
'

&

$

%

Boston University

CS Department Technical Report-2008-018

INDEXING METHODS FOR EFFICIENT

MULTICLASS RECOGNITION

ALEXANDRA STEFAN

Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Arts

BOSTON

UNIVERSITY

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Thesis

Boston University

CS Department Technical Report-2008-018

INDEXING METHODS FOR EFFICIENT MULTICLASS

RECOGNITION

by

ALEXANDRA STEFAN

B.S., University of Bucharest, 2002

Submitted in partial fulfillment of the

requirements for the degree of

Master of Arts

2008

Approved by

First Reader

Stan Sclaroff, PhD
Professor of Computer Science

Second Reader

Margrit Betke, PhD
Associate Professor of Computer Science

Third Reader

George Kollios, PhD
Associate Professor of Computer Science

Acknowledgments

I want to thank my advisor, Professor Stan Sclaroff, for giving me this opportunity and

helping me throughout the whole process. I also want to thank the other members of

my committee, Professor Margrit Betke and Professor George Kollios, for providing useful

feedback. Naturally, I also want to thank my fellow students in the IVC group, for their

support and friendship. Special thanks go to Quan Yuan and Vassilis Athitsos, who col-

laborated closely with me on this project. Last, but not least I want to thank my mother,

my father, and my sister. They have always believed in me, but most important of all,

they accepted me for who I am and they were there for me in the roughest of times.

iii

Boston University

CS Department Technical Report-2008-018

INDEXING METHODS FOR EFFICIENT MULTICLASS

RECOGNITION

ALEXANDRA STEFAN

ABSTRACT

Many real world image analysis problems, such as face recognition and hand pose esti-

mation, involve recognizing a large number of classes of objects or shapes. Large margin

methods, such as AdaBoost and Support Vector Machines (SVMs), often provide compet-

itive accuracy rates, but at the cost of evaluating a large number of binary classifiers, thus

making it difficult to apply such methods when thousands or millions of classes need to be

recognized. This thesis proposes a filter-and-refine framework, whereby, given a test pat-

tern, a small number of candidate classes can be identified efficiently at the filter step, and

computationally expensive large margin classifiers are used to evaluate these candidates

at the refine step. Two different filtering methods are proposed, ClassMap and OVA-VS

(One-vs.-All classification using Vector Search).

ClassMap is an embedding-based method, works for both boosted classifiers and SVMs,

and tends to map the patterns and their associated classes close to each other in a vector

space. OVA-VS maps OVA classifiers and test patterns to vectors based on the weights

and outputs of weak classifiers of the boosting scheme. At runtime, finding the strongest-

responding OVA classifier becomes a classical vector search problem, where well-known

methods can be used to gain efficiency.

In our experiments, the proposed methods achieve significant speed-ups, in some cases

up to two orders of magnitude, compared to exhaustive evaluation of all OVA classifiers.

This was achieved in hand pose recognition and face recognition systems where the number

of classes ranges from 535 to 48,600.

iv

Contents

1 Introduction 1

1.1 Contributions . 2

1.1.1 ClassMap . 2

1.1.2 One-vs.-All Classification Using Vector Search 4

1.2 Overview . 4

2 Background and Problem Definition 6

3 Related Work 8

4 ClassMap 11

4.1 Jointly Embedding Queries and Classes . 11

4.2 A Simple ClassMap Implementation . 14

4.3 Optimizing Embedding Quality . 16

4.4 Summary . 18

5 Boosted OVA-Based Classification Using Vector Search Methods 20

5.1 Reduction to Vector Search . 21

5.2 Using Nearest Neighbor Search Methods for OVA-Based Classification . . . 23

5.3 A Note on Sharing Classifiers . 26

6 Experiments 27

6.1 Datasets . 28

6.2 Experimental Evaluation of the ClassMap Method 29

6.2.1 Results . 31

6.2.2 Summary of ClassMap results . 37

6.3 Experimental Evaluation of the OVA-VS Method 37

v

6.3.1 Results on the Synthetic Hands Dataset 38

6.3.2 Results on the FRGC Dataset . 42

6.3.3 Summary of OVA-VS results . 45

7 Discussion and Future work 47

References 50

vi

List of Figures

1·1 Two example recognition tasks with a large number of classes: recovery of

shape and 3D orientation for hand shapes and person identification. 5

4·1 Mapping to a common space of both classes and patterns of those classes,

using a ClassMap embedding constructed from two reference classifiers. . . 13

6·1 Results of applying method CM-Boosted on the real and synthetic hand im-

ages test sets. We plot of accuracy vs. number of OVA classifier evaluations

per query. 32

6·2 Results of applying method CM-Boosted on two test sets of faces. We plot

of accuracy vs. number of OVA classifier evaluations per query. 32

6·3 Comparison of AdaBoost-based embedding to random embedding construc-

tion. Results shown for the real hand test set and the faces test set. 35

6·4 Experiment on the generalization of ClassMap embeddings to patterns from

classes not available during AdaBoost training. 36

6·5 Classification accuracy vs. speedup factor on the synthetic hands dataset,

for brute force, PCA, and CM-Boosted. 39

6·6 Classification accuracy vs. speedup factor on the synthetic hands dataset,

for brute force, PCA, and PCA+LSH. 39

6·7 Classification accuracy vs. speedup factor on the synthetic hands dataset,

for brute force, Sampling-1, and Sampling-2. 40

6·8 Classification accuracy vs. speedup factor on the synthetic hands dataset,

for brute force, Sampling-1, and PCA. 40

vii

6·9 Classification accuracy vs. speedup factor on the synthetic hands dataset,

for brute force, Sampling-1, and CM-Boosted. 40

6·10 Classification accuracy vs. speedup factor on the face dataset, for brute

force, CM-Boost, and PCA. 43

6·11 Classification accuracy vs. speedup factor on the face dataset, for brute

force, PCA, and CM-Boosted, ignoring the costs of computing embeddings

and lower-dimensional projections. 43

6·12 Classification accuracy vs. speedup factor on the face dataset, for brute

force, Sampling-1, and CM-Boosted. 44

6·13 Classification accuracy vs. speedup factor on the face dataset, for brute

force, Sampling-2, and CM-Boosted. 44

viii

List of Abbreviations

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

ACM Association for Computing Machinery

ASL American Sign Language

DAGSVM Directed Acyclic Graph SVM

ECOC Error-Correcting Output Codes

FRGC Face Recognition Grand Challenge

IEEE Institute of Electrical and Electronics Engineers

L1 Manhattan distance measure

L2 Euclidean distance measure

LSH Locality-Sensitive Hashing

OVA One-vs.-All

OVA-VS One-vs.-All classification using vector search methods

PCA Principal Component Analysis

RBF Radial Basis Function

SIAM Society for Industrial and Applied Mathematics

SVM Support Vector Machine

ix

Chapter 1

Introduction

Many real-world computer vision tasks involve recognizing a very large number of classes of

objects or shapes - a number that can range from thousands to millions. Examples of such

tasks include biometrics-based identification (based on faces and/or fingerprints), hand and

human body pose classification, speech and sign language recognition, and generic object

recognition using computer vision. An important problem in such domains is designing

recognition methods that are scalable and achieve efficient running time in the presence of

a large number of classes.

Large margin methods are machine learning techniques that try to maximize the margin

of training patterns, where the margin of a pattern, given a classifier, is a measure of

confidence in the output of that classifier on the pattern. For example, support vector

machines (SVMs) (Vapnik, 1995) are trained by attempting to maximize the minimum

margin of any training example (Allwein et al., 2000). SVMs and boosting (Friedman et al.,

2000; Schapire and Singer, 1999) have been successful in recent years in various pattern

recognition domains. A common way to apply such methods to multiclass problems is to

train, for each class, a one-versus-all (OVA) classifier to discriminate between samples from

that class and samples from the other classes (Allwein et al., 2000; Torralba et al., 2007).

Given a test pattern to recognize, all OVA classifiers are applied to that pattern, and the

classification output is the class label associated with the OVA classifier that produced the

strongest response.

A major bottleneck of these commonly used techniques is that, given a new pattern to

classify, all binary classifiers must be applied to that pattern. This leads to time complexity

that is typically at least linear in the number of classes. This time complexity can lead to

1

2

prohibitive running times in large multiclass domains with thousands or millions of classes.

The main goal of this thesis is to address this problem and propose efficient and scalable

methods for large margin multiclass recognition.

This thesis does not address the topic of feature selection and feature extraction. It is

simply assumed that some appropriate choices regarding features have already been made.

The goal in this thesis is to propose efficient alternatives to exhaustive evaluation of all

binary classifiers in order to classify a test pattern. Training and test patterns, for the

purposes of our discussion, are feature vectors on which the OVA classifiers can be directly

applied.

1.1 Contributions

This thesis proposes a filter-and-refine framework, whereby, given a test pattern, a small

number of candidate classes can be identified efficiently at the filter step, and computa-

tionally expensive large margin OVA classifiers are used to evaluate these candidates at the

refine step. The main contribution consists of proposing two different filtering methods that

can be employed in this filter-and-refine framework: ClassMap, and OVA-VS (One-vs.-All

classification using Vector Search).

1.1.1 ClassMap

The ClassMap method is a novel paradigm for multiclass recognition, whereby efficient and

accurate recognition is framed as a database search problem: given a pattern to classify,

the goal is to quickly identify, in a database of classes, a small set of candidate classes

for that pattern. The winning candidate can then be selected by applying the individual

classifiers available for the candidate classes. Designing an efficient search mechanism for

a database of classes is a non-trivial problem. First, classes are abstract entities with no

explicit representation given a priori. Second, no distance measure is defined a priori for

comparing database objects (classes) to each other and to queries. ClassMap constructs

an explicit representation for classes, that can be used to:

3

1. “store” such classes in an actual database,

2. define a distance measure between classes and from patterns to classes, and

3. accommodate efficient search.

ClassMap is designed for use in domains where the task of multiclass recognition is

decomposed into multiple OVA classification problems. ClassMap is not concerned with

how the classifiers are trained, e.g., using AdaBoost or support vector machines. The only

assumptions we make are that:

1. all OVA classifiers have already been trained, and

2. a set of labeled training patterns has been provided.

The key idea in ClassMap is that we can embed both patterns and classes into a common

vector space, in a way that patterns tend to get mapped close to their correct classes.

Finding the nearest classes of a pattern in this vector space can be done efficiently, using

vector comparisons based on the L1 and L2 metrics. If we have n classes, instead of applying

n OVA classifiers to the query, we perform n vector comparisons. Typically, performing

such a vector comparison is significantly faster than evaluating one of the original binary

classifiers. Furthermore, vector indexing methods , e.g., (Böhm et al., 2001; Gionis et al.,

1999), can be applied to further reduce the number of required vector comparisons. This

way, a small number of candidate classes can be quickly identified for each query. Then,

only the binary classifiers associated with those classes need to be applied to the query.

