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sTHE BENEFIT OF GROUP SPARSITYBy Junzhou HuangComputer S
ien
e Department, Rutgers UniversityBy Tong ZhangStatisti
s Department, Rutgers UniversityThis paper develops a theory for group Lasso using a 
on
ept
alled strong group sparsity. Our result shows that group Lasso issuperior to standard Lasso for strongly group-sparse signals. Thisprovides a 
onvin
ing theoreti
al justi�
ation for using group sparseregularization when the underlying group stru
ture is 
onsistent withthe data. Moreover, the theory predi
ts some limitations of the groupLasso formulation that are 
on�rmed by simulation studies.1. Introdu
tion. We are interested in the sparse learning problem for least squares regression.Consider a set of p basis ve
tors {x1, . . . ,xp} where xj ∈ R
n for ea
h j. Here, n is the sample size.Denote by X the n × p data matrix, with 
olumn j of X being xj . Given an observation y =

[y1, . . . , yn] ∈ R
n that is generated from a sparse linear 
ombination of the basis ve
tors plus asto
hasti
 noise ve
tor ǫ ∈ R

n:
y = Xβ̄ + ǫ =

d
∑

j=1

β̄jxj + ǫ,where we assume that the target 
oe�
ient β̄ is sparse. Throughout the paper, we 
onsider �xeddesign only. That is, we assume X is �xed, and randomization is with respe
t to the noise ǫ (andthus the observation y). Note that we do not assume that the noise ǫ is zero-mean.De�ne the support of a sparse ve
tor β ∈ R
p as

supp(β) = {j : βj 6= 0},and ‖β‖0 = |supp(β)|. A natural method for sparse learning is L0 regularization:
β̂L0 = arg min

β∈Rp
‖Xβ − y‖2

2 subje
t to ‖β‖0 ≤ k,where k is the sparsity. Sin
e this optimization problem is generally NP-hard, in pra
ti
e, one often
onsider the following L1 regularization problem, whi
h is the standard 
onvex relaxation of L0:
β̂L1 = arg min

β∈Rp

[

1

n
‖Xβ − y‖2

2 + λ‖β‖1

]

,where λ is an appropriately 
hosen regularization parameter. This method is often referred to asLasso in the statisti
al literature.In pra
ti
al appli
ations, one often knows a group stru
ture on the 
oe�
ient ve
tor β̄ so thatvariables in the same group tend to be zeros or nonzeros simultaneously. The purpose of this paperis to show that if su
h a stru
ture exists, then better results 
an be obtained.1imsart-aos ver. 2007/09/18 file: group-v2.tex date: September 10, 2009
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2. Strong Group Sparsity. For simpli
ity, we shall only 
onsider non-overlapping groups inthis paper, although our analysis 
an be adapted to handle moderately overlapping groups (that is,ea
h feature is only 
overed by a 
onstant number of groups, and the resulting analysis depends onthis 
onstant).Assume that {1, . . . , p} = ∪m
j=1Gj is partitioned into m disjoint groups G1, G2, . . . , Gm: Gi∩Gj =

∅ when i 6= j. Moreover, throughout the paper, we let kj = |Gj |, and k0 = maxj∈{1,...,m} kj. Given
S ⊂ {1, . . . ,m} that denotes a set of groups, we de�ne GS = ∪j∈SGj .Given a subset of variables F ⊂ {1, . . . , p} and a 
oe�
ient ve
tor β ∈ R

p, let βF be the ve
torin R
|F | whi
h is identi
al to β in F . Similar, XF is the n × |F | matrix with 
olumns identi
al to Xin F .The following method, often referred to as group Lasso, has been proposed to take advantage ofthe group stru
ture:(1) β̂ = arg min

β





1

n
‖Xβ − y‖2

2 +
m

∑

j=1

λj‖βGj
‖2



 .The purpose of this paper is to develop a theory that 
hara
terizes the performan
e of (1). Weare interested in 
onditions under whi
h group Lasso yields better estimate of β̄ than the standardLasso.Instead of the standard sparsity assumption, where the 
omplexity is measured by the number ofnonzero 
oe�
ients k, we introdu
e the strong group sparsity 
on
ept below. The idea is to measurethe 
omplexity of a sparse signal using group sparsity in addition to 
oe�
ient sparsity.Definition 2.1. A 
oe�
ient ve
tor β̄ ∈ R
p is (g, k) strongly group-sparse if there exists a set

S of groups su
h that
supp(β̄) ⊂ GS , |GS | ≤ k, |S| ≤ g.The new 
on
ept is referred to as strong group-sparsity be
ause k is used to measure the sparsityof β̄ instead of ‖β̄‖0. If this notion is bene�
ial, then k/‖β̄‖0 should be small, whi
h means thatthe signal has to be e�
iently 
overed by the groups. In fa
t, the group Lasso method does notwork well when k/‖β̄‖0 is large. In that 
ase, the signal is only weak group sparse, and one needs touse ‖β̄‖0 to pre
isely measure the real sparsity of the signal. Unfortunately, su
h information is notin
luded in the group Lasso formulation, and there is no simple �x of this problem using variationsof group Lasso. This is be
ause our theory requires that the group Lasso regularization term isstrong enough to dominate the noise, and the strong regularization 
auses a bias of the order O(k)whi
h 
annot be removed. This is one fundamental drawba
k whi
h is inherent to the group Lassoformulation.We shall mention that this paper fo
uses on the s
enario that ea
h group is �nite dimensional,and our analysis relies on the overall sparsity k. For some appli
ations, ea
h group may be anin�nite dimensional Hilbert spa
e, and the group Lasso 
an be used to learn 
ombinations of kernels(see [1, 5℄ for analysis and referen
es). For su
h problems, our analysis does not apply be
ause thesparsity k may be in�nity. Also in su
h 
ase, Lasso 
annot be run and thus group Lasso will be theonly natural formulation.3. Related Work. The idea of using group stru
ture to a
hieve better sparse re
overy per-forman
e has re
eived mu
h attention. For example, group sparsity has been 
onsidered for si-multaneous sparse approximation [12℄ and multi-task 
ompressive sensing [4℄ from the Bayesian2



hierar
hi
al modeling point of view. Under the Bayesian hierar
hi
al model framework, data fromall sour
es 
ontribute to the estimation of hyper-parameters in the sparse prior model. The sharedprior 
an then be inferred from multiple sour
es. Although the idea 
an be justi�ed using standardBayesian intuition, there are no theoreti
al results showing how mu
h better (and under what kindof 
onditions) the resulting algorithms perform.In [11℄, the authors attempted to derive a bound on the number of samples needed to re
overblo
k sparse signals, where the 
oe�
ients in ea
h blo
k are either all zero or all nonzero. In ourterminology, this 
orresponds to the 
ase of group sparsity with equal size groups. The algorithm
onsidered there is a spe
ial 
ase of (1) with λj → 0+. However, their result is very loose, and doesnot demonstrate the advantage of group Lasso over standard Lasso.In the statisti
al literature, the group Lasso (1) has been studied by a number of authors [1, 5, 7,8, 13℄. There were no theoreti
al results in [13℄. Although some theoreti
al results were developedin [1, 7℄, neither showed that group Lasso is superior to the standard Lasso. In parti
ular, although[7℄ is related to our work (in the sense that it also studies parameter estimation error), the analysisdoes not try to show the advantage of group Lasso over standard Lasso.The authors of [5℄ showed that group Lasso 
an be superior to standard Lasso when ea
h group isan in�nite dimensional kernel, by using an argument 
ompletely di�erent from ours (they relied onthe fa
t that meaningful analysis 
an be obtained for kernel methods in in�nite dimension). Theiridea 
annot be adapted to show the advantage of group Lasso in �nite dimensional s
enarios ofinterests su
h as in the standard 
ompressive sensing setting. Therefore our analysis, whi
h fo
useson the latter, is 
omplementary to their work.Another related work is [8℄, where the authors 
onsidered a spe
ial 
ase of group Lasso in themulti-task learning s
enario, and showed that the number of samples required for re
overing theexa
t support set may be smaller for group Lasso under appropriate 
onditions. The analysis is quitetight but with di�erent assumptions than what we make in this paper. That is, there are majordi�eren
es between our analysis and their analysis. For example, the group formulation we 
onsiderhere is more general and in
ludes the multi-task s
enario as a spe
ial 
ase. Moreover, we study signalre
overy performan
e in 2-norm instead of the exa
t re
overy of support set in their analysis. Thesparse eigenvalue 
ondition employed in this work is di�erent from the irrepresentable type 
onditionin their analysis (whi
h is required for exa
t support set re
overy). Under our assumptions, eitherLasso nor group Lasso may be able to re
over the exa
t support set.In the above 
ontext, the main 
ontribution of this work is the introdu
tion of the strong groupsparsity 
on
ept, under whi
h a satisfa
tory theory of group Lasso is developed. Our result showsthat strongly group sparse signals 
an be estimated more reliably using group Lasso, in that itrequires fewer number of samples in the 
ompressive sensing setting, and is more robust to noise inthe statisti
al estimation setting.Finally, we shall mention that independent of the authors, results similar to those presented inthis paper have also been obtained in [6℄ with a similar te
hni
al analysis. However, while our paperstudies the general group Lasso formulation, only the spe
ial 
ase of multi-task learning is 
onsideredin [6℄.4. Assumptions. The following assumption on the noise is important in our analysis. It 
ap-tures an important advantage of group Lasso over standard Lasso under the strong group sparsityassumption.Assumption 4.1 (Group noise 
ondition). There exist non-negative 
onstants a, b su
h that forany �xed group j ∈ {1, . . . ,m}, and η ∈ (0, 1): with probability larger than 1−η, the noise proje
tion3



