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Abstract

We address the problem of registering a sequence of im-
ages in a moving dynamic texture video. This involves opti-
mization with respect to camera motion, the average image,
and the dynamic texture model. This problem is highly ill-
posed and almost impossible to have good solutions without
priors. In this paper, we introduce powerful priors for this
problem, based on two simple observations: 1) registration
should simplify the dynamic texture model while preserving
all useful information. It motivates us to compute a prior for
the dynamic texture by marginalizing over specific dynam-
ics in the space of all stable auto-regressive sequences; 2)
the statistics of derivative filter responses in the average im-
age can be significantly changed by registration, and better
registration should lead to a sharper average image. This
offers us the prior of requiring the derivative distribution
of the estimated average image to be close to that learned
from the input image sequence. With these priors, a new
registration approach is proposed by marginalizing over the
“nuisance” variables under a Bayesian framework. And su-
perior motion estimation results are obtained by jointly op-
timizing over the registration parameters, the average im-
age, and the dynamic texture model. Experimental results
on real video sequences of moving dynamic textures show
convincing performance of the proposed approach.

1. Introduction

Video registration and motion analysis are required by
many video analysis applications when a video sequence is
captured by a moving camera. In the past decade, signifi-
cant progress has been made in this area. Traditional meth-
ods for image alignment generally assume that the scenes
are static, rigid and have brightness constancy [1, 2, 9, 23].
Then the optimal values of motion parameters are estimated
by minimizing some error function of sample variance of
each pixel over time. However, these assumptions do not
hold in dynamic scenes with moving dynamic textures. Ex-
amples of moving dynamic textures are shown in Figure 1.

Thus, most registration methods are likely to fail to process
dynamic scenes with moving dynamic textures.

Figure 1. Examples of moving dynamic textures, see
http://www.robots.ox.ac.uk/ awf/iccv01/.

Some efforts have been made in the literature to relax
these assumptions [5, 21, 15, 11]. The rigidity assumption
is relaxed to deal with dynamic scenes with dynamic tex-
tures [4, 22, 3]. A nonrigid scene is called a dynamic tex-
ture when it is captured by a static camera and its temporal
evolution exhibits certain stationarity, such as flowers, wa-
ter, steam and so on. In these papers, the average image
can be directly computed because the dynamic texture is
captured by a static camera. After subtracting the average
image from each frame in the video, the temporal evolution
of the dynamic texture is modeled as the output of a time
invariant linear dynamical system (LDS). The key point is
to separate image appearance and the underlying dynamics
of a scene into two processes. With classical system identi-
fication techniques, the joint model for both the appearance
and dynamics of a scene can be recovered. However, these
approaches can not handle the registration problem in mov-
ing dynamic textures, which is a video sequence of dynamic
texture, but captured by a moving camera.

Registration of moving dynamic textures involves opti-
mization with respect to both camera motion and the dy-
namic texture model. It is a typical Chicken-and-Egg prob-
lem. If we know the exact camera motion, the dynamic
texture model can be easily estimated [4]. If we know the
exact model of the captured dynamic texture, the camera
motion also can be computed using classic motion estima-
tion approaches [1, 2]. Since we know neither camera mo-
tion nor the dynamic texture model, however, we face three
key challenges in the problem of registering moving dy-



namic textures: 1) the mean image over the whole image
sequence can not be simply computed as the average im-
age and subtracted from each image for computing the LDS
model because the correspondence across image frames for
each pixel is not known due to camera motion; 2) LDS can
not be used to represent the dynamic texture model because
the appearance is no longer invariant due to camera mo-
tion; 3) the brightness constancy assumption can not be used
to estimate camera motion because the intensity of a pixel
changes due to temporal evolution of the dynamic texture.
All these challenges lead to a highly ill-posed problem.