We evaluate ClassMap on two datasets, examples in Fig. 1·1: a dataset of hand images

where the task is to recognize the handshape and 3D orientation (out of 2430 classes), and

a dataset of face images where the task is to recognize the individual (out of 535 classes). In

both cases, one-vs.-all (OVA) classifiers are trained. Compared to the brute-force method,

where all OVA classifiers are applied on each pattern, ClassMap is between 3 and 28 times

faster, with negligible or no loss in classification accuracy.

4

1.1.2 One-vs.-All Classification Using Vector Search

The second method is called OVA-VS, which stands for “One-vs.-All classification using

Vector Search.” This method is specific to boosting-based multiclass recognition using

OVA classifiers. Our main contribution regarding this method is showing that, given a

pattern to classify, identifying the strongest-responding OVA classifier for that pattern is

essentially a nearest neighbor search problem in a real vector space R
d. This result leads

to two additional contributions:

1. Using the theoretical properties of well-known nearest neighbor search methods, such

as locality sensitive hashing (LSH) (Gionis et al., 1999), we show that OVA classi-

fication can be approximated with time complexity that is fundamentally sublinear

in the number of classes, and the approximation can be as close as desired (accuracy

can be traded for efficiency).

2. Using simple vector search methods that are based on dimensionality reduction, we

obtain speedups of over two orders of magnitude in a large multiclass problem, where

approximately 50,000 hand poses are recognized and speedups of 6 in a face recog-

nition problem with 535 classes. Speedups are measured with respect to the time it

takes to perform brute-force evaluation of all OVA classifiers on each test pattern.

1.2 Overview

The remainder of this thesis is organized as follows: Chapter 2 provides background infor-

mation and the problem definition. Chapter 3 presents related work. Chapters 4 and 5

describe the two main contributions of this thesis, i.e., ClassMap, and OVA-VS. A paper

describing the ClassMap formulation was presented in (Athitsos et al., 2007).

Chapter 6 evaluates the performance of the proposed methods on two tasks: hand pose

estimation and face recognition where the number of classes ranges from 535 to 48,600. For

each of these tasks both an SVM and a Boosted-OVA recognition system was trained. In

the experiments, ClassMap, applied to all systems, and OVA-VS, applied to the Boosted-

5

query

database of hand pose classes

correct
class

query

database of person-identity classes

correct
class

Figure 1·1: Example recognition tasks with a large number of classes.
Top: recognizing handshape and 3D orientation, out of a large number of
shape/orientation combinations. Bottom: recognizing person identity, out
of a large number of classes. In this paper we propose a method for quickly
identifying, given a query, a small number of candidate classes, so as to
speed up recognition.

OVA systems, achieved good speedups, of even two orders of magnitude in some cases.

As ClassMap requires training, an experiment was conducted to see how it performs on

patterns from new classes that were not available at training. The results showed good

generalization properties.

Additional discussion about the proposed methods and possible directions for future

work are is conducted in Chapter 7.

Chapter 2

Background and Problem Definition

Let X be a space of patterns, and Y be a finite set of class labels. Every pattern X ∈ X

has a class label L(X) ∈ Y. We use the term database as a synonym for Y, the terms class

and database object as synonyms for class label, and the term query as a synonym for query

pattern.

In the OVA (Allwein et al., 2000) scheme, for each class Y ∈ Y a large margin classifier

CY : X → R is trained to discriminate between patterns of class Y and all other patterns.

For a given query pattern Q ∈ X, higher (more positive) responses CY (Q) indicate higher

confidence that L(Q) = Y . The standard approach is to evaluate CY (Q) for all Y ∈ Y,

and classify Q as belonging to the class Y for which CY (Q) is maximized.

Other decomposition schemes have also been proposed for reducing multiclass to binary

classification (Allwein et al., 2000; Dietterich and Bakiri, 1995). In all cases, a set of binary

classifiers is defined, and the class label of a test pattern is determined by applying all binary

classifiers, and comparing the set of binary classifier outputs to the output code assigned to

each class. In this thesis, we focus on the OVA scheme, because it is readily applicable to

large multiclass problems. The all-pairs scheme, where a classifier is trained for each pair of

classes, requires training a number of classifiers that is quadratic to the number of classes,

and thus is not scalable to problems with a large number of classes. Furthermore, the OVA

scheme has been shown to be comparable in accuracy to all-pairs and other decomposition

schemes in various experimental settings (Rifkin and Klautau, 2004).

Let C be the set of large margin OVA classifiers for a particular multiclass problem. We

assume that all these binary classifiers have already been trained using an existing method,

such as boosting or SVMs. We use the term brute-force classification for a classification

6

7

process that, as described above, in order to classify a query Q needs to compute C(Q) for

all C ∈ C.

Given the above definitions, the problem we want to solve can be stated as follows:

we want a classification process that, using the large margin classifiers in C, classifies

query patterns Q as accurately as possible and as fast as possible. Ideally, we want the

classification process to be significantly faster compared to brute-force classification, but

not significantly less accurate.

ClassMap, the first of the two methods proposed in this thesis, addresses the above

problem in its general form, as stated in the previous paragraph. OVA-VS, the second

method, addresses a more narrow version of the problem, as it is only applicable to settings

where the OVA classifiers have been trained using boosting.

Chapter 3

Related Work

Nearest neighbor classification (Duda et al., 2001) is a simple method for multiclass recogni-

tion, and has been successfully applied in large multiclass problems, such as face recognition

(e.g., (Liu, 2006)), contour matching (e.g., (Grauman and Darrell, 2004)), and articulated

pose estimation (e.g., (Shakhnarovich et al., 2003)). Theoretically, k-nearest neighbor

classification accuracy becomes optimal as the number of training data approaches infinity

(Duda et al., 2001). However, for amounts of training data available in real applications,

nearest neighbor classifiers often fall short of the theoretically optimal behavior.

An alternative approach for multiclass recognition is to use large margin classifiers,

trained for example via boosting (Friedman et al., 2000; Li and Zhang, 2004; Schapire and

Singer, 1999) or support vector machines (SVMs) (Vapnik, 1995). Compared to nearest

neighbor methods, large margin methods can be appealing because of their generalization

properties and good empirical performance in terms of classification accuracy. The stan-

dard strategy for applying large margin methods to a multiclass problem is to decompose

the multiclass problem into a set of binary problems (Allwein et al., 2000).

Different types of multiclass-to-binary decompositions can be defined (Dietterich and

Bakiri, 1995), such as OVA and all-pairs (Allwein et al., 2000). To classify a query, all

binary classifiers are applied, which leads to a time complexity that is linear, for OVA, and

a time complexity that is quadratic in the number of classes for all-pairs. An exception is

the Directed Acyclic Graph SVM (DAGSVM) method (Platt et al., 2000), that uses the

all-pairs scheme but requires a number of classifier evaluations that is only linear to the

number of classes, as in the OVA scheme.

The OVA and all-pairs schemes are examples of multiclass-to-binary decomposition

8

9

schemes that are defined using error correcting output codes (ECOC) (Dietterich and

Bakiri, 1995; Allwein et al., 2000). In ECOC schemes, each class is assigned an ECOC

code, which is a unique vector code of some fixed length m. Each of the m entries in

the code is constrained to be a value among {−1, 0, 1}. Then, for every coordinate in

this space of m-dimensional vectors, a classifier is trained, where the positive and negative

examples come from all classes whose code has, at that coordinate, a value of 1 or -1,

respectively. Given a test pattern, all learned binary classifiers are applied, and their

values are concatenated to an m-dimensional result vector, where the i-th coordinate is

the output of the binary classifier trained based on the i-th coordinates of the class output

codes. The pattern is finally classified as belonging to the class whose ECOC code is the

closest to the result vector for that pattern.

One way to achieve classification time sublinear in the number of classes is to decompose

the multiclass problem into a sublinear number of binary problems. In theory, recognizing

n classes can be decomposed to log2 n binary problems. This can be done by defining, for

each class, a unique bit vector of log2n bits. However, such sublinear decompositions are

rarely used because they define binary problems with unnatural and hard-to-learn class

boundaries, leading to low classification accuracy. OVA and all-pairs decompositions, on

the other hand, lead to more natural binary classification boundaries, and this explains the

popularity of those decompositions in practice.

A variety of indexing methods can be used to speed up nearest neighbor retrieval and

classification (Athitsos, 2006; Böhm et al., 2001; Gionis et al., 1999; Hjaltason and Samet,

2003a; Hjaltason and Samet, 2003b; Shakhnarovich et al., 2003), often achieving significant

speedups over brute-force search (Athitsos, 2006; Shakhnarovich et al., 2003). However,

for large margin methods, brute-force evaluation of a large number of classifiers is the

current state of the art. Torralba et al. (Torralba et al., 2007) proposed a method for

improving the efficiency of the OVA scheme by sharing weak classifiers among the OVA

models. However, at runtime, all OVA classifiers are applied to each pattern, and thus the

complexity of that method is still linear to the number of classes.

10

The two methods proposed in this thesis perform, given a pattern, a quick search in

a database of classes to identify candidate classes. This search task has many conceptual

similarities with the classical task of searching for nearest neighbors. For the proposed

OVA-VS method, which is applied on top of boosted OVA classifiers, our search task is

actually identical to nearest neighbor search, and demonstrating that fact is the main

contribution of the OVA-VS method. Therefore, classical nearest neighbor indexing meth-

ods (Athitsos, 2006; Böhm et al., 2001; Gionis et al., 1999; Hjaltason and Samet, 2003a;

Hjaltason and Samet, 2003b) can be applied in that setting.

On the other hand, for the most general problem definition, where neither the OVA

scheme nor boosting-based training are assumed, classical nearest neighbor methods are

inapplicable, because of two issues: 1.) database objects are classes, thus living in a

different space than patterns. 2.) No distance measure is defined a priori for comparing

database objects (classes) to each other and to queries, whereas nearest neighbor indexing

methods require such a distance measure to exist. The main contribution of the ClassMap

method lies in describing how to overcome these two issues, and thereby obtain a method

for efficient search in a database of classes.

We should also mention some additional methods that have been proposed for spe-

cific large multiclass problems. Efficient hand pose estimation is achieved in (Ong and

Bowden, 2004) by combining hierarchical classifiers into a tree structure. Hierarchical

template matching has been used for pedestrian detection (Gavrila and Philomin, 2001)

and hand pose estimation (Stenger et al., 2004). Articulated pose can be treated as a

multidimensional regression problem, and estimators can be trained that map observations

into a continuous pose space (Agarwal and Triggs, 2006; de Campos and Murray, 2006).

However, many domains (e.g., face recognition) do not lend themselves readily either to

hierarchical decomposition or to regression-based estimation. The two proposed methods,

on the other hand, are readily applicable in such domains, as long as a finite set of classes

can be defined.

Chapter 4

ClassMap

In this chapter we describe the ClassMap method, which is one of the main contributions

of this thesis. ClassMap was introduced in (Athitsos et al., 2007), and it is designed to

address the most general version of our problem, where no assumptions are made about

the underlying large margin method that is used to train the OVA classifiers.

