g
21



This means if we pick ¢ = np_(2g)6%/4 in Lemma F.1, then V3’ € RP: {3 € B : [|X(B8 - 3|3 <
€}| <1 and thus

1 3_ A 2 _ 2 p—(29)
N BEZBEWHW — BDIE 2 08¢ = 0% 16==0 S In(N/4),

which proves the first lower-bound of the theorem.

Note that the estimator 3(y) does not have to be in H(g, k). In order to see that the first lower
bound implies the second lower bound, let B’(y) be the best 2-norm approximation of ﬁ(y) in
H(g,k) (i.e., keeping the g groups of B(y) with largest values). Then simple algebra implies that
16(y) = BlI3 = 15'(y) = BII3/3 = (3np+(29) | X(5'(y) — B)[13- Now the first lower-bound of the
theorem, applied to || X (3'(y) — B)||3, implies the desired lower bound for ||3(y) — 3||3.

Finally, we observe that the above definition of B only considers the effect of choosing ¢ out
of m groups. We intentionally skipped the effect of estimating coefficients within any selected k
features to simplify the calculation. From the proof of Lemma F.3, it is not hard to see that we
can incorporate this effect and increase In N to Q(k + gln(m/g)). This will give an improved lower
bound.
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