To the best of our knowledge, there are only a few at-
tempts for the problem of moving dynamic texture registra-
tion until now. Fitzgibbon made a pioneering attempt for
this problem [6]. In his work, stochastic rigidity is intro-
duced to search for the optimal global camera motion for
registering a moving dynamic texture. The motion param-
eters are optimized simultaneously by minimizing the en-
tropy function of an auto regressive process. This attempt
for optimizing both the motion model and dynamic texture
model leads to a difficult non-linear optimization problem.
No explicit framework was introduced in [6] to estimate the
global motion model or the appearance and dynamic model
of moving dynamic textures.

In [17], Dynamic Texture Constancy Constraint (DTCC)
is introduced for camera motion estimation instead of
brightness constancy. In order to capture both the rigid cam-
era motion and nonrigid motion in dynamic scenes, a time-
varying LDS model is proposed to represent the dynamic
scenes:

x(t + 1) = Ax(t) + Bv(t)
I(t) = C(t)x(t) + w(t) (1)

However, time-varying LDS optimization is a difficult prob-
lem. In order to make this problem more tractable, it is
divided into two sub-problems: 1) optimizing dynamic tex-
ture model parameters assuming the camera motion model
parameters are known; 2) estimating motion model param-
eters assuming the dynamic texture model parameters are
known according to DTCC. Some assumptions are made:
1) the camera motion is small and thus C(t) is assumed
to be constant in each small time window [t − w + 1, t];
2) C does not depend on the view point. With the first
assumption, a time invariant LDS (A(t), B(t), C(t)) can
be learned for each time window using the method in [4].
The time-varying LDS (A∗(t), B∗(t), C∗(t)) for the whole
sequence can be obtained after normalizing the model pa-
rameters (A(t), B(t), C(t)) with respect to the same ba-
sis. With the computed model parameters of time-varying
LDS, the rigid camera motion can be estimated according to
DTCC. Compared to Fitzgibbon’s method [6], this method
results in an optimization formulation that leads to a sim-
pler computation framework to obtain better solutions for

the problem of moving dynamic texture registration.

While the DTCC-based camera motion estimation
method is simple and general, it greatly depends on the ac-
curate estimation of C(t) and A and it is thus imperative to
find a good method to efficiently obtain accurate estimates
of C(t) and A. Unfortunately, under the first assumption in
Vidal’s method [17], the camera is static within each small
time window although camera motion does exist in such
time windows. Therefore, the estimation of time invari-
ant LDS model (A(t), B(t), C(t)) for each time window
includes not only the nonrigid motion due to dynamic tex-
ture but also part of the rigid camera motion. This causes
the nonrigid motion in dynamic textures to be always over-
estimated and the rigid camera motions to be always under-
estimated. Their experimental results also showed this lim-
itation of the method [17].

In this paper, we propose a new algorithm for register-
ing a sequence of images containing moving dynamic tex-
tures. Our method is inspired by the remarkable capability
of human vision to decompose the image motion in a mov-
ing dynamic texture into rigid camera motion and nonrigid
motion in the dynamic scene. Underlying this ability are
two key observations: 1) registration according to the ac-
curate camera motion should simplify the dynamic texture
model while preserving all useful information; 2) registra-
tion according to the accurate camera motion should lead to
a sharp average image whose statistics of derivative filters
are similar to those of the original image frames. The first
observation motivates us to compute a prior for the dynamic
texture by marginalizing over the dynamics in the space of
all stable auto-regressive sequences. The second observa-
tion offers us a prior that the derivative distribution of the es-
timated average image should be close to the expected dis-
tribution learned from image frames in the video sequence.
And the more accurate the estimated camera motion param-
eters are, the closer the average image distribution should
be to the expected distribution. With these two priors, we
have both the dynamic texture and the average image of the
video imposing some constraints on the camera motion. To
the best of our knowledge, no previous method had explored
the prior based on the second observation for image regis-
tration although the prior based on the first observation has
been implicitly used in [6, 17].