The key idea in our method is to define an embedding F : X ∪ Y → R
d′ that maps

both patterns and classes into a common d′-dimensional vector space, and that tends to

map queries Q and their corresponding classes L(Q) close to each other. Using such an F ,

we can efficiently identify for each Q a set of candidate classes, by finding classes Y whose

embeddings F (Y) are close to F (Q). It is assumed that measuring the distance between

vectors F (Q) and F (Y) is much faster than computing the output of a binary classifier

C ∈ C on a query Q. Once we obtain a set of candidate classes for Q, we only need to

evaluate those binary classifiers C that are related to the candidate classes.

4.1 Jointly Embedding Queries and Classes

In order to keep our formulation general, the only assumptions that we make are that we

are given a set C of already trained binary classifiers, a set Xtr ⊂ X of labeled training

examples, and a matrix M storing precomputed outputs C(X) for all C ∈ C and X ∈ Xtr.

Before talking about the embedding, let us see how we hope to learn something about

a class, without evaluating its classifier. That is, given a query, Q, a class Y ∈ Y and a

classifier, C, how can we use C to evaluate whether or not Y is a candidate class for Q?

If the responses of C on samples from Y are random, nothing can be done: C offers no

information about Y . If the responses follow a distribution, then we can see how likely it

11

12

is that C(Q) comes from that distribution. In this thesis we assume the simple case when

the distribution is unimodal and thus we can talk about a typical response of C for samples

from Y . We will use the notation C(Y) for this typical response. C(Y) can be learned

using the response of C on a training set of patterns from Y . Mean and median are two

possible ways to estimate typical responses. To evaluate Y as a candidate for Q, we look

at how far C(Q) is from the C(Y). We can not expect one classifier, C, to discriminate

well among all the classes, for example, it may give similar typical responses for several

classes. We can also not rely on it providing information about every class. In conclusion,

we cannot expect a single classifier to solve the problem, but we hope that several classifiers

will. Our experiments show that it does.

The next step is to use the classifiers in C, and the information they give, to build

the desired embedding. The solution is simple: any classifier C gives a 1D embedding by

mapping a query, Q to C(Q) and a class, Y , to the typical response, C(Y). Moreover, it

has the desired property that C(Q) is likely to be close to C(Y) when Q is a pattern of class

Y . Several classifiers can be combined to produce an embedding of a higher dimension.

Next we give the formal construction for the embedding.

We define an embedding F : X∪Y → R
d′ that jointly maps patterns and classes into a

common d′-dimensional real vector space R
d′ . We start by defining a simple 1D embedding

FR of both patterns Q ∈ X and classes Y ∈ Y based on the responses of a single classifier

R ∈ C, which we call a reference classifier:

FR(Q) = R(Q) . (4.1)

FR(Y) = median{R(X) : X ∈ Xtr, L(X) = Y } . (4.2)

We should note that reference classifiers play a role analogous to that of reference objects in

Lipschitz embeddings (Hjaltason and Samet, 2003a). Note that, for the embedding FR(Y)

of a class Y , we use the median of outputs of R on training examples belonging to class

Y . An alternative approach would be to use the mean instead of the median; we chose the

median as a statistic that is more robust to outliers.

13

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

responses of F R1

re
sp

o
n
se

s
o
f
F

R
2

2D ClassMap embedding of patterns and classes

embeddings of patterns from class Y
1

embedding F(Y
1
) of class Y

1
embeddings of patterns from class Y

2
embedding F(Y

2
) of class Y

2

Figure 4·1: A 2D embedding F = (FR1 , FR2), defined using Eqs. 4.3 and
4.4 with two reference classifiers R1 and R2, and mapping both patterns
and classes into R

2. We show the mappings of patterns belonging to classes
Y1 and Y2, and the mappings of classes Y1 and Y2 themselves. Note that the
mapping of each class was obtained by computing, along each dimension,
the median mapping of patterns from that class along that dimension. Using
the L1 distance, 28 of the 32 patterns were mapped closer to the embedding
of their own class than to the embedding of the other class.

Using 1D embeddings FR as building blocks, we can define a multidimensional embed-

ding F : X ∪ Y → R
d′ :

F (Q) = (FR1(Q), . . . , FRd(Q)) . (4.3)

F (Y) = (FR1(Y), . . . , FRd(Y)) . (4.4)

We use the term ClassMap embeddings for embeddings F defined this way. Note that any

OVA classifier in C can be used as a reference classifier in the above equations. A simple

way to construct such an embedding F in practice is to choose d′ classifiers randomly from

C.

Query embeddings can be compared to embeddings of classes using any Lp metric. In

our implementation we use the L1 metric as it is more robust to large differences in a

single dimension than Lp metrics with p greater than one. A large difference in a single

14

dimension occurs when, for some reference classifier Ri, Ri(Q) is very different from the

median response of Ri on objects of the same class as Q.

An example of a simple ClassMap embedding, computed with real data (faces from

the 535-class FRGC2 dataset (Phillips et al., 2005)) is shown on Fig. 4·1. We illustrate

a 2D embedding F defined using two OVA classifiers CY3
and CY4

as reference classifiers.

The figure shows the embeddings of training examples from two other classes Y1 and Y2,

different from the classes Y3 and Y4 that the reference classifiers CY3
and CY4

were trained

to recognize. We see in the figure that, in most cases, F maps patterns closer to the

embedding of their own class than to the embedding of the other class, when distances are

measured using the L1 metric. That is exactly the behavior that we want to exploit to

achieve efficient search in the database of classes: given a query Q, we expect the embedding

F of its true class L(Q) to be a relatively close neighbor of F (Q).

Using a ClassMap embedding we can drastically reduce the number of required classifier

evaluations, by simply finding the classes whose embeddings are close to the embedding

of the query. Essentially we substitute vector comparisons for classifier evaluations. This

scheme leads to efficiency gains in two ways: first, we assume that measuring the distance

between two vectors is much faster than applying a classifier on a pattern. Second, since

the query and all database classes are mapped to a common vector space, efficient vector

indexing methods, e.g., LSH (Gionis et al., 1999), can be used to speed up nearest neighbor

search in that space.

4.2 A Simple ClassMap Implementation

In this section we sketch a simple end-to-end implementation that specifies both the off-line

steps of preprocessing and embedding construction, and the online process of multiclass

recognition using ClassMap.

ClassMap takes as input the following data:

• A set C of large margin OVA classifiers C : X → R.

15

• A set Xtr ⊂ X of training examples, with class labels.

• A matrix M of classifier outputs C(X) for each pair (C,X) : C ∈ C,X ∈ Xtr.

The first objective is to construct a ClassMap embedding F . A simple approach is

to first choose d′, i.e., the dimensionality of the embedding, and then simply choose ran-

domly d′ reference classifiers R1, . . . , Rd from C and apply Equations 4.3 and 4.4. The last

preprocessing step is to compute and store F (Y) for each class Y ∈ Y.

Once preprocessing is done, we can proceed to the runtime phase of ClassMap, i.e.,

classification of previously unseen query patterns. For the runtime phase we adapt the

filter-and-refine framework (Hjaltason and Samet, 2003a). We have used two different

versions of filter-and-refine retrieval in our experiments, described as follows:

Version 1 (simple OVA)

• Input: query Q ∈ X, to be classified.

• Embedding step: compute F (Q).

• Filter step: rank all classes Y by the distance of their embeddings F (Y) from F (Q).

• Refine step: for some user-specified number p, compute all responses CY (Q) such

that class Y was ranked in the top p classes by the filter step. Assign Q to the class

Y of the classifier CY producing the highest response.

Version 2 (OVA + threshold)

• Input: query Q ∈ X, to be classified, threshold t (same for all queries) .

• Embedding step: compute F (Q). If, during computing F (Q), for some reference

classifier CY it is the case that CY (Q) ≥ t, then assign Q to class Y corresponding

to CY and finish.

• Filter step: rank all classes Y by the distance of their embeddings F (Y) from F (Q).

16

• Refine step: given user-specified p: start computing CY (Q), according to the order

in which Y was ranked at the filter step. If, for some Y , CY (Q) ≥ t, then assign Q

to class Y and finish. If p classes have already been considered, classify Q as in the

simple OVA case.

We note that there is a large amount of flexibility in designing the refine step. In

addition to the two versions provided above, several other versions may be reasonable

choices for specific domains. Our focus in this thesis is not the specific implementation of

the refine step, but the design of appropriate embeddings F to be used for the filter step,

within the general filter-and-refine framework.

The rationale of the OVA + threshold version of the refine step is that higher responses

CY (Q) indicate higher confidence that Q indeed belongs to class Y . Responses CY (Q)

higher than some threshold t may be so conclusive that we can safely classify Q, without

performing any more classifier evaluations. The threshold t can be learned from training

examples, so as to rarely lead to incorrect decisions.

Regardless of the particular implementation of the refine step, the key idea in filter-and-

refine classification is that the filter step, using efficient vector comparisons, can quickly

identify a relatively small set of candidate classes. Then, the refine step uses more expensive

computations (classifier evaluations) to choose one among those candidates.

4.3 Optimizing Embedding Quality

In order for F to be useful for filter-and-refine classification, F should tend to map queries

closer to their own class than to other classes. In other words, if Q ∈ X is a random query

of class L(Q), and Y 6= L(Q) is a random class in the database, we want it to hold as often

as possible that F (Q) be closer to F (L(Q)) than to F (Y). Instead of choosing random

reference classifiers, as suggested in Section 4.2, we can optimize embeddings according to

this criterion.

In particular, let ∆ be the distance measure used in R
d′ , and let Q ∈ X, Y1 = L(Q), Y2 6=

L(Q). For every embedding F : X ∪ Y → R
d′ we define a corresponding classifier

17

F̃ : X × Y × Y → R, as follows:

F̃ (Q,Y1, Y2) = ∆(F (Q), F (Y2)) − ∆(F (Q), F (Y1)) . (4.5)

In words, the task of F̃ is to decide whether L(Q) = Y1 or L(Q) = Y2. The decision simply

depends on whether F (Q) is closer to F (Y1) or to F (Y2). Positive and negative outputs

of F̃ correspond respectively to decisions that L(Q) = Y1 and L(Q) = Y2. We want to

construct an F so that the error rate of F̃ on triples (Q,Y1, Y2) : Y1 = L(Q), Y2 6= L(Q) is

minimized.

For the sake of clarity we should emphasize that two entirely different types of classifiers

appear in our formulation: The first type is large margin OVA classifiers C : X → R. The

second type is classifiers F̃ associated with embeddings F , where F̃ : X×Y×Y → R maps a

triple (Q,Y1, Y2) to a real number. In the remainder of the paper we will refer to classifiers

of type F̃ using the term triple-classifiers. 184 Every R ∈ C can be used to define a 1D

embedding FR. A triple-classifier F̃R is expected to act as a weak classifier, with possibly

high error rate, but better performance than a random guess (see, for example, Fig. 4·1).

We will now discuss how to combine many such weak triple-classifiers into an optimized

strong triple-classifier, and a corresponding optimized multidimensional embedding, using

AdaBoost. This idea comes from (Athitsos, 2006), where AdaBoost is used to optimize

embeddings for nearest neighbor retrieval.