to the j-th group is bounded by:
‖(X⊤

Gj
XGj

)−0.5X⊤
Gj

(ǫ − Eǫ)‖2 ≤ a
√

kj + b
√

− ln η.The importan
e of the assumption is that the 
on
entration term √− ln η does not depend on
k. This reveals a signi�
ant bene�t of group Lasso over standard Lasso: that is, the 
on
entrationterm does not in
rease when the group size in
reases. This implies that if we 
an 
orre
tly guess thegroup sparsity stru
ture, the group Lasso estimator is more stable with respe
t to sto
hasti
 noisethan the standard Lasso.We shall point out that this assumption holds for independent sub-Gaussian noise ve
tors, where
et(ǫi−Eǫi) ≤ et2σ2/2 for all t and i = 1, . . . , n. It 
an be shown that one may 
hoose a = 2.8 and
b = 2.4 when η ∈ (0, 0.5). Sin
e a 
omplete treatment of sub-Gaussian noise is not important forthe purpose of this paper, we only prove this assumption under independent Gaussian noise, whi
h
an be dire
tly 
al
ulated.Proposition 4.1. Assume the noise ve
tor ǫ are independent Gaussians: ǫi − Eǫi ∼ N(0, σ2

i ),where ea
h σi ≤ σ (i = 1, . . . , n). Then Assumption 4.1 holds with a = σ and b =
√

2σ.The next assumption handles the 
ase that true target is not exa
tly sparse. That is, we onlyassume that Xβ̄ ≈ Ey.Assumption 4.2 (Group approximation error 
ondition). There exist δa, δb ≥ 0 su
h that forall group j ∈ {1, . . . ,m}: the proje
tion of error mean Eǫ to the j-th group is bounded by:
‖(X⊤

Gj
XGj

)−0.5X⊤
Gj

Eǫ‖2/
√

n ≤
√

kjδa + δb.As mentioned earlier, we do not assume that the noise is zero-mean. Hen
e Eǫ may not equalzero. In other words, this 
ondition 
onsiders the situation that the true target is not exa
tly sparse.It resembles algebrai
 noise in [15℄ but takes the group stru
ture into a

ount. Similar to [15℄, wehave the following result.Proposition 4.2. Consider a (g, k) strongly group sparse 
oe�
ient ve
tor β̄ su
h that
1

n
‖Xβ̄ − Ey‖2

2 ≤ ∆2,and a0, b0 ≥ 0. Then there exists (g′, k′) strongly group sparse β̄′ su
h that k′a2
0+g′b2

0 ≤ 2(ka2
0+gb2

0),
‖Xβ̄′ − Ey‖2 ≤ ‖Xβ̄ − Ey‖2, supp(β̄) ⊂ supp(β̄′), and for all group j:

‖(X⊤
Gj

XGj
)−0.5X⊤

Gj
(Xβ̄′ − Ey)‖2/

√
n ≤ (a0

√

kj + b0)∆/
√

ka2
0 + b2

0.The proposition shows that if the approximation error of β̄ is ∆ = ‖Xβ̄ − Ey‖2/
√

n, then wemay �nd an alternative target β̄′ with similar sparsity for whi
h we 
an take δa = a0∆/
√

ka2
0 + b2

0and δb = b0∆/
√

ka2
0 + b2

0 in Assumption 4.2. This means that in Theorem 5.1 below, by 
hoosing
a0 = a and b0 = b

√

ln(m/η), the 
ontribution of the approximation error to the re
onstru
tion error
‖β̂− β̄‖2 is O(∆). Note that this assumption does not show the bene�t of group Lasso over standardLasso. Therefore in order to 
ompare our results to that of the standard Lasso, one may 
onsider4



the simple situation where δa = δb = 0. That is, the target is exa
tly sparse. The only reason toin
lude Assumption 4.2 is to illustrate that our analysis 
an handle approximate sparsity.The last assumption is a sparse eigenvalue 
ondition, used in the modern analysis of Lasso (e.g.,[2, 15℄). It is also 
losely related to (and slightly weaker than) the RIP (restri
ted isometry property)assumption [3℄ in the 
ompressive sensing literature. This assumption takes advantage of groupstru
ture, and 
an be 
onsidered as (a weaker version of) group RIP. We introdu
e a de�nitionbefore stating the assumption.Definition 4.1. For all F ⊂ {1, . . . , p}, de�ne
ρ−(F ) = inf

{

1

n
‖Xβ‖2

2/‖β‖2
2 : supp(β) ⊂ F

}

,

ρ+(F ) = sup

{

1

n
‖Xβ‖2

2/‖β‖2
2 : supp(β) ⊂ F

}

.Moreover, for all 1 ≤ s ≤ p, de�ne
ρ−(s) = inf{ρ−(GS) : S ⊂ {1, . . . ,m}, |GS | ≤ s},
ρ+(s) = sup{ρ+(GS) : S ⊂ {1, . . . ,m}, |GS | ≤ s}.Assumption 4.3 (Group sparse eigenvalue 
ondition). There exist s, c > 0 su
h that

ρ+(s) − ρ−(2s)

ρ−(s)
≤ c.Assumption 4.3 illustrates another advantage of group Lasso over standard Lasso. Sin
e weonly 
onsider eigenvalues for sub-matri
es 
onsistent with the group stru
ture {Gj}, the ratio