In our approach, the prior model for the average image
is learned first from the image sequence. Then, the prior
model for the dynamic texture is learned by marginalizing
over the dynamics in the space of all stable auto-regressive
sequences. With these two priors, superior estimates are
obtained by optimizing over the camera motion model, the
average image, and the dynamic texture model. This results
in a general model for a moving dynamic texture, which
explicitly models the rigid camera motion and the nonrigid
motion in a dynamic scene. Furthermore, the algorithm au-



tomatically learns parameters for the average-image prior
from the image sequence. Considering that each scene will
have different underlying image statistics, the proposed al-
gorithm preserves as much richness and detail as possible
from the original scene without encountering problems with
conditioning. This will aid our approach to obtain accurate
estimates of camera motion and dynamic texture model.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the problem formulation. Our powerful
prior models are detailed in section 3. Section 4 introduces
how to perform the joint optimization for registration. Ex-
perimental results and discussions are presented in section
5 and we conclude this paper in section 6.

2. Problem Formulation

The registration of moving dynamic textures is formu-
lated as the problem of finding global motion between im-
age frames in a moving dynamic texture. After each image
frame is transformed under desired global motion, the aver-
age image of the whole sequence should have a distribution
that is similar to those of the input image frames. Moreover,
the image sequence after desired transformations should be
optimally represented by a dynamic texture model.

We assume that a known dynamic scene Y can be mod-
eled by a time invariance LDS as a dynamic texture [4]. A
video sequence I(1), I(2), ..., I(n) of this known dynamic
scene is captured by a moving camera. Given transforma-
tion parameters for registration, Θ(t), the generative image
model is introduced as follows:

I(t) = W (Θ(t))(y0 + y(t)) + w1(t)
y(t) = Cx(t) + w(t)

x(t + 1) = Ax(t) + v(t) (2)

Where, t = 1, 2, ..., n, W (Θ(t)) is a system transforma-
tion matrix for registration, I(t) and y(t) are l × 1 vectors
(l is the number of pixels in any image frame), x(t) is a
k × 1 vector which is typically the result of applying some
filtering or dimension reduction on y(t), w1(t), w(t) and
v(t) are Gaussian white noises, y0 is the mean image for
the sequence y(1), y(2), ..., y(n), A and C are the dynamic
matrix and the observation matrix respectively, for the dy-
namic texture model [4].

Figure 2 shows the generative model for a video se-
quence of moving dynamic texture. In this model, we as-
sume the observed image I(t) is i.i.d and it depends on:
the desired average image y0, the camera motion related
W (Θ(t)), and the appearance y(t) of the dynamic texture.
In this model, y(t) depends on the dynamics of the dynamic
texture, x(t); x(t) is dependent on x(t − 1), guided by
a first order autoregressive (AR) model with initialization
x0 ∼ N (0, 1).

x(t-1) x(t) x(t+1)

y(t-1) y(t) y(t+1)

I(t-1) I(t) I(t+1)

y0

W(t-1) W(t) W(t+1)

Figure 2. A directed graphical model representing a generative im-
age model for a moving dynamic texture.

For simplicity, the translation motion model is used for
camera motion to illustrate our approach 1. We suppose the
exact y0 and y(t) can be obtained after transforming I(t)
with the translation motion parameter M(t):

y0 + y(t) = I(t) + B(t)M(t) (3)

where B(t) = [Ix(t), Iy(t)], and Ix(t) and Iy(t) are the first
order derivatives in the horizontal direction and vertical di-
rection respectively. In a short video sequence, this approx-
imation is reasonable due to the small amount of motion. In
order to well represent the dynamics with a first order AR
model [4], x(t) should have zero mean values in equation
2. According to this, the average image y0 can be derived:

y0 = I0 +
1
n

BM + u(t) (4)

where B = [B(1), ..., B(n)], M = [M(1), ...,M(n)], I0 is
the mean image of the sequence, I(1), ..., I(n), and u(t) is
Gaussian i.i.d. noise with precision θ.