The inputs we give to the embedding construction algorithm are the same as in Section

4.2: a set C of large margin classifiers, a set Xtr ⊂ X of labeled training examples, and a

matrix M of classifier outputs C(X) for each pair (C,X) : C ∈ C,X ∈ Xtr.

Embedding construction is performed as follows:

1. We define for each R ∈ C a 1D embedding FR.

2. For each FR we also define the corresponding weak triple-classifier F̃R.

3. We construct a set T of training triples (X,L(X), Y) such that X ∈ Xtr, Y ∈ Y −

{L(X)}.

18

4. We run AdaBoost (Schapire and Singer, 1999) using T as training data, so as to

combine many weak triple-classifiers of type F̃R into a strong triple-classifier H:

H =
d′∑

i=1

(αiF̃
Ri) , (4.6)

where each Ri is an element of C and each weight αi is a positive real number.

AdaBoost is used to choose Ri and αi.

5. Based on strong classifier H we define a d′-dimensional embedding Fout and a distance

measure ∆ : R
d′ × R

d′ → R as follows:

Fout(Q) = (FR1(Q), ..., FR
d′ (Q)) . (4.7)

Fout(Y) = (FR1(Y), ..., FR
d′ (Y)) . (4.8)

∆((u1, ..., u
′
d), (v1, ..., vd′)) =

d′∑

i=1

(αi|ui − vi|) . (4.9)

Eqs. 4.7 and 4.8 use the definition of FR given in Eqs. 4.1 and 4.2. In Eq. 4.9, (u1, ..., ud′)

and (v1, ..., vd′) are d′-dimensional vectors that Fout maps patterns and classes to.

Following the proof in (Athitsos, 2006) for AdaBoost-trained embeddings, it holds that

H = F̃out, where F̃out is the triple-classifier constructed from Fout according to 4.5. In other

words, the classifier H trained via AdaBoost misclassifies a triple (Q,L(Q), Y 6= L(Q)) iff,

under distance ∆, Fout maps Q closer to Y than to L(Q). Therefore, AdaBoost directly

optimizes the error rate of classifier F̃out, which is exactly the measure we wanted to

optimize for the purposes of using Fout for filter-and-refine classification.

4.4 Summary

ClassMap is a novel approach for speeding up recognition in the presence of a large number

of classes. The ClassMap formulation can be applied in settings where multiclass recog-

nition is performed using large margin OVA classifiers. The key idea is to relate patterns

19

and classes by constructing a joint embedding, that maps both patterns and classes into a

common vector space. Using this embedding, a small number of candidate classes for each

query can be quickly identified using simple vector comparisons.

Chapter 5

Boosted OVA-Based Classification Using Vector

Search Methods

This chapter describes OVA-VS (One-vs.-All classification using Vector Search). We de-

signed this method to speed up multiclass recognition in the special case where boosted

OVA classifiers are used.

In that setting, for each class Y,∈ Y a boosted classifier CY : X → R is trained to

discriminate between patterns of class Y and all other patterns. Classifier CY is of the

following form:

CY (Q) =
d∑

i=1

αY,iwi(Q) (5.1)

where each wi is a weak classifier with weight αY,i (Allwein et al., 2000; Torralba et al.,

2007). Note that the weights αY,i depend on the class Y . On the other hand, without

loss of generality, in our formulation, the weak classifiers wi do not depend on class Y : we

define W = {w1, . . . , wd} to be the union of all weak classifiers appearing in any CY . If

some weak classifier wi is not used in some strong classifier CY , we simply set αY,i = 0.

Higher (more positive) responses of CY (Q) indicate higher confidence that L(Q) = Y .

To classify a query Q ∈ X, the standard approach is to evaluate CY (Q) for all Y ∈ Y, and

classify Q as belonging to the class Y for which CY (Q) is maximized. More specifically, if

we denote as C(Q) the output of the multiclass classifier C for pattern Q, C(Q) is defined

as:

C(Q) = argmaxY ∈YCY (Q) . (5.2)

In order for the outputs CY (Q) to be comparable for a given Q and different class labels

20

21

Y, weights αY,i must be normalized. We assume that weights are normalized so that the

norm of each vector (αY,1, . . . , αY,d) is 1, for all Y ∈ Y.

At runtime, given a pattern Q to classify, the standard approach is to apply all OVA

classifiers CY , and identify the Y such that CY gives the strongest response. Clearly, this

approach has complexity linear to the number of classes. In this chapter we show show

that the strongest-responding CY classifier can be found efficiently, using vector search

methods, without needing to evaluate CY (Q) for all Y . This topic is addressed in the next

sections.

5.1 Reduction to Vector Search

The core observation underlying OVA-VS is that, for boosted OVA-based multiclass recog-

nition, both test patterns and OVA classifiers can be represented as vectors, specifying

points on the surface of a unit hypersphere. Finding for a test pattern Q the strongest-

responding OVA classifier CY can be done by doing nearest neighbor search on those

points.

In particular, we denote by V (Q) and V (CY) respectively the vectors corresponding to

test pattern Q and OVA classifier CY . These vectors are defined as follows:

Vorig(Q) = (w1(Q), . . . , wd(Q)) , (5.3)

V (Q) =
Vorig(Q)

‖Vorig(Q)‖
, (5.4)

V (CY) = (αY,1, . . . , αY,d) , (5.5)

where wi and αY,i are the weak classifiers and weights used in Equation 5.1. As a reminder,

the same weak classifiers wi are used in the definition of all strong classifiers CY . It is the

weights αY,i that differentiate OVA classifiers CY from each other. As defined in the above

equations, vector Vorig(Q) is the concatenation of the responses of all weak classifiers wi

on Q. Vector V (Q) is obtained by normalizing Vorig(Q) to unit length (‖V ‖ denotes the

norm of vector V).

22

Using these definitions, Equation 5.2 can be rewritten as follows:

C(Q) = argmaxY ∈YCY (Q) (5.6)

= argmaxY ∈Y(Vorig(Q) · V (CY)) (5.7)

= argmaxY ∈Y(V (Q) · V (CY)) , (5.8)

where V1 · V2 denotes the dot product between vectors V1 and V2.

We recall from Section 2 that weights αyi
are normalized so that the norm of each vector

V (CY) = (αY,1, . . . , αY,d) is 1. Also, V (Q) is by definition a vector of norm 1. Therefore,

for all test patterns Q ∈ X and all OVA classifiers CY , their vector representations V (Q)

and V (CY) are unit vectors in d-dimensional real vector space R
d.

Equation 5.8 indicates that, to classify pattern Q, we need to find the class Y that

maximizes dot product V (Q) · V (CY). However, since both V (Q) and V (CY) are unit

vectors, we can easily show that maximizing V (Q) · V (CY) is the same as minimizing the

Euclidean distance between V (Q) and V (CY), because the dot product and the Euclidean

distance for unit vectors are related as follows:

‖V (Q) − V (CY)‖2 = 2 − 2(V (Q) · V (CY)) . (5.9)

The above equation can be easily derived as follows:

‖V (Q) − V (CY)‖2 = (V (Q) − V (CY)) · (V (Q) − V (CY)) (5.10)

= (V (Q) · V (Q)) + (V (CY) · V (CY)) − 2(V (Q) · V (CY))(5.11)

= 2 − 2(V (Q) · V (CY)) , (5.12)

using the fact that (V (Q) · V (Q)) = (V (CY) · V (CY)) = 1.

Intuitively, this can be explained as follows: first, it is clear that normalizing OVA

classifiers is necessary in order to be able to compare their responses. Second, query

vectors can be normalized without loss of generality. This way, both query vectors and

23

classifier vectors are mapped to the surface of the unit hypersphere. We also observe that

the response of an OVA classifier on a query is, by definition, the dot product between the

weights of the weak classifiers and the responses of those weak classifiers on the query. In

general, to obtain a high dot product, classifiers with negative weights and positive weights

should tend to have negative and positive responses respectively on the query. Therefore,

if an OVA classifier gives a high response on a query, it means that the dot product of their

associated unit vectors is high, which then implies that those unit vectors should be close

to each other.

Consequently, we have established that, given a test pattern Q, finding the strongest-

responding OVA classifier CY is reduced to finding the nearest neighbor of V (Q) among all

vectors V (CY) by finding the class with greatest dot product. The next section describes

how to use that fact for speeding up multiclass recognition.

5.2 Using Nearest Neighbor Search Methods for OVA-Based Classifica-

tion

So far we have established that, to classify a test pattern Q, it suffices to find the nearest

neighbor of V (Q) among all vectors V (CY). Clearly, vectors V (CY) can be computed

off-line and stored in a database, and indexing methods can be used to preprocess this

database and facilitate nearest neighbor search. We can use any of the numerous indexing

methods that have been proposed for nearest neighbor search in vector spaces (Böhm et al.,

2001; Gionis et al., 1999; Hjaltason and Samet, 2003b; Kanth et al., 1998; Li et al., 2002;

Sakurai et al., 2000; Tuncel et al., 2002; Weber and Böhm, 2000; Weber et al., 1998).

One method that has become popular in recent years is locality sensitive hashing (LSH)

(Gionis et al., 1999). LSH can be used to find nearest neighbors, with high probability, in

time O(d log n), where d is the dimensionality of the space (equal to the number of weak

classifiers in our setting) and n is the number of database vectors (equal to the number of

classes in our setting). The probability of successful retrieval can be set as high as desired,

at the cost of increasing time complexity. For any fixed probability of success, retrieval

24

time is sublinear in the number of vectors in the database (Gionis et al., 1999).

LSH is applied to a vector space R
d as follows: let H be a family of hash functions

h : R
d → Z, where Z is the set of integers. As described in (Gionis et al., 1999), H is called

locality sensitive if there exist real numbers r1, r2, p1, p2 such that r1 < r2, p1 > p2, and for

any X1,X2 ∈ X:

D(X1,X2) < r1 ⇒ Prh∈H(h(X1) = h(X2)) ≥ p1 . (5.13)

D(X1,X2) > r2 ⇒ Prh∈H(h(X1) = h(X2)) ≤ p2 . (5.14)

Given a locality sensitive family H, LSH indexing works as follows: first, we pick

integers k and l. Then, we construct l hash functions g1, g2, . . . , gl, as concatenations of k

functions chosen randomly from H:

gi(X) = (hi1(X), hi2(X), . . . , hik(X)) . (5.15)

Each database object X is stored in each of the l hash tables defined by the functions gi.

Given a query object Q ∈ X, the retrieval process first identifies all database objects that

fall in the same bucket as Q in at least one of the l hash tables, and then exact distances are

measured between the query and those database objects. In our implementation, binary

hash functions are defined based on random unit vectors V : for each V , a binary hash

function is defined by computing the dot product between V and the vector to be hashed,

and thresholding the result.

Although LSH has good time complexity in theory, this theoretical complexity does

not necessarily translate to good performance in practice, and this is shown in some of our

experiments in Section 6.3. An alternative is to use dimensionality reduction. Since the set

of vectors V (CY) is computed off-line, we can use those vectors for an additional off-line

step, where dimensionality reduction is used to produce lower-dimensional approximate

representations of those vectors. Given a test pattern Q, its vector V (Q) can be projected

to the lower-dimensional space online, and then it can be compared to the lower-dimensional

25

projections of the database vectors.