ρ+(s)/ρ−(s) 
an be signi�
antly smaller than the 
orresponding ratio for Lasso (whi
h 
onsid-ers all subsets of {1, . . . , p} up to size s). For example, assume that all group sizes are identi
al
k1 = . . . = km = k0, and s is a multiple of k0. For random proje
tions used in 
ompressive sensingappli
ations, only n = O(s + (s/k0) ln m) proje
tions are needed for Assumption 4.3 to hold. In
omparison, for standard Lasso, we need n = O(s ln p) proje
tions. The di�eren
e 
an be signi�
antwhen p and k0 are large. More pre
isely, we have the following random proje
tion sample 
omplexitybound for the group sparse eigenvalue 
ondition. Although we assume Gaussian random matrix inorder to state expli
it 
onstants, it is 
lear that similar results hold for other sub-Gaussian randommatri
es.Proposition 4.3 (Group-RIP). Suppose that elements in X are iid standard Gaussian randomvariables N(0, 1). For any t > 0 and δ ∈ (0, 1), let

n ≥ 8

δ2
[ln 3 + t + k ln(1 + 8/δ) + g ln(em/g)].Then with probability at least 1−e−t, the random matrix X ∈ R

n×p satis�es the following group-RIPinequality for all (g, k) strongly group-sparse ve
tor β̄ ∈ R
p,(2) (1 − δ)‖β̄‖2 ≤ 1√

n
‖Xβ̄‖2 ≤ (1 + δ)‖β̄‖2.5



5. Main Results. Our main result is the following signal re
overy (2-norm parameter estima-tion error) bound for group Lasso.Theorem 5.1. Suppose that Assumption 4.1, Assumption 4.2, and Assumption 4.3 are valid.Take λj = (A
√

kj + B)/
√

n, where both A and B 
an depend on data y. Given η ∈ (0, 1), withprobability larger than 1 − η, if the following 
onditions hold:
• A ≥ 4maxj ρ+(Gj)

1/2(a + δa
√

n),
• B ≥ 4maxj ρ+(Gj)

1/2(b
√

ln(m/η) + δb
√

n),
• β̄ is a (g, k) strongly group-sparse 
oe�
ient ve
tor,
• s ≥ k + k0,
• Let ℓ = s − (k − k0) + 1, and gℓ = min{|S| : |GS | ≥ ℓ, S ⊂ {1, . . . ,m}}, we have

c2 ≤ ℓA2 + gℓB
2

72(kA2 + gB2)
,then the solution of (1) satis�es:

‖β̂ − β̄‖2 ≤
√

4.5

ρ−(s)
√

n
(1 + 0.25c−1)

√

A2k + gB2.The �rst four 
onditions of the theorem are not 
riti
al, as they are just de�nitions and 
hoi
esfor λj . The �fth assumption is 
riti
al, whi
h means that the group sparse eigenvalue 
ondition hasto be satis�ed with some c that is not too large. In order to satisfy the 
ondition, ℓ should be 
hosenrelatively large as the right hand side is linear in ℓ. However, this implies that s also grow linearly. Itis possible to �nd s so that the 
ondition is satis�ed when c2 in Assumption 4.3 grows sub-linearlyin s. Consider the situation that δa = δb = 0. If the 
onditions of Theorem 5.1 is satis�ed, then
‖β̂ − β̄‖2

2 = O((k + g ln(m/η))/n).In 
omparison, The Lasso estimator 
an only a
hieve the bound
‖β̂L1 − β̄‖2

2 = O((‖β̄‖0 ln(p/η))/n).If k/‖β̄‖0 ≪ ln(p/η) (whi
h means that the group stru
ture is useful) and g ≪ ‖β̄‖0, then the groupLasso is superior. This is 
onsistent with intuition. However, if k ≫ ‖β̄‖0 ln(p/η), then group Lassois inferior. This happens when the signal is not strongly group sparse.Theorem 5.1 also suggests that if the group sizes are not even, then group Lasso may not workwell when the signal is 
ontained in small sized groups. This is be
ause in su
h 
ase gℓ 
an besigni�
antly smaller than g even with relatively large ℓ, whi
h means we have to 
hoose a large sand small c, implying a poor bound. This predi
tion is 
on�rmed in Se
tion 7.2 using simulateddata. Intuitively, group Lasso favors large sized groups be
ause the 2-norm regularization for largegroup size is weaker. Adjusting regularization parameters λj not only fails to work in theory, butalso impra
ti
al sin
e it is unrealisti
 to tune many parameters. This unstable behavior with respe
tto uneven group size may be regarded as another drawba
k of the group Lasso formulation.In the following, we present two simpli�
ations of Theorem 5.1 that are easier to interpret. The�rst is the 
ompressive sensing 
ase, whi
h does not 
onsider sto
hasti
 noise.Corollary 5.1 (Compressive sensing). Suppose that Assumption 4.1 and Assumption 4.2 arevalid with a = b = δb = 0. Take λj = 4
√

kj maxj ρ+(Gj)
1/2δa. Let β̄ be a (k, g) strongly group-sparse6



signal, ℓ = k, and s = 2k + k0 − 1. If (ρ+(s) − ρ−(2s))/ρ−(s) ≤ 1/
√

72, then the solution of (1)satis�es:
‖β̂ − β̄‖2 ≤ 6

√
2 + 18

ρ−(s)
max

j
ρ+(Gj)

1/2δa
√

k.If δa = 0, then we 
an a
hieve exa
t re
overy. Moreover, Proposition 4.2 implies that we may
hoose a target with similar sparsity su
h that δa
√

k = O(‖Xβ̄ − Ey‖2/
√

n). This implies a bound
‖β̂ − β̄‖2 = O(‖Xβ̄ − Ey‖2/

√
n).If we have even sized groups, the number of samples n required for Corollary 5.1 to hold (that is,

(ρ+(s) − ρ−(2s))/ρ−(s) ≤ 1/
√

72) is O(k + g ln(m/g)), where g = k/k0. In 
omparison, although asimilar result holds for Lasso, it requires sample size of order ‖β̄‖0 ln(p/‖β̄‖0). Again, group Lassohas a signi�
ant advantage if k/‖β̄‖0 ≪ ln(p/‖β̄‖0), g ≪ ‖β̄‖0, and p is large.The following 
orollary is for even sized groups, and the result is simpler to interpret. For standardLasso, B = O(
√

ln p), and for group Lasso, B = O(
√

ln m). The bene�t of group Lasso is the divisionof B2 by k0 in the bound, whi
h is a signi�
ant improvement when the dimensionality p is large.The disadvantage of group Lasso is that the signal sparsity ‖β̄‖0 is repla
ed by the group sparsity
k. This is not an artifa
t of our analysis, but rather a fundamental drawba
k inherent to the groupLasso formulation. The e�e
t is observable, as shown in our simulation studies.Corollary 5.2 (Even group size). Suppose that Assumption 4.1 and Assumption 4.2 are valid.Assume also that all groups are of equal sizes: k0 = kj for j = 1, . . . ,m. Given η ∈ (0, 1), let

λj = (A
√

k0 + B)/
√

n,where A ≥ 4maxj ρ+(Gj)
1/2(a + δa

√
n) and B ≥ 4maxj ρ+(Gj)

1/2(b
√

ln(m/η) + δb
√

n). Let β̄ bea (k, k/k0) strongly group-sparse signal. With probability larger than 1 − η, if
6
√

2(ρ+(k + ℓ) − ρ−(2k + 2ℓ))/ρ−(k + ℓ) <
√

ℓ/kfor some ℓ > 0 that is a multiple of k0, then the solution of (1) satis�es:
‖β̂ − β̄‖2 ≤ ρ−(k + ℓ)−1(

√
4.5 + 4.5ℓ/k)

√

A2 + B2/k0

√

k/n.6. Parameter Estimation Lower Bound. The following parameter estimation lower boundapplies to all statisti
al estimators. In order to simplify the proof, we intentionally ex
lude the
Ω(k/n) term from the lower bound (see 
omments in the proof), as this is a well-known term fromthe 
lassi
al parametri
 statisti
s.Theorem 6.1. Given an n × p design matrix X, we de�ne ∀β̄ ∈ R

p the following probabilitydensity for y ∈ R
n:

pβ̄(y) =
1

(2π)n/2σn
e−‖y−Xβ̄‖2

2
/(2σ2).Let H(g, k) be the family of (g, k) strongly group-sparse signals in R

p with respe
t to a set of mpre-de�ned groups with even group size k0 = p/m, where k = gk0. Let β̂(y) ∈ R
p be an arbitrarystatisti
al estimator of β̄ based on y ∼ pβ̄. If g < m/2, then we have

sup
β̄∈H(g,k)

Ey∼pβ̄
‖X(β̂(y) − β̄)‖2

2 ≥ σ2 ρ−(2g)