After incorporating noise w1(t) into noise w(t), the pro-
posed generative image model becomes:

I(t) + B(t)M(t) = y0 + y(t),
y(t) = Cx(t) + w(t), w(t) ∼ N (0, β−1I)

x(t + 1) = Ax(t) + v(t), v(t) ∼ N (0, α−1I)

y0 = I0 +
1
n

BM + u(t), u(t) ∼ N (0, θ−1I) (5)

where v and w are Gaussian noises with precisions α and
β respectively. This is the generative image model for reg-
istering images in a moving dynamic texture video. It is
a highly ill-posed problem and it is almost impossible to
obtain a reasonable solution without strong priors. In the
following section, we introduce strong priors into the gen-
erative image model based on two key observations.

3. Prior Models

As mentioned in the introduction, strong priors for our
generative moving dynamic texture model are derived from

1Using a transformation matrix W (Θ(t)) with generic transformation
parameters Θ(t), the framework can be easily extended to other motion
models, such as rigid and affine motion models.



two key observations: 1) a good registration according to
the accurate camera motion should simplify the dynamic
texture model while preserving all useful information; 2)
a good registration according to the accurate camera mo-
tion should lead to a sharp average image whose statistics
of derivative filters are similar to those of the input image
frames.

3.1. The Average Image Priors

We consider the average image of a moving dynamic tex-
ture video sequence. We observe that, the average image
changes significantly given different registration parame-
ters, and the correct registration leads to a sharp average
image, whose statistics of derivative filters are close to those
in the input image frames. Figure 3 gives an example and
illustrates this observation. In the figure, statistics on the
average image are shown in red color, and statistics on the
input images are shown in blue color. One can see that,
before applying registration to correct camera motions, the
two distributions are far away as shown in Figure 3 (a). In
the middle of the registration process, they become closer
as shown in Figure 3 (b). When the correct registration is
reached, the statistics of the average image and that of the
input images are very similar as shown in Figure 3 (c). From
Figure 3, one can observe that the statistics of derivative fil-
ters in the images are similar to a Gaussian but have a heavy
tail.

Figure 3. First-order derivative distributions of average image vs.
input images. Before registration (a), in the middle of registration
(b), and after correct registration (c).

Huang and Mumford have shown that the Student-t dis-
tribution can model this heavy tailed image prior very well
[8]. This distribution has been successfully used under the
Products-of-Experts framework [19, 16, 20]. It has the fol-
lowing form:

p(x) =
1

Zx

N∏
i=1

φi(JT
i x;σi)

φi(JT
i x;σi) = [1 +

1
2
(JT

i x)2]−σi σi > 0 (6)

In this paper, we also use this distribution to model the im-
age priors. As the desired average image can be thought

as one image of the same scene from an unknown view,
it should have similar statistics to the input image frames.
Therefore, it is sufficient to learn the distribution of direc-
tional image gradients (in the horizontal, vertical, two diag-
onal directions) of input image frames as the prior model for
the desired average image. Hence we only need to learn the
parameters {σi}i=1∼4 in Eq. 6, and we do not need to learn
JT

i as in [19, 16, 20]. This greatly accelerates the learning
speed of the proposed algorithm. Experimental results that
we will present in Section 5 confirm this point.

The prior model parameters {σi}i=1∼4 of the average
image y0 are learned from the input frames I(1), ..., I(n)
by maximizing the data likelihood. Following [16, 20], the
parameter updating is performed using the Contrastive Di-
vergence method [7]:

p(y0) = exp(−Ey0)/Zy0

Ey0 =
4∑

i=1

σi log(1 +
1
2
(JT

i y0)2)

δσi = η(〈∂Ey0

∂σi
〉pk − 〈∂Ey0

∂σi
〉p0) (7)

where η is a user-defined step size, p0 is the data distribu-
tion, pk is the distribution after k MCMC iterations, and
〈f(y)〉P denotes the average of f(y) over the samples P.