Dimensionality reduction can be used within a filter-and-refine retrieval framework

(Ferhatosmanoglu et al., 2001): given an integer parameter p, filter-and-refine works as

follows:

• Input: A test pattern Q, and its vector representation V (Q).

• Filter step: Project V (Q) to the lower-dimensional space, and find the nearest

neighbors of the projection of V (Q) among the projections of the database vectors.

Keep the top p nearest neighbors.

• Refine step: For each of the top p nearest neighbors, apply the corresponding CY

to Q.

• Output: Return the CY yielding the strongest response CY (Q), among the CY ’s

evaluated during the refine step.

One dimensionality reduction approach that we have experimented with is principal

component analysis (PCA) (Jolliffe, 1986). In particular, we computed the principal com-

ponents of the set of vector representations of all OVA classifiers. A disadvantage of PCA

is that the cost of computing the PCA projection of the query can be significant, as demon-

strated in the experiments. Another dimensionality reduction approach that we have used,

that does not incur a significant projection cost, is to simply sample a subset of the original

dimensions. To choose d′ out of the original d dimensions, we tried two different sampling

methods:

• Sampling-1: choose the first d′ dimensions. The rationale here is that the first d′

dimensions correspond to the d′ weak classifiers that were chosen first during training,

and thus convey the most information.

• Sampling-2: choose d′ dimensions randomly.

The cost of using a PCA-based filter-and-refine process is approximately 2 · [d′(n+d)+

p·d] flops. This number reflects the total cost of all steps: projecting (d′ ·d), filtering (n·d′),

26

and refinement (p · d). If we use sampling instead of PCA, the projection cost becomes

independent of d, which can be an important source of computational savings, especially

for larger d’s and smaller n’s. The cost of OVA classification is approximately 2 · (n · d)

flops.

Naturally, dimensionality reduction and LSH can also be combined with each other in

various ways. For example, since LSH behaves better in smaller dimensions, we can first

apply dimensionality reduction to project vectors into a lower-dimensional space, and then

we can use LSH to index that space. We tested this combination in an experiment which

showed that for the same method parameters, LSH applied to the original space had poor

accuracy vs. efficiency trade-offs, and applied to the lower-dimensional space it achieved

significantly better trade-offs.

5.3 A Note on Sharing Classifiers

In the previous sections we have shown that multiclass recognition using boosted OVA

classifiers can be performed efficiently using nearest neighbor search methods. However, it

is well-known that nearest neighbor search methods perform worse as the dimensionality of

the space increases. For example, the running time of LSH is linear to the dimensionality.

In the worst case, the set of weak classifiers used by any classifier CY is disjoint of the set

of weak classifiers used by all other OVA classifiers. We have seen that PCA is one way to

reduce the dimensionality of the space. An additional, and complimentary, method is to

reduce the number d of unique weak classifiers appearing in the OVA classifiers by forcing

all OVA classifiers to use the same weak classifiers, thus reducing the total number of

unique weak classifiers (Torralba et al., 2007). It turns out that forcing OVA classifiers to

share weak classifiers is also beneficial with respect to classification accuracy, and training

methods have been recently proposed that enforce the sharing of weak classifiers (Torralba

et al., 2007). Using such training methods also leads to reduced dimensionality in the

vector representation of OVA classifiers and test patterns, thus facilitating the application

of vector indexing methods like those proposed in this thesis.

Chapter 6

Experiments

The methods proposed in this thesis are designed to be applied on top of existing OVA

classification systems. They use the response of the OVA classifiers. Therefore each dataset

depends on the brute-force classification system (e.g. SVM OVAs, boosted OVAs), and the

original dataset, that is, the dataset of patterns to be classified (e.g. hand images, face

images, video files of signs, audio files of sounds). The datasets used in our experiments

were generated from two original datasets: a dataset of hand images, where the task is to

estimate the handshape and the 3D orientation, and the Face Recognition Grand Challenge

(FRGC) Version 2 dataset (Phillips et al., 2005) of 2D face images. Example images from

these datasets are shown in Fig. 1·1. The hands dataset contains hand images of 81 basic

handshapes defined in American Sign Language (ASL) at 30 3D orientations yielding 2,430

number of classes. The faces dataset contains all 2D face images in the FRGC2 dataset,

amounting to 36,817 face images from 535 subjects (i.e., 535 classes). The OVA systems

trained to classify the patterns in these datasets are:

1. SVMs with a linear kernel for hand pose estimation,

2. SVMs with a Gaussian RBF kernel for face recognition,

3. jointly boosted classifiers for hand pose estimation, and

4. jointly boosted classifiers for face recognition.

The above methods are our brute-force methods: they require the application of all

OVAs for classification. ClassMap was applied to all the datasets. OVA-VS was applied

27

28

to the last two datasets. Since by definition OVA-VS requires boosted classifiers, it cannot

be applied to datasets 1 and 2.

Next, we describe each of the two datasets, and then we provide and discuss the results

of our experiments.

6.1 Datasets

The Hand Dataset

This dataset contains hand images of 81 basic hand shapes defined in American Sign

Language (ASL). There are 30 different out-of-plane view angles for each shape, for a

total of 81 × 30 = 2, 430 hand pose classes. The inplane orientation is fixed. For each

class, 200 synthetic images were generated using Poser 5 (Curious Labs, 2002). For each

synthetic hand image, cluttered background from random real images was added to the

regions outside the hand silhouette.

From each hand image, a histogram of oriented gradient feature vector (Dalal and

Triggs, 2005) of dimension 2,025 was extracted. The image was normalized to 48 by 48

pixels, which was divided into cells of size 6 by 6, with neighboring cells overlapping by

half. For each cell, nine edge orientation bins were evenly spaced between 0 to 180 degrees.

Bins in each cell were normalized with the surrounding 3 by 3 cells. All the bins from

all the cells were vectorized into a feature vector of 2025 feature components for a hand

sample.

To generate a domain with large number of classes, we enhanced the dataset of hand

images, to include 20 in-plane rotations per viewpoint, for a total of 81 handshapes × 30

out-of-plane rotations × 20 in-plane rotations = 48, 600 hand pose classes.

For evaluation, in addition to the synthetic hand images, we also used a second test

set of 992 real hand images, collected from 7 subjects and with cluttered background. The

real test images cover 13 out of the 2,430 classes. We collected real images from only a

few classes in order to facilitate the extremely laborious process of manually annotating

the ground truth for those images. Furthermore, because of the difficulties in visually

29

estimating the 3D hand orientation on an image, we assigned to each hand image four

different class labels (out of the possible 2,430 class labels). Each of those four class

labels corresponded to the same handshape and a 3D orientation within 30 degrees of the

manually labeled orientation. The classification result is considered correct iff it was equal

to one of those four labels.

The Face Dataset

This dataset contains all 2D face images in the FRGC2 dataset (Phillips et al., 2005),

amounting to 36817 face images from 535 subjects (i.e., 535 classes).

The original resolution of the face images was either 1704 × 2272, or 1200 × 1600. All

images were converted to gray images and normalized to 100 by 100 pixels. A PCA space

was learned from 4,000 uniformly sampled training faces of all the subjects. The features

of face images were their projections on the top 2,509 PCA components, which accounts

for 99.9% of the variance.

We also created an alternative, smaller test set, which we call the faces-25 test set. In

faces-25 we included all test images from classes for which at least 25 training examples

were available for the embedding construction algorithm. The faces-25 set was useful

for illustrating how performance of ClassMap was affected when the number of training

examples per class becomes too small. Images in the faces-25 test set were still classified

against all 535 classes.

6.2 Experimental Evaluation of the ClassMap Method

SVM classifiers were used for both the hands and the faces datasets. For the hands dataset,

for each class, a linear kernel SVM was trained using 150 positive samples of that class, and

48,000 negative samples containing images uniformly sampled from hand images of other

classes. When ClassMap was applied for this dataset, out of the remaining 50 samples per

class, 25 were used as training during embedding construction via AdaBoost, and 25 for

testing.

30

For the faces dataset, the 535 OVAs face classifiers were trained using SVMs with

a Gaussian RBF kernel with variance 10. For each OVA classifier the positive training

samples contain the training samples of a specific class and all training samples from the

other classes are negative training samples. In particular, for each subject the sample

images were split into three disjoint sets: half of the face images were used for training

OVA classifiers, 1/4 were used for the embedding construction of ClassMap, and 1/4 were

used for testing ClassMap.

In our experiments we evaluated five different methods: brute-force classification, and

four different variations of ClassMap, that use different ways to construct ClassMap em-

beddings, and different versions of filter-and-refine retrieval (see Section 4.2). The methods

we have used are the following:

• Brute force: evaluate all OVA classifiers; select the class whose classifier produced

the highest response.

• CM-RRC: use version 1 (simple OVA) of filter-and-refine classification, and use a

randomly generated ClassMap embedding.

• CM-RRC-Thr: use version 2 (OVA+threshold) of filter-and-refine classification,

and use a randomly generated ClassMap embedding.

• CM-Boosted: use version 1 (simple OVA) of filter-and-refine classification, and a

ClassMap embedding constructed using AdaBoost.

• CM-Boosted-Thr: use version 2 (OVA+threshold) of filter-and-refine classification,

and a ClassMap embedding constructed using AdaBoost.

In training CM-Boosted embeddings, using the algorithm of Section 4.3, different train-

ing triples were used for each dataset. Within each dataset, there was a single run of

ClassMap. The number of triples was the same (i.e., was 3 million) in all runs. The CM-

Boosted embeddings had 45 dimensions (d = 45) for the hand dataset, and 84 dimensions

for the face dataset. The number of dimensions is simply the number of reference classifiers

31

to which AdaBoost assigned non-zero weights. The same embedding was used for both real

and synthetic test images of hands, and the same embedding was used for both the faces

and the faces-25 test sets. To make comparisons fair, the same dimensions (45 for hands

and 84 for faces) were also used for the CM-RRC embeddings.

For the face dataset, for version 2 of the filter-and-refine classification of Section 4.2,

the threshold t was set to −0.38. This value was chosen by considering the training exam-

ples: −0.38 was the smallest value that would increase classification error on the training

examples by no more than 0.05%.

6.2.1 Results

Performance was measured based on classification accuracy and efficiency. Fig. 6·1 and

Fig. 6·2 display the results obtained for the four test sets (real hand images, synthetic

hand images, faces, and faces-25) using brute force, CM-Boosted, and (for the faces and

faces-25 sets) CM-Boosted-Thr. To evaluate different accuracy-vs.-efficiency trade-offs, we

varied parameter p of the refine step (Section 4.2), which specifies the maximum number

of candidate classes to consider. One measure of efficiency is the number of OVA classifier

evaluations per query. OVA classifiers were evaluated at the embedding step, in order to

produce the embedding of the query, and at the refine step, where the OVA classifiers

corresponding to the candidate classes are evaluated. However, the difference between the

23.9% accuracy of ClassMap and the 22.5% accuracy of brute force search is not statistically

significant, as it has a probability of about 15.3% of occurring by chance. Therefore, we

cannot make the claim that ClassMap actually improves the classification accuracy on this

dataset. We can, however, state that we achieved results comparable to those of brute

force search, at a significant speedup.