32ρ+(2g)
[g ln((m − g)/g) − (g + 2) ln 4].7



It implies the following lower bound on the 2-norm parameter estimation error:
sup

β̄∈H(g,k)

Ey∼pβ̄
‖β̂(y) − β̄‖2

2 ≥ σ2 ρ−(2g)

96nρ+(2g)2
[g ln((m − g)/g) − (g + 2) ln 4].The theorem shows that under the sparse eigenvalue 
onditions, the advantage of group Lassoover standard Lasso is real. For standard sparsity, we take k0 = 1, and the parameter estima-tion lower bound is Ω(k ln(p/k)/n). Sin
e Lasso does not take advantage of group stru
ture, itfollows that there exists a k-sparse signal for whi
h Lasso 
an only a
hieve parameter estimationerror of Ω(k ln(p/k)/n), independent of the signal's group stru
ture. In 
omparison, if this signalis (g, k) strongly group-sparse with respe
t to a pre-de�ned group stru
ture, then the lower boundis Ω(g ln(m/g)/n). Sin
e the 
lassi
al parametri
 statisti
s implies that the lower bound for anystatisti
al estimator 
annot be better than Ω(k/n) with k features, we obtain a lower bound of

Ω((k + g ln(m/g))/n) under strong group-sparsity (with even group size), whi
h mat
hes our upperbound obtained for group Lasso. This means that group Lasso a
hieves the optimal minimax ratefor 2-norm parameter estimation up to a 
onstant fa
tor that depends on ρ+(·) and ρ−(·).Moreover, we note that in the setting of 
ompressive sensing, the RIP 
ondition at sparsity
k requires Ω(k ln(p/k)) random proje
tions. In general, Ω(k ln(p/k)) random proje
tions are alsoneeded in order to re
onstru
t a k-sparse signal. This 
laim follows from some 
lassi
al n-widthresults in approximation theory. However, similar results for group-sparsity is not simple to derive.Therefore we shall not in
lude su
h results here.7. Simulation Studies. We want to verify our theory by 
omparing group Lasso to Lasso onsimulation data. For quantitative evaluation, the re
overy error is de�ned as the relative di�eren
e in2-norm between the estimated sparse 
oe�
ient ve
tor βest and the ground-truth sparse 
oe�
ient
β̄: ‖βest − β̄‖2/‖β̄‖2.The regularization parameter λ in Lasso is 
hosen with �ve-fold 
ross validation. In group Lasso,we simply suppose the regularization parameter λj = (λ

√

kj)/
√

n for j = 1, 2, ...,m. The regular-ization parameter λ is then 
hosen with �ve-fold 
ross validation. Here we set B = 0 in the formula
λj = O(A

√

kj + B). Sin
e the relative performan
e of group Lasso versus standard Lasso is similarwith other values of B, in order to avoid redundan
y, we do not in
lude results with B 6= 0.7.1. Even group size. In this set of experiments, the proje
tion matrix X is generated by 
reatingan n× p matrix with i.i.d. draws from a standard Gaussian distribution N(0, 1). For simpli
ity, therows of X are normalized to unit magnitude. Zero-mean Gaussian noise with standard deviation
σ = 0.01 is added to the measurements. Our task is to 
ompare the re
overy performan
e of Lassoand Group Lasso for these (g, k) strongly group sparse signals.7.1.1. With 
orre
t group stru
ture. In this experiment, we randomly generate (g, k) stronglygroup sparse 
oe�
ients with values ±1, where p = 512, k = 64 and g = 16. There are 128 groupswith even group size of k0 = 4. Here the group stru
ture 
oin
ides with the signal sparsity: k = ‖β̄‖0.Figure 1 shows an instan
e of generated sparse 
oe�
ient ve
tor and the re
overed results byLasso and group Lasso respe
tively when n = 3k = 192. Sin
e the sample size n is only three timesthe signal sparsity k, the standard Lasso does not a
hieve good re
overy results, whereas the groupLasso a
hieves near perfe
t re
overy of the original signal.Figure 2(a) shows the e�e
t of sample size n, where we report the averaged re
over error over 100random runs for ea
h sample size. Group Lasso is 
learly superior in this 
ase. These results show8



that the the group Lasso 
an a
hieve better re
overy performan
e for (g, k) strongly group sparsesignals with fewer measurements, whi
h is 
onsistent with our theory.
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Fig 1. Re
overy results when the assumed group stru
ture is 
orre
t. (a) Original data; (b) results with Lasso (re
overyerror is 0.3444); (
) results with Group Lasso (re
overy error is 0.0419)To study the e�e
t of the group number g (with k �xed), we set the sample size n = 160 andthen 
hange the group number while keeping other parameters un
hanged. Figure 2(b) shows there
overy performan
e of the two algorithms, averaged over 100 random runs for ea
h sample size. Asexpe
ted, the re
overy performan
e for Lasso is independent to the group number within statisti
alerror. Moreover, the re
overy results for group Lasso are signi�
antly better when the group number
g is mu
h smaller than the sparsity k = 64. When g = k, the group Lasso be
omes identi
al toLasso, whi
h is expe
ted. This shows that the re
overy performan
e of group Lasso degrades when
g/k in
reases, whi
h 
on�rms our theory.7.1.2. With in
orre
t group stru
ture. In this experiment, we assume that the known groupstru
ture is not exa
tly the same as the sparsity of the signal (that is, k > ‖β̄‖0). We randomlygenerate strongly group sparse 
oe�
ients with values ±1, where p = 512, ‖β̄‖0 = 64 and g = 16.In the �rst experiment, we let k = 4‖β̄‖0, and use m = 32 groups with even group size of k0 = 16.Figure 3 shows one instan
e of the generated sparse signal and the re
overed results by Lasso andgroup Lasso respe
tively when n = 3‖β̄‖0 = 192. In this 
ase, the standard Lasso obtains betterre
overy results than the group Lasso. Figure 2(a) shows the e�e
t of sample size n, where we reportthe averaged re
over error over 100 random runs for ea
h sample size. The group Lasso re
overyperforman
e is 
learly inferior to that of the Lasso. This shows that group Lasso fails when k/‖β̄‖0is relatively large, whi
h is 
onsistent with our theory.To study the e�e
t of k/‖β̄‖0 on the group Lasso performan
e, we keep ‖β̄‖0 �xed, and simplyvary the group size as k0 = 1, 2, 4, 8, 16, 32, 64 with k/‖β̄‖0 = 1, 1, 1, 2, 4, 8, 16. Figure 4(b) showsthe performan
e of the two algorithms with di�erent group sizes k0 in terms of re
overy error. It9
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(b)Fig 2. Re
overy performan
e: (a) re
overy error vs. sample size ratio n/k; (b) re
overy error vs. group number gshows that the performan
e of group Lasso is better when k/‖β̄‖0 = 1. However, when k/‖β̄‖0 > 1,the performan
e of group Lasso deteriorates.
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Fig 3. Re
overy results when the assumed group stru
ture is in
orre
t. (a) Original data; (b) results with Lasso(re
overy error is 0.3616); (
) results with Group Lasso (re
overy error is 0.6688)7.2. Uneven group size. In this set of experiments, we randomly generate (g, k) strongly sparse
oe�
ients with values ±1, where p = 512, and g = 4. There are 64 uneven sized groups. Theproje
tion matrix X and noises are generated as in the even group size 
ase. Our task is to 
omparethe re
overy performan
e of Lasso and Group Lasso for (g, k) strongly sparse signals with ‖β̄‖0 = k.To redu
e the varian
e, we run ea
h experiment 100 times and report the average performan
e.In the �rst experiment, the group sizes of 64 groups are randomly generated and the g = 4 a
tive10
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(b)Fig 4. Re
overy performan
e: (a) re
overy error vs. sample size ratio n/k; (b) re
overy error vs. group size k0groups are randomly extra
ted from these 64 groups. Figure 5(a) shows the re
overy performan
eof Lasso and group Lasso with in
reasing sample size (measurements) in terms of re
overy error.Similar to the 
ase of even group size, the group Lasso obtains better re
overy results than thosewith Lasso. It shows that the group Lasso is superior when the group sizes are randomly uneven.
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(b)Fig 5. Re
overy performan
e: (a) g a
tive groups have randomly uneven group sizes; (b) half of g a
tive groups aresingle element groups and another half of g a
tive groups have large group sizeAs dis
ussed after Theorem 5.1, be
ause group Lasso favors large sized groups, if the signal is
ontained in small sized groups, then the performan
e of group Lasso 
an be relatively poor. Inorder to 
on�rm this 
laim of Theorem 5.1, we 
onsider the spe
ial 
ase where 32 groups have largegroup sizes and ea
h of the remaining 32 groups has only one element. First, we 
onsider the 
asewhere half of g = 4 a
tive groups are extra
ted from the single element groups and the other halfof g = 4 a
tive groups are extra
ted from the groups with large size. Figure 5(b) shows the signalre
overy performan
e of Lasso and group Lasso. It is 
lear that the group Lasso performs better,but the results are not as good as those of Figure 5(a).Moreover, Figure 6(a) shows the re
overy performan
e of Lasso and group Lasso when all of the
g = 4 a
tive groups are extra
ted from large sized groups. We observe that the relative performan
eof group Lasso improves. Finally, Figure 6(b) shows the re
overy performan
e of Lasso and group11