3.2. The Motion Priors

As shown in Equation 4, the registration parameter is
M and the desired average image is y0. Given observed
data I0, we can write the posterior distribution over the un-
knowns M and y0 using Bayes’ Rule:

p(y0,M |I0) ∝ p(I0|y0,M)p(y0)p(M) (8)

The data likelihood function is as follows:

p(I0|y0,M) = (
θ

2π
)lexp{−θ

2
‖I0 +

1
n

BM − y0‖2} (9)

where l is the number of pixels in I0.
If the camera motion is small in a short sequence, the

mean translation estimation M0 can be thought as 0. Oth-
erwise, pre-registration can be done with existing methods
[17, 1] to obtain an initial estimate of M0. Motivated by the
work [14], we assume that the uncertainty in the registra-
tion parameters can be modeled by a Gaussian perturbation
about the mean estimation M0 with covariance matrix S,
which we restrict to be a diagonal matrix. This assumption
is reasonable because we can always find an average image
and align each image frame with this average image. During
the alignment, if some image frames are translated/rotated
to the left, then other images should be translated/rotated to
the right. Thus, we can approximate the uncertain motion



parameters M with a Gaussian distribution.

M = M0 + m(t),m(t) ∼ N (0, S)

p(M) = (
|S−1|
(2π)n

)
1
2 exp{−1

2
m(t)T S−1m(t)} (10)

3.3. The Dynamic Priors

When we know y(t), the dynamic texture model can be
derived from equation 2 as follows:

y(t) = Cx(t) + w(t), w(t) ∼ N (0, β−1I)
x(t + 1) = Ax(t) + v(t), v(t) ∼ N (0, α−1I) (11)

where y(t) is a l×1 vector and x(t) is a k×1 vector. Define
Y as a l × n matrix, Y = [y(1), ..., y(n)]. Define X as a
k×n matrix, X = [x(1), ..., x(n)]. In previous solutions for
dynamic texture [4, 6, 17], no dynamic prior has been ex-
plicitly proposed. It means that the dynamic matrix A and
the mapping matrix C have to be explicitly estimated. How-
ever, accurately estimating these matrices is not an easy
problem without knowing some priors. Wang [18] et al.
developed a dynamic prior model by marginalizing over the
uncertain dynamic parameter A and the mapping parameter
C. This results in a nonparametric model for dynamical sys-
tems that account for uncertainty. With the dynamic priors,
Gaussian Process Dynamical Models (GPDM) are devel-
oped for tracking people and data-driven animation. Using
similar ideas, the Marginal Auto-Regressive (MAR) models
are developed as dynamic prior models for tracking in [12].
In the extreme case, the MAR models describe all stable AR
models. Thus, it is weakly-parametric and can also be used
as a prior for any image sequence of dynamic textures.

From equation 11, we know that X is embedded in Y
according to the linear mapping matrix C with dimension
l × k. Motivated by the ideas of GPDM and MAR model
[12, 18], we assume C is a stochastic matrix whose ele-
ments cij ∼ N (0, 1). To recover the embedded sequence
X from the data sequence Y, we consider all possible map-
pings C instead of a specific mapping C. By marginalizing
over all possible mappings C, a marginal Gaussian Process
mapping is as follows:

p(Y |X,µ) =
∫

C

p(Y |X,C)p(C|β)dC

= (2π)−
ln
2 |Kyx|− l

2 exp{−1
2
Y T K−1

yx Y }
Kyx = XT X + β−1I (12)

In this formulation, the mapping between X and Y only
depends on Kyx.

We also can assume A is a stochastic matrix whose
elements aij ∼ N (0, 1) and the initial condition x0 ∼

N (0, I). suppose X = [x(1), x(2), ..., x(n)] and X� =

[x0, x(1), ..., x(n−1)]. Then, a marginal distribution of the
AR model is:

p(X|x0, ω) =
∫

A

p(X|A, x0)p(A|α)dA

= (2π)−
kn
2 |Kxx|− k

2 exp{−1
2
XT K−1

xx X}
Kxx = XT

�X� + α−1I (13)

Intuitively, this model favors smooth sampling in the space
of X . Hence, the joint distribution of X and Y is:

p(Y,X|α, β) = P (X|α)P (Y |X,β) (14)

where α and β are the hyperparameters of this joint distri-
bution.