On the hand images, the brute-force classification accuracy was 22.5% for the real

images and 95.3% for the synthetic images.

At the cost of 85 classifier evaluations per query (d = 45, p = 40), CM-Boosted pro-

duced 23.9% classification accuracy for the real images and 95.3% for the synthetic images.

32

40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

cl
as

si
fic

at
io

n
ac

cu
ra

cy

number of classifier evaluations per query

Real hands

Brute Force
CM−Boosted

40 50 60 70 80 90 100
0.8

0.85

0.9

0.95

1

cl
as

si
fic

at
io

n
ac

cu
ra

cy

number of classifier evaluations per query

Synthetic hands

Brute Force
CM−Boosted

Figure 6·1: Results on the real and synthetic test sets of hand images
test sets. For method CM-Boosted we plot accuracy vs. number of OVA
classifier evaluations per query. We also show as a solid horizontal line the
brute force classification accuracy, attained at a cost of 2430 evaluations
per query.

50 100 150 200 250 300
0.4

0.5

0.6

0.7

0.8

0.9

1

cl
as

si
fic

at
io

n
ac

cu
ra

cy

number of classifier evaluations per query

Faces

Brute Force
CM−Boosted−Thr
CM−Boosted

50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1

cl
as

si
fic

at
io

n
ac

cu
ra

cy

number of classifier evaluations per query

Faces−25

Brute Force
CM−Boosted−Thr
CM−Boosted

Figure 6·2: Results on the faces and faces-25 test sets. For methods
CM-Boosted and CM-Boosted-Thr we plot accuracy vs. number of OVA
classifier evaluations per query. We also show as a solid horizontal line
the brute force classification accuracy, attained at a cost of 535 classifier
evaluations per query.

33

Interestingly, for the real hand images, CM-Boosted was both faster and more accurate

than brute force. A pattern misclassified via brute force can be classified correctly via the

filter-and-refine method, if the OVA classifier(s) producing false alarms were not associated

with candidate classes considered during the refine step.

In terms of running time for the hand dataset, the speed of brute force classification is

28 images/second, and the speed of CM-Boosted (at d = 45, p = 40, and with no loss in

classification accuracy) is 781 images/second, which is 28 times faster than brute force. In

a detection setting, where hundreds or thousands of image windows are classified separately

in order to determine where the hand is located, the speed-up factor of 28 produced by

ClassMap can make a big difference in practice.

We note that the classification accuracy on the dataset of real hand images for the SVM-

OVA was 22.5% which is relatively low for a large margin method. Recognizing handshapes

in arbitrary 3D orientations remains a challenging task, as evidenced by the high error rates

in our experiments. However, these error rates correspond, in some sense, to a worst-case

scenario, where no prior information is available as to what 3D orientations and handshapes

are most likely to be observed. Such prior information is oftentimes available in real-world

systems, and can come from the following sources:

• Specific usage scenarios, where the user is typically facing in a certain direction with

respect to the camera and makes handshapes with a limited range of 3D orientations.

• Knowledge of specific human-computer communication protocols, that involve a rel-

atively small number of gestures, thus restricting possible handshapes and 3D orien-

tations.

• Use of multiple cameras, which can resolve ambiguities that are unavoidable in sys-

tems that only use a single camera.

• Use of linguistic constraints in the context of sign language recognition. For example,

given the handshape of the dominant hand there is a relatively small number of

possible handshapes for the non-dominant hand.

34

• Use of information from multiple consecutive frames in a video sequence. The method

described in this paper can be a source of hypotheses for initializing a hand tracker.

Such a tracker can use information from multiple frames to improve upon the accuracy

of estimates made based on a single frame.

For the face dataset, ClassMap again provides a more efficient alternative to brute-force

classification. Brute-force classification achieves an accuracy of 92.0%, and it takes 2.17

seconds to classify a face image. At a cost of 178 classifier evaluations per query, the CM-

Boosted-Thr method yields an accuracy of 91.6%, and it takes 0.73 seconds to classify a face

image, which is 3.0 times faster than brute force. At the refine step, CM-Boosted-Thr runs

the OVAs in the order given by the filter step. If a classifier, CY , gives a response higher

than a threshold t, the process is stopped and the query is assigned class Y . Otherwise it

evaluates all of the p classifiers, as CM-Boost. This flrexibility allows CM-Boost-Thr to go

up to p = 400 for the difficult queries and still achieve the cost of 178 per query on average.

In order to investigate the accuracy trade-off with respect to the number of samples

per class available for training of ClassMap, we selected a subset of the test set, which

we refer to as faces-25. Faces-25 contains only samples from classes that provided at least

25 samples for training. For this experiment, the embedding was trained using all of the

535 classifiers and the database consisted of the embedding of all 535 classes. At a cost of

128 classifier evaluations per query, the CM-Boosted-Thr method yielded an accuracy of

94.9%, equal to the accuracy of brute force, at the speed of 0.53 seconds per image, which

is 4.1 faster than brute force.

Fig. 6·3 compares the single embedding constructed via AdaBoost vs. results from

100 randomly constructed embeddings. Interestingly, for the real hand images, several

random embeddings performed better than the AdaBoost-constructed embedding. Since

AdaBoost in general converges only to a local optimum, it is always possible that a random

construction turns out to be better than this local optimum. In the faces dataset, the

AdaBoost-constructed embedding does outperform all 100 CM-RRC embeddings. Still the

randomly constructed ClassMap embeddings performed better than brute force, achieving

35

40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3
cl

as
si

fic
at

io
n

ac
cu

ra
cy

number of classifier evaluations per query

Real hands

Brute Force
CM−Boosted
CM−RRC

75 100 125 150 175 200 225

0.4

0.5

0.6

0.7

0.8

0.9

1

cl
as

si
fic

at
io

n
ac

cu
ra

cy

number of classifier evaluations per query

Faces

Brute Force
CM−Boosted−Thr
CM−RRC−Thr

Figure 6·3: Comparing AdaBoost-based embedding construction to ran-
dom embedding construction. For the real hand test set and the faces test
set, we compare the single embedding constructed via AdaBoost vs. results
from 100 randomly constructed embeddings.

similar accuracy at more than twice the speed.

One last experiment measured the generalization ability of CM-Boosted embeddings.

In this experiment, AdaBoost used 435 classifiers and examples from only 435 out of 535

classes. The remaining 100 classes and classifiers were presented to the system after the

embedding was learned. Then, for each new class (out of the 100), using the embedding

(based on the 435 classifiers) and the training samples of the class, the class embedding

was computed and added to the database of embedded classes. The test set included only

examples from the left-out 100 classes. In Fig. 6·4 we compare the results to those obtained

(on the same test set from the left-out 100 classes) using the original embedding, that was

trained on all 535 classes. Not surprisingly, performance was worse for the embedding

that was trained without examples from the classes in the test set. At the same time,

performance on those left-out classes was still better than that of CM-RRC embeddings and

brute force. For example, at a cost of 110 classifier evaluations per query, the embedding

trained without examples from the test classes achieved an accuracy of 84.5%, which is

worse than the 87% accuracy of the embedding trained with all 535 classes, but is better

than than the median accuracy (78.5%) and the max accuracy (82.5%) attained using

36

75 100 125 150 175 200 225
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cl
as

si
fic

at
io

n
ac

cu
ra

cy

number of classifier evaluations per query

Faces

Brute Force
CM−Boosted−Thr, trained on 535 classes
CM−Boosted−Thr, trained on 435 classes
CM−RRC−Thr, best, RRCs from 435 classes
CM−RRC−Thr, median, RRCs from 435 classes

Figure 6·4: Measuring generalization of ClassMap embeddings to patterns
from classes not available during AdaBoost training. We show results from
an embedding optimized on all 535 classes, and an embedding optimized
on only 435 classes, leaving out 100 classes. We also show results from the
best performing out of 100 CM-RRC embeddings (with reference classifiers
chosen from the 435 classes), and the median result from those 100 embed-
dings. The test set was the set of test patterns from the left-out 100 classes.
Each test pattern was classified against all 535 classes.

37

100 randomly constructed embeddings. This experiment shows that ClassMap could be

applicable in a dynamic setting, where new classes and classifiers can be inserted after the

embedding was trained, without requiring a new embedding to be constructed.

6.2.2 Summary of ClassMap results

In summary, on the hand and face dataset, ClassMap yielded 3 to 28 times faster classifica-

tion compared to brute force, with negligible or no loss in accuracy, in the presence of large

numbers of classes (2,430 and 535 classes respectively). On the face dataset, ClassMap also

worked well when applied to query patterns from classes that were not available during

embedding construction.

6.3 Experimental Evaluation of the OVA-VS Method

In contrast to ClassMap, the OVA-VS method can only be applied if the OVA classifiers

have been trained via boosting. For that purpose, we jointly trained boosted OVA classifiers

using the shared features approach of Torralba et al. (Torralba et al., 2007). When

applied to the faces dataset of 535 classes and the enhanced hands dataset of 48600 classes,

this method produced a number of 10,000 and respectively 3,000 unique weak classifiers

appearing in the OVA classifiers.

For evaluation we used a test set of 281 synthetic hand images (also generated using

Poser) and a test set of 300 face images. Naturally, the sets of test images were disjoint

from the sets of training images. We evaluated seven different methods: brute-force search,

ClassMap, and five variants of OVA-VS; each of those five variants uses a different approach

for the filtering step. In more detail, the seven methods we tried are:

• Brute-force search: application of all OVA classifiers to the query.

• ClassMap (CM-Boosted version). For comparison purposes, we ran ClassMap

on top of the boosted OVA classifiers which we used as basis for the different variants

of the OVA-VSmethod. We note that the results provided here differ from those of

38

Section 6.2.1, as the results in Section 6.2.1 were applied on top of OVA classifiers

trained using SVMs, and not using boosting.

• OVA-VS-PCA: Use PCA within the filter-and-refine framework, as described in

Section 5.2.

• OVA-VS-Sampling-1: Use the Sampling-1 method within the filter-and-refine

framework, as described in Section 5.2.

• OVA-VS-Sampling-2: Use the Sampling-2 method within the filter-and-refine

framework, as described in Section 5.2.

• OVA-VS-LSH: locality sensitive hashing applied to the 3,000-dimensional space

defined by the weak classifiers.

• OVA-VS-PCA+LSH: Use PCA to reduce dimensionality from 3,000 to 20 dimen-

sions, normalize to one, and then use LSH to index the 20-dimensional unit hyper-

sphere.

Performance is measured in terms of speed-up with respect to brute force, and classifica-

tion accuracy. By definition, brute force achieves a speed-up factor of 1. The classification

accuracy of brute force is 90.75% for the synthetic hands dataset and 87.0% for the faces

dataset. For the PCA, Sampling-1, and Sampling-2 methods, the parameters that need

to be chosen are d′, i.e., the dimensionality of the lower-dimensional space, and p, i.e.,

the number of OVA classifiers to be evaluated at the refine step. Naturally, classification

accuracy and running time depend on both p and d′.