Lasso when all of the g = 4 a
tive groups are extra
ted from single element groups. It is obviousthat the group Lasso is inferior to Lasso in this 
ase. This 
on�rms the predi
tion of Theorem 5.1that suggests that group Lasso favors large sized groups.
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(b)Fig 6. Re
overy performan
e: (a) all g a
tive groups have large group size; (b) all g a
tive groups are single elementgroups8. Con
lusion. In this paper we introdu
ed a 
on
ept 
alled strong group sparsity that 
har-a
terizes the signal re
overy performan
e of group Lasso. In parti
ular, we showed that group Lassois superior to standard Lasso when the underlying signal is strongly group-sparse:
• Group Lasso is more robust to noise due to the stability asso
iated with group stru
ture.
• Group Lasso requires a smaller sample size to satisfy the sparse eigenvalue 
ondition requiredin the modern sparsity analysis.However, group Lasso 
an be inferior if the signal is only weakly group-sparse, or 
overed by groupswith small sizes. Moreover, group Lasso does not perform well with overlapping groups (whi
h isnot analyzed in this paper). Better learning algorithms are needed to over
ome these limitations.Referen
es.[1℄ Fran
is R. Ba
h. Consisten
y of the group lasso and multiple kernel learning. JMLR, 9:1179�1225, 2008.[2℄ Peter Bi
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e bounds for least squares regression with l1 regularization. Ann. Statist.,37(5A):2109�2144, 2009.APPENDIX A: PROOF OF PROPOSITION 4.1Without loss of generality, we may assume σi > 0 for all i (otherwise, we 
an still let σi > 0 andthen just take the limit σi → 0 for some i).For notation simpli
ity, we remove the subs
ript j from the group index, and 
onsider group Gwith k variables.Let Σ be the diagonal matrix with σi as its diagonal elements. We 
an �nd an n × k matrix
Z = XG(X⊤

GΣXG)−0.5, su
h that Z⊤ΣZ = Ik×k. Let ξ = Z⊤(ǫ − Eǫ) ∈ R
k. Sin
e ∀v ∈ R

n,
‖(X⊤

GXG)−0.5X⊤
Gv‖2 = ‖(Z⊤Z)−0.5Z⊤v‖2,we have

‖(X⊤
GXG)−0.5X⊤

G (ǫ − Eǫ)‖2
2

ξ⊤ξ
≤ sup

v∈Rn

v⊤Z(Z⊤Z)−1Z⊤v

v⊤ZZ⊤v

= sup
u∈Rk

u⊤(Z⊤Z)−1u

u⊤u
= sup

u∈Rk

u⊤Z⊤ΣZu

u⊤(Z⊤Z)u

≤ sup
v∈Rn

v⊤Σv

v⊤v
≤ σ2.Therefore, we only need to show that with probability at least 1 − η for all η ∈ (0, 1):(3) ‖ξ‖2 ≤ a

√
k + b

√

− ln ηwith a = 1 and b =
√

2.To prove this inequality, we note that the 
ondition Z⊤ΣZ = Ik×k means that the 
ovarian
ematrix of ξ is Ik×,k. Therefore the 
omponents of ξ are k iid Gaussians N(0, 1), and the distribution of
‖ξ‖2

2 is χ2. Many methods have been suggested to approximate the tail probability of χ2 distribution.For example, a well-known approximation of ‖ξ‖2 is the normal N(
√

k − 0.5, 0.5), whi
h wouldimply a = b = 1 in (3). The weaker bound with a = 1 and b =
√

2 
an be obtained through dire
tintegration. APPENDIX B: PROOF OF PROPOSITION 4.2We 
onsider the following group-greedy pro
edure starting with β̄(0) = β̄, and form (k(ℓ), g(ℓ))strongly group sparse β̄(ℓ) as follows for ℓ = 1, 2, . . .

• let r(ℓ−1) = Xβ̄(ℓ−1) − Ey,
• let j(ℓ) = arg maxj[‖(X⊤

Gj
XGj

)−0.5X⊤
Gj

r(ℓ−1)‖2/
√

kja2
0 + b2

0],
• let β̄(ℓ) = β̄(ℓ−1); and then reset its 
oe�
ients in group Gj as β̄

(ℓ)
Gj

= β̄
(ℓ)
Gj

−(X⊤
Gj

XGj
)−1X⊤

Gj
r(ℓ−1),where j = j(ℓ). 13



It is not di�
ult to 
he
k that
‖r(ℓ−1)‖2

2 − ‖r(ℓ)‖2
2 = ‖(X⊤

Gj
XGj

)−0.5X⊤
Gj

r(ℓ−1)‖2
2,

k(ℓ) − k(ℓ−1) ≤ kj, g(ℓ) − g(ℓ−1) ≤ 1, with j = j(ℓ). Therefore if for all 0 ≤ ℓ ≤ t, we have
arg max

j

[

‖(X⊤
Gj

XGj
)−0.5X⊤

Gj
r(ℓ)‖2/

√

kja
2
0 + b2

0

]

≥ √
n∆/

√

ka2
0 + b2

0,then by summing over ℓ = 1, . . . , t, t + 1, we obtain
n∆2 =‖r(0)‖2

2 ≥
t+1
∑

ℓ=1

[‖r(ℓ−1)‖2
2 − ‖r(ℓ)‖2

2]

≥n
t+1
∑

ℓ=1

[(k(ℓ) − k(ℓ−1))a2
0 + (g(ℓ) − g(ℓ−1))b2

0]∆
2/(ka2

0 + b2
0)

≥n[(k(t+1) − k)a2
0 + (g(t+1) − g)b2

0]∆
2/(ka2

0 + b2
0).This implies that

k(t+1)a2
0 + g(t+1)b2

0 ≤ 2(ka2
0 + gb2

0).Therefore if we let t be the �rst time k(t+1)a2
0 + g(t+1)b2

0 > 2(ka2
0 + gb2

0), then there exists ℓ ≤ t,su
h that β̄′ = β(ℓ) satis�es the requirement.APPENDIX C: PROOF OF PROPOSITION 4.3The following lemma is taken from [9℄.Lemma C.1. Consider the unit sphere Sk−1 = {x : ‖x‖2 = 1} in R
k (k ≥ 1). Given any

ε > 0, there exists an ε-
over Q ⊂ Sk−1 su
h that minq∈Q ‖x − q‖2 ≤ ε for all ‖x‖2 = 1, with
|Q| ≤ (1 + 2/ε)k.The following 
on
entration result for χ2 distribution is similar to Proposition 4.1, and 
an beobtained from dire
t integration. We skip the detailed 
al
ulation. This is where the Gaussianassumption is used in the proof. A similar result holds for sub-Gaussian random variables.Lemma C.2. Let ξ ∈ R

n be a ve
tor of n iid standard Gaussian variables: ξi ∼ N(0, 1). Then
∀ǫ ≥ 0:

Pr
[|‖ξ‖2 −

√
n| ≥ ǫ

] ≤ 3e−ǫ2/2.The derivation of the following estimate employs a standard proof te
hnique (for example, see[10℄).Lemma C.3. Suppose X is generated a

ording to Proposition 4.3. For any �xed set S ⊂
{1, . . . , p} with |S| = k and 0 < δ < 1, we have with probability ex
eeding 1 − 3(1 + 8/δ)ke−nδ2/8:(4) (1 − δ)‖β‖2 ≤ 1√

n
‖XSβ‖2 ≤ (1 + δ)‖β‖2for all β ∈ R

k. 14



Proof. It is enough to prove the 
on
lusion in the 
ase of ‖β‖2 = 1. A

ording to Lemma C.1,given ǫ1 > 0, there exists a �nite set Q = {qi} with |Q| ≤ (1 + 2/ǫ1)
k su
h that ‖qi‖2 = 1 for all i,and mini ‖β − qi‖2 ≤ ǫ1 for all ‖β‖2 = 1.For ea
h i, Sin
e elements of ξ = XSqi are iid Gaussians N(0, 1), Lemma C.2 implies that ∀ǫ2 > 0:

Pr
[|‖XSqi‖2 −

√
n‖qi‖2| ≥

√
nǫ2

] ≤ 3e−nǫ2
2
/2.Taking union bound for all qi ∈ Q, we obtain with probability ex
eeding 1 − 3(1 + 2/ǫ1)

ke−nǫ2
2
/2:for all qi ∈ Q,

(1 − ǫ2) ≤
1√
n
‖XSqi‖2 ≤ (1 + ǫ2).Now, we de�ne ρ as the smallest nonnegative number su
h that(5) 1√

n
‖XSβ‖2 ≤ (1 + ρ)for all β ∈ R

k with ‖β‖2 = 1. Sin
e for all ‖β‖2 = 1, we 
an �nd qi ∈ Q su
h that ‖β − qi‖2 ≤ ǫ1,we have
‖XSβ‖2 ≤ ‖XSqi‖2 + ‖XS(β − qi)‖2 ≤ √

n(1 + ǫ2 + (1 + ρ)ǫ1),where we used (5) in the derivation. Sin
e ρ is the smallest non-negative 
onstant for whi
h (5)holds, we have √
n(1 + ρ) ≤ √

n(1 + ǫ2 + (1 + ρ)ǫ1),whi
h implies that
ρ ≤ (ǫ1 + ǫ2)/(1 − ǫ1).Now we 
hoose ǫ1 = δ/4 and ǫ2 = δ/2. Sin
e 0 < δ < 1, it is easy to see that ρ ≤ δ. This proves theupper bound. For the lower bound, we note that for all ‖β‖2 = 1 with ‖β − qi‖2 ≤ ǫ1, we have

‖XSβ‖2 ≥ ‖XSqi‖2 − ‖XS(β − qi)‖2 ≥ √
n(1 − ǫ2 − (1 + ρ)ǫ1),whi
h leads to the desired result.Proof of Proposition 4.3. For ea
h subset S ⊂ {1, . . . ,m} of groups with |S| ≤ g and

|GS | ≤ k, we know from C.3 that for all β su
h that supp(β) ⊂ GS :
(1 − δ)‖β‖2 ≤ 1√

n
‖Xβ‖2 ≤ (1 + δ)‖β‖2with probability ex
eeding 1 − 3(1 + 8/δ)ke−nδ2/8.Sin
e the number of su
h groups S 
an be no more than Cg

m ≤ (em/g)g , by taking the unionbound, we know that the group RIP in Equation (2) fails with probability less than
3(em/g)g(1 + 8/δ)ke−nδ2/8 ≤ e−t.

15



APPENDIX D: TECHNICAL LEMMASThe following lemmas are adapted from [15℄ to handle group sparsity stru
ture. Similar te
hniques
an be found in [2℄. The �rst lemma is in [15℄.Lemma D.1. Let A = X⊤X/n, and let I and J be non-overlapping indi
es in {1, . . . , p}. Wehave
‖AI,J‖2 ≤

√

(ρ+(I) − ρ−(I ∪ J))(ρ+(J) − ρ−(I ∪ J)),where the matrix 2-norm is de�ned as ‖AI,J‖2 = sup‖u‖2=‖v‖2=1 |u⊤AI,Jv|.The next lemma uses the previous result to 
ontrol the 
ontribution of the non-signal part Gc ofan error ve
tor u to the produ
t u⊤
GAG,GcuGc .Lemma D.2. Given u ∈ R

p and S ⊂ {1, . . . ,m}. Consider ℓ ≥ 1 and de�ne
λ2
− = min







∑

j∈S′

λ2
j : |GS′ | ≥ ℓ







.Let S0 ⊂ {1, . . . ,m} − S 
ontain indi
es j of largest values of ‖uGj
‖2/λj (j /∈ S), and satis�es the
ondition ℓ ≤ |GS0

| < ℓ + k0. Let G = GS ∪ GS0
. Then

√

∑

j /∈S∪S0

‖uGj
‖2
2 ≤ (2λ−)−1

∑

j /∈S

λj‖uGj
‖2and

1

n

∣

∣

∣

∣

∣

∣

∑

j /∈S∪S0

u⊤
GX⊤

GXGj
uGj

∣

∣

∣

∣

∣

∣

≤ λ−1
− ρ̃+(|G|, ℓ + k0 − 1)‖uG‖2

∑

j /∈S

λj‖uGj
‖2,where ρ̃+(|G|, ℓ+k0−1) =

√

(ρ+(|G|) − ρ−(|G| + ℓ + k0 − 1))(ρ+(ℓ + k0 − 1) − ρ−(|G| + ℓ + k0 − 1)).Proof. Without loss of generality, we assume that S = {1, . . . , g}, and we assume that j > gis in des
ending order of ‖uGj
‖2/λj . Let S0, S1, . . . be the �rst, se
ond, et
, 
onse
utive blo
ks of

j > g, su
h that ℓ ≤ |GSk
| < ℓ + k0 (ex
ept for the last Sk). If we let Gk = GSk

, then:
∑

j /∈S∪S0

‖uGj
‖2
2 ≤





∑

j /∈S∪S0

λj‖uGj
‖2





[

max
j /∈S∪S0

‖uGj
‖2/λj

]

≤




∑

j /∈S∪S0

λj‖uGj
‖2





[

min
j∈S0

‖uGj
‖2/λj

]

≤




∑

j /∈S∪S0

λj‖uGj
‖2









∑

j∈S0

λj‖uGj
‖2/

∑

j∈S0

λ2
j





≤ [
∑

j /∈S λj‖uGj
‖2]

2

4λ2
−

.16



This proves the �rst inequality of the lemma. Note that the se
ond inequality follows from thedes
ending order of ‖uGj
‖2/λj for j > g. Similarly, we have