4. Joint Optimization for Registration

The registration of moving dynamic textures can be
modeled as a joint optimization problem. It involves op-
timizing the camera motion, the average image, and the dy-
namics. With the priors introduced in equations 7, 10 and
14, a straightforward approach to this problem is to solve
for the maximum a-posteriori (MAP) solution.

Given an input image sequence I(1), I(2), ..., I(n) and
the mean image I0 of this image sequence, we can write the
posterior distribution over the unknowns using Bayes’ Rule
from equations 4 and 5:

p(M,y0, Y,X|I, I0) ∝ p(I0, I|y0,M, Y,X)
p(y0)p(M)p(Y )p(X) (15)

where I is [I(1), ..., I(n)]. If we suppose that the average
image y0 and the dynamic latent X of the dynamic texture
independently impose constraints on the possible camera
motion for registration, we can obtain the following approx-
imation:

p(I0, I|y0,M, Y,X) ≈ p(I0|y0,M)p(I|y0,M, Y,X) (16)

This is equivalent to solving a regularized-least squares
problem. It attempts to register images in the sequence to
obtain an average image with desired image statistics and a
dynamic texture with stable dynamics. The data likelihood
given the camera motion, the average image and others is
described as follows:

p(M,y0, Y,X|I, I0) ∝ p(I0|y0,M)p(I|y0,M, Y )
p(y0)p(M)p(Y |X)p(X) (17)

We tried to optimize the above with conjugate gradient
searching but found that it failed. One likely reason is that
directly optimizing so many uncertain variables makes the
MAP objective function very susceptible to local minima.



To solve this problem, we adopt a Bayesian approach to
marginalize out the unknown motion parameters. This gives
the marginal likelihood as follows:

p(y0, Y,X|I, I0) ∝ q(y0, Y )p(y0)p(Y |X)p(X)

q(y0, Y ) =
∫

M

p(I0|y0,M)p(I|y0,M, Y )p(M)dM (18)

Maximizing the posterior probability of the proposed gen-
erative model is not trivial. In order to make the optimiza-
tion practical, we refrain from using complex inference al-
gorithms. Instead we perform a gradient ascent on the log-
arithm of the marginal likelihood. This maximization of
the marginal likelihood is done using the scaled conjugate
gradients algorithm (SCG) [13]. With the finally estimated
average image y0 and the latent appearance [y(1), ..., y(n)]
of the dynamic texture, the explicit AR model can be easily
reconstructed using ML estimation on the sequence X:

A∗ = XT X�(XT
�X�)−1 (19)

In the following, we summarize the proposed approach
for registration of moving dynamic textures:

1. Compute the first-order image derivatives in four di-
rections for all n frames in I(t). As introduced in sec-
tion 3.1, the Contrastive Divergence algorithm is used
to learn our image prior model parameters for the input
image sequence.

2. If the input sequence is long, divide it into many short
image sequences, each with length τ along the time
axis, as done in [17].

3. For each time window [t − τ + 1, t], we apply an ex-
isting texture registration algorithm (such as [17] or
[1, 2]) to perform initialization.

4. For each time window [t−τ +1, t], we perform model
optimization with the priors introduced in sections 3
and 4 until model convergence.

5. With the optimal y0, Y and X estimated from the pre-
vious step, the motion parameters M is then found as
the mode of the full posterior, which can be obtained
iteratively by Maximum Likelihood estimation using
SCG optimization.