We now proceed to describe the experimental results obtained by these methods for

the synthetic hands dataset and the FRGC dataset.

6.3.1 Results on the Synthetic Hands Dataset

Figure 6·12 compares the performance of PCA and CM-Boosted on the synthetic hands

dataset. PCA gave significantly better overall results than ClassMap. To illustrate that,

39

0 25 50 75 100 125 150 175 200 225 250 275 300
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Synthetic hands − PCA vs CM−Boosted

cl
as

si
fic

at
io

n
ac

cu
ra

cy

 speedup factor

Brute Force
PCA
CM−Boosted

Figure 6·5: Classification accuracy vs. speedup factor on the synthetic
hands dataset, for brute force, PCA, and CM-Boosted. All three methods
were applied on top of boosted OVA classifiers.

0 50 100 150 200 250 300 350 400
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Synthetic hands − PCA vs PCA+LSH

cl
as

si
fic

at
io

n
ac

cu
ra

cy

 speedup factor

Brute Force
PCA
PCA+LSH

Figure 6·6: Classification accuracy vs. speedup factor on the synthetic
hands dataset, for brute force, PCA, and PCA+LSH. All three methods
were applied on top of boosted OVA classifiers.

40

35 40 45 50 55 60 65 70
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

speedup factor

cl
as

si
fic

at
io

n
ac

cu
ra

cy

Synthetic hands − Sampling−1 vs Sampling−2

Brute Force
Sampling−1
Sampling−2

Figure 6·7: Classification accuracy vs. speedup factor on the synthetic
hands dataset, for brute force, Sampling-1, and Sampling-2. All three meth-
ods were applied on top of boosted OVA classifiers.

0 50 100 150 200 250 300
0.87

0.88

0.89

0.9

0.91

speedup factor

cl
as

si
fic

at
io

n
ac

cu
ra

cy

Synthetic hands − Sampling−1 vs PCA

Brute Force
PCA
Sampling−1

Figure 6·8: Classification accuracy vs. speedup factor on the synthetic
hands dataset, for brute force, Sampling-1, and PCA. All three methods
were applied on top of boosted OVA classifiers.

10 20 30 40 50 60 70
0.85

0.86

0.87

0.88

0.89

0.9

0.91

speedup factor

cl
as

si
fic

at
io

n
ac

cu
ra

cy

Synthetic hands − Sampling−1 vs ClassMap

Brute force
Sampling−1
ClassMap

Figure 6·9: Classification accuracy vs. speedup factor on the synthetic
hands dataset, for brute force, Sampling-1, and CM-Boosted. All three
methods were applied on top of boosted OVA classifiers.

41

we plotted a single performance curve for PCA, obtained by constraining d and p so that

the running time of the filter and the refine step were equal. In contrast, for CM-Boosted,

we plotted a family of curves, each curve corresponding to a different embedding dimen-

sionality, ranging from 1 to 90 dimensions. The single PCA curve corresponds to much

better accuracy vs. efficiency trade-offs than any of the results obtained using different

d′ and p parameters for CM-Boosted. As a highlight, PCA gave a speed-up factor of 120

over brute-force search for a classification accuracy of 90.75% (equal to that of brute-force

search), whereas ClassMap gave a speed-up factor of 29 for that accuracy. PCA yielded

this result for d′ = 12 and p = 194.

LSH did not work as well for this dataset, both by itself or in conjunction with PCA.

Figure 6·6 illustrates that the performance of PCA+LSH was much worse than that of using

just PCA. These results for PCA+LSH correspond to a 20-dimensional PCA projection,

LSH parameter k ranging from 8 to 24 and LSH parameter l going up to 6000. We

note that larger values of l place a heavy burden on memory, as the amount of memory

needed for LSH is O(ln) is the number of classes. Using l = 10000 required about 5GB of

memory. LSH by itself performed even worse: for example, the best speed-up obtained for

an accuracy of 80% was a factor of 2.65, and even for an accuracy of 64% the best obtained

speed-up was a factor of 5.

Figures 6·7, 6·8, and 6·9 illustrate the performance of sampling-based dimensionality

reduction, using variants Sampling-1 and Sampling-2. For each of these variants, multiple

curves are plotted, each curve corresponding to a different number d′ of sampled dimensions,

ranging from 20 to 40. We note on Figure 6·7 that Sampling-1 worked significantly better

than Sampling-2, as expected, since Sampling-1 selects the most informative dimensions,

whereas Sampling-2 selects dimensions randomly. As Figure 6·8 shows, PCA produced

much better results than Sampling-1 (and consequently better results than Sampling-2 as

well).

In Figure 6·9 we observe that the best speedup obtained by Sampling-1 for the high-

est accuracy setting of 90.75% was a factor of 43, whereas ClassMap, for that accuracy,

42

gave a speedup factor of 29. This is an interesting result, considering the simplicity of

the Sampling-1 method vs. the complexity of implementing ClassMap. Using the vector

representation proposed by OVA-VS allowed us to use the inherent structure of that vector

space to our advantage, whereas ClassMap, due to its more general formulation, did not

have access to this vector representation.

In summary, PCA gave the best results for the synthetic hands dataset, highlighted

by a speedup factor of 120 with no loss in classification accuracy over brute-force search.

There was no clear winner between Sampling-1 and ClassMap. Sampling-1 outperformed

Sampling-2, as expected. PCA+LSH performed rather poorly, and LSH on the original

space performed even more poorly.

6.3.2 Results on the FRGC Dataset

While the PCA variant of OVA-VS gave good results for the synthetic hands dataset, that

was not the case for the FRGC dataset. Figure 6·10 plots the results attained using several

different combinations of d′ and p for PCA and ClassMap. We note that for an accuracy of

83.5%, which is 3.5% lower than that of brute-force search, PCA achieved a speedup factor

of only 1.6. As seen on the same figure, ClassMap also did not work very well, achieving

a speedup of 3.3 for the same accuracy of 83.5%, and a speedup of 1.8 for an accuracy of

87%, which is equal to the accuracy of brute-force search.

One reason for the poor performance of both PCA and ClassMap is the relatively small

number of classes in this dataset, only 535, compared to the 48,600 classes of the synthetic

hands dataset. As a result, generating a single dimension of a PCA projection, or a single

dimension of a ClassMap embedding, are operations that incur 1/535 of the cost of brute-

force search, compared to 1/48600 for the hands dataset. Figure 6·11 plots classification

accuracy vs. filter-and-refine cost, omitting from that cost the cost of generating PCA

projections and ClassMap embeddings for the queries. This cost is representative of the

performance we could expect if we had a much larger number of classes, that would make

the projection and embedding costs negligible. In that case we see that PCA performs

43

0 0.5 1 1.5 2 2.5 3 3.5
0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88
Faces − CM−Boosted vs PCA

cl
as

si
fic

at
io

n
ac

cu
ra

cy

 speedup factor

Brute Force
CM−Boosted
PCA

Figure 6·10: Classification accuracy vs. speedup factor on the face dataset,
for brute force, CM-Boost, and PCA. Both methods were applied on top of
boosted OVA classifiers.

0 5 10 15 20
0.6

0.65

0.7

0.75

0.8

0.85

Faces − PCA vs CM−Boosted with no projection cost

cl
as

si
fic

at
io

n
ac

cu
ra

cy

 speedup factor

Brute Force
PCA
CM−Boosted

Figure 6·11: Classification accuracy vs. speedup factor on the face dataset,
for brute force, PCA, and CM-Boosted, ignoring the cost of computing the
PCA projection on the query, and also ignoring the cost of computing the
CM-Boosted embedding of the query. Both methods were applied on top
of boosted OVA classifiers.

44

2 4 6 8 10 12 14 16 18 20
0.6

0.65

0.7

0.75

0.8

0.85

0.9

speedup factor

cl
as

si
fic

at
io

n
ac

cu
ra

cy

Faces − Sampling−1 vs CM−Boosted

Brute Force
Sampling−1
CM−Boosted

Figure 6·12: Classification accuracy vs. speedup factor on the face dataset,
for brute force, Sampling-1, and CM-Boosted. All three methods were
applied on top of boosted OVA classifiers.

1 2 3 4 5 6 7 8 9 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

speedup factor

cl
as

si
fic

at
io

n
ac

cu
ra

cy

Faces − Sampling−2 vs CM−Boosted

Brute Force
Sampling−2
CM−Boosted

Figure 6·13: Classification accuracy vs. speedup factor on the face dataset,
for brute force, Sampling-2, and CM-Boosted. All three methods were
applied on top of boosted OVA classifiers.

45

better than ClassMap, obtaining, for example, a speedup factor of 12.3 for a classification

accuracy of 86.3%. For that same accuracy, ClassMap gives a speedup factor of 4.2%.

While the cost of computing the lower-dimensional projection is significant for PCA for

this dataset, the sampling methods Sampling-1 and Sampling-2 do not incur such a cost.

As a result, Sampling-1 produced the best results out of the seven methods evaluated on

this dataset. Figure 6·12 shows the performance of Sampling-1 compared to ClassMap.

Sampling-1 produced a speedup of 6.4 for the same accuracy as brute-force search, com-

pared to a speedup of 1.8 for ClassMap and for the same accuracy. For an accuracy of

85.5% (compared to 87% for brute-force search), Sampling-1 produced a speedup of 10.2,

which is an order of magnitude.

As expected, Sampling-2 performed worse than Sampling-1. At the same time, the

performance of Sampling-2 was actually slightly better than that of ClassMap, as shown

in Figure 6·13.

LSH performed poorly for this dataset, as it did for the hands dataset. For example,

applied on top of a 20-dimensional PCA projection, and for an accuracy of 81%, the

speedup attained using PCA is only a factor of 1.55.

In summary, Sampling-1 gave the best results for the FRGC dataset, producing a

speedup factor of 6.4 while achieving the accuracy of brute-force search. Sampling-1 and

ClassMap gave similar performance, while PCA and LSH performed poorly. The relatively

small number of classes in this dataset makes it hard to obtain good results for the PCA

and ClassMap methods.

6.3.3 Summary of OVA-VS results

In summary, our experiments with the different variants of the OVA-VS method show

that, in each dataset, one of these four variants, significantly outperformed ClassMap. For

the hands dataset, for an accuracy equal to that of brute-force search, the PCA variant

of OVA-VS achieved a speedup factor of 120, compared with a speedup factor of 29 for

ClassMap. For the FRGC dataset, again for an accuracy equal to that of brute-force

46

search, the Sampling-1 variant of OVA-VS achieved a speedup factor of 6.4, compared

with a speedup factor of 1.8 for ClassMap. These results are expected, as the vector

representation proposed by OVA-VS does not lose any information, whereas ClassMap

embeddings are lossy.

With respect to the PCA variant of OVA-VS, we have seen that the relatively poor

performance of that variant on the FRGC dataset was due to the relatively small number

of classes, which made the PCA projection cost a large fraction of the cost of brute-force

search. As the number of classes increase, we expect PCA performance to improve.