∑

k≥1

‖uGk‖2 =
∑

k≥1

√

∑

j∈Sk

‖uGj
‖2
2

≤
∑

k≥1

√

∑

j∈Sk

λj‖uGj
‖2

√

max
j∈Sk

‖uGj
‖2/λj

≤
∑

k≥1

√

∑

j∈Sk

λj‖uGj
‖2

√

min
j∈Sk−1

‖uGj
‖2/λj

≤
∑

k≥1

√

∑

j∈Sk

λj‖uGj
‖2

√

∑

j∈Sk−1

λj|uGj
‖2/

∑

j∈Sk−1

λ2
j

≤λ−1
−

∑

k≥1

√

∑

j∈Sk

λj‖uGj
‖2

√

∑

j∈Sk−1

λj|uGj
‖2

≤λ−1
−

∑

k≥1

1

2





∑

j∈Sk

λj‖uGj
‖2 +

∑

j∈Sk−1

λj|uGj
‖2





≤λ−1
−

∑

k≥0

∑

j∈Sk

λj‖uGj
‖2 = λ−1

−

∑

j /∈S

λj‖uGj
‖2.Therefore

n−1

∣

∣

∣

∣

∣

∣

∑

j /∈S∪S0

u⊤
GX⊤

GXGj
uGj

∣

∣

∣

∣

∣

∣

≤n−1
∑

k≥1

|u⊤
GX⊤

GXGkuGk |

≤n−1
∑

k≥1

‖X⊤
GXGk‖2‖uGk‖2‖uG‖2

≤ρ̃+(|G|, ℓ + k0 − 1)‖uG‖2

∑

k≥1

‖uGk‖2

≤ρ̃+(|G|, ℓ + k0 − 1)λ−1
− ‖uG‖2

∑

j /∈S

λj‖uGj
‖2.Note that Lemma D.1 is used to bound ‖X⊤

GXGk‖2. This proves the se
ond inequality of thelemma.The following lemma shows that the group L1-norm of the group Lasso estimator's non-signalpart is small (
ompared to the group L1-norm of the parameter estimation error in the signal part).Lemma D.3. Let supp(β̄) ∈ GS for some S ⊂ {1, . . . ,m}. Assume that for all j:
λj ≥ 4ρ+(Gj)

1/2‖(X⊤
Gj

XGj
)−1/2X⊤

Gj
ǫ‖2/

√
n.Then the solution of (1) satis�es:

∑

j /∈S

λj

∥

∥

∥β̂Gj

∥

∥

∥

2
≤ 3

∑

j∈S

λj‖β̄Gj
− β̂Gj

‖2.17



Proof. The �rst order 
ondition is:(6) 2X⊤X(β̂ − β̄) − 2X⊤ǫ +
m

∑

j=1

λjnvj = 0,where vj = β̂Gj
/

∥

∥

∥β̂Gj

∥

∥

∥

2
when β̂Gj

6= 0; ‖vj‖2 ≤ 1 and supp(vj) ⊂ Gj when β̂Gj
= 0. It implies that

β̂⊤vj = ‖β̂Gj
‖2, |(β̂ − β̄)⊤vj| ≤ ‖(β̂ − β̄)Gj

‖2.By multiplying both sides by (β̂ − β̄)⊤, we obtain
0 ≥ −2(β̂ − β̄)⊤X⊤X(β̂ − β̄) = −2(β̂ − β̄)⊤X⊤ǫ +

m
∑

j=1

λjn(β̂ − β̄)⊤vj.Therefore
∑

j /∈S

λj

∥

∥

∥β̂Gj

∥

∥

∥

2

≤
∑

j∈S

λj‖β̄Gj
− β̂Gj

‖2 + 2(β̂ − β̄)⊤X⊤ǫ/n

≤
∑

j∈S

λj‖β̄Gj
− β̂Gj

‖2 + 2
m

∑

j=1

ρ+(Gj)
1/2‖(β̂ − β̄)Gj

‖2‖(X⊤
Gj

XGj
)−1/2X⊤

Gj
ǫ‖2/

√
n

≤
∑

j∈S

λj‖β̄Gj
− β̂Gj

‖2 + 0.5
m

∑

j=1

λj‖(β̂ − β̄)Gj
‖2.Note that the last inequality follows from the assumption of the lemma. By simplifying the aboveinequality, we obtain the desired bound.The following lemma bounds parameter estimation error by 
ombining the previous two lemmas.Lemma D.4. Let supp(β̄) ∈ GS for some S ⊂ {1, . . . ,m}. Consider ℓ ≥ 1 and let s = |GS | +

ℓ + k0 − 1. De�ne
λ2
− = min







∑

j∈S′

λ2
j : |GS′ | ≥ ℓ







,

ρ̃+(s, s − |Gs|) =
√

(ρ+(s) − ρ−(2s − |GS |))(ρ+(s − |GS |) − ρ−(2s − |GS |)).If for all j:
λj ≥ 4ρ+(Gj)

1/2‖(X⊤
Gj

XGj
)−1/2X⊤

Gj
ǫ‖2/

√
n,and

6
ρ̃+(s, s − |Gs|)

ρ−(s)
≤ λ−

√

∑

j∈S λ2
j

,then the solution of (1) satis�es:
‖(β̂ − β̄)‖2 ≤ 1.5

ρ−(s)



1 + 1.5λ−1
−

√

∑

j∈S

λ2
j





√

∑

j∈S

λ2
j .18



Proof. De�ne S0 as in Lemma D.2. Let G = ∪j∈S∪S0
Gj . By multiplying both sides of (6) by

(β̂ − β̄)⊤G, we obtain
2(β̂ − β̄)⊤GX⊤

GX(β̂ − β̄) − 2(β̂ − β̄)⊤GX⊤ǫ +
∑

j∈S∪S0

λjn(β̂ − β̄)⊤Gj
vj = 0.Similar to the proof in Lemma D.3, we use the assumptions on λj to obtain:(7) 4n−1(β̂ − β̄)⊤GX⊤

GX(β̂ − β̄) +
∑

j∈S0

λj

∥

∥

∥β̂Gj

∥

∥

∥

2
≤ 3

∑

j∈S

λj‖β̂Gj
− β̄Gj

‖2.Now, Lemma D.2 implies that
(β̂ − β̄)⊤GX⊤

GX(β̂ − β̄)

≥(β̂ − β̄)⊤GX⊤
GXG(β̂ − β̄)G − ρ̃+(s, s − |GS |)λ−1

− n‖(β̂ − β̄)G‖2

∑

j /∈S

λj‖(β̂ − β̄)Gj
‖2.By applying Lemma D.3, we have

n−1(β̂ − β̄)⊤GX⊤
GX(β̂ − β̄)

≥ρ−(G)‖(β̂ − β̄)G‖2
2 − 3ρ̃+(s, s − |GS |)λ−1

− ‖(β̂ − β̄)G‖2

∑

j∈S

λj‖(β̂ − β̄)Gj
‖2

≥ρ−(G)‖(β̂ − β̄)G‖2
2 − 3ρ̃+(s, s − |GS |)λ−1

−

√

∑

j∈S

λ2
j‖(β̂ − β̄)G‖2

2

≥0.5ρ−(G)‖(β̂ − β̄)G‖2
2.The assumption of the lemma is used to derive the last inequality. Now plug this inequality into(7), we have

‖(β̂ − β̄)G‖2
2 ≤ 1.5ρ−(G)−1

∑

j∈S

λj‖β̂Gj
− β̄Gj

‖2 ≤ 1.5ρ−(G)−1
√

∑

j∈S

λ2
j‖(β̂ − β̄)G‖2.This implies

‖(β̂ − β̄)G‖2
2 ≤ 2.25ρ−(G)−2

∑

j∈S

λ2
j .Now Lemma D.2 and Lemma D.3 imply that

‖(β̂ − β̄)‖2
2 − ‖(β̂ − β̄)G‖2

2 ≤0.25λ−2
−





∑

j /∈S

λj‖(β̂ − β̄)Gj
‖2





2

≤2.25λ−2
−





∑

j∈S

λj‖(β̂ − β̄)Gj
‖2





2

≤2.25λ−2
−

∑

j∈S

λ2
j‖(β̂ − β̄)G‖2

2.By 
ombining the previous two displayed inequalities, we obtain the lemma.19



APPENDIX E: PROOF OF THEOREM 5.1Assumption 4.1 implies that with probability larger than 1 − η, uniformly for all groups j, wehave
‖(X⊤

Gj
XGj

)−0.5X⊤
Gj

(ǫ − Eǫ)‖2 ≤ a
√

kj + b
√

ln(m/η).It follows that with the 
hoi
e of A, B, and λj , λj ≥ 4ρ+(Gj)
1/2‖(X⊤

Gj
XGj

)−1/2X⊤
Gj

ǫ‖2/
√

n for all
j. Moreover, assumptions of the theorem also imply that ρ̃+(s, s − |GS |) ≤ ρ+(s) − ρ−(2s), and