5. Experiments

The first set of experiments uses 3 real video sequences
in [10]. They are image sequences of Waterfall A, Grass and
Pond, respectively. These image sequences are captured by
a fixed camera. In order to evaluate the proposed approach,
we generate 3 new video sequences by transforming each
frame with known motion to simulate the moving dynamic
textures. For convenience, each generated video sequence
has 100 frames and the size of each image frame in the se-
quences is 120 × 160 (shown in Figure 4).

(a) (b) (c)

Figure 4. The synthesized moving dynamic textures from video
sequences of (a) Waterfall A, (b) Grass, (c) Pond.

For comparison, we implemented Vidal’s motion esti-
mation method ourselves [17] because there is no public
code available. We also implemented the robust motion es-
timation method [2] with a hierarchical motion model [1].
In the following, we call these two previous methods Vi-
dal’method and Hybrid method, respectively. Since Vidal’s
method does not perform motion estimation in the begin-
ning frames of a video sequence, we only compare the mo-
tion estimations from the 21st to the 80th frame in this ex-
periment. Moreover, the ground truth of camera motions
between neighboring frames are the same in all three test-
ing video sequences and the ground truth motion profiles
are shown in figure 7 (a). One can see that, in the video
segments of interest that contain 60 frames each, there is
no camera motion from the 1st frame to the 20th frame and
from the 41st to 60th frame, while there are constant transla-
tion camera motions with speed [1, 0] from the 21st to 40th
frames.

(a) (b) (c)

Figure 5. The average image before and after registration with the
proposed approach. (a) one image frame, (b) the average image
after registration, (c) the average image before registration.
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Figure 6. The statistics on input image frames, on the average im-
age after registration, and on the average image before registration.

We first test the proposed approach on the synthetic
Grass sequence. The testing results are shown in figure
5. One can see that the average image after registration is



much sharper than that before registration. Moreover, the
statistics of derivative filter responses in the average image
after registration is much closer to that in the input images
than the average image before registration, as shown in fig-
ure 6. This not only illustrates the efficiency of the proposed
method but also shows that our priors regarding registration
and the average image statistics are correct.
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Figure 7. The comparison of estimated motions with the ground
truth in the Waterfall A sequence. (a) ground truth, (b) by the
hybrid method,(c) by Vidal’s, (d) by the proposed method.

Figure 7 shows the motion estimations for the Waterfall
A sequence by three different algorithms: hybrid method,
Vidal’s method, and our method. All three methods gener-
ated motion estimations that are close to the ground truth
in this sequence. However, the solution given by the Hy-
brid method has larger variance than others while the re-
covered motions by Vidal’s method are obviously smaller
than the ground truth between the 21st and 40th frames.
It is easy to interpret these trends in the results by the hy-
brid and Vidal’s methods. The hybrid method is based on
the assumption of Brightness Constancy, hence it considers
that the local/nonrigid motion in dynamic textures is also
caused by camera motion, which makes the estimated cam-
era motion fluctuant. On the contrary, Vidal’s method as-
sumes that there is no camera motion in a short sequence
hence it unconsciously contributes part of the effect by cam-
era motion to nonrigid motion caused by dynamic textures;
this makes Vidal’s method tend to under-estimate camera
motion. Only the proposed method obtains a solution that
is not only the closest to the ground truth but also has small
variance, thanking to the proposed generative image model
that can model both camera motion and dynamic texture si-
multaneously.

After recovering the camera motion parameters, we re-
compute the average image to evaluate the performance of
the registration method. As introduced above, the average
image should be sharper if the image sequence has been
registered with more accurate motion estimation. Figure 8
shows the average images of the video sequence from the
21st frame to the 40th frame after registration by the three

Sequence Waterfall A Grass Pond

Hybrid [1, 2] 9.29% 16.86% 13.25%
Vidal’s [17] 6.18% 13.56% 10.25%
Proposed 4.63% 9.32% 6.07%

Table 1. False Estimation Fraction (FEF) of motion parameters.

methods. Figure 8 also shows the corresponding statistics of
their derivative filter responses. It is quite obvious that the
average image by our method is sharper than the average
images produced by the other two methods. This is due to
the explicit prior constraints between registration and statis-
tics of the average image imposed by the proposed model.