With respect to the LSH and PCA+LSH variants, we have seen that the results of those

variants on our datasets were rather mediocre. At the same time, there are recent methods

for improving the performance of LSH (Andoni and Indyk, 2006; Panigrahy, 2006), that

we have not implemented. In future work, we plan to evaluate the performance of those

methods when integrated into the LSH variant of OVA-VS. Also, we should note that the

task of LSH in the PCA+LSH variant is rather more challenging than the typical task of

LSH, which is to find a few nearest neighbors of the query. For example, in the hands

dataset, for a 20-dimensional embedding, the true nearest neighbor of some queries (i.e.,

the vector representation of the strongest responding classifier for those queries) is not

included in the 100 nearest neighbors after we project to the PCA space. In such cases,

the task of LSH is to retrieve a not-so-near neighbor of the query, and this leads to worse

performance.

Chapter 7

Discussion and Future work

We have described two methods, ClassMap and OVA-VS, for speeding up large margin

classification in the presence of a large number of classes. The key differences between the

two methods can be summarized as follows:

• Generality. ClassMap does not make assumptions about the large margin method

used for training and the binary decomposition scheme. OVA-VS is designed for

application on top of boosted OVA classifiers. On the other hand, ClassMap makes

the relatively strong assumption that the outputs of an OVA classifier on patterns

of any specific class follow a unimodal distribution. No such assumption is made for

OVA-VS.

• Training data. ClassMap requires additional training data, on top of the training

data used to train the classifiers. OVA-VS requires no additional training data.

• Cost of mapping. For ClassMap, the embedding of each test pattern is relatively

costly, as it involves applying the reference classifiers on the pattern. For OVA-VS,

the mapping of each pattern to a vector is automatic, obtained immediately based

on the responses of the weak classifiers on that pattern.

• Quality of mapping. The ClassMap embedding is lossy: the nearest class in

the embedding space is not necessarily the class that is computed using brute-force

classification. On the other hand, the mapping used in OVA-VS is lossless: the vector

representation is such that the strongest-responding OVA classifier (that would be

identified using brute force) is the nearest neighbor of the pattern in the vector space.

47

48

Our experiments with hand recognition and face recognition systems showed that each

method achieves significant speed-ups, that are over one order of magnitude in some cases,

with relatively small losses in classification accuracy.

In the case where the OVA classifiers are not trained using boosting, OVA-VS is not

applicable, but ClassMap is applicable and has been shown in the experiments to be a

significantly better alternative than brute-force search. When boosted OVA classifiers are

used, then the OVA-VS method becomes applicable, and we can take advantage of the

lossless vector representation proposed by that method. As shown in the experiments,

in both datasets a variant of OVA-VS produced results significantly better than those of

ClassMap. On the hands dataset, the PCA variant gave the best results. On the FRGC

dataset, while PCA did not perform as well due to the relatively small number of classes, the

Sampling-1 variant produced the best results, and significantly outperformed ClassMap.

With respect to the performance of PCA and Sampling-1 variants of the OVA-VS

method, we note that computing the PCA projection of a query requires time O(dd′), where

d is the number of weak classifiers (and thus the dimensionality of the vector representation

of classifiers and patterns) and d′ is the dimensionality of the lower dimensional space

obtained using PCA or Sampling-1. This cost of O(dd′) is independent of the number

of classes. As the number of classes becomes smaller, the O(dd′) cost becomes a larger

fraction of the overall running time of OVA-VS. The Sampling-1 method does not incur

this O(dd′) cost and thus becomes more attractive computationally, compared to PCA, as

the number of classes decreases. This difference of O(dd′) in the running time contributed

to the fact that Sampling-1 outperformed PCA on the FRGC dataset, where there are

only 535 classes, whereas PCA outperformed Sampling-1 on the hands dataset, where the

number of classes is 48,600.

For ClassMap, the filter step compares the embedding of the query to the embeddings

of all classes. This step takes negligible time in our experiments, but can become a bot-

tleneck for really large numbers of classes. However, by mapping classes to a vector space,

ClassMap allows application of numerous vector indexing methods (e.g., LSH (Gionis et al.,

49

1999)) for speeding up the filter step. Using vector indexing methods can lead to recogni-

tion time that is sublinear in the number of classes, thus allowing efficient recognition even

with significantly more classes than the numbers used in our experiments. Integrating such

indexing methods with ClassMap is an interesting topic for future work.

Another possible improvement for ClassMap is to explicitly model the probability dis-

tribution of the responses of reference classifiers for the patterns of each class. At the

filter step, instead of measuring L1 distances between the embedding of the query and

the embeddings of the database classes, we could compute the probability of the pattern

belonging to each class, based on the responses of the reference classifiers. A challenge

in implementing such a probabilistic approach is handling classes with a small number of

training examples.

For OVA-VS, an interesting topic for future exploration is to try a larger number of

vector indexing methods, in order to identify methods that tend to work well in practice

within the proposed framework. For the LSH variant of OVA-VS, we plan to evaluate

recently proposed methods for improving LSH performance (Andoni and Indyk, 2006;

Panigrahy, 2006). Finally, as OVA-VS is only applicable to boosting-based classification,

it will be interesting to investigate whether similar methods can also be designed for other

types of large margin classifiers, such as support vector machines.

It will also be interesting to integrate the hand recognition module in an actual appli-

cation, such as ASL sign recognition (Athitsos et al., 2008), to obtain a better picture of

how domain-specific constraints affect hand pose recognition accuracy.

References

Agarwal, A. and Triggs, B. (2006). Recovering 3D human pose from monocular
images. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
28(1):44–58.

Allwein, E. L., Schapire, R. E., and Singer, Y. (2000). Reducing multiclass to binary:
a unifying approach for margin classifiers. Journal of Machine Learning Research,
1:113–141.

Andoni, A. and Indyk, P. (2006). Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 459–468.

Athitsos, V. (2006). Learning Embeddings for Indexing, Retrieval, and Classification,
with Applications to Object and Shape Recognition in Image Databases. PhD thesis,
Boston University.

Athitsos, V., Neidle, C., Sclaroff, S., Nash, J., Yuan, A. S. Q., and Thangali, A.
(2008). The American Sign Language lexicon video dataset. In IEEE Workshop
on Computer Vision and Pattern Recognition for Human Communicative Behavior
Analysis (CVPR4HB).

Athitsos, V., Stefan, A., Yuan, Q., and Sclaroff, S. (2007). ClassMap: Efficient multi-
class recognition via embeddings. In IEEE International Conference on Computer
Vision (ICCV).

Böhm, C., Berchtold, S., and Keim, D. A. (2001). Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia databases.
ACM Computing Surveys, 33(3):322–373.

Curious Labs (2002). Poser 5 Reference Manual. Curious Labs, Santa Cruz, CA.

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
886–893.

de Campos, T. E. and Murray, D. W. (2006). Regression-based hand pose estimation
from multiple cameras. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 1, pages 782–789.

Dietterich, T. G. and Bakiri, G. (1995). Solving multiclass learning problems via
error-correcting output codes. Journal of Artificial Intelligence Research, 2:263–
286.

50

51

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. Wiley-
Interscience.

Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., and Abbadi, A. E. (2001). Approxi-
mate nearest neighbor searching in multimedia databases. In IEEE International
Conference on Data Engineearing (ICDE), pages 503–511.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a
statistical view of boosting. Annals of Statistics, 28(2):337–374.

Gavrila, D. and Philomin, V. (2001). Real-time object detection for “smart“ vehicles.
In IEEE International Conference on Computer Vision (ICCV), pages 87–93.

Gionis, A., Indyk, P., and Motwani, R. (1999). Similarity search in high dimensions
via hashing. In International Conference on Very Large Databases (VLDB), pages
518–529.

Grauman, K. and Darrell, T. J. (2004). Fast contour matching using approximate
earth mover’s distance. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages I: 220–227.

Hjaltason, G. and Samet, H. (2003a). Properties of embedding methods for similarity
searching in metric spaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 25(5):530–549.

Hjaltason, G. R. and Samet, H. (2003b). Index-driven similarity search in metric
spaces. ACM Transactions on Database Systems (TODS), 28(4):517–580.

Jolliffe, I. (1986). Principal Component Analysis. Springer-Verlag.

Kanth, K. V. R., Agrawal, D., and Singh, A. (1998). Dimensionality reduction for
similarity searching in dynamic databases. In ACM International Conference on
Management of Data (SIGMOD), pages 166–176.

Li, C., Chang, E., Garcia-Molina, H., and Wiederhold, G. (2002). Clustering for
approximate similarity search in high-dimensional spaces. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 14(4):792–808.

Li, S. Z. and Zhang, Z. Q. (2004). Floatboost learning and statistical face detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
26(9):1112–1123.

Liu, C. (2006). Capitalize on dimensionality increasing techniques for improving face
recognition grand challenge performance. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 28(5).

Ong, E. J. and Bowden, R. (2004). A boosted classifier tree for hand shape detection.
In Automatic Face and Gesture Recognition (AFGR), pages 889–894.

52

Panigrahy, R. (2006). Entropy based nearest neighbor search in high dimensions. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1186–1195.

Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K.,
Marques, J., Min, J., and Worek, W. (2005). Overview of the face recognition
grand challenge. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 947–954.

Platt, J., Cristianini, N., and Shawe-Taylor, J. (2000). Large margin DAGS for
multiclass classification. In Neural Information Processing Systems (NIPS), pages
547–553.

Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification. Journal of
Machine Learning Research, 5:101–141.

Sakurai, Y., Yoshikawa, M., Uemura, S., and Kojima, H. (2000). The A-tree: An
index structure for high-dimensional spaces using relative approximation. In Inter-
national Conference on Very Large Data Bases (VLDB), pages 516–526.

Schapire, R. and Singer, Y. (1999). Improved boosting algorithms using confidence-
rated predictions. Machine Learning, 37(3):297–336.

Shakhnarovich, G., Viola, P., and Darrell, T. (2003). Fast pose estimation with
parameter-sensitive hashing. In IEEE International Conference on Computer Vi-
sion (ICCV), pages 750–757.

Stenger, B., Thayananthan, A., Torr, P. H. S., and Cipolla, R. (2004). Hand pose
estimation using hierarchical detection. In ECCV Workshop on Human Computer
Interaction, pages 105–116.

Torralba, A., Murphy, K. P., and Freeman, W. T. (2007). Sharing visual features for
multiclass and multiview object detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 29(5):854–869.

Tuncel, E., Ferhatosmanoglu, H., and Rose, K. (2002). VQ-index: An index structure
for similarity searching in multimedia databases. In Proceedings of ACM Multime-
dia, pages 543–552.

Vapnik, V. (1995). The nature of statistical learning theory. Springer-Verlag New
York, Inc.

Weber, R. and Böhm, K. (2000). Trading quality for time with nearest-neighbor
search. In International Conference on Extending Database Technology (EDBT),
pages 21–35.

Weber, R., Schek, H.-J., and Blott, S. (1998). A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces. In Interna-
tional Conference on Very Large Data Bases (VLDB), pages 194–205.