ρ̃+(s, s − |GS |)
ρ−(s)

≤ ρ+(s) − ρ−(2s)

ρ−(s)
≤ c ≤

√

ℓA2 + gℓB2

6
√

2(kA2 + gB2)
≤ λ−

6
√

∑

j∈S λ2
j

.Note that we have used ∑

j∈S′[A2kj + B2] ≤ n
∑

j∈S′ λ2
j ≤ 2

∑

j∈S′[A2kj + B2].Therefore the 
onditions of Lemma D.4 are satis�ed. Its 
on
lusion implies that
‖(β̂ − β̄)‖2 ≤ 1.5

ρ−(s)



1 + 1.5λ−1
−

√

∑

j∈S

λ2
j





√

∑

j∈S

λ2
j

≤ 1.5

ρ−(s)

(

1 +
1

4c

)
√

∑

j∈S

λ2
j

≤ 1.5

ρ−(s)

(

1 +
1

4c

)

√

2(A2k + B2g)/n.This proves the theorem. APPENDIX F: PROOF OF THEOREM 6.1First, we re
all the standard de�nition of KL divergen
e:
DKL(pβ̄ ||pβ̂) =

∫

y

pβ̄(y) ln(pβ̄(y)/pβ̂(y))dy.Our proof relies on the following lower bound result, with an appropriately 
hosen B ⊂ H(g, k) tobe determined later. Although the bound is related to other standard lower-bound te
hniques su
has Fano's inequality, it is easier to apply for our purpose. The lemma itself is a spe
ial 
ase of amore general lower bound theorem in [14℄ with uniform prior on B; it is a dire
t translation usingour notations.Lemma F.1. Consider an arbitrary �nite set B ⊂ R
p and let N = |B|. For an arbitrary estimator

β̂(y) ∈ R
p of β̄ from y ∼ pβ̄, we have

1

N

∑

β̄∈B

Ey∼pβ̄
‖X(β̄ − β̂(y))‖2

2 ≥ 0.5 sup

{

ǫ : inf
β̄′∈Rp

ln
N

|{β̄ ∈ Rp : ‖X(β̄ − β̄′)‖2
2 < ǫ}| ≥ 2∆B + ln 4

}

,where ∆B = N−2 ∑

β̄,β̄′∈B DKL(pβ̄||pβ̄′).The following result relates KL-divergen
e and in-sample predi
tion error.Lemma F.2. We have
DKL(pβ̄||pβ̂) =

‖X(β̄ − β̂)‖2
2

2σ2
.20



Proof. By de�nition, we have
DKL(pβ̄||pβ̂) =

∫

y∈Rn
pβ̄(y) ln(pβ̄(y)/pβ̂(y))dy

=

∫

y∈Rn

1

(2π)n/2σn
e−‖y−Xβ̄‖2

2
/(2σ2) × ‖y − Xβ̂‖2

2 − ‖y − Xβ̄‖2
2

2σ2
dy

=
‖X(β̂ − β̄)‖2

2

2σ2
,whi
h implies the lemma.The following result is used to de�ne a set B in order to apply Lemma F.1.Lemma F.3. Given positive integer g < m/2. Let N be the largest number su
h that there existsubsets S1, . . . , SN ⊂ {1, . . . ,m}: |Sj| = g and |Si − Sj| ≥ g for i 6= j. Then we have

ln N ≥ 0.5g ln((m − g + 1)/(4g)).Proof. Let S0 be a subset of {1, . . . ,m} of 
ardinality g, 
hosen uniformly at random withoutrepla
ement. Then for ea
h j = 1, . . . , N :
P [|S0 − Sj| < g] =

∑

ℓ>g/2 Cℓ
gC

g−ℓ
m−g

Cg
m

=
∑

ℓ>g/2

Cℓ
g

g!

(g − ℓ)!

(m − g)!2

m!(m + ℓ − 2g)!

≤
∑

ℓ>g/2

Cℓ
gg

ℓ (m − g)g−ℓ

(m − g + 1)g
≤

∑

ℓ>g/2

Cℓ
g(g/(m − g + 1))g/2

≤2g(g/(m − g + 1))g/2.Sin
e N is the largest, for any S0, there exists j su
h that |S0 − Sj| < g. It follows that
1 = P [∃j : |S0 − Sj| < g] ≤

N
∑

j=1

P [|S0 − Sj | < g] ≤ N(4g/(m − g + 1))g/2.This implies the desired bound.Now, we 
an apply Lemma F.1 with the following B. Let δ = σ
√

(2nρ+(2g))−1 ln(N/4), where
N = |B|. We 
hoose B ⊂ H(g, k) su
h that ea
h β̄ ∈ B has 
omponents β̄j ∈ {0, δ/

√
k}. Moreover,we assume that any two di�erent elements β̄, β̄′ ∈ B satisfy the separation 
ondition ‖β̄ − β̄′‖2 ≥ δ.Lemma F.3 implies that we 
an �nd su
h a set B (for ea
h j in Lemma F.3, we de�ne a 
orresponding

β̄ ∈ B with supp(β̄) = GSj
) so that N = |B| ≥ (m − g + 1)0.5g/(4g)0.5g .We observe that B has the property that for any two di�erent elements β̄, β̄′ ∈ B:

ρ−(2g)
nδ2

2σ2
≤ nρ−(2g)

‖β̄ − β̄′‖2
2

2σ2
≤ ‖X(β̄ − β̄′)‖2

2

2σ2
≤ nρ+(2g)

‖β̄ − β̄′‖2
2

2σ2
≤ ρ+(2g)

nδ2

σ2
.Therefore, in Lemma F.1, we have

∆B ≤ sup
β̄,β̄′∈B

DKL(pβ̄||pβ̄′) = sup
β̄,β̄′∈B

‖X(β̄ − β̄′)‖2
2

2σ2
≤ ρ+(2g)

nδ2

σ2
≤ 0.5 ln(N/4).21



This means if we pi
k ǫ = nρ−(2g)δ2/4 in Lemma F.1, then ∀β̄′ ∈ R
p: |{β̄ ∈ B : ‖X(β̄ − β̄′)‖2

2 <
ǫ}| ≤ 1 and thus

1

N

∑

β̄∈B

Ey∼pβ̄
‖X(β̄ − β̂(y))‖2

2 ≥ 0.5ǫ = σ2 ρ−(2g)

16ρ+(2g)
ln(N/4),whi
h proves the �rst lower-bound of the theorem.Note that the estimator β̂(y) does not have to be in H(g, k). In order to see that the �rst lowerbound implies the se
ond lower bound, let β̂′(y) be the best 2-norm approximation of β̂(y) in

H(g, k) (i.e., keeping the g groups of β̂(y) with largest values). Then simple algebra implies that
‖β̂(y) − β̄‖2

2 ≥ ‖β̂′(y) − β̄‖2
2/3 ≥ (3nρ+(2g))−1‖X(β̂′(y) − β̄)‖2

2. Now the �rst lower-bound of thetheorem, applied to ‖X(β̂′(y) − β̄)‖2
2, implies the desired lower bound for ‖β̂(y) − β̄‖2

2.Finally, we observe that the above de�nition of B only 
onsiders the e�e
t of 
hoosing g outof m groups. We intentionally skipped the e�e
t of estimating 
oe�
ients within any sele
ted kfeatures to simplify the 
al
ulation. From the proof of Lemma F.3, it is not hard to see that we
an in
orporate this e�e
t and in
rease ln N to Ω(k + g ln(m/g)). This will give an improved lowerbound.Computer S
ien
e DepartmentRutgers UniversityPis
ataway,NJ 08854, USAjzhuang�eden.rutgers.edu Statisti
s DepartmentRutgers UniversityPis
ataway,NJ 08854, USAtzhang�stat.rutgers.edu
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