Figure 8. The average images and related distributions (21st frame
to 40th frame) after registration by different approaches. (a) by the
proposed method, (b) by Vidal’s, (c) by the hybrid method.

In order to quantitatively evaluate the performance of
camera motion estimation, we define the false estima-
tion fraction (FEF) to indicate the difference between the
ground-truth camera motion MTrue and the estimated cam-
era motion MEst:

FEF =
|sum(|MEst|) − sum(|MTrue|)|

sum(|MTrue|) (20)

Table 1 records the FEF of registration results on the three
image sequences (i.e. Water Fall A, Grass, Pond) by dif-
ferent implementations. Some parts of the scene captured
in the Waterfall A sequence are static, hence registration is
relatively easier for this sequence; it is why all three meth-
ods achieved better motion estimation results on this se-
quence, although the hybrid method’s performance is a lit-
tle worse. The scenes are dynamic everywhere in the Grass
and Pond sequences. The Grass sequence is especially chal-
lenging to register because the grass waves rapidly in the
sequence, which causes large appearance variance and un-
certainty. For the Grass sequence, the hybrid method didn’t
give good results because the brightness constancy assump-
tion is greatly violated. Better results are obtained with
Vidal’s method and the proposed method because they ex-
plicitly model the grass dynamics with a dynamic texture
model. In particular, our proposed method achieved the best
results because of its utilization of powerful priors and the
generative image model.



Figure 9. A sequence of moving flower bed [6, 17].

Besides the three video sequences with synthetic camera
motion, we also did experiments on the flower bed sequence
with real camera motion shown in Figure 9. This sequence
was used as an example for registering moving dynamic tex-
tures in [6, 17]. The camera motion in this sequence is a
horizontal translation. The ground truth of the translation
motion is obtained by manually labeling the locations of
one red flower in the first frame and the last frame. The
whole sequence includes 554 image frames. While quanti-
tative motion estimation results were not reported in [6], Vi-
dal et al. [17] showed quantitative results on a subsequence
with 250 frames out of the whole sequence. It was reported
that the cumulative displacement on that subsequence es-
timated by their approach [17] is 60 pixels along the hor-
izontal direction while the ground truth is 85 pixels; thus
the FEF of the cumulative motion there is 29.41%. Since
we do not have access to the exact 250-frame subsequence,
we ran our algorithm on the entire sequence of 554 frames.
The cumulative motion along the horizontal direction is es-
timated as 104.52 pixels by our approach while the ground
truth is 110 pixels based on manual motion labeling of one
red flower; thus the FEF of cumulative motion by our ap-
proach is 4.98%.

While our method consistently achieves the best accu-
racy among all three methods, our approach has close ties
with the other two. For instance, we depend on either Vi-
dal’s or the hybrid method to initialize our model; we take
the dynamic texture constancy constraints (DTCC) idea
from [17]. Our approach is slightly more computationally
expensive than Vidal’s because of the initialization and op-
timization. The main contributions of our method for better
accuracy are the novel use of average image, motion and
dynamic priors, and the avoidance of assumptions that may
lead to over- or under- estimations by marginalizing over
registration and latent dynamic texture parameters instead
of explicitly estimating them.

6. Conclusions

In this paper we have proposed a new approach to regis-
tration of moving dynamic textures, based on two proposed
criteria for registration: 1) registration should simplify the
dynamic texture model while preserving all useful informa-
tion; 2) better registration should lead to a sharper average
image, whose statistics are closer to those of the input im-
age frames. With the proposed image priors and dynamic
priors about moving dynamic textures, we are able to effec-

tively perform joint optimization by marginalizing over the
unknown registration parameters as well as the dynamics of
latent dynamic textures. Experiments on various real video
sequences demonstrate the performance of our method and
show marked improvement over previous approaches.
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